1
|
Şirin PA, Serdar S. Effects of nitrogen starvation on growth and biochemical composition of some microalgae species. Folia Microbiol (Praha) 2024; 69:889-902. [PMID: 38285280 DOI: 10.1007/s12223-024-01136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Nitrogen is one of the most important nutrient sources for the growth of microalgae. We studied the effects of nitrogen starvation on the growth responses, biochemical composition, and fatty acid profile of Dunaliella tertiolecta, Phaeodactylum tricornutum, and Nannochloropsis oculata. The lack of nitrogen caused changes in carbohydrate, protein, lipid, and fatty acid composition in all examined microalgae. The carbohydrate content increased 59% in D. tertiolecta, while the lipid level increased 139% in P. tricornutum under nitrogen stress conditions compared to the control groups. Nitrogen starvation increased the oligosaccharide and polysaccharide contents of D. tertiolecta 4.1-fold and 3.6-fold, respectively. Furthermore, triacylglycerol (TAG) levels in N. oculata and P. tricornutum increased 2.3-fold and 7.4-fold, respectively. The dramatic increase in the amount of TAG is important for the use of these microalgae as raw materials in biodiesel. Nitrogen starvation increased the amounts of oligosaccharides and polysaccharides of D. tertiolecta, while increased eicosapentaenoic acid (EPA) in N. oculata and docosahexaenoic acid (DHA) content in P. tricornutum. The amount of polyunsaturated fatty acids (PUFAs), EPA, DHA, oligosaccharides, and polysaccharides in microalgal species can be increased without using the too costly nitrogen source in the culture conditions, which can reduce the most costly of living feeding.
Collapse
Affiliation(s)
- Pınar Akdoğan Şirin
- Fatsa Faculty of Marine Science, Department of Fisheries Technology Engineering, Ordu University, 52400, Fatsa, Ordu, Turkey.
| | - Serpil Serdar
- Faculty of Fisheries, Department of Aquaculture, Ege University, 35030, Bornova, Izmir, Turkey
| |
Collapse
|
2
|
Cui Y, Wang K, Zhou X, Meng C, Gao Z. Lipid accumulation mechanism of Amphora coffeaeformis under nitrogen deprivation and its application as a feed additive in Carassius auratus aquaculture. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:189. [PMID: 38057940 DOI: 10.1186/s13068-023-02436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Amphora coffeaeformis, a unicellular diatom, can significantly accumulate lipids under nitrogen (N) limitation. However, the molecular mechanism underlying lipid accumulation in A. coffeaeformis remains unknown and its application development is lagging. RESULTS This work analyzed the lipid composition of A. coffeaeformis under N deprivation and investigated its mechanism underlying lipid accumulation using RNA-seq. The results showed that the total lipid content of A. coffeaeformis increased from 28.22 to 44.05% after 5 days of N deprivation, while the neutral lipid triacylglycerol (TAG) content increased from 10.41 to 25.21%. The transcriptional profile showed that N deprivation induced wide-ranging reprogramming of regulation and that most physiological activities were repressed, while the upregulation of glycerol-3-phosphate acyltransferase directly determined TAG accumulation. Moreover, we explored the effect of A. coffeaeformis as a food additive on the lipid composition of crucian carp. The results showed that the contents of unsaturated fatty acids in the meat of fish supplemented with A. coffeaeformis were significantly increased, indicating its potential application in animal nutrition for improving meat quality indicators. CONCLUSION The findings shed light on the molecular mechanisms of neutral lipid accumulation and revealed the key genes involved in lipid metabolism in A. coffeaeformis. Moreover, we also confirmed that A. coffeaeformis can be used as feed additive for improving the lipid composition of crucian carp meat, which provided evidence for the biotechnology application of this high-oil microalgae.
Collapse
Affiliation(s)
- Yulin Cui
- Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai, 256603, Shandong Province, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, Beijing, 101418, China
| | - Xiuzhi Zhou
- Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai, 256603, Shandong Province, China
| | - Chunxiao Meng
- Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai, 256603, Shandong Province, China
| | - Zhengquan Gao
- Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai, 256603, Shandong Province, China.
| |
Collapse
|
3
|
Saad S, Hussien MH, Abou-ElWafa GS, Aldesuquy HS, Eltanahy E. Filter cake extract from the beet sugar industry as an economic growth medium for the production of Spirulina platensis as a microbial cell factory for protein. Microb Cell Fact 2023; 22:136. [PMID: 37488525 PMCID: PMC10367415 DOI: 10.1186/s12934-023-02146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Beet filter cake (BFC) is a by-product of sugar beet processing, which is difficult to dispose of and involves severe environmental concerns. Spirulina platensis is a microalga with a high protein content essential for human and animal nutrition. The present study aimed to utilize the beet filter cake extract (BFCE) to produce Spirulina platensis commercially. However, the cultivation of S. platensis on BFCE to produce economically single-cell protein has not been reported previously. RESULTS The batch experiment revealed the maximum dry weight at Zarrouk's medium (0.4 g/L) followed by 0.34 g/L in the treatment of 75% BFCE. The highest protein content was 50% in Zarrouk's medium, followed by 46.5% in 25% BFCE. However, adding a higher concentration of 100% BFCE led to a protein content of 31.1%. In the adaption experiment, S platensis showed an increase in dry cell weight and protein content from 25 to 75% BFCE (0.69 g/L to 1.12 g/L and 47.0% to 52.54%, respectively) with an insignificant variation compared to Zarrouk's medium (p ≤ 0.05), indicating that S. platensis can be economically produced when cultivated on 75% BFCE The predicated parameters from response surface methodology were NaNO3 (2.5 g/L), NaHCO3 (0.67 g/L), BFCE (33%) and pH = 8, which resulted in biomass yield and protein content (0.56 g/L and 52.5%, respectively) closer to that achieved using the standard Zarrouk's medium (0.6 g/L and 55.11%). Moreover, the total essential amino acid content was slightly higher in the optimized medium (38.73%) than SZM (36.98%). CONCLUSIONS Therefore, BFCE supplemented medium could be used as a novel low-cost alternative growth medium for producing a single-cell protein with acceptable quantity and quality compared to the standard Zarrouk's medium.
Collapse
Affiliation(s)
- Sara Saad
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mervat Hosny Hussien
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | | | - Eladl Eltanahy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
4
|
Touloupakis E, Zittelli GC, Benavides AMS, Torzillo G. Growth and photosynthetic performance of Nostoc linckia (formerly N. calcicola) cells grown in BG11 and BG11 0 media. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 22:795-807. [PMID: 36550226 DOI: 10.1007/s43630-022-00353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
The biotechnological potential of Nostoc linckia as a biofertilizer and source of bioactive compounds makes it important to study its growth physiology and productivity. Since nitrogen is a fundamental component of N. linckia biomass, we compared the growth and biochemical composition of cultures grown in BG11 (i.e., in the presence of nitrate) and BG110 (in the absence of nitrate). Cultures grown in BG11 accumulated more cell biomass reaching a dry weight of 1.65 ± 0.06 g L-1, compared to 0.92 ± 0.01 g L-1 in BG110 after 240 h of culture. Biomass productivity was higher in culture grown in BG11 medium (average 317 ± 38 mg L-1 day-1) compared to that attained in BG110 (average 262 ± 37 mg L-1 day-1). The chlorophyll content of cells grown in BG11 increased continuously up to (39.0 ± 1.3 mg L-1), while in BG110 it increased much more slowly (13.6 ± 0.8 mg L-1). Biomass grown in BG11 had higher protein and phycobilin contents. However, despite the differences in biochemical composition and pigment concentration, between BG11 and BG110 cultures, both their net photosynthetic rates and maximum quantum yields of the photosystem II resulted in similar.
Collapse
Affiliation(s)
- Eleftherios Touloupakis
- Istituto di Ricerca sugli Ecosistemi Terrestri, CNR, Via Madonna del Piano, 10 Sesto Fiorentino, 50019, Florence, Italy
| | - Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10 Sesto Fiorentino, 50019, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias Del Mar y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.,Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10 Sesto Fiorentino, 50019, Florence, Italy. .,Centro de Investigación en Ciencias Del Mar y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
5
|
Elshobary ME, Zabed HM, Qi X, El-Shenody RA. Enhancing biomass and lipid productivity of a green microalga Parachlorella kessleri for biodiesel production using rapid mutation of atmospheric and room temperature plasma. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:122. [PMID: 36372889 PMCID: PMC9655907 DOI: 10.1186/s13068-022-02220-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Microalgae, with their high adaptability to various stress conditions and rapid growth, are considered excellent biomass resources for lipid production and biodiesel feedstocks. However, lipid yield and productivity of the natural strains are common bottlenecks in their large-scale use for lipid production, which can be overcome by evolving new strains using conventional and advanced mutagenic techniques. It is challenging to generate microalgae strains capable of high lipid synthesis through natural selection. As a result, random mutagenesis is currently considered a viable option in many scenarios. The objective of this study was to explore atmospheric and room temperature plasma (ARTP) as a random mutagenesis technique to obtain high lipid-accumulating mutants of a green microalga for improved biodiesel production. RESULTS A green microalgal species was isolated from the Chinese Yellow Sea and identified as Parachlorella kessleri (OM758328). The isolated microalga was subsequently mutated by ARTP to obtain high lipid-accumulating mutants. Based on the growth rate and lipid content, 5 mutants (named M1, M2, M4, M5, and M8) were selected from 15 pre-selected mutants. These five mutants varied in their growth rate from 0.33 to 0.68 day-1, with the lipid content varying between 0.25 g/L in M2 to 0.30 g/L in M8 at 10th day of cultivation. Among the mutants, M8 showed the maximum biomass productivity (0.046 g/L/day) and lipid productivity (20.19 mg/L/day), which were 75% and 44% higher than the wild strain, respectively. The triglyceride (TAG) content of M8 was found to be 0.56 g/L at 16th day of cultivation, which was 1.77-fold higher than that of the wild strain. Furthermore, M8 had the highest saturated fatty acids (C16-18) with the lowermost polyunsaturated fatty acid content, which are favorable properties of a biodiesel feedstock according to international standards. CONCLUSION The mutant strain of P. kessleri developed by the ARTP technique exhibited significant improvements in biomass productivity, lipid content, and biodiesel quality. Therefore, the biomass of this mutant microalga could be a potential feedstock for biodiesel production.
