1
|
Yuan X, Luan Y, Liu D, Wang J, Peng J, Zhao J, Li L, Su J, Xiao Y, Li Y, Ma X, Zhu X, Tan L, Liu F, Sun H, Gu P, Xu R, Zhang P, Zhu Z, Sun C, Fu Y, Zhang K. The SUMO-conjugating enzyme OsSCE1a from wild rice regulates the functional stay-green trait in rice. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39585184 DOI: 10.1111/pbi.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/22/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024]
Abstract
The functional stay-green trait is a major goal of rice breeding. Here, we cloned OsSCE1a encoding SUMO-conjugating enzyme from Yuanjiang common wild rice, which simultaneously regulates the functional stay-green trait and growth duration. Low expression or knocking out OsSCE1a corresponded to increased chlorophyll content, photosynthetic competence, N use efficiency and a shortened growth period without affecting yield. A natural MITE-transposon insertion/deletion in the OsSCE1a promoter is the functional variation that regulates these traits. OsSCE1a was selected during evolution and shows significant variation between indica and japonica rice. OsNAC2 interacts with the MITE to enhance OsSCE1a expression. Genetic manipulation of OsSCE1a revealed its potential for rice improvement. OsSCE1a-mediated SUMOylation of OsGS2 suppresses GS (involved in N assimilation) enzyme activity. OsSCE1a also regulates growth duration by SUMOylating the transcription factor such as OsGBP1, which regulates the expression of the key heading gene Ghd7. Our findings shed light on the role of SUMOylation in crops and provide a strategy for increasing agricultural productivity.
Collapse
Affiliation(s)
- Xuzhao Yuan
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yanfang Luan
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Dong Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, China
| | - Jian Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangzhou, China
| | - Jianxiang Peng
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Biobin Data Science Co., Ltd., Changsha, China
| | - Jinlei Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Lupeng Li
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jingjing Su
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Yang Xiao
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Yuanjie Li
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xin Ma
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xiaoyang Zhu
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Lubin Tan
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Fengxia Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hongying Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Ping Gu
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Ran Xu
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Peijiang Zhang
- Anhui Academy of Agricultural Sciences, Rice Research Institute, Hefei, Anhui, China
| | - Zuofeng Zhu
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Chuanqing Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yongcai Fu
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Kun Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Dąbrowski P, Jełowicki Ł, Jaszczuk Z, Maihoub S, Wróbel J, Kalaji H. Relationship between photosynthetic performance and yield loss in winter oilseed rape ( Brassica napus L.) under frost conditions. PHOTOSYNTHETICA 2024; 62:240-251. [PMID: 39649356 PMCID: PMC11622556 DOI: 10.32615/ps.2024.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/25/2024] [Indexed: 12/10/2024]
Abstract
Winter oilseed rape (Brassica napus L.), the principal oilseed crop in Europe, is notably vulnerable to spring frosts that can drastically reduce yields in ways that are challenging to predict with standard techniques. Our research focused on evaluating the efficacy of photosynthetic efficiency analysis in this crop and identifying specific chlorophyll fluorescence parameters severely impacted by frost, which could serve as noninvasive biomarkers for yield decline. The experiments were carried out in semi-controlled conditions with several treatments: a control, one day at -3°C, three days at -3°C, one day at -6°C, and three days at -6°C. We employed continuous-excitation and pulse-amplitude-modulation chlorophyll fluorescence measurements to assess plant sensitivity to frost. Also, plant gas exchange and chlorophyll content index measurements were performed. Certain parameters strongly correlated with final yield losses, thereby establishing a basis for developing new agricultural protocols to predict and mitigate frost damage in rapeseed crops accurately.
Collapse
Affiliation(s)
- P. Dąbrowski
- Department of Environmental Management, Institute of Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| | - Ł. Jełowicki
- OPEGIEKA Sp. z o.o., Aleja Tysiąclecia 11, 82-300 Elbląg, Poland
| | - Z.M. Jaszczuk
- Faculty of Agriculture and Ecology, Warsaw University of Life Sciences – SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| | - S. Maihoub
- Faculty of Civil Engineering Warsaw University of Life Sciences SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| | - J. Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, al. Piastów 17, 70-310 Szczecin, Poland
| | - H.M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| |
Collapse
|
3
|
Dąbrowski P, Jełowicki Ł, Jaszczuk ZM, Kryvoviaz O, Kalaji HM. Photosynthetic Performance and Yield Losses of Winter Rapeseed ( Brassica napus L. var. napus) Caused by Simulated Hail. PLANTS (BASEL, SWITZERLAND) 2024; 13:1785. [PMID: 38999625 PMCID: PMC11243645 DOI: 10.3390/plants13131785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Winter oilseed rape (Brassica napus L.), Europe's foremost oilseed crop, is significantly impacted by hailstorms, leading to substantial yield reductions that are difficult to predict and measure using conventional methods. This research aimed to assess the effectiveness of photosynthetic efficiency analysis for predicting yield loss in winter rapeseed subjected to hail exposure. The aim was to pinpoint the chlorophyll fluorescence parameters most affected by hail stress and identify those that could act as non-invasive biomarkers of yield loss. The study was conducted in partially controlled conditions (greenhouse). Stress was induced in the plants by firing plastic balls with a 6 mm diameter at them using a pneumatic device, which launched the projectiles at speeds of several tens of meters per second. Measurements of both continuous-excitation and pulse-modulated-amplitude chlorophyll fluorescence were engaged to highlight the sensitivity of the induction curve and related parameters to hail stress. Our research uncovered that some parameters such as Fs, Fm', ΦPSII, ETR, Fo, Fv/Fm, and Fv/Fo measured eight days after the application of stress had a strong correlation with final yield, thus laying the groundwork for the creation of new practical protocols in agriculture and the insurance industry to accurately forecast damage to rapeseed crops due to hail stress.
Collapse
Affiliation(s)
- Piotr Dąbrowski
- Department of Environmental Management, Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| | - Łukasz Jełowicki
- OPEGIEKA Sp. z o.o., Aleja Tysiąclecia 11, 82-300 Elbląg, Poland
| | - Zuzanna M Jaszczuk
- Faculty of Agriculture and Ecology, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| | - Olena Kryvoviaz
- Faculty of Agriculture and Ecology, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159, 02-787 Warsaw, Poland
| |
Collapse
|
4
|
Zhang XF, Li Z, Lin H, Cheng Y, Wang H, Jiang Z, Ji Z, Huang Z, Chen H, Wei T. A phytoplasma effector destabilizes chloroplastic glutamine synthetase inducing chlorotic leaves that attract leafhopper vectors. Proc Natl Acad Sci U S A 2024; 121:e2402911121. [PMID: 38776366 PMCID: PMC11145293 DOI: 10.1073/pnas.2402911121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Leaf yellowing is a well-known phenotype that attracts phloem-feeding insects. However, it remains unclear how insect-vectored plant pathogens induce host leaf yellowing to facilitate their own transmission by insect vectors. Here, we report that an effector protein secreted by rice orange leaf phytoplasma (ROLP) inhibits chlorophyll biosynthesis and induces leaf yellowing to attract leafhopper vectors, thereby presumably promoting pathogen transmission. This effector, designated secreted ROLP protein 1 (SRP1), first secreted into rice phloem by ROLP, was subsequently translocated to chloroplasts by interacting with the chloroplastic glutamine synthetase (GS2). The direct interaction between SRP1 and GS2 disrupts the decamer formation of the GS2 holoenzyme, attenuating its enzymatic activity, thereby suppressing the synthesis of chlorophyll precursors glutamate and glutamine. Transgenic expression of SRP1 in rice plants decreased GS2 activity and chlorophyll precursor accumulation, finally inducing leaf yellowing. This process is correlated with the previous evidence that the knockout of GS2 expression in rice plants causes a similar yellow chlorosis phenotype. Consistently, these yellowing leaves attracted higher numbers of leafhopper vectors, caused the vectors to probe more frequently, and presumably facilitate more efficient phytoplasma transmission. Together, these results uncover the mechanism used by phytoplasmas to manipulate the leaf color of infected plants for the purpose of enhancing attractiveness to insect vectors.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Zhanpeng Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Hanbin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Yu Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Huanqin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Zhoumian Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Zhenxi Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Zhejun Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Hongyan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| |
Collapse
|
5
|
de Souza MA, de Andrade LIF, Gago J, Pereira EG. Photoprotective mechanisms and higher photorespiration are key points for iron stress tolerance under heatwaves in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112031. [PMID: 38346562 DOI: 10.1016/j.plantsci.2024.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Considering the current climate change scenario, the development of heat-tolerant rice cultivars (Oryza sativa L.) is paramount for cultivation in waterlogged systems affected by iron (Fe) excess. The objective of this work was to investigate the physiological basis of tolerance to excess Fe in rice cultivars that would maintain photosynthetic efficiency at higher temperatures. In an experimental approach, two rice cultivars (IRGA424 - tolerant and IRGA417- susceptible to Fe toxicity) were exposed to two concentrations of FeSO4-EDTA, control (0.019 mM) and excess Fe (7 mM) and subsequent exposition to heatwaves at different temperatures (25 °C - control, 35, 40, 45, 50, and 55 °C). The increase in temperatures resulted in a higher Fe concentration in shoots accompanied by a lower Rubisco carboxylation rate in both cultivars, but with lower damage in the tolerant one. Stomatal limitation only occurred as a late response to Fe toxicity, especially in the sensitive cultivar. The activation of photorespiration as electron sink under Fe excess with increasing temperature during heatwaves appear as a major mechanism to alleviate oxidative stress in cultivars tolerant to excess Fe. The tolerance to iron toxicity and heat stress is associated with increased photoprotective mechanisms driving non-photochemical dissipation.
