1
|
Gilhar O, Ben-Navi LR, Olender T, Aharoni A, Friedman J, Kolodkin-Gal I. Multigenerational inheritance drives symbiotic interactions of the bacterium Bacillus subtilis with its plant host. Microbiol Res 2024; 286:127814. [PMID: 38954993 DOI: 10.1016/j.micres.2024.127814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Bacillus subtilis is a beneficial bacterium that supports plant growth and protects plants from bacterial, fungal, and viral infections. Using a simplified system of B. subtilis and Arabidopsis thaliana interactions, we studied the fitness and transcriptome of bacteria detached from the root over generations of growth in LB medium. We found that bacteria previously associated with the root or exposed to its secretions had greater stress tolerance and were more competitive in root colonization than bacteria not previously exposed to the root. Furthermore, our transcriptome results provide evidence that plant secretions induce a microbial stress response and fundamentally alter signaling by the cyclic nucleotide c-di-AMP, a signature maintained by their descendants. The changes in cellular physiology due to exposure to plant exudates were multigenerational, as they allowed not only the bacterial cells that colonized a new plant but also their descendants to have an advance over naive competitors of the same species, while the overall plasticity of gene expression and rapid adaptation were maintained. These changes were hereditary but not permanent. Our work demonstrates a bacterial memory manifested by multigenerational reversible adaptation to plant hosts in the form of activation of the stressosome, which confers an advantage to symbiotic bacteria during competition.
Collapse
Affiliation(s)
- Omri Gilhar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel; Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| |
Collapse
|
2
|
Wen Y, Ma Y, Wu Z, Yang Y, Yuan X, Chen K, Luo Y, He Z, Huang X, Deng P, Li C, Yang Z, Chen Z, Ma J, Sun Y. Enhancing rice ecological production: synergistic effects of wheat-straw decomposition and microbial agents on soil health and yield. FRONTIERS IN PLANT SCIENCE 2024; 15:1368184. [PMID: 39175490 PMCID: PMC11338901 DOI: 10.3389/fpls.2024.1368184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Aims This study evaluated the impact of wheat straw return and microbial agent application on rice field environments. Methods Using Rice variety Chuankangyou 2115 and a microbial mix of Bacillus subtilis and Trichoderma harzianum. Five treatments were tested: T1 (no straw return), T2 (straw return), T3, T4, and T5 (straw return with varying ratios of Bacillus subtilis and Trichoderma harzianum). Results Results indicated significant improvements in rice root length, surface area, dry weight, soil nutrients, and enzyme activity across T2-T5 compared to T1, enhancing yield by 3.81-26.63%. T3 (50:50 microbial ratio) was optimal, further increasing root dry weight, soil enzyme activity, effective panicle and spikelet numbers, and yield. Dominant bacteria in T3 included MBNT15, Defluviicoccus, Rokubacteriales, and Latescibacterota. Higher Trichoderma harzianum proportions (75% in T5) increased straw decomposition but slightly inhibited root growth. Correlation analysis revealed a significant positive relationship between yield and soil microorganisms like Gemmatimonadota and Firmicutes at the heading stage. Factors like dry root weight, straw decomposition rate post-jointing stage, and elevated soil enzyme activity and nutrient content from tiller to jointing stage contributed to increased panicle and spikelet numbers, boosting yield. Conclusion The optimal Bacillus subtilis and Trichoderma harzianum ratio for straw return was 50:50, effectively improving soil health and synergizing high rice yield with efficient straw utilization.
Collapse
Affiliation(s)
- Yanfang Wen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yangming Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Ziniu Wu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yonggang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Kairui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yongheng Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Ziting He
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xinhai Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Pengxin Deng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Congmei Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Guerchi A, Mnafgui W, Jabri C, Merghni M, Sifaoui K, Mahjoub A, Ludidi N, Badri M. Improving productivity and soil fertility in Medicago sativa and Hordeum marinum through intercropping under saline conditions. BMC PLANT BIOLOGY 2024; 24:158. [PMID: 38429693 PMCID: PMC10905945 DOI: 10.1186/s12870-024-04820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS Intercropping is an agriculture system used to enhance the efficiency of resource utilization and maximize crop yield grown under environmental stress such as salinity. Nevertheless, the impact of intercropping forage legumes with annual cereals on soil salinity remains unexplored. This research aimed to propose an intercropping system with alfalfa (Medicago sativa)/sea barley (Hordeum marinum) to explore its potential effects on plant productivity, nutrient uptake, and soil salinity. METHODS The experiment involved three harvests of alfalfa and Hordeum marinum conducted under three cropping systems (sole, mixed, parallel) and subjected to salinity treatments (0 and 150 mM NaCl). Agronomical traits, nutrient uptake, and soil properties were analyzed. RESULTS revealed that the variation in the measured traits in both species was influenced by the cultivation mode, treatment, and the interaction between cultivation mode and treatment. The cultivation had the most significant impact. Moreover, the mixed culture (MC) significantly enhanced the H. marinum and M. sativa productivity increasing biomass yield and development growth under salinity compared to other systems, especially at the second harvest. Furthermore, both intercropping systems alleviated the nutrient uptake under salt stress, as noted by the highest levels of K+/Na+ and Ca2+/Mg2+ ratios compared to monoculture. However, the intercropping mode reduced the pH and the electroconductivity (CEC) of the salt soil and increased the percentage of organic matter and the total carbon mostly with the MC system. CONCLUSIONS Intercropped alfalfa and sea barely could mitigate the soil salinity, improve their yield productivity, and enhance nutrient uptake. Based on these findings, we suggest implementing the mixed-culture system for both target crops in arid and semi-arid regions, which further promotes sustainable agricultural practices.