Collapse
Affiliation(s)
- Mostafa E Elshobary
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rania A El-Shenody
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
6
|
da Silva Leite R, Neves do Nascimento M, Hernandéz-Navarro S, Miguel Ruiz Potosme N, Karthikeyan S. Use of ATR-FTIR spectroscopy for analysis of water deficit tolerance in Physalis peruviana L. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121551. [PMID: 35779475 DOI: 10.1016/j.saa.2022.121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Treatments that allow plants to better tolerate water deficit become essential, such as the application of chemical priming. In addition, it is essential to use analyses capable of measuring these effects at the biomolecular level, complementing the other physiological evaluations. In view of the above, this study aimed to evaluate the use of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy for analyses of water deficit tolerance in Physalis peruviana plants. For this, samples of leaves, stems and roots of plants subjected to different pretreatments with proline (10 mM and 20 mM), sodium nitroprusside (SNP 25 μM and 50 μM) and H2O as control, aiming at increasing tolerance to water deficit, were evaluated. The chemical agents used attenuated water deficit in P. peruviana plants, influencing phenotypic characterization and spectral analyses. Analysis of FTIR spectra indicates that different functional groups present in leaves, stems and roots were influenced by water deficit and priming treatments. Changes in lipid levels contributed to reducing water losses by increasing the thickness of cuticular wax. Accumulation of proteins and carbohydrates promoted osmoregulation and maintenance of the water status of plants. Thus, water deficit causes changes in the functional groups present in the organs of P. peruviana, and the ATR-FTIR technique is able to detect these biomolecular changes, helping in the selection of priming treatments to increase tolerance to water deficit.
Collapse
Affiliation(s)
- Romeu da Silva Leite
- Biological Sciences Department, State University of Feira de Santana, 44036-900 Feira de Santana, Bahia, Brazil; Agriculture and Forestry Engineering Department, Universidad de Valladolid, 34004 Palencia, Castilla y Leon, Spain; Baiano Federal Institute of Science and Technology, Campus Xique-Xique, 47400-000 Xique-Xique, Brazil.
| | - Marilza Neves do Nascimento
- Biological Sciences Department, State University of Feira de Santana, 44036-900 Feira de Santana, Bahia, Brazil
| | - Salvador Hernandéz-Navarro
- Agriculture and Forestry Engineering Department, Universidad de Valladolid, 34004 Palencia, Castilla y Leon, Spain
| | - Norlan Miguel Ruiz Potosme
- Superior Polytechnic School, European University Miguel de Cervantes, 47012 Valladolid, Castilla y Leon, Spain
| | - Sivakumaran Karthikeyan
- Department of Physics, Dr. Ambedkar Government Arts College, 600039 Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Dhali S, Jain R, Malik A, Sharma S, Raliya R. Cultivation of Navicula sp. on rice straw hydrolysate for the production of biogenic silica. BIORESOURCE TECHNOLOGY 2022; 360:127577. [PMID: 35792331 DOI: 10.1016/j.biortech.2022.127577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Rice straw hydrolysate (RSH) prepared at room temperature was found to be rich in silica (140 ± 4.1 mg L-1) and other nutrients (nitrate-N: 160 ± 4.3 mg L-1, total dissolve phosphate: 164 ± 6.7 mg L-1, ammoniacal-N: 439.8 ± 17 mg L-1). The aim of this work was to study four RSH dilutions (10, 30, 50, 70% v/v) to cultivate Navicula sp. with modified ASN-III as a control. The best result was achieved in 30% RSH in terms ofdoubling time (d = 1.49 days) and growth rate (µmax = 0.46 day-1). Compared to control, specific growth rate and biomass productivity were increased by 2.93 folds and 1.85 folds, respectively. Cultivation in 5 L reactor with optimized 30% RSH yielded frustule (54.2 ± 1.9%), carbohydrate (12.4 ± 1.2%), lipid (18.9 ± 1.4%), and protein (8.2 ± 0.6%). The residual solid fraction showed 18.99% increased theoretical methane yield than raw rice straw. Overall, the present process offers a sustainable solution to manage rice straw residue and recover nanoporous silica.
Collapse
Affiliation(s)
- Sumit Dhali
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Rahul Jain
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India.
| | - Satyawati Sharma
- Biochemistry Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ramesh Raliya
- Adjunct Faculty, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
8
|
Flanjak L, Vrana I, Cvitešić Kušan A, Godrijan J, Novak T, Penezić A, Gašparović B. Effects of high temperature and nitrogen availability on the growth and composition of the marine diatom Chaetoceros pseudocurvisetus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4250-4265. [PMID: 35383849 DOI: 10.1093/jxb/erac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The assimilation of inorganic nutrients by phytoplankton strongly depends on environmental conditions such as the availability of nitrogen and temperature, especially warming. The acclimation or adaptation of different species to such changes remains poorly understood. Here, we used a multimethod approach to study the viability and physiological and biochemical responses of the marine diatom Chaetoceros pseudocurvisetus to different temperatures (15, 25, and 30 °C) and different N:P ratios. Nitrogen limitation had a greater effect than high temperature on cell growth and reproduction, leading to a marked elongation of setae, decreased phosphorus assimilation, increased lipid accumulation, and decreased protein synthesis. The elongation of setae observed under these conditions may serve to increase the surface area available for the uptake of inorganic and/or organic nitrogen. In contrast, high temperatures (30 °C) had a stronger effect than nitrogen deficiency on cell death, nitrogen assimilation, chlorophyll a accumulation, the cessation of setae formation, and cell lipid remodelling. Significant changes in thylakoid lipids were observed in cells maintained at 30 °C, with increased levels of digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol. These changes may be explained by the role of galactolipids in thylakoid membrane stabilization during heat stress.
Collapse
Affiliation(s)
- Lana Flanjak
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Ivna Vrana
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Cvitešić Kušan
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Jelena Godrijan
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tihana Novak
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Abra Penezić
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Blaženka Gašparović
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Liu M, Zhang Y, Yuan Z, Lu L, Liu X, Zhu X, Wang L, Liu C, Rao Y. Cercosporin-bioinspired photoinactivation of harmful cyanobacteria under natural sunlight via bifunctional mechanisms. WATER RESEARCH 2022; 215:118242. [PMID: 35259559 DOI: 10.1016/j.watres.2022.118242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Harmful cyanobacterial blooms (HCBs), mainly caused by eutrophication, have deleterious impacts on water resources and pose a great threat to human health and natural ecosystems. Thus, an environmentally-friendly method to inhibit HCBs is urgently needed. Learning from nature, herein, natural product cercosporin, produced by the fungi Cercospora to damage plant cells under natural sunlight, was developed as a powerful photosensitive algicidal reagent to inhibit HCBs. Microcystis aeruginosa could be severely inactivated by 20 μM cercosporin in 36 h with 95% inhibition ratio under 23 W compact fluorescent light irradiation. Further mechanism investigation showed that algal cell walls and membranes along with the antioxidant and photosynthetic systems were damaged via two mechanisms, those being, reactive oxygen species generation and cell adsorption. More importantly, the practical applicability of cercosporin was demonstrated by its effectiveness in a 2 L-scale photoinactivation experiment using cyanobacterial blooms from Taihu Lake, China under natural sunlight with a lower dosage of cercosporin (7.5 μM). This study established the bifunctional mechanisms by which cercosporin inactivates HCBs, opening design possibilities for the development of novel photosensitive algicidal reagents to control HCBs.