Collapse
Affiliation(s)
- Moises Alves de Souza
- Setor de Fisiologia Vegetal, Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| | | | - Jorge Gago
- Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Universitat deles Illes Balears, Palma de Mallorca, Spain
| | - Eduardo Gusmão Pereira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Rodovia LMG 818, km 06, Campus UFV-Florestal, Florestal, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023; 13:1771. [PMID: 38136642 PMCID: PMC10742212 DOI: 10.3390/biom13121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cereals are the most broadly produced crops and represent the primary source of food worldwide. Nitrogen (N) is a critical mineral nutrient for plant growth and high yield, and the quality of cereal crops greatly depends on a suitable N supply. In the last decades, a massive use of N fertilizers has been achieved in the desire to have high yields of cereal crops, leading to damaging effects for the environment, ecosystems, and human health. To ensure agricultural sustainability and the required food source, many attempts have been made towards developing cereal crops with a more effective nitrogen use efficiency (NUE). NUE depends on N uptake, utilization, and lastly, combining the capability to assimilate N into carbon skeletons and remobilize the N assimilated. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a crucial metabolic step of N assimilation, regulating crop yield. In this review, the physiological and genetic studies on GS and GOGAT of the main cereal crops will be examined, giving emphasis on their implications in NUE.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Cecilia Lasorella
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| |
Collapse
|
7
|
Mlinarić S, Begović L, Tripić N, Piškor A, Cesar V. Evaluation of Light-Dependent Photosynthetic Reactions in Reynoutria japonica Houtt. Leaves Grown at Different Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:612702. [PMID: 34421934 PMCID: PMC8371261 DOI: 10.3389/fpls.2021.612702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The Japanese knotweed (Reynoutria japonica Houtt.) is considered as one of the most aggressive and highly successful invasive plants with a negative impact on invaded habitats. Its uncontrolled expansion became a significant threat to the native species throughout Europe. Due to its extensive rhizome system, rapid growth, and allelopathic activity, it usually forms monocultures that negatively affect the nearby vegetation. The efficient regulation of partitioning and utilization of energy in photosynthesis enables invasive plants to adapt rapidly a variety of environmental conditions. Therefore, we aimed to determine the influence of light conditions on photosynthetic reactions in the Japanese knotweed. Plants were grown under two different light regimes, namely, constant low light (CLL, 40 μmol/m2/s) and fluctuating light (FL, 0-1,250 μmol/m2/s). To evaluate the photosynthetic performance, the direct and modulated chlorophyll a fluorescence was measured. Plants grown at a CLL served as control. The photosynthetic measurements revealed better photosystem II (PSII) stability and functional oxygen-evolving center of plants grown in FL. They also exhibited more efficient conversion of excitation energy to electron transport and an efficient electron transport beyond the primary electron acceptor QA, all the way to PSI. The enhanced photochemical activity of PSI suggested the formation of a successful adaptive mechanism by regulating the distribution of excitation energy between PSII and PSI to minimize photooxidative damage. A faster oxidation at the PSI side most probably resulted in the generation of the cyclic electron flow around PSI. Besides, the short-term exposure of FL-grown knotweeds to high light intensity increased the yield induced by downregulatory processes, suggesting that the generation of the cyclic electron flow protected PSI from photoinhibition.
Collapse
Affiliation(s)
- Selma Mlinarić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Neven Tripić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Antonija Piškor
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vera Cesar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
8
|
Sathee L, Jha SK, Rajput OS, Singh D, Kumar S, Kumar A. Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:161-172. [PMID: 34044225 DOI: 10.1016/j.plaphy.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Understanding the reproductive stage salinity stress tolerance is a key target for breeding stress tolerant rice genotypes. Nitrate and ammonium are equally important nitrogen forms utilized by rice. We evaluated nitrate and ammonium assimilation during reproductive stage in control and salinity (10dSm-1 using NaCl) stressed rice plants. Osmotic stress tolerant rice genotype Shabhagidhan (SD) and high yielding yet osmotic and salinity stress sensitive genotype Pusa sugandh-5 (PS5) were evaluated. Salinity stress was given to plants during panicle emergence and flag leaves was collected after 1d, 3d 5d, 7d, 9d,12d and 15d after anthesis. Reproductive stage salinity stress resulted in decrease of membrane stability, relative water content and osmotic potential of rice plants. Reproductive stage salinity stress decreased the expression of nitrate reductase (OsNIA), nitrite reductase (OsNiR), Glutamine synthetase (OsGLN1.1, OsGLN1.2, OsGLN2) and glutamate synthase/GOGAT (OsFd-GOGAT, OsNADH-GOGAT) in flag leaves. In response to stress, SD showed better stress tolerance than PS5 in terms of higher yield stability. Variety SD showed higher leaf nitrate and ammonium content and maintained comparatively higher nitrate and ammonia metabolism enzyme activity than PS5. Salinity stress upregulated the activity of glutamate dehydrogenase enzyme and indirectly contributed to the higher proline content and maintenance of favourable osmotic potential in SD. Expression of GS2 which has role in photo respiratory ammonia assimilation was upregulated by salinity stress in PS5 in comparison to SD. Rice genotype showing better induction of nitrogen assimilatory genes will be more tolerant to reproductive stage salinity stress.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ompal Singh Rajput
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Santosh Kumar
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Arun Kumar
- National Phytotron Facility, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Zhou C, Mao J, Zhao H, Rao Z, Zhang B. Monitoring and predicting Fusarium wilt disease in cucumbers based on quantitative analysis of kinetic imaging of chlorophyll fluorescence. APPLIED OPTICS 2020; 59:9118-9125. [PMID: 33104622 DOI: 10.1364/ao.399320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/17/2020] [Indexed: 05/22/2023]
Abstract
Cucumber (Cucumis sativus L.) is a widely cultivated and economically profitable crop. However, Fusarium wilt disease can seriously affect cucumber yields, as it is difficult to prevent and eliminate. Therefore, a reliable method is needed for the rapid and early detection of Fusarium infection in cucumbers, which could be provided via the kinetic imaging of chlorophyll fluorescence (ChlF). In this study, ChlF imaging and kinetic parameters were utilized with gray and radial basis function models to monitor cucumber Fusarium wilt disease. The results indicate that the disease can be detected and predicted using this imaging technique before symptoms become visible.