Collapse
Affiliation(s)
- Amal Guerchi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia
- Faculty of Sciences of Tunis, University of Tunis ElManar, Campus Universitaire El-Manar, Tunis, 2092, Tunisia
| | - Wiem Mnafgui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Cheima Jabri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Meriem Merghni
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Kalthoum Sifaoui
- Direction des Sols, INRAT, Rue Hedi Karray, Menzah, 1004, Tunisia
| | - Asma Mahjoub
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Ndiko Ludidi
- Plant Stress Tolerance Laboratory, University of Mpumalanga, Private Bag X112831, Mbombela, 1200, South Africa
- DSI -NRF Centre of Excellence in Food Security, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Mounawer Badri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia.
| |
Collapse
|
4
|
Jiang ZM, Mou T, Sun Y, Su J, Yu LY, Zhang YQ. Environmental distribution and genomic characteristics of Solirubrobacter, with proposal of two novel species. Front Microbiol 2023; 14:1267771. [PMID: 38107860 PMCID: PMC10722151 DOI: 10.3389/fmicb.2023.1267771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023] Open
Abstract
Solirubrobacter spp. were abundant in soil samples collected from deserts and other areas with high UV radiation. In addition, a novel Solirubrobacter species, with strain CPCC 204708T as the type, was isolated and identified from sandy soil sample collected from the Badain Jaran Desert of the Inner Mongolia autonomous region. Strain CPCC 204708T was Gram-stain positive, rod-shaped, non-motile, non-spore-forming, and grew optimally at 28-30°C, pH 7.0-8.0, and in the absence of NaCl. Analysis of the 16S rRNA gene sequence of strain CPCC 204708T showed its identity within the genus Solirubrobacter, with highest nucleotide similarities (97.4-98.2%) to other named Solirubrobacter species. Phylogenetic and genomic analyses indicated that the strain was most closely related to Solirubrobacter phytolaccae KCTC 29190T, while represented a distinct species, as confirmed from physiological properties and comparison. The name Solirubrobacter deserti sp. nov. was consequently proposed, with CPCC 204708T (= DSM 105495T = NBRC 112942T) as the type strain. Genomic analyses of the Solirubrobacter spp. also suggested that Solirubrobacter sp. URHD0082 represents a novel species, for which the name Candidatus "Solirubrobacter pratensis" sp. nov. was proposed. Genomic analysis of CPCC 204708T revealed the presence of genes related to its adaptation to the harsh environments of deserts and may also harbor genes functional in plant-microbe interactions. Pan-genomic analysis of available Solirubrobacter spp. confirmed the presence of many of the above genes as core components of Solirubrobacter genomes and suggests they may possess beneficial potential for their associate plant and may be important resources for bioactive compounds.
Collapse
Affiliation(s)
- Zhu-Ming Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herb, Beijing, China
| | - Tong Mou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herb, Beijing, China
| | - Ye Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herb, Beijing, China
| |
Collapse
|
5
|
Hidri R, Metoui‐Ben Mahmoud O, Zorrig W, Azcon R, Abdelly C, Debez A. The halotolerant rizhobacterium Glutamicibacter sp. alleviates salt impact on Phragmites australis by producing exopolysaccharides and limiting plant sodium uptake. PLANT DIRECT 2023; 7:e535. [PMID: 37901595 PMCID: PMC10600829 DOI: 10.1002/pld3.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 08/03/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023]
Abstract
Salinity is a widespread abiotic stress, which has strong adverse effects on plant growth and crop productivity. Exopolysaccharides (EPS) play a crucial role in plant growth-promoting rhizobacteria (PGPR)-mediated improvement of plant stress tolerance. This study aimed to assess whether Glutamicibacter sp. strain producing large amounts of EPS may promote tolerance of common reed, Phragmites australis (Cav.) Trin. ex Steud., towards salt stress. This halotolerant rizhobacterium showed tolerance to salinity (up to 1 M NaCl) when cultivated on Luria-Bertani (LB) medium. Exposure to high salinity (300 mM NaCl) significantly impacted the plant growth parameters, but this adverse effect was mitigated following inoculation with Glutamicibacter sp., which triggered higher number of leaves and tillers, shoot fresh weight/dry weight, and root fresh weight as compared to non-inoculated plants. Salt stress increased the accumulation of malondialdehyde (MDA), polyphenols, total soluble sugars (TSSs), and free proline in shoots. In comparison, the inoculation with Glutamicibacter sp. further increased shoot polyphenol content, while decreasing MDA and free proline contents. Besides, this bacterial strain increased tissue Ca+ and K+ content concomitant to lower shoot Na+ and root Cl- accumulation, thus further highlighting the beneficial effect of Glutamicibacter sp. strain on the plant behavior under salinity. As a whole, our study provides strong arguments for a potential utilization of EPS-producing bacteria as a useful microbial inoculant to alleviate the deleterious effects of salinity on plants.
Collapse
Affiliation(s)
- Rabaa Hidri
- Laboratory of Extremophile PlantsCentre of Biotechnology of Borj Cedria (CBBC)Hammam‐LifTunisia
| | | | - Walid Zorrig
- Laboratory of Extremophile PlantsCentre of Biotechnology of Borj Cedria (CBBC)Hammam‐LifTunisia
| | - Rozario Azcon
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| | - Chedly Abdelly
- Laboratory of Extremophile PlantsCentre of Biotechnology of Borj Cedria (CBBC)Hammam‐LifTunisia
| | - Ahmed Debez
- Laboratory of Extremophile PlantsCentre of Biotechnology of Borj Cedria (CBBC)Hammam‐LifTunisia
| |
Collapse
|
6
|
Flores Clavo R, Valladolid-Suyón E, Reinoza-Farroñan K, Asmat Ortega C, Riboldi Monteiro PH, Apaza-Castillo GA, Zuñiga-Valdera G, Fantinatti Garboggini F, Iglesias-Osores S, Carreño-Farfán CR. Rhizobacterial Isolates from Prosopis limensis Promote the Growth of Raphanus sativus L. Under Salt Stress. Curr Microbiol 2023; 80:269. [PMID: 37402857 DOI: 10.1007/s00284-023-03379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
Microbial biotechnology employes techniques that rely based on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing agricultural crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments. In this study, bacterial isolates were obtained from soil and roots of Prosopis limensis Bentham from the department of Lambayeque, Peru. This region has high salinity levels, therefore, the collected samples were used to isolate plant growth-promoting rhizobacteria (PGPR), which were identified through morphological, and physical-biochemical characteristics. These salt tolerant bacteria were screened phosphate solubilization, indole acetic acid, deaminase activity and molecular characterization by 16S rDNA sequencing. Eighteen samples from saline soils of the Prosopis limensis plants in the northern coastal desert of San Jose district, Lambayeque, Peru. The bacterial isolates were screened for salt tolerance ranging from 2 to 10%, a total of 78 isolates were found. Isolates 03, 13 and 31 showed maximum salt tolerance at 10%, in vitro ACC production, phosphate solubilization and IAA production. The three isolates were identified by sequencing the amplified 16S rRNA gene and were found to be Pseudomonas sp. 03 (MW604823), Pseudomonas sp. 13 (MW604824) and Bordetella sp. 31 (MW604826). These microorganisms promoted the germination of radish plants and increased the germination rates for treatments T2, T3 and T4 by 129, 124 and 118% respectively. The beneficial effects of salt tolerant PGPR isolates isolated from saline environments can be new species, used to overcome the detrimental effects of salt stress on plants. The biochemical response and inoculation of the three isolates prove the potential of using these strains as a source of products that can be employed for the development of new compounds proving their potential as biofertilizers for saline environments.