Collapse
Affiliation(s)
- Meiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yan Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Liushen Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xuanzhong Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiaonan Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Lingling Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
10
|
Wang X, Mou JH, Qin ZH, Hao TB, Zheng L, Buhagiar J, Liu YH, Balamurugan S, He Y, Lin CSK, Yang WD, Li HY. Supplementation with rac-GR24 Facilitates the Accumulation of Biomass and Astaxanthin in Two Successive Stages of Haematococcus pluvialis Cultivation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4677-4689. [PMID: 35384649 DOI: 10.1021/acs.jafc.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The unicellular freshwater green alga Haematococcus pluvialis has attracted much research attention due to its biosynthetic ability for large amounts of astaxanthin, a blood-red ketocarotenoid that is used in cosmetics, nutraceuticals, and pharmaceuticals. Recently, numerous studies have investigated the functions of natural astaxanthin; however, the high cost of the production of astaxanthin from H. pluvialis cultures restricts its commercial viability. There is an urgent need to fulfill commercial demands by increasing astaxanthin accumulation from H. pluvialis cultures. In this study, we discovered that treatment of H. pluvialis cultures at the beginning of the macrozooid stage (day 0) with 1 μM rac-GR24, a synthetic analogue of strigolactones (a class of phytohormones), led to significant increases in biomass [up to a maximum dry cell weight (DCW) of 0.53 g/L] during the macrozooid stage and astaxanthin (from 0.63 to 5.32% of DCW) during the hematocyst stage. We elucidated that this enhancement of biomass accumulation during the macrozooid stage by rac-GR24 is due to its increasing CO2 utilization efficiency in photosynthesis and carbohydrate biosynthesis. We also found that rac-GR24 stimulated the overproduction of nicotinamide adenine dinucleotide phosphate (NADPH) and antioxidant enzymes in H. pluvialis cultures, which alleviated the oxidative damage caused by reactive oxygen species generated during the hematocyst stage due to the exhaustion of nitrogen supplies. Moreover, rac-GR24 treatment of H. pluvialis synergistically altered the activity of the pathways of fatty acid biosynthesis and astaxanthin esterification, which resulted in larger amounts of astaxanthin being generated by rac-GR24-treated cultures than by controls. In summary, we have developed a feasible and economic rac-GR24-assisted strategy that increases the amounts of biomass and astaxanthin generated by H. pluvialis cultures, and have provided novel insights into the mechanistic roles of rac-GR24 to achieve these effects.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Ting-Bin Hao
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lan Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Joseph Buhagiar
- Department of Biology, University of Malta, Msida 2080, Malta
| | - Yu-Hong Liu
- Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | | | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Esther Elizabeth Grace C, Briget Mary M, Vaidyanathan S, Srisudha S. Response to nutrient variation on lipid productivity in green microalgae captured using second derivative FTIR and Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120830. [PMID: 34995851 DOI: 10.1016/j.saa.2021.120830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Two green microalgae species Monoraphidium contortum (M. contortum) and Chlamydomonas sp. that were identified to accumulate lipids were subjected to four different nutrient treatments (NP1-NP4), ranging in nitrate (0.05-5 mM N) and phosphate (2.8-264 μM P) concentrations, at a fixed N:P ratio of ∼18. The effect of nutrient variation on lipid productivity in the species was investigated using second derivative (SD) FTIR and Raman spectroscopy of algal biomass. SD spectral analysis revealed high production of lipid in the form of hydrocarbons (CH) (3000-2800 cm-1), triacylglycerides (TAGs)(∼1740 cm-1), saturated (SFA)(∼1440 cm-1), and unsaturated fatty acids (UFA)(∼3010 cm-1) for the nutrient deplete condition (NP1) in both species. Changes in signals attributed to lipids in proportion to other biochemical components were consistent with physiological changes expected from nutrient depletion. Relative signal intensities for lipids showed a significant increase in NP1, in particular, CH, TAGs in relation to protein signals (in SD-FTIR), and SFA, UFA in relation to carotenoid signals (in SD-Raman). PCA performed on the negative spectral values of the SD-FTIR and SD-Raman data for the four NP treatments enabled discrimination not only between the species but also between the NP treatments and the timing of harvest. M. contortum was found to contain a relatively higher proportion of CH, TAGs, SFA, and UFA compared to Chlamydomonas sp. Peak areas from the negative SD spectra, informed by PCA analysis, enabled capturing quantifiable changes in a manner that is consistent with known microalgal physiology. SD-FTIR and SD-Raman spectroscopy have been shown to possess superior potential to capture relevant microalgal physiological changes.
Collapse
Affiliation(s)
| | - M Briget Mary
- Research Centre, Department of Physics, Lady Doak College, Madurai 625002, Tamil Nadu, India.
| | - Seetharaman Vaidyanathan
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - S Srisudha
- Research Centre, Department of Botany, Lady Doak College, Madurai 625002, Tamil Nadu, India.
| |
Collapse
|
12
|
Elementary vectors and autocatalytic sets for resource allocation in next-generation models of cellular growth. PLoS Comput Biol 2022; 18:e1009843. [PMID: 35104290 PMCID: PMC8853647 DOI: 10.1371/journal.pcbi.1009843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/17/2022] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Traditional (genome-scale) metabolic models of cellular growth involve an approximate biomass “reaction”, which specifies biomass composition in terms of precursor metabolites (such as amino acids and nucleotides). On the one hand, biomass composition is often not known exactly and may vary drastically between conditions and strains. On the other hand, the predictions of computational models crucially depend on biomass. Also elementary flux modes (EFMs), which generate the flux cone, depend on the biomass reaction. To better understand cellular phenotypes across growth conditions, we introduce and analyze new classes of elementary vectors for comprehensive (next-generation) metabolic models, involving explicit synthesis reactions for all macromolecules. Elementary growth modes (EGMs) are given by stoichiometry and generate the growth cone. Unlike EFMs, they are not support-minimal, in general, but cannot be decomposed “without cancellations”. In models with additional (capacity) constraints, elementary growth vectors (EGVs) generate a growth polyhedron and depend also on growth rate. However, EGMs/EGVs do not depend on the biomass composition. In fact, they cover all possible biomass compositions and can be seen as unbiased versions of elementary flux modes/vectors (EFMs/EFVs) used in traditional models. To relate the new concepts to other branches of theory, we consider autocatalytic sets of reactions. Further, we illustrate our results in a small model of a self-fabricating cell, involving glucose and ammonium uptake, amino acid and lipid synthesis, and the expression of all enzymes and the ribosome itself. In particular, we study the variation of biomass composition as a function of growth rate. In agreement with experimental data, low nitrogen uptake correlates with high carbon (lipid) storage. Next-generation, genome-scale metabolic models allow to study the reallocation of cellular resources upon changing environmental conditions, by not only modeling flux distributions, but also expression profiles of the catalyzing proteome. In particular, they do no longer assume a fixed biomass composition. Methods to identify optimal solutions in such comprehensive models exist, however, an unbiased understanding of all feasible allocations is missing so far. Here we develop new concepts, called elementary growth modes and vectors, that provide a generalized definition of minimal pathways, thereby extending classical elementary flux modes (used in traditional models with a fixed biomass composition). The new concepts provide an understanding of all possible flux distributions and of all possible biomass compositions. In other words, elementary growth modes and vectors are the unique functional units in any comprehensive model of cellular growth. As an example, we show that lipid accumulation upon nitrogen starvation is a consequence of resource allocation and does not require active regulation. Our work puts current approaches on a theoretical basis and allows to seamlessly transfer existing workflows (e.g. for the design of cell factories) to next-generation metabolic models.
Collapse
|
13
|
Biomolecular Composition of Sea Ice Microalgae and Its Influence on Marine Biogeochemical Cycling and Carbon Transfer through Polar Marine Food Webs. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microalgae growing on the underside of sea ice are key primary producers in polar marine environments. Their nutritional status, determined by their macromolecular composition, contributes to the region’s biochemistry and the unique temporal and spatial characteristics of their growth makes them essential for sustaining polar marine food webs. Here, we review the plasticity and taxonomic diversity of sea ice microalgae macromolecular composition, with a focus on how different environmental conditions influence macromolecular production and partitioning within cells and communities. The advantages and disadvantages of methodologies for assessing macromolecular composition are presented, including techniques that provide high throughput, whole macromolecular profile and/or species-specific resolution, which are particularly recommended for future studies. The directions of environmentally driven macromolecular changes are discussed, alongside anticipated consequences on nutrients supplied to the polar marine ecosystem. Given that polar regions are facing accelerated rates of environmental change, it is argued that a climate change signature will become evident in the biochemical composition of sea ice microalgal communities, highlighting the need for further research to understand the synergistic effects of multiple environmental stressors. The importance of sea ice microalgae as primary producers in polar marine ecosystems means that ongoing research into climate-change driven macromolecular phenotyping is critical to understanding the implications for the regions biochemical cycling and carbon transfer.
Collapse
|
14
|
Farooq W, Naqvi SR, Sajid M, Shrivastav A, Kumar K. Monitoring lipids profile, CO 2 fixation, and water recyclability for the economic viability of microalgae Chlorella vulgaris cultivation at different initial nitrogen. J Biotechnol 2022; 345:30-39. [PMID: 34995559 DOI: 10.1016/j.jbiotec.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
The economic viability of microalgae as a bioenergy source depends on many factors. High CO2 fixing rate, improved lipids yield, and minimum water footprint are few key parameters. This study investigates the effect of four initial nitrogen concentrations (1-, 2-, 6- and 10-mM as nitrate) on lipids yield, their classification and composition, CO2 fixation rate, and water quality for further reuse after first cultivation. The initial 6 mM nitrate was found optimum for the growth and overall lipid productivity of Chlorella vulgaris. The maximum quantum efficiency (as Fv/Fm ratio) for algae decreases along with the cell growth profile and depletion of the initial nitrate concentration. CO2 fixation rate increased initially and peaked during exponential growth and then declined for the rest of the cultivation period. A higher CO2 fixation rate was recorded at 6 mM, and an overall fixation rate of CO2 was high at 6 mM. A higher total organic carbon (TOC) is produced in recycled water at a low nitrogen concentration of 1 and 2 mM. TOC changes during the cultivation period and with each reuse of water. Water was recycled twice successfully, while growth was inhibited during the 3rd cycle. Based on all these investigations, 6 mM of initial nitrogen was found optimal at given growth conditions.