Collapse
|
10
|
Li H, Li H, Lv Y, Wang Y, Wang Z, Xin C, Liu S, Zhu X, Song F, Li X. Salt Priming Protects Photosynthetic Electron Transport against Low-Temperature-Induced Damage in Wheat. SENSORS (BASEL, SWITZERLAND) 2019; 20:E62. [PMID: 31877640 PMCID: PMC6982750 DOI: 10.3390/s20010062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023]
Abstract
Low temperature limits the photochemical efficiency of photosystems in wheat plants. To test the effect of salt priming on the photosynthetic electron transport in wheat under low temperature, the germinating seeds of a winter wheat cv. Jimai44 were primed with varying concentrations of NaCl solutions (0, 10, 30, and 50 mM NaCl, indicated by S0, S10, S30, and S50, respectively) for 6 d, and after 11 d of recovery, the seedlings were subsequently exposed to 24-h low-temperature stress (2 °C). Under low temperature, the S30 plants possessed the highest absorption flux per reaction center and higher density of reaction center per cross-section among the treatments. In addition, S30 plants had higher trapped energy flux for reducing QA and fraction of QA-reducing reaction centers and non-QB reducing center than the non-primed plants under low temperature, indicating that S30 plants could maintain the energy balance of photosystems and a relatively higher maximum quantum efficiency of photosystem II under low temperature. In addition, the low temperature-induced MDA accumulation and cell death were alleviated by salt priming in S30 plants. It was suggested that salt priming with an optimal concentration of NaCl solution (30 mM) during seed germination enhanced the photochemical efficiency of photosystems in wheat seedlings, which could be a potential approach to improve cold tolerance in wheat at an early stage.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, China; (H.L.); (S.L.); (F.S.)
- University of Chinese Academy of Science, Beijing 100049, China
| | - Huawei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (Z.W.)
| | - Yanjie Lv
- Institute of Agricultural Resources and Environment, Jilin Academy of Agriculture Sciences/State Engineering Laboratory of Maize, Changchun 130033, China;
| | - Yongjun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agriculture Sciences/State Engineering Laboratory of Maize, Changchun 130033, China;
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (Z.W.)
| | - Caiyun Xin
- Rice Research Institute, Shandong Academy of Agricultural Science, 2 Sangyuan Road, Jinan 250100, China;
| | - Shengqun Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, China; (H.L.); (S.L.); (F.S.)
| | - Xiancan Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| | - Fengbin Song
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, China; (H.L.); (S.L.); (F.S.)
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, China; (H.L.); (S.L.); (F.S.)
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
11
|
Sun H, Zhang SB, Liu T, Huang W. Decreased photosystem II activity facilitates acclimation to fluctuating light in the understory plant Paris polyphylla. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148135. [PMID: 31821793 DOI: 10.1016/j.bbabio.2019.148135] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 01/11/2023]
Abstract
In forests, understory plants are usually exposed to sunflecks on timescales of seconds or minutes. However, it is unclear how understory plants acclimate to fluctuating light. In this study, we compared chlorophyll fluorescence, PSI redox state and the electrochromic shift signal under fluctuating light between an understory plant Paris polyphylla (Liliaceae) and a light-demanding plant Bletilla striata (Orchidaceae). Within the first seconds after transition from low to high light, PSI was highly oxidized in P. polyphylla but was highly reduced in B. striata, although both species could not generate a sufficient trans-thylakoid proton gradient (ΔpH). Furthermore, the outflow of electrons from PSI to O2 was not significant in P. polyphylla, as indicated by the P700 redox kinetics upon dark-to-light transition. Therefore, the different responses of PSI to fluctuating light between P. polyphylla and B. striata could not be explained by ΔpH formation or alternative electron transport. In contrast, upon a sudden transition from low to high light, electron flow from PSII was much lower in P. polyphylla than in B. striata, suggesting that the rapid oxidation of PSI in P. polyphylla was largely attributed to the lower PSII activity. We propose, for the first time, that down-regulation of PSII activity is an important strategy used by some understory angiosperms to cope with sunflecks.
Collapse
Affiliation(s)
- Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
| | - Tao Liu
- National Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201 Kunming, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China.
| |
Collapse
|
12
|
Yang YJ, Zhang SB, Wang JH, Huang W. Photosynthetic regulation under fluctuating light in field-grown Cerasus cerasoides: A comparison of young and mature leaves. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148073. [PMID: 31473302 DOI: 10.1016/j.bbabio.2019.148073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 11/15/2022]
Abstract
Photosystem I (PSI) is a potential target of photoinhibition under fluctuating light. However, photosynthetic regulation under fluctuating light in field-grown plants is little known. Furthermore, it is unclear how young leaves protect PSI against fluctuating light under natural field conditions. In the present study, we examined chlorophyll fluorescence, P700 redox state and the electrochromic shift signal in the young and mature leaves of field-grown Cerasus cerasoides (Rosaceae). Within the first seconds after any increase in light intensity, young leaves showed higher proton gradient (ΔpH) across the thylakoid membranes than the mature leaves, preventing over-reduction of PSI in the young leaves. As a result, PSI was more tolerant to fluctuating light in the young leaves than in the mature leaves. Interestingly, after transition from low to high light, the activity of cyclic electron flow (CEF) in young leaves increased first to a high level and then decreased to a stable value, while this rapid stimulation of CEF was not observed in the mature leaves. Furthermore, the over-reduction of PSI significantly stimulated CEF in the young leaves but not in the mature leaves. Taken together, within the first seconds after any increase in illumination, the stimulation of CEF favors the rapid lumen acidification and optimizes the PSI redox state in the young leaves, protecting PSI against photoinhibition under fluctuating light in field-grown plants.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ji-Hua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
13
|
Chen H, Li QP, Zeng YL, Deng F, Ren WJ. Effect of different shading materials on grain yield and quality of rice. Sci Rep 2019; 9:9992. [PMID: 31292505 PMCID: PMC6620329 DOI: 10.1038/s41598-019-46437-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
Light is a basic environmental factor required for plant growth and development; however, these are not only affected by light quantity, but also by light quality - light and radiation of different wavelengths and different compositions. In four different rice varieties (Oryza sativa L.), two kinds of shading materials, white cotton yarn (Shading (W)) and black nylon net (Shading (B)) were used to simulate cloudy days. Yield decreased under Shading (W) (15.3-17.7%) and Shading (B) (16.6-20.0%) compared to under sunny day (CK), and different effects on rice quality, which is mainly affected by changes in light quality, were observed. The change in light quality (Blue, Green, Red and R/FR proportions) represented under Shading (W) was significantly different from that under CK and Shading (B) conditions. Red light composition under Shading (W) was closer to that of the cloudy day condition. The proportion of blue light under Shading (W) was significantly lower than that under CK conditions; under Shading (B), it was higher than that under all conditions. The differences in light quality may affect photosynthesis in leaves and final starch synthesis, resulting in increased chalky grain rate, chalkiness, and poor rice quality. White cotton yarn as the shading material for further research used to simulate the influence of the light environment on rice growth under cloudy conditions will be better than black net.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiu-Ping Li
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yu-Ling Zeng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fei Deng
- Institute for New Rural Development, Sichuan Agricultural University, Ya'an, China
| | - Wan-Jun Ren
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
14
|
Gao Y, de Bang TC, Schjoerring JK. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO 2. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1209-1221. [PMID: 30525274 PMCID: PMC6576097 DOI: 10.1111/pbi.13046] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 05/23/2023]
Abstract
Cytosolic glutamine synthetase (GS1) plays a central role in nitrogen (N) metabolism. The importance of GS1 in N remobilization during reproductive growth has been reported in cereal species but attempts to improve N utilization efficiency (NUE) by overexpressing GS1 have yielded inconsistent results. Here, we demonstrate that transformation of barley (Hordeum vulgare L.) plants using a cisgenic strategy to express an extra copy of native HvGS1-1 lead to increased HvGS1.1 expression and GS1 enzyme activity. GS1 overexpressing lines exhibited higher grain yields and NUE than wild-type plants when grown under three different N supplies and two levels of atmospheric CO2 . In contrast with the wild-type, the grain protein concentration in the GS1 overexpressing lines did not decline when plants were exposed to elevated (800-900 μL/L) atmospheric CO2 . We conclude that an increase in GS1 activity obtained through cisgenic overexpression of HvGS1-1 can improve grain yield and NUE in barley. The extra capacity for N assimilation obtained by GS1 overexpression may also provide a means to prevent declining grain protein levels under elevated atmospheric CO2 .