Collapse
Affiliation(s)
- Rene Flores Clavo
- Cesar Vallejo University, Lambayeque, Perú.
- Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Pasaje Real Street No 174, Chiclayo, Lambayeque, Perú.
- Division of Microbial Resources of Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato No 999, Campinas, Paulínia, São Paulo, Brazil.
| | - Esteban Valladolid-Suyón
- Microbial Biotechnology Research Laboratory, Department of Microbiology and Parasitology, Pedro Ruiz Gallo National University, Juan XXIII No 391 Street, Chiclayo, Lambayeque, Peru
| | - Karin Reinoza-Farroñan
- Microbial Biotechnology Research Laboratory, Department of Microbiology and Parasitology, Pedro Ruiz Gallo National University, Juan XXIII No 391 Street, Chiclayo, Lambayeque, Peru
| | | | - Pedro Henrique Riboldi Monteiro
- Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Pasaje Real Street No 174, Chiclayo, Lambayeque, Perú
- Division of Microbial Resources of Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato No 999, Campinas, Paulínia, São Paulo, Brazil
| | - Gladys A Apaza-Castillo
- Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Pasaje Real Street No 174, Chiclayo, Lambayeque, Perú
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Gabriel Zuñiga-Valdera
- Microbial Biotechnology Research Laboratory, Department of Microbiology and Parasitology, Pedro Ruiz Gallo National University, Juan XXIII No 391 Street, Chiclayo, Lambayeque, Peru
| | - Fabiana Fantinatti Garboggini
- Division of Microbial Resources of Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato No 999, Campinas, Paulínia, São Paulo, Brazil
| | - Sebastian Iglesias-Osores
- Microbial Biotechnology Research Laboratory, Department of Microbiology and Parasitology, Pedro Ruiz Gallo National University, Juan XXIII No 391 Street, Chiclayo, Lambayeque, Peru
| | - Carmen Rosa Carreño-Farfán
- Microbial Biotechnology Research Laboratory, Department of Microbiology and Parasitology, Pedro Ruiz Gallo National University, Juan XXIII No 391 Street, Chiclayo, Lambayeque, Peru
| |
Collapse
|
7
|
Dual inoculation with rhizosphere-promoting bacterium Bacillus cereus and beneficial fungus Peniophora cinerea improves salt stress tolerance and productivity in willow. Microbiol Res 2023; 268:127280. [PMID: 36563631 DOI: 10.1016/j.micres.2022.127280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Utilization of rhizosphere microorganisms to improve plant growth and salt tolerance has recently attracted widespread attention. The growth and salt tolerance of willows inoculated with Bacillus cereus JYZ-SD2 and Peniophora cinerea XC were studied under different salt stress conditions. The results showed that the chlorophyll content of willow cuttings inoculated with the XC strain increased significantly by 51.27%. After salt stress of willow cuttings inoculated with B. cereus JYZ-SD2 and P. cinerea XC (solely or in combination), the amount of sodium in the roots from the epidermis to the pericycle decreased and the content of sodium in the pericycle was significantly lower than that of the uninoculated willow, while the proportion of potassium increased. Willow cuttings inoculated with microorganisms showed increased activity of SOD and POD. At the salt concentration of 100 mmol/L, the highest SOD activity was found in B. cereus JYZ-SD2-inoculated willows, with 59.88% increase compared to uninoculated willows; the highest POD activity was found in P. cinerea XC and B. cereus JYZ-SD2 co-inoculated willows, with 51.05% increase compared to uninoculated willows. The Na-K-ATPase and Ca-Mg-ATPase activities of inoculated P. cinerea XC willow cuttings were also 59.38% and 60% higher than that of uninoculated willows, respectively. The qPCR analysis showed that the expression of vp2 gene in the microorganism-inoculated willow leaves was always higher than that in willow alone. The expression of vp2 gene in P. cinerea XC-inoculated willow cuttings was 270.81% higher than that in uninoculated willows. Further observation of the ultrastructure of root cells under salt stress revealed that most of the vesicles in the root tip cells of willow were intact and secreted phagocytic vesicles to absorb sodium ions in the cytoplasm. This study shows that the combined beneficial fungi and rhizosphere-promoting bacteria inoculation technology as a practical biotechnological approach to enhance the growth of willows in salt-affected soils.
Collapse
|
8
|
Toscano S, Romano D, Ferrante A. Molecular Responses of Vegetable, Ornamental Crops, and Model Plants to Salinity Stress. Int J Mol Sci 2023; 24:ijms24043190. [PMID: 36834600 PMCID: PMC9965374 DOI: 10.3390/ijms24043190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
Vegetable and ornamental plants represent a very wide group of heterogeneous plants, both herbaceous and woody, generally without relevant salinity-tolerant mechanisms. The cultivation conditions-almost all are irrigated crops-and characteristics of the products, which must not present visual damage linked to salt stress, determine the necessity for a deep investigation of the response of these crops to salinity stress. Tolerance mechanisms are linked to the capacity of a plant to compartmentalize ions, produce compatible solutes, synthesize specific proteins and metabolites, and induce transcriptional factors. The present review critically evaluates advantages and disadvantages to study the molecular control of salt tolerance mechanisms in vegetable and ornamental plants, with the aim of distinguishing tools for the rapid and effective screening of salt tolerance levels in different plants. This information can not only help in suitable germplasm selection, which is very useful in consideration of the high biodiversity expressed by vegetable and ornamental plants, but also drive the further breeding activities.