Collapse
Affiliation(s)
- Wasif Farooq
- Department of Chemical Engineering, King Fahd University of Petroleum, and minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Salman Raza Naqvi
- School of Chemical and Material Engineering (SCME), National University of Science and Technology (NUST), H-12, Islamabad, Pakistan
| | - Muhammad Sajid
- Department of Chemical Engineering, King Fahd University of Petroleum, and minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Anupama Shrivastav
- Microbiology Department, Parul Institute of Applied Sciences, Parul University, Waghodia, Vadodara, India
| | - Kanhaiya Kumar
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Kjemi 3, 325, Gløshaugen, Norway
| |
Collapse
|
15
|
Kamalanathan M, Hillhouse J, Claflin N, Rodkey T, Mondragon A, Prouse A, Nguyen M, Quigg A. Influence of nutrient status on the response of the diatom Phaeodactylum tricornutum to oil and dispersant. PLoS One 2021; 16:e0259506. [PMID: 34851969 PMCID: PMC8635359 DOI: 10.1371/journal.pone.0259506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022] Open
Abstract
Phytoplankton play a central role in our ecosystems, they are responsible for nearly 50 percent of the global primary productivity and major drivers of macro-elemental cycles in the ocean. Phytoplankton are constantly subjected to stressors, some natural such as nutrient limitation and some manmade such as oil spills. With increasing oil exploration activities in coastal zones in the Gulf of Mexico and elsewhere, an oil spill during nutrient-limited conditions for phytoplankton growth is highly likely. We performed a multifactorial study exposing the diatom Phaeodactylum tricornutum (UTEX 646) to oil and/or dispersants under nitrogen and silica limitation as well as co-limitation of both nutrients. Our study found that treatments with nitrogen limitation (-N and–N-Si) showed overall lower growth and chlorophyll a, lower photosynthetic antennae size, lower maximum photosynthetic efficiency, lower protein in exopolymeric substance (EPS), but higher connectivity between photosystems compared to non-nitrogen limited treatments (-Si and +N+Si) in almost all the conditions with oil and/or dispersants. However, certain combinations of nutrient limitation and oil and/or dispersant differed from this trend indicating strong interactive effects. When analyzed for significant interactive effects, the–N treatment impact on cellular growth in oil and oil plus dispersant conditions; and oil and oil plus dispersant conditions on cellular growth in–N-Si and–N treatments were found to be significant. Overall, we demonstrate that nitrogen limitation can affect the oil resistant trait of P. tricornutum, and oil with and without dispersants can have interactive effects with nutrient limitation on this diatom.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- * E-mail: ,
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Noah Claflin
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Talia Rodkey
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Andrew Mondragon
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Alexandra Prouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Michelle Nguyen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
16
|
Pang H, Wang YN, Chi ZY, Xu YP, Li SY, Che J, Wang JH. Enhanced aquaculture effluent polishing by once and repetitive nutrients deprived seawater Chlorella sp. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Li SF, Fanesi A, Martin T, Lopes F. Biomass production and physiology of Chlorella vulgaris during the early stages of immobilized state are affected by light intensity and inoculum cell density. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Soto-Ramírez R, Lobos MG, Córdova O, Poirrier P, Chamy R. Effect of growth conditions on cell wall composition and cadmium adsorption in Chlorella vulgaris: A new approach to biosorption research. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125059. [PMID: 33450636 DOI: 10.1016/j.jhazmat.2021.125059] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Biosorption of toxic metals in microalgae is a process relying on the presence of cell wall reactive groups acting as binding sites. This work studied the effect of culture conditions on the outer cell wall composition of C. vulgaris and cadmium biosorption. The experiments were conducted in continuous culture under light and nitrogen limitation at two growth rates (0.4 and 0.2 d-1). Functional groups were profiled using ATR-FTIR spectrometry, and total cadmium biosorption was assayed. Significant differences in composition were attested the most salient being the absence of carboxyl groups in the light deprived states and a larger number of carbohydrates and amino groups in the nitrogen deprived cultures, particularly amino groups from deacetylated D-glucosamine polysaccharides. Higher biosorption was obtained with the nitrogen-restricted biomass, reaching a maximum of 11.9 mgCd/gbiomass, as compared to a minimum of 8.0 mgCd/gbiomass achieved in the light-restricted states. The increased biosorption exhibited by nitrogen-restricted strains was attributed to the deacetylated amino groups that have enhanced cation affinity. This work has shown that the characteristics of the outer cell wall can be engineered by culture conditions to improve biosorption, providing a new approach that opens up new research frontiers for the biosorption of hazardous metals.
Collapse
Affiliation(s)
- Robinson Soto-Ramírez
- Laboratorio de Biotecnología Ambiental, Escuela de Ingeniería en Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, 2362806 Valparaíso, Chile.
| | - Maria-Gabriela Lobos
- Laboratorio de Química Ambiental, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, 2508017 Valparaíso, Chile
| | - Olivia Córdova
- Laboratorio de Biotecnología Ambiental, Escuela de Ingeniería en Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, 2362806 Valparaíso, Chile
| | - Paola Poirrier
- Laboratorio de Biotecnología Ambiental, Escuela de Ingeniería en Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, 2362806 Valparaíso, Chile
| | - Rolando Chamy
- Laboratorio de Biotecnología Ambiental, Escuela de Ingeniería en Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, 2362806 Valparaíso, Chile
| |
Collapse
|
19
|
Abstract
The burning of fossil fuels is an unsustainable activity, which is leading to an increase in greenhouse gases (GHGs) emissions and related global warming. Among sustainable energy sources, microalgae represent a promising alternative to fossil fuel and contribute to the achievement of important Sustainable Development Goals (SDGs). In particular, the potential contribution of marine microalgae to sustainable development is large as, among other benefits, they represent a carbon negative energy source and may be applied in many coastal areas around the world. Despite this, significant economic and technological improvements are needed in order to make microalgae biofuels viable on a large scale. This review aims to explore how and to what extent third-generation biofuels (marine microalgae, but also the latest advances in freshwater microalgae) can benefit the realization of these SDGs. From this study we concluded that the production of large-scale marine microalgae biofuels is not yet feasible from the economic perspective at a large scale. However, the cultivation of microalgae in seawater holds great potential for increasing the small to medium viability of this biofuel source. The possibilities for improvement along with the contributions to sustainable development lay the groundwork for continuing to study and apply the potential of sustainable production of microalgae bioenergy.
Collapse
|
20
|
Effect of light, CO2 and nitrate concentration on Chlorella vulgaris growth and composition in a flat-plate photobioreactor. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00100-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Gómez C, Guzmán-Carrasco A, Lafarga T, Acién-Fernández FG. OPTIMIZATION OF A NEW CULTURE MEDIUM FOR THE LARGE-SCALE PRODUCTION OF PROTEIN-RICH ARTHROSPIRA PLATENSIS (OSCILLATORIALES, CYANOPHYCEAE). JOURNAL OF PHYCOLOGY 2021; 57:636-644. [PMID: 33249596 DOI: 10.1111/jpy.13111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Our aim was to develop a novel medium for the large-scale production of protein-rich Arthrospira with potential applications as a biofertilizer. The novel culture medium, termed as FM-II, was formulated using low-cost commercial chemicals and specifically designed to improve protein production. Both Arthrospira platensis and Arthrospira maxima were produced using FM-II and Arnon medium, which was used as a control. Photosynthetic status of the cells, which was checked by measuring chlorophyll fluorescence, biomass dry weight and protein content, was assessed daily. Arthrospira platensis had higher biomass and protein productivities than A. maxima when cultured in both control and FM-II media. Incorporation of varied micronutrients into FM-II formulation did not improve biomass productivity. Maximum biomass dry weight in FM-II and control medium was 2.9 and 2.5 g · L-1 , respectively. Total protein content of the biomass ranged between 55% and 65%, suggesting potential for being used in the development of high-value agricultural products. As some nutrients were discarded unused, the initial content of phosphates and bicarbonates was reduced by 75% and 50%, respectively, without affecting the process productivity. Results reported herein could promote the production and utilization of Arthrospira platensis by significantly reducing productions costs and therefore increasing the feasibility of the process.
Collapse
Affiliation(s)
- Cintia Gómez
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | - Ana Guzmán-Carrasco
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | | |
Collapse
|
22
|
Verseux C, Heinicke C, Ramalho TP, Determann J, Duckhorn M, Smagin M, Avila M. A Low-Pressure, N 2/CO 2 Atmosphere Is Suitable for Cyanobacterium-Based Life-Support Systems on Mars. Front Microbiol 2021; 12:611798. [PMID: 33664714 PMCID: PMC7920872 DOI: 10.3389/fmicb.2021.611798] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
The leading space agencies aim for crewed missions to Mars in the coming decades. Among the associated challenges is the need to provide astronauts with life-support consumables and, for a Mars exploration program to be sustainable, most of those consumables should be generated on site. Research is being done to achieve this using cyanobacteria: fed from Mars's regolith and atmosphere, they would serve as a basis for biological life-support systems that rely on local materials. Efficiency will largely depend on cyanobacteria's behavior under artificial atmospheres: a compromise is needed between conditions that would be desirable from a purely engineering and logistical standpoint (by being close to conditions found on the Martian surface) and conditions that optimize cyanobacterial productivity. To help identify this compromise, we developed a low-pressure photobioreactor, dubbed Atmos, that can provide tightly regulated atmospheric conditions to nine cultivation chambers. We used it to study the effects of a 96% N2, 4% CO2 gas mixture at a total pressure of 100 hPa on Anabaena sp. PCC 7938. We showed that those atmospheric conditions (referred to as MDA-1) can support the vigorous autotrophic, diazotrophic growth of cyanobacteria. We found that MDA-1 did not prevent Anabaena sp. from using an analog of Martian regolith (MGS-1) as a nutrient source. Finally, we demonstrated that cyanobacterial biomass grown under MDA-1 could be used for feeding secondary consumers (here, the heterotrophic bacterium E. coli W). Taken as a whole, our results suggest that a mixture of gases extracted from the Martian atmosphere, brought to approximately one tenth of Earth's pressure at sea level, would be suitable for photobioreactor modules of cyanobacterium-based life-support systems. This finding could greatly enhance the viability of such systems on Mars.