Collapse
Affiliation(s)
- Yajie Gao
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| | - Thomas C. de Bang
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| | - Jan K. Schjoerring
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| |
Collapse
|
15
|
Popova AV, Dobrev K, Velitchkova M, Ivanov AG. Differential temperature effects on dissipation of excess light energy and energy partitioning in lut2 mutant of Arabidopsis thaliana under photoinhibitory conditions. PHOTOSYNTHESIS RESEARCH 2019; 139:367-385. [PMID: 29725995 DOI: 10.1007/s11120-018-0511-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
The high-light-induced alterations in photosynthetic performance of photosystem II (PSII) and photosystem I (PSI) as well as effectiveness of dissipation of excessive absorbed light during illumination for different periods of time at room (22 °C) and low (8-10 °C) temperature of leaves of Arabidopsis thaliana, wt and lut2, were followed with the aim of unraveling the role of lutein in the process of photoinhibition. Photosynthetic parameters of PSII and PSI were determined on whole leaves by PAM fluorometer and oxygen evolving activity-by a Clark-type electrode. In thylakoid membranes, isolated from non-illuminated and illuminated for 4.5 h leaves of wt and lut2 the photochemical activity of PSII and PSI and energy interaction between the main pigment-protein complexes was determined. Results indicate that in non-illuminated leaves of lut2 the maximum rate of oxygen evolution and energy utilization in PSII is lower, excitation pressure of PSII is higher and cyclic electron transport around PSI is faster than in wt leaves. Under high-light illumination, lut2 leaves are more sensitive in respect to PSII performance and the extent of increase of excitation pressure of PSII, ΦNO, and cyclic electron transport around PSI are higher than in wt leaves, especially when illumination is performed at low temperature. Significant part of the excessive light energy is dissipated via mechanism, not dependent on ∆pH and to functioning of xanthophyll cycle in LHCII, operating more intensively in lut2 leaves.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria.
| | - Konstantin Dobrev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Alexander G Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
- Department of Biology, University of Western Ontario, 1151 Richmond Str. N., London, ON, N6A 5B7, Canada
| |
Collapse
|
16
|
Yang XQ, Zhang QS, Zhang D, Feng JX, Zhao W, Liu Z, Tan Y. Interaction of high seawater temperature and light intensity on photosynthetic electron transport of eelgrass (Zostera marina L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:453-464. [PMID: 30292162 DOI: 10.1016/j.plaphy.2018.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 05/25/2023]
Abstract
The interaction of widely recognized causes of eelgrass decline (high seawater temperature and limited light intensity) on photosynthetic electron transport was investigated via chlorophyll fluorescence technique. High seawater temperature combined light intensity significantly increasing the relative maximum electron transport rate (rETRmax); at critical temperature of 30 °C, the rETRmax increased with the enhancement of light intensity, indicating the elevation of overall photosynthetic performance. Based on the magnitude of effect size (η2), light intensity was the predominant factor affecting the performance index (PIABS), indicating that photosystem II (PSII) was sensitive to light intensity. Moreover, the donor side was severely damaged as evidenced by the higher decrease amplitude of fast component and its subsequent incomplete recovery. The reaction center exhibited limited flexibility due to the slight decrease amplitude in maximum photochemical quantum yield. In contrast with PSII, photosystem I (PSI) was more sensitive to high seawater temperature, based on the magnitude of η2 derived from the maximal decrease in slope. High seawater temperature significantly increased PSI activity, plastoquinol reoxidation capacity, and probability for electron transfer to final PSI electron acceptors. Moreover, it combined elevated light intensity significantly stimulated the activity of cyclic electron flow (CEF) around PSI. Higher activity of both PSI and CEF contributed to balancing the linear electron transport via alleviating the over-reduction of the plastoquinone pool, exhibiting flexible regulation of photosynthetic electron transport at critical temperature. Therefore, limited light intensity decreased the tolerance of eelgrass to critical temperature, which might be a factor contributing factor in the observed decline.
Collapse
Affiliation(s)
- Xiao Qi Yang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | | | - Di Zhang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Ji Xing Feng
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Wei Zhao
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Zhe Liu
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Ying Tan
- Ocean School, Yantai University, Yantai, 264005, PR China
| |
Collapse
|
17
|
Huang W, Tikkanen M, Cai YF, Wang JH, Zhang SB. Chloroplastic ATP synthase optimizes the trade-off between photosynthetic CO2 assimilation and photoprotection during leaf maturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1067-1074. [DOI: 10.1016/j.bbabio.2018.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 11/24/2022]
|
18
|
Wada S, Suzuki Y, Takagi D, Miyake C, Makino A. Effects of genetic manipulation of the activity of photorespiration on the redox state of photosystem I and its robustness against excess light stress under CO 2-limited conditions in rice. PHOTOSYNTHESIS RESEARCH 2018; 137:431-441. [PMID: 29761327 DOI: 10.1007/s11120-018-0515-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/07/2018] [Indexed: 05/24/2023]
Abstract
Under CO2-limited conditions such as during stomatal closure, photorespiration is suggested to act as a sink for excess light energy and protect photosystem I (PSI) by oxidizing its reaction center chlorophyll P700. In this study, this issue was directly examined with rice (Oryza sativa L.) plants via genetic manipulation of the amount of Rubisco, which can be a limiting factor for photorespiration. At low [CO2] of 5 Pa that mimicked stomatal closure condition, the activity of photorespiration in transgenic plants with decreased Rubisco content (RBCS-antisense plants) markedly decreased, whereas the activity in transgenic plants with overproduction of Rubisco (RBCS-sense plants) was similar to that in wild-type plants. Oxidation of P700 was enhanced at [CO2] of 5 Pa in wild-type and RBCS-sense plants. PSI was not damaged by excess light stress induced by repetitive saturated pulse-light (rSP) in the presence of strong steady-state light. On the other hand, P700 was strongly reduced in RBCS-antisense plants at [CO2] of 5 Pa. PSI was also damaged by rSP illumination. These results indicate that oxidation of P700 and the robustness of PSI against excess light stress are hampered by the decreased activity of photorespiration as a result of genetic manipulation of Rubisco content. It is also suggested that overproduction of Rubisco does not enhance photorespiration as well as CO2 assimilation probably due to partial deactivation of Rubisco.
Collapse
Affiliation(s)
- Shinya Wada
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-0845, Japan
- CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-0845, Japan.
- CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| | - Daisuke Takagi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
- CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
- CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-0845, Japan
- CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| |
Collapse
|
19
|
Impacts of a High Nitrogen Load on Foliar Nutrient Status, N Metabolism, and Photosynthetic Capacity in a Cupressus lusitanica Mill. Plantation. FORESTS 2018. [DOI: 10.3390/f9080483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At present, anthropogenic nitrogen deposition has dramatically increased worldwide and has shown negative impacts on temperate/boreal forest ecosystems. However, it remains unclear how an elevated N load affects plant growth in the relatively N-rich subtropical forests of Southern China. To address this question, a study was conducted in a six-year-old Cupressus lusitanica Mill. plantation at the Scientific Research and Teaching Base of Nanjing Forestry University, with N addition levels of N0 (0 kg ha−1 year−1), N1 (24 kg ha−1 year−1), N2 (48 kg ha−1 year−1), N3 (72 kg ha−1 year−1), N4 (96 kg ha−1 year−1), and N5 (120 kg ha−1 year−1). Leaf physiological traits associated with foliar nutrient status, photosynthetic capacity, pigment, and N metabolites were measured. The results showed that (1) N addition led to significant effects on foliar N, but had no marked effects on K concentration. Furthermore, remarkable increases of leaf physiological traits including foliar P, Ca, Mg, and Mn concentration; photosynthetic capacity; pigment; and N metabolites were always observed under low and middle-N supply. (2) High N supply notably decreased foliar P, Ca, and Mg concentration, but increased foliar Mn content. Regarding the chlorophyll, photosynthetic capacity, and N metabolites, marked declines were also observed under high N inputs. (3) Redundancy analysis showed that the net photosynthesis rate was positively correlated with foliar N, P, Ca, Mg, and Mn concentration; the Mn/Mg ratio; and concentrations of chlorophyll and N metabolites, while the net photosynthesis rate was negatively correlated with foliar K concentration and N/P ratios. These findings suggest that excess N inputs can promote nutrient imbalances and inhibit the photosynthetic capacity of Cupressus lusitanica Mill., indicating that high N deposition could threaten plant growth in tropical forests in the future. Meanwhile, further study is merited to track the effects of high N deposition on the relationship between foliar Mn accumulation and photosynthesis in Cupressus lusitanica Mill.