Collapse
Affiliation(s)
- Stefania Toscano
- Department of Science Veterinary, Università degli Studi di Messina, 98168 Messina, Italy
| | - Daniela Romano
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy
- Correspondence:
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
9
|
Wang S, Ge S, Mai W, Tian C. Nitrogen Promotes the Salt-Gathering Capacity of Suaeda salsa and Alleviates Nutrient Competition in the Intercropping of Suaeda salsa/ Zea mays L. Int J Mol Sci 2022; 23:ijms232415495. [PMID: 36555131 PMCID: PMC9779500 DOI: 10.3390/ijms232415495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Nitrogen accelerates salt accumulation in the root zone of an euhalophyte, which might be beneficial for inhibiting the salt damage and interspecific competition for nutrients of non-halophytes in intercropping. However, the variations in the effect of euhalophyte/non-halophyte intercropping with nitrogen supply are poorly understood. Here, we selected the euhalophyte Suaeda salsa (suaeda) and non-halophyte Zea mays L. (maize) as the research objects, setting up three cropping patterns in order to explore the influence of nitrogen application on the intercropping effect in the suaeda/maize intercropping. The results showed that the biomass of maize in the intercropping was significantly lower than that in the monoculture, while for suaeda, it was higher in the intercropping than that in the monoculture. The biomass of maize under NO3--N treatment performed significantly higher than that under no nitrogen treatment. Moreover, under suitable NO3--N treatment, more salt ions (Na+, K+) gathered around the roots of suaeda, which weakened the salt damage on maize growth. In the intercropping, the effect of NO3--N on the maize growth was enhanced when compared with the non-significant effect of NH4+-N, but a positive effect of NH4+-N on suaeda growth was found. Therefore, the disadvantage of maize growth in the intercropping suaeda/maize might be caused by interspecific competition to a certain extent, providing an effective means for the improvement of saline-alkali land by phytoremediation.
Collapse
Affiliation(s)
- Shoule Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Taian 271000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Ge
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxuan Mai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Correspondence: (W.M.); (C.T.)
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Correspondence: (W.M.); (C.T.)
| |
Collapse
|
10
|
Abideen Z, Cardinale M, Zulfiqar F, Koyro HW, Rasool SG, Hessini K, Darbali W, Zhao F, Siddique KH. Seed Endophyte bacteria enhance drought stress tolerance in Hordeum vulgare by regulating, physiological characteristics, antioxidants and minerals uptake. FRONTIERS IN PLANT SCIENCE 2022; 13:980046. [PMID: 36275600 PMCID: PMC9581713 DOI: 10.3389/fpls.2022.980046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 06/03/2023]
Abstract
Growth stimulating bacteria help remediate dry arid soil and plant stress. Here, Pseudomonas sp. and Pantoea sp. we used to study the stress ecology of Hordeum vulgare and the environmental impact of water deficit on soil characteristics, growth, photosynthesis apparatus, mineral acquisition and antioxidiant defense. Plants inoculated with Pseudomonas or Pantoea had significantly higher (about 2 folds) soil carbon flux (soil respiration), chlorophyll levels (18%), net photosynthetic rate (33% in Pantoea and 54% in Pseudomonas), (44%) stomatal conductance than uninoculated plants in stressed conditions. Both bacterial strains improved leaf growth (23-29%) and root development under well-watered conditions but reduced around (25%) root biomass under drought. Plants inoculated with Pseudomonas or Pantoea under drought also increased of about 27% leaf respiration and transpiration (48%) but decreased water use efficiency, photoinhibition (91%), and the risk of oxidative stress (ETR/A) (49%). Drought stress increased most of the studied antioxidant enzymatic activities in the plants inoculated with Pseudomonas or Pantoea, which reduce the membrane damage and protect plants form oxidative defenses. Drought stress increased K+ acquisition around 50% in both shoots inoculated with Pseudomonas or Pantoea relative to non-stressed plants. Plants inoculated with Pseudomonas or Pantoea increased shoot Na+ while root Na+ only increased in plants inoculated with Pseudomonas in stressed conditions. Drought stress increased shoot Mg2+ in plants inoculated with Pseudomonas or Pantoea but did not affect Ca2+ relative to non-stressed plants. Drought stress increased about 70% K+/Na+ ratio only in plants inoculated with Pseudomonas relative to non-stressed plants. Our results indicate that inoculating barley with the studied bacterial strains increases plant biomass and can therefore play a role in the environmental remediation of drylands for food production.
Collapse
Affiliation(s)
- Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
- Institute of Plant Ecology, Research Centre for Bio Systems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Massimiliano Cardinale
- Institute of Applied Microbiology, Research Centre for Bio Systems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
- Department of Biological and Environmental Sciences and Technologies (DiSTeBa), University of Salento, Lecce, Italy
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Research Centre for Bio Systems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sarwat Ghulam Rasool
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Walid Darbali
- Institute of Plant Ecology, Research Centre for Bio Systems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Fengliang Zhao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou, China
| | - Kadambot H.M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Abstract
Halotolerant plant-growth-promoting rhizobacteria (PGPR) could not only promote plant growth, but also help in counteracting the detrimental effects of salt stress. In the present study, a total of 76 bacteria were isolated from the rhizosphere, non-rhizospheric soil and endophytes of the halophyte Salsola tetrandra, collected from natural saline soils in Algeria. Phylogenetic analysis based on the 16S rDNA sequence of Gram-negative bacteria (n = 51) identified, showed seventeen representative isolates grouped into four genera (Pseudomonas, Acinetobacter, Enterobacter, and Providencia). These bacterial isolates that exhibited different PGPR traits were selected and tested for their ability to tolerate different abiotic stress (NaCl, PEG8000, and pH). The majority of isolates were drought tolerant (60% of PEG8000) and had an optimal growth at high pH values (pH 9 and 11) and some strains tolerated 2 M of NaCl. Strains identified as Enterobacter xiangfangensis BE1, Providencia rettgeri BR5 and Pseudomonas stutzeri MLR6 showed high capacity of adaptation on their PGP traits. The salt-tolerant isolates were finally chosen to promote growth and enhance salt tolerance, separately or combined, of Arabidopsis thaliana (Col-0) exposed or not to 0.1 M NaCl, by following fresh and root weight, primary root elongation and lateral root number. The best bacterial effect was recorded for the MLR6 strain in increasing shoot fresh weight and for BE1 in terms of root fresh weight in the absence of salt stress. At stressed conditions, all growth parameters declined. However, inoculation of Arabidopsis thaliana with the three bacterial strains (MLR6, BE1 and BR5), single or in co-culture, conferred an increase in the shoot weight, primary root length and lateral root number. The use of these strains separately or combined as biofertilizers seems to be a powerful tool in the development of sustainable agriculture in saline soils.