Collapse
Affiliation(s)
- Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Satellite-Derived Protein Concentration of Phytoplankton in the Southwestern East/Japan Sea. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cellular macromolecular contents and energy value of phytoplankton as primary food source determine the growth of higher trophic levels, affecting the balance and sustainability of oceanic food webs. Especially, proteins are more directly linked with basic functions of phytoplankton biosynthesis and cell division and transferred through the food chains. In recent years, the East/Japan Sea (EJS) has been changed dramatically in environmental conditions, such as physical and chemical characteristics, as well as biological properties. Therefore, developing an algorithm to estimate the protein concentration of phytoplankton and monitor their spatiotemporal variations on a broad scale would be invaluable. To derive the protein concentration of phytoplankton in EJS, the new regional algorithm was developed by using multiple linear regression analyses based on field-measured data which were obtained from 2012 to 2018 in the southwestern EJS. The major factors for the protein concentration were identified as chlorophyll-a (Chl-a) and sea surface nitrate (SSN) in the southwestern EJS. The coefficient of determination (r2) between field-measured and algorithm-derived protein concentrations was 0.55, which is rather low but reliable. The satellite-derived estimation generally follows the 1:1 line with the field-measured data, with Pearson’s correlation coefficient, which was 0.40 (p-value < 0.01, n = 135). No remarkable trend in the long-term annual protein concentration of phytoplankton was found in the study area during our observation period. However, some seasonal difference was observed in winter protein concentration between the 2003–2005 and 2017–2019 periods. The algorithm is developed for the regional East/Japan Sea (EJS) and could contribute to long-term monitoring for climate-associated ecosystem changes. For a better understanding of spatiotemporal variation in the protein concentration of phytoplankton in the EJS, this algorithm should be further improved with continuous field surveys.
Collapse
|
24
|
Li Z, Lan T, Zhang J, Gao K, Beardall J, Wu Y. Nitrogen Limitation Decreases the Repair Capacity and Enhances Photoinhibition of Photosystem II in a Diatom. Photochem Photobiol 2021; 97:745-752. [PMID: 33496343 DOI: 10.1111/php.13386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/30/2023]
Abstract
Macronutrient limitation and increased solar exposure coincide with ocean warming-enhanced stratification, with consequences for phytoplankton within the upper mixing layer. In this study, we grew a diatom, Thalassiosira punctigera, under nitrogen-limited and replete conditions for more than 14 generations and investigated both the biochemical composition of treated cells and their photochemical responses to high light and UV exposure. The photosynthetic pigment and the particulate organic nitrogen (PON) content significantly decreased in the low nitrate grown cells, with drastic decline of the absorption of UV absorbing compounds. Under an acute exposure to high light or UV radiation, we observed a significant decline in the photochemical yield along with an increase of nonphotosynthetic quenching (NPQ), with the former lowered and the latter raised in the low-nitrogen grown cells. The results reveal a decreased repair rate and enhanced photoinhibition of the diatom under nitrogen limitation when exposed to increased levels of light and UV radiation, suggesting a higher vulnerability of the diatom phytoplankton under influences of oceanic global change.
Collapse
Affiliation(s)
- Zhenzhen Li
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China.,The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ting Lan
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Jiaojiao Zhang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Yaping Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
25
|
Park J, Lee H, Depuydt S, Han T, Pandey LK. Assessment of five live-cell characteristics in periphytic diatoms as a measure of copper stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123113. [PMID: 32574875 DOI: 10.1016/j.jhazmat.2020.123113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Metal pollution of fluvial systems remains a major problem and biomonitoring can be a useful tool for assessing the metal contamination. To assess their potential as new bioindicators of copper stress, we treated a field-collected live periphytic diatom community (dominated by Amphora, Navicula, and Nitzschia) with dissolved Cu under optimal growth conditions. We studied the effects of Cu on five live-cell attributes: motility, protoplasmic content, lipid body number and biovolume, and frustule morphology. In all three genera, motility and protoplasmic content decreased, whereas the LB number, biovolume and deformity increased when Cu and exposure time increased. The sensitivity to Cu was highest for % MF, % CPC and % BCLB in Navicula and the LB number and deformity in Nitzschia. Amphora appeared to be more tolerant to Cu in comparison with other genera. The five cell attributes were inter-related. A heatmap showed that a recommended indicator for rapid screening of Cu toxicity was % BCLB for Amphora and % MF for Navicula and Nitzschia. % MF might be the most common representative indicator that can be applied to all three genera to evaluate the lethal effects of Cu stress if only one of the five cell attributes must be selected.
Collapse
Affiliation(s)
- Jihae Park
- Lab of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, South Korea
| | - Hojun Lee
- Lab of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, South Korea; Department of Marine Science, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Stephen Depuydt
- Lab of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, South Korea
| | - Taejun Han
- Lab of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, South Korea; Department of Marine Science, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Lalit K Pandey
- Department of Marine Science, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea; Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, 243006, India.
| |
Collapse
|
26
|
Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. SUSTAINABILITY 2020. [DOI: 10.3390/su12239980] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microalgal biomass is currently considered as a sustainable and renewable feedstock for biofuel production (biohydrogen, biomethane, biodiesel) characterized by lower emissions of hazardous air pollutants than fossil fuels. Photobioreactors for microalgae growth can be exploited using many industrial and domestic wastes. It allows locating the commercial microalgal systems in areas that cannot be employed for agricultural purposes, i.e., near heating or wastewater treatment plants and other industrial facilities producing carbon dioxide and organic and nutrient compounds. Despite their high potential, the large-scale algal biomass production technologies are not popular because the systems for biomass production, separation, drainage, and conversion into energy carriers are difficult to explicitly assess and balance, considering the ecological and economical concerns. Most of the studies presented in the literature have been carried out on a small, laboratory scale. This significantly limits the possibility of obtaining reliable data for a comprehensive assessment of the efficiency of such solutions. Therefore, there is a need to verify the results in pilot-scale and the full technical-scale studies. This study summarizes the strengths and weaknesses of microalgal biomass production technologies for bioenergetic applications.
Collapse
|
27
|
Pigments Production, Growth Kinetics, and Bioenergetic Patterns in Dunaliella tertiolecta (Chlorophyta) in Response to Different Culture Media. ENERGIES 2020. [DOI: 10.3390/en13205347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work dealt with the study of growth parameters, pigments production, and bioenergetic aspects of the microalga Dunaliella tertiolecta in different culture media. For this purpose, cultures were carried out in Erlenmeyer flasks containing F/2 medium, Bold’s Basal medium, or an alternative medium made up of the same constituents of the Bold’s Basal medium dissolved in natural seawater instead of distilled water. D. tertiolecta reached the highest dry cell concentration (Xmax = 1223 mgDM·L−1), specific growth rate (µmax = 0.535 d−1), cell productivity (PX = 102 mgDM·L−1·d−1), and photosynthetic efficiency (PE = 14.54%) in the alternative medium, while the highest contents of carotenoids (52.0 mg·g−1) and chlorophyll (108.0 mg·g−1) in the biomass were obtained in Bold’s Basal medium. As for the bioenergetic parameters, the biomass yield on Gibbs energy dissipation was higher and comparable in both seawater-based media. However, the F/2 medium led to the highest values of moles of photons absorbed to produce 1 C-mol of biomass (nPh), total Gibbs energy absorbed by the photosynthesis (ΔGa) and released heat (Q), as well as the lowest cell concentration, thus proving to be the least suitable medium for D. tertiolecta growth. On the other hand, the highest values of molar development of O2 and consumption of H+ and H2O were obtained in the alternative medium, which also ensured the best kinetic parameters, thereby allowing for the best energy exploitation for cell growth. These results demonstrate that composition of culture medium for microalgae cultivation has different effects on pigments production, growth kinetics, and bioenergetics parameters, which should be taken into consideration for any use of biomass, including as raw material for biofuels production.
Collapse
|
28
|
Coulombier N, Blanchier P, Le Dean L, Barthelemy V, Lebouvier N, Jauffrais T. The effects of CO 2-induced acidification on Tetraselmis biomass production, photophysiology and antioxidant activity: A comparison using batch and continuous culture. J Biotechnol 2020; 325:312-324. [PMID: 33038474 DOI: 10.1016/j.jbiotec.2020.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
A Tetraselmis sp. was selected for its antioxidant activity owing to its high lipid peroxidation inhibition capacity. With the aim to monitor culture conditions to improve antioxidant activity, effects of CO2-induced acidification on Tetraselmis growth, elemental composition, photosynthetic parameters and antioxidant activity were determined. Two pH values were tested (6.5 and 8.5) in batch and continuous cultures in photobioreactors. Acidification enhanced cell growth under both culture methods. However, the microalgae physiological state was healthier at pH 8.5 than at pH 6.5. Indeed, photosynthetic parameters measured with pulse amplitude modulated (PAM) fluorometry showed a decrease in the photosystem II (PSII) efficiency at pH 6.5 in batch culture. Yet, with the exception of the PSII recovering capacity, photosynthetic parameters were similar in continuous culture at both pH. These results suggest that lowering pH through CO2-induced acidification may induce a lower conversion of light to chemical energy especially when coupled with N-limitation and/or under un-balanced culture conditions. The highest antioxidant activity was measured in continuous culture at pH 6.5 with an IC50 of 3.44 ± 0.6 μg mL-1, which is close to the IC50 of reference compounds (trolox and α-tocopherol). In addition, the principal component analysis revealed a strong link between the antioxidant activity and the culture method, the photophysiological state and the nitrogen cell quota and C:N ratio of Tetraselmis sp.. These results highlight Tetraselmis sp. as a species of interest for natural antioxidant production and the potential of PAM fluorometry to monitor culture for production of biomass with a high antioxidant activity.