Collapse
|
20
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
21
|
Night Light-Adaptation Strategies for Photosynthetic Apparatus in Yellow-Poplar (Liriodendron tulipifera L.) Exposed to Artificial Night Lighting. FORESTS 2018. [DOI: 10.3390/f9020074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Saccenti E, Smilde AK, Camacho J. Group-wise ANOVA simultaneous component analysis for designed omics experiments. Metabolomics 2018; 14:73. [PMID: 29861703 PMCID: PMC5962647 DOI: 10.1007/s11306-018-1369-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/05/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Modern omics experiments pertain not only to the measurement of many variables but also follow complex experimental designs where many factors are manipulated at the same time. This data can be conveniently analyzed using multivariate tools like ANOVA-simultaneous component analysis (ASCA) which allows interpretation of the variation induced by the different factors in a principal component analysis fashion. However, while in general only a subset of the measured variables may be related to the problem studied, all variables contribute to the final model and this may hamper interpretation. OBJECTIVES We introduce here a sparse implementation of ASCA termed group-wise ANOVA-simultaneous component analysis (GASCA) with the aim of obtaining models that are easier to interpret. METHODS GASCA is based on the concept of group-wise sparsity introduced in group-wise principal components analysis where structure to impose sparsity is defined in terms of groups of correlated variables found in the correlation matrices calculated from the effect matrices. RESULTS The GASCA model, containing only selected subsets of the original variables, is easier to interpret and describes relevant biological processes. CONCLUSIONS GASCA is applicable to any kind of omics data obtained through designed experiments such as, but not limited to, metabolomic, proteomic and gene expression data.
Collapse
|
23
|
Yang X, Feng L, Zhao L, Liu X, Hassani D, Huang D. Effect of glycine nitrogen on lettuce growth under soilless culture: a metabolomics approach to identify the main changes occurred in plant primary and secondary metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:467-477. [PMID: 28612342 DOI: 10.1002/jsfa.8482] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/09/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Lettuce is a significant source of antioxidants and bioactive compounds. Nitrate is a cardinal fertilizer in horticulture and influences vegetable yield and quality; however, the negative effects of nitrate on the biosynthesis of flavonoids require further study. It is expected that using fertilizers containing organic nitrogen (N) could promote the synthesis of health-promoting compounds. RESULTS Lettuces were hydroponically cultured in media containing 9 mmol L-1 nitrate or 9 mmol L-1 glycine for 4 weeks. Primary and secondary metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS) and ultra-performance liquid chromatography/ion mobility spectrometry/quadrupole time-of-flight mass spectrometry (UPLC/IMS/QTOF-MS). Data analysis revealed that 29 metabolites were significantly altered between nitrate and glycine treatments. Metabolites were tentatively identified by comparison with online databases, literature and standards and using collision cross-section values. Significant differences in flavonoid biosynthesis, phenolic biosynthesis and the tricarboxylic acid (TCA) cycle response were observed between N sources. Compared with nitrate, glycine promoted accumulation of glycosylated flavonoids (quercetin 3-glucoside, quercetin 3-(6″-malonyl-glucoside), luteolin 7-glucuronide, luteolin 7-glucoside), ascorbic acid and amino acids (l-valine, l-leucine, l-glutamine, asparagine, l-serine, l-ornithine, 4-aminobutanoic acid, l-phenylalanine) but reduced phenolic acids (dihydroxybenzoic acid hexose isomers 1 and 2, chicoric acid, chicoric acid isomer 1) and TCA intermediates (fumaric, malic, citric and succinic acids). CONCLUSION The novel methodology applied in this study can be used to characterize metabolites in lettuce. Accumulation of glycosylated flavonoids, amino acids and ascorbic acid in response to glycine supply provides strong evidence supporting the idea that using amino acids as an N source alters the nutritional value of vegetable crops. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Xiaosong Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Danial Hassani
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
24
|
Transcriptomic response of durum wheat to nitrogen starvation. Sci Rep 2017; 7:1176. [PMID: 28446759 PMCID: PMC5430780 DOI: 10.1038/s41598-017-01377-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/27/2017] [Indexed: 11/29/2022] Open
Abstract
Nitrogen (N) is a key macronutrient representing a limiting factor for plant growth and development and affects productivity in wheat. In this study, durum wheat response to N chronic starvation during grain filling was investigated through a transcriptomic approach in roots, leaves/stems, flag leaf and spikes of cv. Svevo. Nitrogen stress negatively influenced plant height, tillering, flag leaf area, spike and seed traits, and total N content. RNA-seq data revealed 4,626 differentially expressed genes (DEGs). Most transcriptomic changes were observed in roots, with 3,270 DEGs, while 963 were found in leaves/stems, 470 in flag leaf, and 355 in spike tissues. A total of 799 gene ontology (GO) terms were identified, 180 and 619 among the upregulated and downregulated genes, respectively. Among the most addressed GO categories, N compound metabolism, carbon metabolism, and photosynthesis were mostly represented. Interesting DEGs, such as N transporters, genes involved in N assimilation, along with transcription factors, protein kinases and other genes related to stress were highlighted. These results provide valuable information about the transcriptomic response to chronic N stress in durum wheat, which could be useful for future improvement of N use efficiency.
Collapse
|
25
|
The water-water cycle is a major electron sink in Camellia species when CO 2 assimilation is restricted. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:59-66. [PMID: 28171808 DOI: 10.1016/j.jphotobiol.2017.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/22/2017] [Accepted: 01/30/2017] [Indexed: 01/30/2023]
Abstract
The water-water cycle (WWC) is thought to dissipate excess excitation energy and balance the ATP/NADPH energy budget under some conditions. However, the importance of the WWC in photosynthetic regulation remains controversy. We observed that three Camellia cultivars exhibited high rates of photosynthetic electron flow under high light when photosynthesis was restricted. We thus tested the hypothesis that the WWC is a major electron sink in the three Camellia cultivars when CO2 assimilation is restricted. Light response curves indicated that the WWC was strongly increased with photorespiration and was positively correlated with extra ATP supplied from other flexible mechanisms excluding linear electron flow, implying that the WWC is an important alternative electron sink to balance ATP/NADPH energy demand for sustaining photorespiration in Camellia cultivars. Interestingly, when photosynthesis was depressed by the decreases in stomatal and mesophyll conductance, the rates of photosynthetic electron flow through photosystem II declined slightly and the rates of WWC was enhanced. Furthermore, the increased electron flow of WWC was positively correlated with the ratio of Rubisco oxygenation to carboxylation, supporting the involvement of alternative electron flow in balancing the ATP/NADPH energy budget. We propose that the WWC is a crucial electron sink to regulate ATP/NADPH energy budget and dissipate excess energy excitation in Camellia species when CO2 assimilation is restricted.
Collapse
|
26
|
Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev SI. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. PHOTOSYNTHESIS RESEARCH 2016; 130:251-266. [PMID: 27023107 DOI: 10.1007/s11120-016-0249-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/17/2016] [Indexed: 05/19/2023]
Abstract
The effects of high temperature on CO2 assimilation rate, processes associated with photosynthetic electron and proton transport, as well as photoprotective responses, were studied in chlorophyll b-deficient mutant lines (ANK-32A and ANK-32B) and wild type (WT) of wheat (Triticum aestivum L.). Despite the low chlorophyll content and chlorophyll a-to-b ratio, the non-stressed mutant plants had the similar level of CO2 assimilation and photosynthetic responses as WT. However, in ANK mutant plants exposed to prolonged high temperature episode (42 °C for ~10 h), we observed lower CO2 assimilation compared to WT, especially when a high CO2 supply was provided. In all heat-exposed plants, we found approximately the same level of PSII photoinhibition, but the decrease in content of photooxidizable PSI was higher in ANK mutant plants compared to WT. The PSI damage can be well explained by the level of overreduction of PSI acceptor side observed in plants exposed to high temperature, which was, in turn, the result of the insufficient transthylakoid proton gradient associated with low non-photochemical quenching and lack of ability to downregulate the linear electron transport to keep the reduction state of PSI acceptor side low enough. Compared to WT, the ANK mutant lines had lower capacity to drive the cyclic electron transport around PSI in moderate and high light; it confirms the protective role of cyclic electron transport for the protection of PSI against photoinhibition. Our results, however, also suggest that the inactivation of PSI in heat stress conditions can be the protective mechanism against photooxidative damage of chloroplast and cell structures.