Collapse
|
12
|
Influence of Endophytic Bacterium, Cellulosimicrobium sp. FRR2 on Plant Growth of Amaranthus campestris L. and Bacterial Survival at Adverse Environmental Conditions. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endophytic microorganisms are believed to be an important bio-resource for modern agriculture because of their beneficial effects on plant growth promotion, biocontrol, stress tolerance, and diseases resistance. This study was focused to know the beneficial effect of endophytic bacterium (FRR2) isolated from the roots of Ficus religiosa L. on Amaranthus campestris L. and their tolerance ability against salinity and heavy metals. The strain FRR2 was recognized as Cellulosimicrobium sp. by 16s rRNA sequencing and phylogenetic study. The bacterial isolate FRR2 showed salt (at 150 mM NaCl) and metal (at 150 µM CuSO4 and 100 µM ZnSO4) tolerance ability and significantly higher growth rate of Amaranthus campestris in a green leafy vegetable might be due to the nitrogen fixation, indole acetic acid production, amylase and protease activities. In addition, the endophyte FRR2 application slightly increased the antioxidants activity than their controls. The results of this study revealed that Cellulosimicrobium sp. strain FRR2 would be an effective endophyte to increase the growth of green leafy vegetables.
Collapse
|
13
|
Checchio MV, de Cássia Alves R, de Oliveira KR, Moro GV, Santos DMMD, Gratão PL. Enhancement of salt tolerance in corn using Azospirillum brasilense: an approach on antioxidant systems. JOURNAL OF PLANT RESEARCH 2021; 134:1279-1289. [PMID: 34302571 DOI: 10.1007/s10265-021-01332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/15/2021] [Indexed: 05/24/2023]
Abstract
Salinity has become one of the major factors limiting agricultural production. In this regard, different cost-effective management strategies such as the use of plant growth-promoting bacteria (PGPB) as inoculants to alleviate salt-stress conditions and minimize plant productivity losses have been used in agricultural systems. The aim of this study was to characterize induced antioxidant responses in corn through inoculation with Azospirillum brasilense and examine the relationship between these responses and the acquired salt-stress tolerance. Treatments were performed by combining sodium chloride (0 and 100 mM NaCl) through irrigation water with absence and presence of A. brasilense inoculation. The experiment was performed in a completely randomized design with four replications. Lipid peroxidation (malondialdehyde [MDA]), and nitrogen (N), sodium (Na+) and potassium (K+) contents, as well as dry biomass, glycine betaine, and antioxidant enzymes activities such as of superoxide dismutase (SOD, EC 1. 15. 1. 1), glutathione reductase (GR, EC 1. 6. 4. 2), guaiacol peroxidase (GPOX, EC 1. 11. 1. 7), and glutathione peroxidase (GSH-PX, EC 1. 11. 1. 9) were determined. Overall results indicated that plants treated with 100 mM NaCl showed the most pronounced salt-stress damages with consequent increase in MDA content. However, inoculated plants showed an enhanced capacity to withstand or avoid salt-stress damages. These results could be attributed, at least in part, to the increased activity of antioxidant enzymes. Our results suggest that A. brasilense may confer tolerance to salt stress in corn plants enhancing antioxidant responses, primarily by the enzymes GSH-PX and GPOX, and the osmolyte glycine betaine.
Collapse
Affiliation(s)
- Mirela Vantini Checchio
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Rita de Cássia Alves
- Núcleo de Produção Vegetal, Instituto Nacional do Semiárido (INSA), Campina Grande, PB, 58434-700, Brazil
| | - Kevein Ruas de Oliveira
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Gustavo Vitti Moro
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Produção Vegetal, Jaboticabal, SP, 14884-900, Brazil
| | - Durvalina Maria Mathias Dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Priscila Lupino Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
14
|
Zhou S, Zhao R, Li Q, Du J, Chen C, Lu Q, Zhang M, Zhao D, An S. Influent salinity affects substrate selection in surface flow constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62235-62245. [PMID: 34185271 DOI: 10.1007/s11356-021-15036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
To identify the effect of influent salinity on substrate selection, a study was conducted in pilot-scale surface flow constructed wetlands (SFCWs). Compared with gravel and sand SFCWs, soil SFCWs performed similarly or worse at low salinities, while at high salinities, soil SFCWs performed similarly or better in removal efficiency (RE) of salt, total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD). Soil generally increased macrophyte growth (especially at high salinity) in terms of biomass, leaf chlorophyll concentration, root activity, and root catalase and superoxide dismutase activities. A general decrease in bacterial α-diversity in the rhizosphere was observed at high salinity, while compared with gravel or sand, soil improved rhizosphere bacterial community stability at varying salinities. At high salinity, compared with that of gravel or sand, the soil support of macrophytes and rhizosphere microorganisms increased pollutant RE in SFCWs. This finding highlights the necessity of varying substrate selection in SFCWs with influent salinities for both increasing pollutant RE and reducing input cost, with soil recommended at high influent salinity.
Collapse
Affiliation(s)
- Shenyan Zhou
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Ran Zhao
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Qiming Li
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Juan Du
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Chen Chen
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Qianqian Lu
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Miao Zhang
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Dehua Zhao
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China.
| | - Shuqing An
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|
15
|
Ukwatta J, Pabuayon ICM, Park J, Chen J, Chai X, Zhang H, Zhu JK, Xin Z, Shi H. Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench. PLANTA 2021; 254:98. [PMID: 34657208 DOI: 10.1007/s00425-021-03750-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/04/2021] [Indexed: 05/27/2023]
Abstract
Mota Maradi is a sorghum line that exhibits holistic salinity tolerance mechanisms, making it a viable potential donor in breeding efforts for improved sorghum lines. High soil salinity is one of the global challenges for crop growth and productivity. Understanding the salinity tolerance mechanisms in crops is necessary for genetic breeding of salinity-tolerant crops. In this study, physiological and molecular mechanisms in sorghum were identified through a comparative analysis between a Nigerien salinity-tolerant sorghum landrace, Mota Maradi, and the reference sorghum line, BTx623. Significant differences on physiological performances were observed, particularly on growth and biomass gain, photosynthetic rate, and the accumulation of Na+, K+, proline, and sucrose. Transcriptome profiling of the leaves, leaf sheaths, stems, and roots revealed contrasting differentially expressed genes (DEGs) in Mota Maradi and BTx623 which supports the physiological observations from both lines. Among the DEGs, ion transporters such as HKT, NHX, AKT, HAK5, and KUP3 were likely responsible for the differences in Na+ and K+ accumulation. Meanwhile, DEGs involved in photosynthesis, cellular growth, signaling, and ROS scavenging were also identified between these two genotypes. Functional and pathway analysis of the DEGs has revealed that these processes work in concert and are crucial in elevated salinity tolerance in Mota Maradi. Our findings indicate how different complex processes work synergistically for salinity stress tolerance in sorghum. This study also highlights the unique adaptation of landraces toward their respective ecosystems, and their strong potential as genetic resources for future plant breeding endeavors.