Collapse
Affiliation(s)
- Noémie Coulombier
- ADECAL Technopole, 1 bis rue Berthelot, 98846, Noumea, New Caledonia, France.
| | - Paul Blanchier
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France
| | - Loïc Le Dean
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France
| | - Vanille Barthelemy
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France
| | - Nicolas Lebouvier
- ISEA, EA7484, Université de la Nouvelle Calédonie, Campus de Nouville, 98851, Nouméa, New Caledonia, France
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France.
| |
Collapse
|
29
|
Coulombier N, Nicolau E, Le Déan L, Barthelemy V, Schreiber N, Brun P, Lebouvier N, Jauffrais T. Effects of Nitrogen Availability on the Antioxidant Activity and Carotenoid Content of the Microalgae Nephroselmis sp. Mar Drugs 2020; 18:E453. [PMID: 32872415 PMCID: PMC7551860 DOI: 10.3390/md18090453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Nephroselmis sp. was previously identified as a species of interest for its antioxidant properties owing to its high carotenoid content. In addition, nitrogen availability can impact biomass and specific metabolites' production of microalgae. To optimize parameters of antioxidant production, Nephroselmis sp. was cultivated in batch and continuous culture conditions in stirred closed photobioreactors under different nitrogen conditions (N-repletion, N-limitation, and N-starvation). The aim was to determine the influence of nitrogen availability on the peroxyl radical scavenging activity (oxygen radical absorbance capacity (ORAC) assay) and carotenoid content of Nephroselmis sp. Pigment analysis revealed a specific and unusual photosynthetic system with siphonaxanthin-type light harvesting complexes found in primitive green algae, but also high lutein content and xanthophyll cycle pigments (i.e., violaxanthin, antheraxanthin, and zeaxanthin), as observed in most advanced chlorophytes. The results indicated that N-replete conditions enhance carotenoid biosynthesis, which would correspond to a higher antioxidant capacity measured in Nephroselmis sp. Indeed, peroxyl radical scavenging activity and total carotenoids were higher under N-replete conditions and decreased sharply under N-limitation or starvation conditions. Considering individual carotenoids, siphonaxanthin, neoxanthin, xanthophyll cycle pigments, and lycopene followed the same trend as total carotenoids, while β-carotene and lutein stayed stable regardless of the nitrogen availability. Carotenoid productivities were also higher under N-replete treatment. The peroxyl radical scavenging activity measured with ORAC assay (63.6 to 154.9 µmol TE g-1 DW) and the lutein content (5.22 to 7.97 mg g-1 DW) were within the upper ranges of values reported previously for other microalgae. Furthermore, contents of siphonaxanthin ere 6 to 20% higher than in previous identified sources (siphonous green algae). These results highlight the potential of Nephroselmis sp. as a source of natural antioxidant and as a pigment of interest.
Collapse
Affiliation(s)
| | - Elodie Nicolau
- Ifremer, RBE/BRM/LPBA, Rue de l’île d’Yeu, 44311 Nantes, France; (E.N.); (N.S.)
| | - Loïc Le Déan
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Vanille Barthelemy
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Nathalie Schreiber
- Ifremer, RBE/BRM/LPBA, Rue de l’île d’Yeu, 44311 Nantes, France; (E.N.); (N.S.)
| | - Pierre Brun
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Nicolas Lebouvier
- ISEA, EA7484, Université de la Nouvelle Calédonie, Campus de Nouville, 98851 Nouméa, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| |
Collapse
|
30
|
Singh J, Jain D, Agarwal P, Singh R. Auxin and cytokinin synergism augmenting biomass and lipid production in microalgae Desmodesmus sp. JS07. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Sabu S, Singh ISB, Joseph V. Improved lipid production in oleaginous brackish diatom Navicula phyllepta MACC8 using two-stage cultivation approach. 3 Biotech 2019; 9:437. [PMID: 31696042 DOI: 10.1007/s13205-019-1968-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022] Open
Abstract
A two-stage cultivation method involving the initial growth in optimized conditions for biomass production followed by those for lipid production in oleaginous brackish diatom Navicula phyllepta MACC8 resulted in a proportional increase of lipid concentration along with biomass production. The diatom was further subjected to stress conditions by altering the nutrient components such as nitrate, phosphate, silicate, and temperature. Silicon deprivation resulted in the highest lipid percentage of 28.78% of weight at the end of the 18th day of the second stage. A significant increase in lipid content was observed on the complete removal of the nutrients silicon and urea one at a time, while the biomass showed a considerable reduction. The application of multiple nutrient stress conditions had a profound influence on the increased rate of lipid production. A combination of phosphate deprivation, silicate limitation and temperature reduction resulted in a significant increase in lipid percentage of 32.13% at the cost of reduced biomass (1.1 g L-1), whereas phosphate deprivation, urea limitation, and temperature reduction resulted in lipid percentage of 27.58% with a biomass of 1.44 g L-1 at the end of the second stage. Further, the results were supported by Nile red staining, FTIR, fatty acid profile and oxidative stress marker analyses. The changes in biochemical composition and oxidative stress parameters within the various stress conditions demonstrated the profound influence of the selected stress factors on the biodiesel productivity of the diatom, besides its stress tolerance. A two-phase culturing system, with multifactor stress application, especially nitrogen limitation along with phosphate starvation and temperature stress, would be the suitable method for gaining maximum biomass productivity and lipid content in diatom Navicula phyllepta MACC8 towards biofuel production.
Collapse
Affiliation(s)
- Sanyo Sabu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala 682016 India
| | - Isaac Sarojini Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala 682016 India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala 682016 India
| |
Collapse
|
32
|
Cointet E, Wielgosz-Collin G, Bougaran G, Rabesaotra V, Gonçalves O, Méléder V. Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains. PLoS One 2019; 14:e0224701. [PMID: 31694047 PMCID: PMC6834396 DOI: 10.1371/journal.pone.0224701] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/19/2019] [Indexed: 12/17/2022] Open
Abstract
Microalgal biotechnology has gained considerable importance in recent decades. Applications range from simple biomass production for food and animal feed to valuable products for fuel, pharmaceuticals, health, biomolecules and materials relevant to nanotechnology. There are few reports of the exploration of wider microalgae biodiversity in the literature on high value microalgal compounds, however, because it is believed that there is little to be gained in terms of biomass productivity by examining new strains. Still, without diversity, innovation in biotechnology applications is currently limited. Using microalgal diversity is a very promising way to match species and processes for a specific biotechnological application. In this context, three benthic marine diatom strains (Entomoneis paludosa NCC18.2, Nitzschia alexandrina NCC33, and Staurosira sp NCC182) were selected for their lipid production and growth capacities. Using PAM fluorometry and FTIR spectroscopy, this study investigated the impact of nitrogen repletion and depletion as well as light intensity (30, 100, and 400 μmol.photons.m-2.s-1) on their growth, photosynthetic performance and macromolecular content, with the aim of improving the quality of their lipid composition. Results suggest that under high light and nitrogen limitation, the photosynthetic machinery is negatively impacted, leading cells to reduce their growth and accumulate lipids and/or carbohydrates. However, increasing lipid content under stressful conditions does not increase the production of lipids of interest: PUFA, ARA and EPA production decreases. Culture conditions to optimize production of such fatty acids in these three original strains led to a balance between economic and ecophysiological constraints: low light and no nitrogen limitation led to better photosynthetic capacities associated with energy savings, and hence a more profitable approach.
Collapse
Affiliation(s)
- Eva Cointet
- Université de Nantes, Laboratoire Mer Molécules Santé, Nantes, France
- * E-mail:
| | | | | | - Vony Rabesaotra
- Université de Nantes, Laboratoire Mer Molécules Santé, Nantes, France
| | | | - Vona Méléder
- Université de Nantes, Laboratoire Mer Molécules Santé, Nantes, France
| |
Collapse
|
33
|
Singh R, Upadhyay A, Singh DV, Singh JS, Singh D. Photosynthetic performance, nutrient status and lipid yield of microalgae Chlorella vulgaris and Chlorococcum humicola under UV-B exposure. CURRENT RESEARCH IN BIOTECHNOLOGY 2019. [DOI: 10.1016/j.crbiot.2019.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
34
|
Zhou W, Wang H, Zheng L, Cheng W, Gao L, Liu T. Comparison of Lipid and Palmitoleic Acid Induction of Tribonema minus under Heterotrophic and Phototrophic Regimes by Using High-Density Fermented Seeds. Int J Mol Sci 2019; 20:ijms20184356. [PMID: 31491935 PMCID: PMC6770399 DOI: 10.3390/ijms20184356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Palmitoleic acid, one scarce omega-7 monounsaturated fatty acid, has important applications in the fields of medicine and health products. Tribonema has been considered as a promising candidate for the production of palmitoleic acid due to its high lipid and palmitoleic acid content and remarkable heterotrophic ability. The high-density heterotrophic cultivation of Tribonema minus was conducted in this work, and the highest biomass of 42.9 g L−1 and a relatively low lipid content of 28.7% were observed. To further enhance the lipid and palmitoleic acid accumulation, induction strategies under two regimes of phototrophy and heterotrophy with different conditions were investigated and compared. Results demonstrated encouraging promotions both by heterotrophic and phototrophic ways, and the final lipid contents reached 41.9% and 49.0%, respectively. In consideration of the time cost, however, the induction under heterotrophic conditions was much more advantageous, by which the highest lipid and palmitoleic acid productivities of 1.77 g L−1 d−1 and 924 mg L−1 d−1 were obtained respectively, with the lipid yield on glucose of 0.26 g g−1.