Collapse
Affiliation(s)
- Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Kristyna Kunderlikova
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, Russia, 119991
| |
Collapse
|
27
|
Yang J, Du L, Sun J, Zhang Z, Chen B, Shi S, Gong W, Song S. Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra. OPTICS EXPRESS 2016; 24:19354-19365. [PMID: 27557214 DOI: 10.1364/oe.24.019354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Paddy rice is one of the most important crops in China, and leaf nitrogen content (LNC) serves as a significant indictor for monitoring crop status. A reliable method is needed for precise and fast quantification of LNC. Laser-induced fluorescence (LIF) technology and reflectance spectra of crops are widely used to monitor leaf biochemical content. However, comparison between the fluorescence and reflectance spectra has been rarely investigated in the monitoring of LNC. In this study, the performance of the fluorescence and reflectance spectra for LNC estimation was discussed based on principal component analysis (PCA) and back-propagation neural network (BPNN). The combination of fluorescence and reflectance spectra was also proposed to monitor paddy rice LNC. The fluorescence and reflectance spectra exhibited a high degree of multi-collinearity. About 95.38%, and 97.76% of the total variance included in the spectra were efficiently extracted by using the first three PCs in PCA. The BPNN was implemented for LNC prediction based on new variables calculated using PCA. The experimental results demonstrated that the fluorescence spectra (R2 = 0.810, 0.804 for 2014 and 2015, respectively) are superior to the reflectance spectra (R2 = 0.721, 0.671 for 2014 and 2015, respectively) for estimating LNC based on the PCA-BPNN model. The proposed combination of fluorescence and reflectance spectra can greatly improve the accuracy of LNC estimation (R2 = 0.912, 0.890 for 2014 and 2015, respectively).
Collapse
|
28
|
Ma Q, Cao X, Wu L, Mi W, Feng Y. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.). Sci Rep 2016; 6:21200. [PMID: 26882864 PMCID: PMC4756379 DOI: 10.1038/srep21200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022] Open
Abstract
The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m(-2) s(-1)) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower (15)N-nitrate in root but higher in shoot and the higher (15)N-glycine in root but lower in shoot suggested that most (15)N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.
Collapse
Affiliation(s)
- Qingxu Ma
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaochuang Cao
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lianghuan Wu
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenhai Mi
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Feng
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
Huang W, Yang YJ, Hu H, Zhang SB. Moderate Photoinhibition of Photosystem II Protects Photosystem I from Photodamage at Chilling Stress in Tobacco Leaves. FRONTIERS IN PLANT SCIENCE 2016; 7:182. [PMID: 26941755 PMCID: PMC4761844 DOI: 10.3389/fpls.2016.00182] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/02/2016] [Indexed: 05/19/2023]
Abstract
It has been indicated that photosystem I (PSI) is susceptible to chilling-light stress in tobacco leaves, but the effect of growth light intensity on chilling-induced PSI photoinhibition in tobacco is unclear. We examined the effects of chilling temperature (4°C) associated with moderate light intensity (300 μmol photons m(-2) s(-1)) on the activities of PSI and photosystem II (PSII) in leaves from sun- and shade-grown plants of tobacco (Nicotiana tabacum cv. k326). The sun leaves had a higher activity of alternative electron flow than the shade leaves. After 4 h chilling treatment, the sun leaves showed significantly a higher PSI photoinhibition than the shade leaves. At chilling temperature the sun leaves showed a greater electron flow from PSII to PSI, accompanying with a lower P700 oxidation ratio. When leaves were pre-treated with lincomycin, PSII activity decreased by 42% (sun leaves) and 47% (shade leaves) after 2 h exposure to the chilling-light stress, but PSI activity remained stable during the chilling-light treatment, because the electron flow from PSII to PSI was remarkably depressed. These results indicated that the stronger chilling-induced PSI photoinhibition in the sun leaves was resulted from a greater electron flow from PSII to PSI. Furthermore, moderate PSII photoinhibition depressed electron flow to PSI and then protected PSI activity against further photodamage in chilled tobacco leaves.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
- *Correspondence: Wei Huang, ; Shi-Bao Zhang,
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
- *Correspondence: Wei Huang, ; Shi-Bao Zhang,
| |
Collapse
|
30
|
Ripoll J, Bertin N, Bidel LPR, Urban L. A User's View of the Parameters Derived from the Induction Curves of Maximal Chlorophyll a Fluorescence: Perspectives for Analyzing Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1679. [PMID: 27891137 PMCID: PMC5104755 DOI: 10.3389/fpls.2016.01679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 05/15/2023]
Abstract
Analysis of the fast kinetics of the induction curve of maximal fluorescence represents a relatively recent development for chlorophyll a fluorescence measurements. The parameters of the so-called JIP-test are exploited by an increasingly large community of users to assess plant stress and its consequences. We provide here evidence that these parameters are capable to distinguish between stresses of different natures or intensities, and between stressed plants of different genetic background or at different developmental stages at the time of stress. It is, however, important to keep in mind that the JIP-test is inherently limited in scope, that it is based on assumptions which are not fully validated and that precautions must be taken to ensure that measurements are meaningful. Recent advances suggest that some improvements could be implemented to increase the reliability of measurements and the pertinence of the parameters calculated. We moreover advocate for using the JIP-test in combination with other techniques to build comprehensive pictures of plant responses to stress.
Collapse
Affiliation(s)
- Julie Ripoll
- INRA – Centre d’Avignon, UR 1115 Plantes et Systèmes de Culture HorticolesAvignon, France
- UMR QualiSud, Université d’Avignon et des Pays du VaucluseAvignon, France
| | - Nadia Bertin
- INRA – Centre d’Avignon, UR 1115 Plantes et Systèmes de Culture HorticolesAvignon, France
| | | | - Laurent Urban
- UMR QualiSud, Université d’Avignon et des Pays du VaucluseAvignon, France
- *Correspondence: Laurent Urban,
| |
Collapse
|
31
|
Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI. Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. PHOTOSYNTHESIS RESEARCH 2015; 126:449-63. [PMID: 25829027 DOI: 10.1007/s11120-015-0121-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/12/2015] [Indexed: 05/19/2023]
Abstract
It was previously found that photosystem I (PSI) photoinhibition represents mostly irreversible damage with a slow recovery; however, its physiological significance has not been sufficiently characterized. The aim of the study was to assess the effect of PSI photoinhibition on photosynthesis in vivo. The inactivation of PSI was done by a series of short light saturation pulses applied by fluorimeter in darkness (every 10 s for 15 min), which led to decrease of both PSI (~60 %) and photosystem II (PSII) (~15 %) photochemical activity. No PSI recovery was observed within 2 days, whereas the PSII was fully recovered. Strongly limited PSI electron transport led to an imbalance between PSII and PSI photochemistry, with a high excitation pressure on PSII acceptor side and low oxidation of the PSI donor side. Low and delayed light-induced NPQ and P700(+) rise in inactivated samples indicated a decrease in formation of transthylakoid proton gradient (ΔpH), which was confirmed also by analysis of electrochromic bandshift (ECSt) records. In parallel with photochemical parameters, the CO2 assimilation was also strongly inhibited, more in low light (~70 %) than in high light (~45 %); the decrease was not caused by stomatal closure. PSI electron transport limited the CO2 assimilation at low to moderate light intensities, but it seems not to be directly responsible for a low CO2 assimilation at high light. In this regard, the possible effects of PSI photoinhibition on the redox signaling in chloroplast and its role in downregulation of Calvin cycle activity are discussed.