Collapse
Affiliation(s)
- Jayan Ukwatta
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | | | - Jungjae Park
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79415, USA
| | - Xiaoqiang Chai
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79415, USA
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
16
|
Mohanty P, Singh PK, Chakraborty D, Mishra S, Pattnaik R. Insight Into the Role of PGPR in Sustainable Agriculture and Environment. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.667150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A multitude of roles is played by microbes in food and agriculture that include nutrient cycling and management, organic matter decomposition and fermentation. Plant growth promoting rhizobacteria (PGPR), representing microbial groups and with ability of colonizing plant roots, influence plant growth through various indirect and direct modes in order to promote its growth and/or protect it from diseases or damage due to insect attack. Thus, PGPR research has received renewed interest worldwide. Increasing number of crop-specific PGPR are being commercialized these days. Approaches like seed-inoculation and soil application either alone or in combination with bacterial culture/product for increased nutrient availability through phosphate solubilisation, potassium solubilisation, sulfur oxidation, nitrogen fixation, iron, and copper chelation are gaining popularity. Arbuscular mycorrhizal fungi (AMF) are root fungal symbiont that improve management of abiotic stress such as phosphorus deficiency. PGPR involves roles like production of indole acetic acid (IAA), ammonia (NH3), hydrogen cyanide (HCN), catalase, etc. PGPR also improve nutrient uptake by altering the level of plant hormone that enhances root surface area by increasing its girth and shape, thereby helping in absorbing more nutrients. PGPR facilitate seed germination, seedling growth and crop yield. An array of microbes including Pseudomonas, Azospirillum, Azotobacter, Klebsiella, Enterobacter, Alcaligenes, Arthrobacter, Burkholderia, Bacillus, and Serratia enhance plant growth. Various Pseudomonas sp. have demonstrated significant increase in germination, seedling growth and yield in different agricultural crops, including wheat. Hence, developing a successful crop-specific PGPR formulation, the candidate should possess characteristics like high rhizosphere competence, extensive competitive saprophytic ability, growth enhancing ability, ease of mass production, broad-spectrum action, safety toward the environment and compatibility with other partnering organisms.
Collapse
|
17
|
Wang S, Zhao Z, Ge S, Peng B, Zhang K, Hu M, Mai W, Tian C. Root Morphology and Rhizosphere Characteristics Are Related to Salt Tolerance of Suaeda salsa and Beta vulgaris L. FRONTIERS IN PLANT SCIENCE 2021; 12:677767. [PMID: 34234797 PMCID: PMC8255919 DOI: 10.3389/fpls.2021.677767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Halophytes are capable of resisting salinity, and their root system is the part in direct contact with the saline soil environment. The aim of this study was to compare the responses of root morphology and rhizosphere characteristics to salinity between a halophyte, Suaeda salsa (suaeda), and a glycophyte, Beta vulgaris L. (sugar beet). The soil salt content was set to four levels (0.7, 1.2, 1.7, and 2.7%) by NaCl-treated plants. We investigated the soil pH, EC, nutrients and soil, plant ion (Na+, Cl-, K+, and Mg2+) concentration to evaluate the rhizospheric processes, and salt tolerance of suaeda by the root mat method. The highest biomass was in the 1.2% salt level for suaeda and in the 0.7% salt level for sugar beet. The root length and root surface area of suaeda showed similar trends to biomass, but the root diameter decreased by 11.5-17.9% with higher salinity. The Na+, Cl-, and K+ accumulations in the shoot of suaeda displayed higher than that in sugar beet, while the Mg2+ accumulation was lower in suaeda than that in sugar beet. High salinity resulted in increased pH and EC values in the rhizosphere for suaeda, but lower values of these parameters for sugar beet. Under high salinity, the Olsen phosphorus content was 0.50 g·kg-1 and 0.99 g·kg-1 higher in the rhizosphere than in the non-rhizosphere for suaeda and sugar beet. We concluded that the two species [halophyte, Suaeda salsa (suaeda), and a glycophyte, B. vulgaris L. (sugar beet)] showed diverse approaches for nutrient absorption under salinity stress. Suaeda altered its root morphology (smaller root diameter and longer roots) under salt stress to increase the root surface area, while sugar beet activated rhizospheric processes to take up more nutrients.
Collapse
Affiliation(s)
- Shoule Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyong Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shaoqing Ge
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Peng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mingfang Hu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wenxuan Mai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
18
|
Tailoring Next Generation Plant Growth Promoting Microorganisms as Versatile Tools beyond Soil Desalinization: A Road Map towards Field Application. SUSTAINABILITY 2021. [DOI: 10.3390/su13084422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Plant growth promoting bacteria (PGPB) have been the target of intensive research studies toward their efficient use in the field as biofertilizers, biocontrol, and bioremediation agents among numerous other applications. Recent trends in the field of PGPB research led to the development of versatile multifaceted PGPB that can be used in different field conditions such as biocontrol of plant pathogens in metal contaminated soils. Unfortunately, all these research efforts lead to the development of PGPB that failed to perform in salty environments. Therefore, it is urgently needed to address this drawback of these PGPB toward their efficient performance in salinity context. In this paper we provide a review of state-of-the-art research in the field of PGPB and propose a road map for the development of next generation versatile and multifaceted PGPB that can perform in salinity. Beyond soil desalinization, our study paves the way towards the development of PGPB able to provide services in diverse salty environments such as heavy metal contaminated, or pathogen threatened. Smart development of salinity adapted next generation biofertilizers will inevitably allow for mitigation and alleviation of biotic and abiotic threats to plant productivity in salty environments.