Collapse
Affiliation(s)
- Wenjun Zhou
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Wang
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Li Zheng
- Key laboratory for Marine bioactive substances and modern analytical Technology, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wentao Cheng
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lili Gao
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|
35
|
Martini FA, Rubert A, de Souza MP, Kist LT, Hoeltz M, Benitez LB, Rizzetti TM, Gressler PD, Schneider RDCDS. Periphytic biomass composition and exploitation from algae turf scrubber system. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0802-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
36
|
Gupta N, Khare P, Singh DP. Nitrogen-dependent metabolic regulation of lipid production in microalga Scenedesmus vacuolatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:706-713. [PMID: 30878807 DOI: 10.1016/j.ecoenv.2019.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Microalga Scenedesmus vacuolatus exhibited maximum growth, protein and carbohydrate contents at 10.0 mM concentration of nitrate, 1.0 mM of glutamate nitrogen and at C/N ratio (12 mM acetate+10 mM nitrate). However, these cell constituents showed the highest values in the C+N grown cells, but the lipid content was found to be the highest glutamate grown cells. FTIR analysis of Lipid/Carbohydrate and Lipid/Protein ratio and flow cytometric analysis of neutral lipids revealed higher lipid content in the glutamate grown cells than in the nitrogen starved, nitrate and C+N grown cells. The nitrate reductase activity was the highest in the C+ N grown cells and the lowest activity was found in the glutamate grown cells. A corollary of these results suggested that suppression of nitrogen assimilatory system, whether by glutamate or by nitrogen deprivation, was the most suitable physiological condition for enhanced lipid synthesis and biofuel production in microalgal cells.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, UP, India
| | - Puneet Khare
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, MG Marg, Lucknow 226001, UP, India
| | - D P Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, UP, India; CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, MG Marg, Lucknow 226001, UP, India.
| |
Collapse
|
37
|
Chen XH, Li YY, Zhang H, Liu JL, Xie ZX, Lin L, Wang DZ. Quantitative Proteomics Reveals Common and Specific Responses of a Marine Diatom Thalassiosira pseudonana to Different Macronutrient Deficiencies. Front Microbiol 2018; 9:2761. [PMID: 30487787 PMCID: PMC6246746 DOI: 10.3389/fmicb.2018.02761] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
Macronutrients such as nitrogen (N), phosphorus (P), and silicon (Si) are essential for the productivity and distribution of diatoms in the ocean. Responses of diatoms to a particular macronutrient deficiency have been investigated, however, we know little about their common or specific responses to different macronutrients. Here, we investigated the physiology and quantitative proteomics of a diatom Thalassiosira pseudonana grown in nutrient-replete, N-, P-, and Si-deficient conditions. Cell growth was ceased in all macronutrient deficient conditions while cell volume and cellular C content under P- and Si-deficiencies increased. Contents of chlorophyll a, protein and cellular N decreased in both N- and P-deficient cells but chlorophyll a and cellular N increased in the Si-deficient cells. Cellular P content increased under N- and Si-deficiencies. Proteins involved in carbon fixation and photorespiration were down-regulated under all macronutrient deficiencies while neutral lipid synthesis and carbohydrate accumulation were enhanced. Photosynthesis, chlorophyll biosynthesis, and protein biosynthesis were down-regulated in both N- and P-deficient cells, while Si transporters, light-harvesting complex proteins, chloroplastic ATP synthase, plastid transcription and protein synthesis were up-regulated in the Si-deficient cells. Our results provided insights into the common and specific responses of T. pseudonana to different macronutrient deficiencies and identified specific proteins potentially indicating a particular macronutrient deficiency.
Collapse
Affiliation(s)
- Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jiu-Ling Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
38
|
Praveen K, Abinandan S, Natarajan R, Kavitha MS. BIOCHEMICAL RESPONSES FROM BIOMASS OF ISOLATED Chlorella sp., UNDER DIFFERENT CULTIVATION MODES: NON-LINEAR MODELLING OF GROWTH KINETICS. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180352s20170188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- K Praveen
- VIT University, India; VIT University, India
| | - S Abinandan
- VIT University, India; VIT University, India
| | - R Natarajan
- VIT University, India; VIT University, India
| | | |
Collapse
|
39
|
Kamalanathan M, Schwehr KA, Bretherton L, Genzer J, Hillhouse J, Xu C, Williams A, Santschi P, Quigg A. Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform Infrared spectroscopy. MARINE POLLUTION BULLETIN 2018; 130:170-178. [PMID: 29866543 DOI: 10.1016/j.marpolbul.2018.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Phytoplankton alter their macromolecule composition in response to changing environmental conditions. Often these changes are consistent and can be used as indicators to predict their exposure to a given condition. FTIR-spectroscopy is a powerful tool that provides rapid snapshot of microbial samples. We used FTIR to develop signature macromolecular composition profiles of three cultures: Skeletonema costatum, Emiliania huxleyi, and Navicula sp., exposed to chemically enhanced water accommodated oil fraction (CEWAF) in artificial seawater and control. Using a multivariate model created with a Partial Least Square Discriminant Analysis of the FTIR-spectra, classification of CEWAF exposed versus control samples was possible. This model was validated using aggregate samples from a mesocosm study. Analysis of spectra and PCA-loadings plot showed changes to carbohydrates and proteins in response to CEWAF. Overall we developed a robust multivariate model that can be used to identify if a phytoplankton sample has been exposed to oil with dispersant.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, United States.
| | - Kathleen A Schwehr
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX 77553, United States
| | - Laura Bretherton
- Environmental Science, Mount Allison University, New Brunswick, E4L 1E4, Canada
| | - Jennifer Genzer
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, United States
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, United States
| | - Chen Xu
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX 77553, United States
| | - Alicia Williams
- Department of Marine Sciences, University of New England Biddeford, 04005, Maine, USA
| | - Peter Santschi
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX 77553, United States; Department of Oceanography, Texas A&M University, College Station, TX 77845, United States
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, United States; Department of Oceanography, Texas A&M University, College Station, TX 77845, United States
| |
Collapse
|
40
|
Wang H, Zhang Y, Chen L, Cheng W, Liu T. Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures. Bioprocess Biosyst Eng 2018; 41:1061-1071. [DOI: 10.1007/s00449-018-1935-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/01/2018] [Indexed: 12/01/2022]
|
41
|
Zhang D, Wen S, Wu X, Cong W. Effect of culture condition on the growth, biochemical composition and EPA production of alkaliphilic Nitzschia plea isolated in the Southeast of China. Bioprocess Biosyst Eng 2018; 41:831-839. [PMID: 29508051 DOI: 10.1007/s00449-018-1917-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
Abstract
To overcome the contamination in open pond, microalgal strain selection should focus on species with tolerability to extreme environments. In this study, a native alkaliphilic algae, diatom Nitzschia plea was obtained in Southeast of China, which could tolerate high concentration of NaHCO3 (0.15 mol/L) and high pH (> 10). The effects of initial pH, light intensity and temperature on cell growth, biochemical composition and fatty acid profile of N. plea were investigated. Results indicated its specific growth rate could reach 1.2 day-1, lipid content was in the range 14.6-30.2% of dry weight, eicosapntemacnioc acid (EPA, C20:5) accounted for around 15% of total fatty acids. Alkalic condition benefited for both cell growth and EPA synthesis. Appropriately increasing light intensity and temperature could improve cell growth rate and lipid synthesis, although the proportion of EPA in total fatty acids decreased slightly. The optimal culture condition (pH 9.00, temperature 35.0 °C, light intensity 158.6 µmol/m2s) was suggested for maximum yield of EPA based on the response surface model. The overall biomass productivity and EPA productivity were 0.301 g/L/day and 7.43 mg/L/day, respectively. In conclusion, alkalic environment was helpful for the steady operation of open pond cultivation of N. plea with the characteristics of fast growth rate and high EPA content, which exhibited its commercial value.
Collapse
Affiliation(s)
- Dongmei Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shumei Wen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xia Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Cong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
42
|
Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davis RW, Abbas A, Ralph P, Fennell PS, Zhao M. Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization. CHEMSUSCHEM 2018; 11:334-355. [PMID: 29165921 DOI: 10.1002/cssc.201701611] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/23/2017] [Indexed: 06/07/2023]
Abstract
To shift the world to a more sustainable future, it is necessary to phase out the use of fossil fuels and focus on the development of low-carbon alternatives. However, this transition has been slow, so there is still a large dependence on fossil-derived power, and therefore, carbon dioxide is released continuously. Owing to the potential for assimilating and utilizing carbon dioxide to generate carbon-neutral products, such as biodiesel, the application of microalgae technology to capture CO2 from flue gases has gained significant attention over the past decade. Microalgae offer a more sustainable source of biomass, which can be converted into energy, over conventional fuel crops because they grow more quickly and do not adversely affect the food supply. This review focuses on the technical feasibility of combined carbon fixation and microalgae cultivation for carbon reuse. A range of different carbon metabolisms and the impact of flue gas compounds on microalgae are appraised. Fixation of flue gas carbon dioxide is dependent on the selected microalgae strain and on flue gas compounds/concentrations. Additionally, current pilot-scale demonstrations of microalgae technology for carbon dioxide capture are assessed and its future prospects are discussed. Practical implementation of this technology at an industrial scale still requires significant research, which necessitates multidisciplinary research and development to demonstrate its viability for carbon dioxide capture from flue gases at the commercial level.