Collapse
Affiliation(s)
- Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| | - Kristyna Kunderlikova
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Oksana Sytar
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
- Department of Plant Physiology and Ecology, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv, 01601, Ukraine
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia.
| |
Collapse
|
32
|
Wang X, Wei Y, Shi L, Ma X, Theg SM. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6827-34. [PMID: 26307137 PMCID: PMC4623691 DOI: 10.1093/jxb/erv388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.
Collapse
Affiliation(s)
- Xiaochun Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agriculture University, Zhengzhou 450002, China State Key Laboratory of Wheat and Maize Crop Science in China, Henan Agriculture University, Zhengzhou 450002, China Department of Biochemistry, College of Life Science, Henan Agriculture University, Zhengzhou 450002, China
| | - Yihao Wei
- Department of Biochemistry, College of Life Science, Henan Agriculture University, Zhengzhou 450002, China
| | - Lanxin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, Henan Agriculture University, Zhengzhou 450002, China
| | - Steven M Theg
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
33
|
Zivcak M, Brestic M, Kunderlikova K, Olsovska K, Allakhverdiev SI. Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: Does activity of photosystem I play any role in OJIP rise? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:318-24. [PMID: 26388470 DOI: 10.1016/j.jphotobiol.2015.08.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 01/09/2023]
Abstract
Interpretation of the fast chlorophyll a fluorescence induction is still a subject of continuing discussion. One of the contentious issues is the influence of photosystem I (PSI) activity on the kinetics of the thermal JIP-phase of OJIP rise. To demonstrate this influence, we realized a series of measurements in wheat leaves subjected to PSI photoinactivation by the sequence of red saturation pulses (15,000 μmol photons m(-2) s(-1) for 0.3 s, every 10 s) applied in darkness. Such a treatment led to a moderate decrease of maximum quantum efficiency of PSII (by ~8%), but a strong decrease of the number of oxidizable PSI (by ~55%), which considerably limited linear electron transport and CO2 assimilation. Surprisingly, the PSI photoinactivation had low effects on OJIP kinetics of variable fluorescence. In particular, the amplitude of variable fluorescence of IP-step (ΔVIP), which has been considered to be a measure of PSI content, was not decreased, despite the low content of photooxidizable PSI. On the other hand, the slower relaxation of chlorophyll fluorescence after saturation pulse as well as the results of the double-hit method suggest that PSI inactivation treatment led to an increase of the fraction of QB-nonreducing PSII reaction centers. Our results somewhat challenge the mainstream interpretations of JIP-thermal phase, and at least suggest that the IP amplitude cannot serve to estimate reliably the PSI content or the PSI to PSII ratio. Moreover, these results recommend the use of the novel method of PSI inactivation, which might help clarify some important issues needed for the correct understanding of the OJIP fluorescence rise.
Collapse
Affiliation(s)
- Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Kristyna Kunderlikova
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Katarina Olsovska
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia.
| |
Collapse
|
34
|
Duan Y, Zhang M, Gao J, Li P, Goltsev V, Ma F. Thermotolerance of apple tree leaves probed by chlorophyll a fluorescence and modulated 820 nm reflection during seasonal shift. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:347-56. [PMID: 26298695 DOI: 10.1016/j.jphotobiol.2015.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
During the seasonal shift from June to August, air temperatures increase. To explore how apple trees improve their thermotolerance during this shift, we examined the photochemical reaction capacity of apple tree leaves by simultaneous measurement of prompt chlorophyll fluorescence, delayed chlorophyll fluorescence, and modulated 820 nm reflection at varying temperatures. It was found that the reaction centers and antennae of photosystem II (PSII) and photosystem I (PSI), the donor side of PSII, the electron transfer capacity from QA to QB, and the reoxidation capacity of plastoquinol were all sensitive to heat stress, particularly in June. As the season shifted, apple tree leaves improved in thermotolerance. Interestingly, the acclimation to seasonal shift enhanced the thermotolerance of PSII and PSI reaction centers more than that of their antennae, and the activity of PSII more than that of PSI. This may be a strategy for plant adaptation to changes in environmental temperatures. In addition, results from prompt and delayed fluorescence, as well as modulated 820 nm reflection corroborate each other. We suggest that the simultaneous measurement of the three independent signals may provide more information on thermal acclimation mechanisms of photochemical reactions in plant leaves.
Collapse
Affiliation(s)
- Ying Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengxia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dr. Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
35
|
Plyusnina TY, Khruschev SS, Riznichenko GY, Rubin AB. An analysis of the chlorophyll fluorescence transient by spectral multi-exponential approximation. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s000635091503015x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI. Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. PHOTOSYNTHESIS RESEARCH 2015; 125:151-66. [PMID: 25648638 DOI: 10.1007/s11120-015-0093-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/22/2015] [Indexed: 05/07/2023]
Abstract
In vivo analyses of electron and proton transport-related processes as well as photoprotective responses were carried out at different stages of growth in chlorophyll b (Chl b)-deficient mutant lines (ANK-32A and ANK-32B) and wild type (WT) of wheat (Triticum aestivum L.). In addition to a high Chl a-b ratio, ANK mutants had a lower content of photo-oxidizable photosystem I (PSI, P m), and several parameters indicated a low PSI/PSII ratio. Moreover, simultaneous measurements of Chl fluorescence and P700 indicated a shift of balance between redox poise of the PSII acceptor side and the PSII donor side, with preferential reduction of the plastoquinone pool, resulting in an over reduced PSI acceptor side (high Φ NA values). This was the probable reason for PSI inactivation observed in the ANK mutants, but not in WT. In later growth phases, we observed partial relief of "chlorina symptoms," toward WT. Measurements of ΔA 520 decay confirmed that, in early growth stages, the ANK mutants with low PSI content had a limited capacity to build up the transthylakoid proton gradient (ΔpH) needed to trigger non-photochemical quenching (NPQ) and to regulate the electron transport by cytochrome b 6/f. Later, the increase in the PSI/PSII ratio enabled ANK mutants to reach full NPQ, but neither over reduction of the PSI acceptor side nor PSI photoinactivation due to imbalance between the activity of PSII and PSI was mitigated. Thus, our results support the crucial role of proper regulation of linear electron transport in the protection of PSI against photoinhibition. Moreover, the ANK mutants of wheat showing the dynamic developmental changes in the PSI/PSII ratio are presented here as very useful models for further studies.
Collapse
Affiliation(s)
- Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic,
| | | | | | | | | | | | | |
Collapse
|
37
|
Janka E, Körner O, Rosenqvist E, Ottosen CO. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 90:14-22. [PMID: 25749731 DOI: 10.1016/j.plaphy.2015.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/24/2015] [Indexed: 05/23/2023]
Abstract
Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting. The control regime may be optimised by monitoring plant responses, and may be promptly adjusted when plant performance is affected by extreme microclimatic conditions, such as high irradiance or temperature. To determine the stress indicators of plants based on their physiological responses, net photosynthesis (Pn) and four chlorophyll-a fluorescence parameters: maximum photochemical efficiency of PSII [Fv/Fm], electron transport rate [ETR], PSII operating efficiency [F'q/F'm], and non-photochemical quenching [NPQ] were assessed for potted chrysanthemum (Dendranthema grandiflora Tzvelev) 'Coral Charm' under different temperature (20, 24, 28, 32, 36 °C) and daily light integrals (DLI; 11, 20, 31, and 43 mol m(-2) created by a PAR of 171, 311, 485 and 667 μmol m(-2) s(-1) for 16 h). High irradiance (667 μmol m(-2) s(-1)) combined with high temperature (>32 °C) significantly (p < 0.05) decreased Fv/Fm. Under high irradiance, the maximum Pn and ETR were reached at 24 °C. Increased irradiance decreased the PSII operating efficiency and increased NPQ, while both high irradiance and temperature had a significant effect on the PSII operating efficiency at temperatures >28 °C. Under high irradiance and temperature, changes in the NPQ determined the PSII operating efficiency, with no major change in the fraction of open PSII centres (qL) (indicating a QA redox state). We conclude that 1) chrysanthemum plants cope with excess irradiance by non-radiative dissipation or a reversible stress response, with the effect on the Pn and quantum yield of PSII remaining low until the temperature reaches 28 °C and 2) the integration of online measurements to monitor photosynthesis and PSII operating efficiency may be used to optimise dynamic greenhouse control regimes by detecting plant stress caused by extreme microclimatic conditions.