Collapse
|
19
|
Lu L, Chang M, Han X, Wang Q, Wang J, Yang H, Guan Q, Dai S. Beneficial effects of endophytic Pantoea ananatis with ability to promote rice growth under saline stress. J Appl Microbiol 2021; 131:1919-1931. [PMID: 33754394 DOI: 10.1111/jam.15082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
AIMS Soil salinization severely inhibits plant growth, leading to a low crop yield. The aim of the current study was to isolate endophytic bacteria with the ability to promote rice growth under saline conditions. METHODS AND RESULTS We isolated eight salt-tolerant endophytic bacteria from rice roots. An isolated strain D1 was selected due to its ability to stimulate rice seed germination in the presence of NaCl, which was identified as Pantoea ananatis D1. It exhibited multiple plant growth-promoting traits including phosphate solubilization, production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and siderophore. Inoculation of P. ananatis D1 obviously enhanced the rice root and shoot growth under normal and saline conditions. It also significantly increased the contents of chlorophyll, total soluble protein, and proline in salt-stressed rice seedlings. Moreover P. ananatis D1 could ameliorate the oxidative stress in rice induced by NaCl and Na2 CO3 treatment. The malondialdehyde content and various antioxidant enzyme activities were decreased by P. ananatis D1 inoculation in salt-affected rice. In addition, P. ananatis D1 showed a positive potential for limiting the Na+ accumulation and enhancing the K+ uptake, leading to an increase of 1·2-1·7 fold in K+ /Na+ ratio under saline environment. CONCLUSIONS Pantoea ananatis D1 has the ability to improve the salt tolerance of rice seedlings. SIGNIFICANCE AND IMPACT OF THE STUDY The application of plant growth-promoting bacteria (PGPB) is an eco-friendly strategy to improve plant tolerance towards abiotic stresses. We demonstrated that P. ananatis D1 could be used as an effective halotolerant PGPB to enhance rice growth in different salt-affected soils.
Collapse
Affiliation(s)
- L Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.,College of Life Sciences, Northeast Forestry University, Harbin, China
| | - M Chang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.,College of Life Sciences, Northeast Forestry University, Harbin, China
| | - X Han
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Q Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - J Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - H Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.,College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Q Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.,College of Life Sciences, Northeast Forestry University, Harbin, China
| | - S Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
20
|
Sharma S, Chandra D, Sharma AK. Rhizosphere Plant–Microbe Interactions Under Abiotic Stress. RHIZOSPHERE BIOLOGY: INTERACTIONS BETWEEN MICROBES AND PLANTS 2021. [DOI: 10.1007/978-981-15-6125-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Lami MJ, Adler C, Caram-Di Santo MC, Zenoff AM, de Cristóbal RE, Espinosa-Urgel M, Vincent PA. Pseudomonas stutzeri MJL19, a rhizosphere-colonizing bacterium that promotes plant growth under saline stress. J Appl Microbiol 2020; 129:1321-1336. [PMID: 32367524 DOI: 10.1111/jam.14692] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023]
Abstract
AIMS The aim of this study was to find and use rhizobacteria able to confer plants advantages to deal with saline conditions. METHODS AND RESULTS We isolated 24 different bacterial species from the rhizosphere of halophyte plants growing in Santiago del Estero, Argentina salt flat. Four strains were selected upon their ability to grow in salinity and their biochemical traits associated with plant growth promotion. Next, we tested the adhesion on soybean seeds surface and root colonization with the four selected isolates. Isolate 19 stood out from the rest and was selected for further experiments. This strain showed positive chemotaxis towards soybean root exudates and a remarkable ability to form biofilm both in vitro conditions and on soybean roots. Interestingly, this trait was enhanced in high saline conditions, indicating the extremely adapted nature of the bacterium to high salinity. In addition, this strain positively impacted on seed germination, plant growth and general plant health status also under saline stress. CONCLUSIONS A bacterium isolate with outstanding ability to promote seed germination and plant growth under saline conditions was found. SIGNIFICANCE AND IMPACT OF THE STUDY The experimental approach allowed us to find a suitable bacterial candidate for a biofertilizer intended to alleviate saline stress on crops. This would allow the use of soil now considered inadequate for agriculture and thus prevent further advancement of agriculture frontiers into areas of environmental value.
Collapse
Affiliation(s)
- M J Lami
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
- Department of Environmental Protection, Estación Experimental Del Zaidín, CSIC, Granada, Spain
| | - C Adler
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
| | - M C Caram-Di Santo
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
| | - A M Zenoff
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
| | - R E de Cristóbal
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
| | - M Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental Del Zaidín, CSIC, Granada, Spain
| | - P A Vincent
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
| |
Collapse
|
22
|
Ayuso-Calles M, García-Estévez I, Jiménez-Gómez A, Flores-Félix JD, Escribano-Bailón MT, Rivas R. Rhizobium laguerreae Improves Productivity and Phenolic Compound Content of Lettuce ( Lactuca sativa L.) under Saline Stress Conditions. Foods 2020; 9:foods9091166. [PMID: 32847018 PMCID: PMC7555320 DOI: 10.3390/foods9091166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Abstract
Lettuce (Lactuca sativa L.) is a widely consumed horticultural species. Its significance lies in a high polyphenolic compound content, including phenolic acids and flavonols. In this work, we have probed the ability of Rhizobium laguerreae HUTR05 to promote lettuce growth, under in vitro and greenhouse conditions (both non-saline and saline conditions). This strain has shown several in vitro plant growth promotion mechanisms, as well as capacity to colonize lettuce seedlings roots. We have analyzed the effect of the rhizobacterium inoculation on mineral and bioactive compounds in lettuce, under greenhouse conditions, and found a rise in the content of certain phenolic acids and flavonoids, such as derivatives of caffeoyl acid and quercetin. The genome analysis of the strain has shown the presence of genes related to plant growth-promoting rhizobacteria (PGPR) mechanisms, defense from saline stress, and phenolic compound metabolism (such as naringenin-chalcone synthase or phenylalanine aminotransferase).
Collapse
Affiliation(s)
- Miguel Ayuso-Calles
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (I.G.-E.); (M.T.E.-B.)
| | - Alejandro Jiménez-Gómez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
- Correspondence: ; Tel.: +34-923294500 (ext. 1919)
| | - José D. Flores-Félix
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
| | - M. Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles (GIP), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (I.G.-E.); (M.T.E.-B.)
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental de Biología, 37007 Salamanca, Spain; (M.A.-C.); (J.D.F.-F.); (R.R.)
- Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain
- Associated Unit University of Salamanca CSIC (IRNASA), 37008 Salamanca, Spain
| |
Collapse
|
23
|
Bisht N, Chauhan PS. Comparing the growth-promoting potential of Paenibacillus lentimorbus and Bacillus amyloliquefaciens in Oryza sativa L. var. Sarju-52 under suboptimal nutrient conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:187-197. [PMID: 31756605 DOI: 10.1016/j.plaphy.2019.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
An adequate supply of mineral nutrients is crucial to obtain optimum productivity in agriculture. The present investigation was carried to find the inoculation effect of plant growth-promoting rhizobacteria (PGPR), i.e., Paenibacillus lentimorbus B-30488 (B-30488), Bacillus amyloliquefaciens SN13 (SN13) and their consortium for the growth of rice var. Sarju-52, grown under suboptimal nutrient conditions. The study revealed that the individual PGPR treatments showed comparatively better performance than consortia in morphological, physiological, biochemical, and nutrient analysis. Towards understanding the complex mechanism(s), untargeted metabolite profiling was performed using GC-MS, showed alteration of metabolites in rice seedlings facing suboptimal nutrient conditions and inoculated with PGPR. Metabolites such as oleic acid, mannitol, and ethyl iso-allocol were accumulated significantly under starved conditions. Under suboptimal nutrient conditions, sugars such as ribose, glucose, fructose, trehalose, palmitic acid, and myristic acid were accumulated significantly in PGPR inoculated seedlings. The significantly altered pathways due to PGPR inoculation under suboptimal nutrient conditions mainly belongs to carbohydrate and fatty acid metabolism. Interestingly, it was observed that among all the treatments, inoculation with SN13 performed comparatively better than other treatments. Further, in SN13 inoculated samples the qRT-PCR analysis of transcription factors and metabolism-related genes were validated that indicates PGPR deploy metabolic re-programming in rice var. Sarju-52 to enhance its nutrient use efficiency, tolerance, and growth under suboptimum nutrient conditions.
Collapse
Affiliation(s)
- Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
24
|
Feng K, Cai Z, Ding T, Yan H, Liu X, Zhang Z. Effects of potassium‐solubulizing and photosynthetic bacteria on tolerance to salt stress in maize. J Appl Microbiol 2019; 126:1530-1540. [DOI: 10.1111/jam.14220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022]
Affiliation(s)
- K. Feng
- Department of Biological Technology Institute of Chemistry and Biological Engineering University of Science and Technology Beijing BeijingPeople's Republic of China
| | - Z. Cai
- Department of Biological Technology Institute of Chemistry and Biological Engineering University of Science and Technology Beijing BeijingPeople's Republic of China
| | - T. Ding
- Department of Biological Technology Institute of Chemistry and Biological Engineering University of Science and Technology Beijing BeijingPeople's Republic of China
| | - H. Yan
- Department of Biological Technology Institute of Chemistry and Biological Engineering University of Science and Technology Beijing BeijingPeople's Republic of China
| | - X. Liu
- Department of Biological Technology Institute of Chemistry and Biological Engineering University of Science and Technology Beijing BeijingPeople's Republic of China
| | - Z. Zhang
- Beijing Agro‐Biotechnology Research Center Beijing Academy of Agriculture and Forestry Sciences Beijing People's Republic of China
| |
Collapse
|
25
|
Rogozhin E, Ryazantsev D, Smirnov A, Zavriev S. Primary Structure Analysis of Antifungal Peptides from Cultivated and Wild Cereals. PLANTS 2018; 7:plants7030074. [PMID: 30213105 PMCID: PMC6160967 DOI: 10.3390/plants7030074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Cereal-derived bioactive peptides with antimicrobial activity have been poorly explored compared to those from dicotyledonous plants. Furthermore, there are a few reports addressing the structural differences between antimicrobial peptides (AMPs) from cultivated and wild cereals, which may shed light on significant varieties in the range and level of their antimicrobial activity. We performed a primary structure analysis of some antimicrobial peptides from wild and cultivated cereals to find out the features that are associated with the much higher antimicrobial resistance characteristic of wild plants. In this review, we identified and analyzed the main parameters determining significant antifungal activity. They relate to a high variability level in the sequences of C-terminal fragments and a high content of hydrophobic amino acid residues in the biologically active defensins in wild cereals, in contrast to AMPs from cultivated forms that usually exhibit weak, if any, activity. We analyzed the similarity of various physicochemical parameters between thionins and defensins. The presence of a high divergence on a fixed part of any polypeptide that is close to defensins could be a determining factor. For all of the currently known hevein-like peptides of cereals, we can say that the determining factor in this regard is the structure of the chitin-binding domain, and in particular, amino acid residues that are not directly involved in intermolecular interaction with chitin. The analysis of amino acid sequences of alpha-hairpinins (hairpin-like peptides) demonstrated much higher antifungal activity and more specificity of the peptides from wild cereals compared with those from wheat and corn, which may be associated with the presence of a mini cluster of positively charged amino acid residues. In addition, at least one hydrophobic residue may be responsible for binding to the components of fungal cell membranes.
Collapse
Affiliation(s)
- Eugene Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia.
| | - Dmitry Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Alexey Smirnov
- Department of Plant Protection Timiryazev Russian Agricultural University, ul. Timiryazevskaya 49, 127550 Moscow, Russia.
| | - Sergey Zavriev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| |
Collapse
|
26
|
Rabhi NEH, Silini A, Cherif-Silini H, Yahiaoui B, Lekired A, Robineau M, Esmaeel Q, Jacquard C, Vaillant-Gaveau N, Clément C, Aït Barka E, Sanchez L. Pseudomonas knackmussii MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in Arabidopsis thaliana. J Appl Microbiol 2018; 125:1836-1851. [PMID: 30142236 DOI: 10.1111/jam.14082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS The study aimed for evaluate the efficacy of Pseudomonas knackmussii MLR6 on growth promotion, photosynthetic responses, pigment contents and gene expression of the plant model Arabidopsis thaliana under NaCl stress. METHODS AND RESULTS The strain MLR6 was isolated from the rhizopshere of the halophyte Salsola tetrandra collected from a natural saline Algerian soil. Results showed the ability of MLR6 to induce plant growth promoting traits even under NaCl stress. The inoculation with MLR6 improved the stomatal conductance, the transpiration rate, the total chlorophyll and carotenoids contents under salt stress. It conferred also an increase of fresh/dry weight as well as plant height. MLR6 inoculation further provided a positive effect on cell membrane stability by reducing the electrolyte leakage and priming the ROS accumulation after the salt exposition. Additionally, the expression of NHX1, HKT1, SOS2, and SOS3 as well as SAG13 and PR1 was maintained in MLR6-bacterized plant at a similar level of controls. CONCLUSIONS The inoculation of Arabidopsis thaliana with MLR6 improves plant growth and reduces damages caused by salt stress. SIGNIFICANCE AND IMPACT OF STUDY The use of Pseudomonas knackmussii MLR6 appears as a promising strategy to improve the sustainable agriculture under saline conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nour El Houda Rabhi
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Allaoua Silini
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
| | - Hafssa Cherif-Silini
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
| | - Bilal Yahiaoui
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
| | - Abdelmalek Lekired
- Laboratoire Microorganismes et Biomolécules Actives LMBA, Université de Tunis El Manar
| | - Mathilde Robineau
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Qassim Esmaeel
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Essaïd Aït Barka
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|