Collapse
Affiliation(s)
| | - Joseph G Yao
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nicholas Florin
- Institute for Sustainable Futures, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Anthe George
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Xiaoxiong Wang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Leen Labeeuw
- Climate Change Cluster, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Yuelu Jiang
- Institute of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Ryan W Davis
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Ali Abbas
- School of Chemical & Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Paul S Fennell
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
- Current address: Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Ming Zhao
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Solid Waste Management and Environmental Safety, Ministry of Education, Beijing, 100084, PR China
| |
Collapse
|
43
|
Liu J, Yao C, Meng Y, Cao X, Wu P, Xue S. The Δ F/Fm'-guided supply of nitrogen in culture medium facilitates sustainable production of TAG in Nannochloropsis oceanica IMET1. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:168. [PMID: 29946358 PMCID: PMC6008920 DOI: 10.1186/s13068-018-1168-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/12/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Triacylglycerol (TAG) from photosynthetic microalgae is a sustainable feedstock for biodiesel production. Physiological stress triggers microalgal TAG accumulation. However excessive physiological stress will impair the photosynthesis system seriously thus decreasing TAG productivity because of the low biomass production. Hence, it is critical to quantitatively and timely monitor the degree of the stress while the microalgal cells growing so that the optimal TAG productivity can be obtained. RESULTS The lack of an on-line monitored indicator has limited our ability to gain knowledge of cellular "health status" information regarding high TAG productivity. Therefore, to monitor the degree of nitrogen stress of the cells, we investigated the correlation between the photosynthetic system II (PS II) quantum yield and the degree of stress based on the high relevancy between photosynthetic reduction and nitrogen stress-induced TAG accumulation in microalgal cells. ΔF/Fm', which is the chlorophyll fluorescence parameter that reflects the effective capability of PS II, was identified to be a critical factor to indicate the degree of stress of the cells. In addition, the concept of a nitrogen stress index has been defined to quantify the degree of stress. Based on this index and by monitoring ΔF/Fm' and guiding the supply of nitrogen in culture medium to maintain a stable degree of stress, a stable and efficient semi-continuous process for TAG production has been established. CONCLUSION The results indicate that the semi-continuous cultivation process with a controlled degree of stress by monitoring the ΔF/Fm' indicator will have a significant impact on microalgal TAG production, especially for the outdoor controllable cultivation of microalgae on a large scale.
Collapse
Affiliation(s)
- Jiao Liu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 16023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
| | - Yingying Meng
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 16023 China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 China
| | - Xupeng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 16023 China
| | - Peichun Wu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 16023 China
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 16023 China
| |
Collapse
|
44
|
Huang Y, Li P, Chen G, Peng L, Chen X. The production of cyanobacterial carbon under nitrogen-limited cultivation and its potential for nitrate removal. CHEMOSPHERE 2018; 190:1-8. [PMID: 28968514 DOI: 10.1016/j.chemosphere.2017.09.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Harmful cyanobacterial blooms (CyanoHABs) represent a serious threat to aquatic ecosystems. A beneficial use for these harmful microorganisms would be a promising resolution of this urgent issue. This study applied a simple method, nitrogen limitation, to cultivate cyanobacteria aimed at producing cyanobacterial carbon for denitrification. Under nitrogen-limited conditions, the common cyanobacterium, Microcystis, efficiently used nitrate, and had a higher intracellular C/N ratio. More importantly, organic carbons easily leached from its dry powder; these leachates were biodegradable and contained a larger amount of dissolved organic carbon (DOC) and carbohydrates, but a smaller amount of dissolved total nitrogen (DTN) and proteins. When applied to an anoxic system with a sediment-water interface, a significant increase of the specific NOX--N removal rate was observed that was 14.2 times greater than that of the control. This study first suggests that nitrogen-limited cultivation is an efficient way to induce organic and carbohydrate accumulation in cyanobacteria, as well as a high C/N ratio, and that these cyanobacteria can act as a promising carbon source for denitrification. The results indicate that application as a carbon source is not only a new way to utilize cyanobacteria, but it also contributes to nitrogen removal in aquatic ecosystems, further limiting the proliferation of CyanoHABs.
Collapse
Affiliation(s)
- Yingying Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, No.500 Dong Chuan Road, Shanghai 200241, PR China
| | - Panpan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, No.500 Dong Chuan Road, Shanghai 200241, PR China
| | - Guiqin Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, No.500 Dong Chuan Road, Shanghai 200241, PR China
| | - Lin Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, No.500 Dong Chuan Road, Shanghai 200241, PR China
| | - Xuechu Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, No.500 Dong Chuan Road, Shanghai 200241, PR China.
| |
Collapse
|
45
|
Ge F, Xiao Y, Yang Y, Wang W, Moe B, Li XF. Formation of water disinfection byproduct 2,6-dichloro-1,4-benzoquinone from chlorination of green algae. J Environ Sci (China) 2018; 63:1-8. [PMID: 29406093 DOI: 10.1016/j.jes.2017.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/30/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
We report that green algae in lakes and rivers can serve as precursors of halobenzoquinone (HBQ) disinfection byproducts (DBPs) produced during chlorination. Chlorination of a common green alga, Chlorella vulgaris, produced 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), the most prevalent HBQ DBP in disinfected water. Under varying pH conditions (pH6.0-9.0), 2,6-DCBQ formation ranged from 0.3 to 2.1μg/mg C with maximum formation at pH8.0. To evaluate the contribution of organic components of C. vulgaris to 2,6-DCBQ formation, we separated the organics into two fractions, the protein-rich fraction of intracellular organic matter (IOM) and the polysaccharide-laden fraction of extracellular organic matter (EOM). Chlorination of IOM and EOM produced 1.4μg/mg C and 0.7μg/mg C of 2,6-DCBQ, respectively. The IOM generated a two-fold higher 2,6-DCBQ formation potential than the EOM fraction, suggesting that proteins are potent 2,6-DCBQ precursors. This was confirmed by the chlorination of proteins extracted from C. vulgaris: the amount of 2,6-DCBQ produced is linearly correlated with the concentration of total algal protein (R2=0.98). These results support that proteins are the primary precursors of 2,6-DCBQ in algae, and control of green algal bloom outbreaks in source waters is important for management of HBQ DBPs.
Collapse
Affiliation(s)
- Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Yao Xiao
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yixuan Yang
- College of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei Wang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310028, China
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
46
|
Padmaperuma G, Kapoore RV, Gilmour DJ, Vaidyanathan S. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol 2017; 38:690-703. [PMID: 29233009 DOI: 10.1080/07388551.2017.1390728] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monocultures have been the preferred production route in the bio-industry, where contamination has been a major bottleneck. In nature, microorganisms usually exist as part of organized communities and consortia, gaining benefits from co-habitation, keeping invaders at bay. There is increasing interest in the use of co-cultures to tackle contamination issues, and simultaneously increase productivity and product diversity. The feasibility of extending the natural phenomenon of co-habitation to the biomanufacturing industry in the form of co-cultures requires careful and systematic consideration of several aspects. This article will critically examine and review current work on microbial co-cultures, with the intent of examining the concept and proposing a design pipeline that can be developed in a biomanufacturing context.
Collapse
Affiliation(s)
- Gloria Padmaperuma
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| | - Rahul Vijay Kapoore
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| | - Daniel James Gilmour
- b Department of Molecular Biology and Biotechnology , The University of Sheffield , Sheffield , UK
| | - Seetharaman Vaidyanathan
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| |
Collapse
|
47
|
Podevin M, Fotidis IA, Angelidaki I. Microalgal process-monitoring based on high-selectivity spectroscopy tools: status and future perspectives. Crit Rev Biotechnol 2017; 38:704-718. [DOI: 10.1080/07388551.2017.1398132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Michael Podevin
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ioannis A. Fotidis
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
48
|
Markou G, Dao LH, Muylaert K, Beardall J. Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Pandey LK, Bergey EA, Lyu J, Park J, Choi S, Lee H, Depuydt S, Oh YT, Lee SM, Han T. The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges. WATER RESEARCH 2017; 118:39-58. [PMID: 28419896 DOI: 10.1016/j.watres.2017.01.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
Diatoms are regularly used for bioassessment and ecotoxicological studies in relation to environmental and anthropogenic disturbances. Traditional taxonomical diatom parameters (cell counts, biovolume estimates, species richness, diversity indices and metrics using sensitive and tolerant diatom species) are regularly used for these studies. In the same context, very less focus was given on new endpoints of diatoms (life-forms, nuclear anomalies, alteration in photosynthetic apparatus shape, motility, lipid bodies, size reduction and deformities), in spite of their numerous merits, such as, their easiness, quickness, cheapness, global acceptation and no especial training in diatom taxonomy. In this review we analyzed 202 articles (from lab and field studies), with the aim to investigate the bioassessment and ecotoxicological advancement taken place in diatom research especially in terms of exploring new endpoints along with the traditional taxonomical parameters in a perspective which can greatly enhance the evaluation of fluvial ecosystem quality for biomonitoring practices.
Collapse
Affiliation(s)
- Lalit K Pandey
- Institute of Green Environmental Research Center, 169, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea; Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Elizabeth A Bergey
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Jie Lyu
- Division of Life Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Jihae Park
- Division of Life Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, South Korea
| | - Soyeon Choi
- Division of Life Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Hojun Lee
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Stephen Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, South Korea
| | - Young-Tae Oh
- Institute of Public Health and Environment, 471, Seohae-daero, Jung-gu, Incheon 22320, Republic of Korea
| | - Sung-Mo Lee
- Institute of Public Health and Environment, 471, Seohae-daero, Jung-gu, Incheon 22320, Republic of Korea
| | - Taejun Han
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea; Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, South Korea.
| |
Collapse
|
50
|
Mishra S, Raghuvanshi S, Gupta S, Raj K. Application of novel thermo-tolerant haloalkalophilic bacterium Halomonas stevensii for bio mitigation of gaseous phase CO 2 : Energy assessment and product evaluation studies. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|