Collapse
Affiliation(s)
- Eshetu Janka
- Department of Energy and Enviornmental Technology, Telemark University College, Kjølnes ring 56, 3918 Porsgrunn, Norway.
| | - Oliver Körner
- AgroTech A/S, Institute for Agri Technology and Food Innovation, Højbakkegård Allé 21, DK-2630 Taastrup, Denmark
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, Copenhagen University, Højbakkegård Allé 9, DK-2630 Taastrup, Denmark
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, DK- 5792 Årslev, Denmark
| |
Collapse
|
38
|
Yan K, Wu C, Zhang L, Chen X. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. FRONTIERS IN PLANT SCIENCE 2015; 6:227. [PMID: 25914706 PMCID: PMC4391128 DOI: 10.3389/fpls.2015.00227] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/22/2015] [Indexed: 05/07/2023]
Abstract
Honeysuckle (Lonicera japonica Thunb.) is a popular landscape plant. This study was to explore leaf photosynthetic characterization with emphasis on the coordination between photosystem II (PSII) and photosystem I (PSI) in tetraploid and its autodiploid honeysuckle (TH and DH) upon salt stress (300 mM NaCl). Leaf photosynthetic rate and carboxylation efficiency in DH and TH were significantly decreased under salt stress, and the decrease was greater in DH. PSII photoinhibition was induced in DH under salt stress, as the maximum quantum yield of PSII (Fv/Fm) was significantly decreased. PSII photoinhibition declined electron flow to PSI, but did not prevent PSI photoinhibition, as the maximal photochemical capacity of PSI (MR/MR0) was significantly decreased by salt stress. According to the significant decrease in PSI oxidation amplitude in the first 1 s red illumination, PSI photoinhibition was more severe than PSII photoinhibition. As a result, PSII and PSI coordination was destroyed. Comparatively, salt-induced photoinhibition did not occur in TH, as no significant change was observed in Fv/Fm and MR/MR0. Consequently, PSII and PSI coordination was not significantly affected by salt stress. In conclusion, TH maintained normal coordination between PSII and PSI by preventing photoinhibition and exhibited higher leaf photosynthetic activity than DH under salt stress. Compared with DH, lower leaf ionic toxicity due to greater root Na(+) extrusion and restriction of Na(+) transport to leaf might be responsible for maintaining higher leaf photosynthetic capacity in TH under salt stress.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Congwen Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- Academy of Life Sciences, Yantai UniversityYantai, China
| | - Lihua Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Xiaobing Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| |
Collapse
|
39
|
Scotti N, Sannino L, Idoine A, Hamman P, De Stradis A, Giorio P, Maréchal-Drouard L, Bock R, Cardi T. The HIV-1 Pr55 gag polyprotein binds to plastidial membranes and leads to severe impairment of chloroplast biogenesis and seedling lethality in transplastomic tobacco plants. Transgenic Res 2015; 24:319-31. [PMID: 25348481 DOI: 10.1007/s11248-014-9845-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022]
Abstract
Chloroplast genetic engineering has long been recognised as a powerful technology to produce recombinant proteins. To date, however, little attention has been given to the causes of pleiotropic effects reported, in some cases, as consequence of the expression of foreign proteins in transgenic plastids. In this study, we investigated the phenotypic alterations observed in transplastomic tobacco plants accumulating the Pr55(gag) polyprotein of human immunodeficiency virus (HIV-1). The expression of Pr55(gag) at high levels in the tobacco plastome leads to a lethal phenotype of seedlings grown in soil, severe impairment of plastid development and photosynthetic activity, with chloroplasts largely resembling undeveloped proplastids. These alterations are associated to the binding of Pr55(gag) to thylakoids. During particle assembly in HIV-1 infected human cells, the binding of Pr55(gag) to a specific lipid [phosphatidylinositol-(4-5) bisphosphate] in the plasma membrane is mediated by myristoylation at the amino-terminus and the so-called highly basic region (HBR). Surprisingly, the non-myristoylated Pr55(gag) expressed in tobacco plastids was likely able, through the HBR motif, to bind to nonphosphorous glycerogalactolipids or other classes of lipids present in plastidial membranes. Although secondary consequences of disturbed chloroplast biogenesis on expression of nuclear-encoded plastid proteins cannot be ruled out, results of proteomic analyses suggest that their altered accumulation could be due to retrograde control in which chloroplasts relay their status to the nucleus for fine-tuning of gene expression.
Collapse
Affiliation(s)
- N Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, National Research Council of Italy, Via Università 133, 80055, Portici, NA, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Song X, Zhou G, Xu Z, Lv X, Wang Y. Detection of Photosynthetic Performance of Stipa bungeana Seedlings under Climatic Change using Chlorophyll Fluorescence Imaging. FRONTIERS IN PLANT SCIENCE 2015; 6:1254. [PMID: 26793224 PMCID: PMC4709831 DOI: 10.3389/fpls.2015.01254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/22/2015] [Indexed: 05/20/2023]
Abstract
In this study, the impact of future climate change on photosynthetic efficiency as well as energy partitioning in the Stipa bungeana was investigated by using chlorophyll fluorescence imaging (CFI) technique. Two thermal regimes (room temperature, T0: 23.0/17.0°C; High temperature, T6: 29.0/23.0°C) and three water conditions (Control, W0; Water deficit, W-30; excess precipitation, W+30) were set up in artificial control chambers. The results showed that excess precipitation had no significant effect on chlorophyll fluorescence parameters, while water deficit decreased the maximal quantum yield of photosystem II (PSII) photochemistry for the dark-adapted state (F v/F m) by 16.7%, with no large change in maximal quantum yield of PSII photochemistry for the light-adapted state (F V'/F M') and coefficient of the photochemical quenching (q P ) at T0 condition. Under T6 condition, high temperature offset the negative effect of water deficit on F v/F m and enhanced the positive effect of excess precipitation on F v/F m, F v'/F m', and q P , the values of which all increased. This indicates that the temperature higher by 6°C will be beneficial to the photosynthetic performance of S. bungeana. Spatial changes of photosynthetic performance were monitored in three areas of interest (AOIs) located on the bottom, middle and upper position of leaf. Chlorophyll fluorescence images (F v/F m, actual quantum yield of PSII photochemistry for the light-adapted state (ΦPSII), quantum yield of non-regulated energy dissipation for the light-adapted state (ΦNO) at T0 condition, and ΦPSII at T6 condition) showed a large spatial variation, with greater value of ΦNO and lower values of F v/F m and ΦPSII in the upper position of leaves. Moreover, there was a closer relationship between ΦPSII and ΦNO, suggesting that the energy dissipation by non-regulated quenching mechanisms played a dominant role in the yield of PSII photochemistry. It was also found that, among all measured fluorescence parameters, the F v/F m ratio was most sensitive to precipitation change at T0, while ΦPSII was the most sensitive indicator at T6.
Collapse
Affiliation(s)
- Xiliang Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of ScienceBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of ScienceBeijing, China
- Chinese Academy of Meteorological Sciences, China Meteorological AdministrationBeijing, China
- *Correspondence: Guangsheng Zhou
| | - Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of ScienceBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xiaomin Lv
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of ScienceBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Yuhui Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of ScienceBeijing, China
- University of Chinese Academy of SciencesBeijing, China
- Yuhui Wang
| |
Collapse
|
41
|
Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:16-25. [PMID: 24811616 DOI: 10.1016/j.plaphy.2014.03.029] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/29/2014] [Indexed: 05/05/2023]
Abstract
The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records.
Collapse
Affiliation(s)
- Hazem M Kalaji
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Abdallah Oukarroum
- Department of Chemistry and Biochemistry, University of Québec in Montréal, Montréal, Quebec, C.P. 8888, Succ. Centre-Ville, H3C 3P8 Canada
| | - Vladimir Alexandrov
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Margarita Kouzmanova
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Izabela A Samborska
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Magdalena D Cetner
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|