1
|
Behtash F, Mogheri F, Aghaee A, Seyed Hajizadeh H, Kaya O. Role of silicon in alleviating boron toxicity and enhancing growth and physiological traits in hydroponically cultivated Zea mays var. Merit. BMC PLANT BIOLOGY 2024; 24:550. [PMID: 38872083 DOI: 10.1186/s12870-024-05275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Boron (B) is a micronutrient, but excessive levels can cause phytotoxicity, impaired growth, and reduced photosynthesis. B toxicity arises from over-fertilization, high soil B levels, or irrigation with B-rich water. Conversely, silicon (Si) is recognized as an element that mitigates stress and alleviates the toxic effects of certain nutrients. In this study, to evaluate the effect of different concentrations of Si on maize under boron stress conditions, a factorial experiment based on a randomized complete block design was conducted with three replications in a hydroponic system. The experiment utilized a nutrient solution for maize var. Merit that contained three different boron (B) concentrations (0.5, 2, and 4 mg L-1) and three Si concentrations (0, 28, and 56 mg L-1). RESULTS Our findings unveiled that exogenous application of B resulted in a substantial escalation of B concentration in maize leaves. Furthermore, B exposure elicited a significant diminution in fresh and dry plant biomass, chlorophyll index, chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids, and membrane stability index (MSI). As the B concentration augmented, malondialdehyde (MDA) content and catalase (CAT) enzyme activity exhibited a concomitant increment. Conversely, the supplementation of Si facilitated an amelioration in plant fresh and dry weight, total carbohydrate, and total soluble protein. Moreover, the elevated activity of antioxidant enzymes culminated in a decrement in hydrogen peroxide (H2O2) and MDA content. In addition, the combined influence of Si and B had a statistically significant impact on the leaf chlorophyll index, total chlorophyll (a + b) content, Si and B accumulation levels, as well as the enzymatic activities of guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and H2O2 levels. These unique findings indicated the detrimental impact of B toxicity on various physiological and biochemical attributes of maize, while highlighting the potential of Si supplementation in mitigating the deleterious effects through modulation of antioxidant machinery and biomolecule synthesis. CONCLUSIONS This study highlights the potential of Si supplementation in alleviating the deleterious effects of B toxicity in maize. Increased Si consumption mitigated chlorophyll degradation under B toxicity, but it also caused a significant reduction in the concentrations of essential micronutrients iron (Fe), copper (Cu), and zinc (Zn). While Si supplementation shows promise in counteracting B toxicity, the observed decrease in Fe, Cu, and Zn concentrations warrants further investigation to optimize this approach and maintain overall plant nutritional status.
Collapse
Affiliation(s)
- Farhad Behtash
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Farima Mogheri
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran
| | - Ahmad Aghaee
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Hanifeh Seyed Hajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Ozkan Kaya
- Erzincan Horticultural Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, Erzincan, 24060, Turkey.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
2
|
Teixeira GCM, Prado RDM, Rocha AMS, Princi MB, de Andrade CS. Silicon mitigates iron deficiency in two energy cane cultivars by modulating physiological and nutritional mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1204836. [PMID: 37324691 PMCID: PMC10264767 DOI: 10.3389/fpls.2023.1204836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Introduction Alkaline soils with iron (Fe) deficiency are found in many regions of the world, and the use of silicon (Si) can mitigate the damages caused by such deficiency. The aim of this study was to evaluate the effect of Si in mitigating a moderate deficiency of Fe in two energy cane cultivars. Methods Two experiments were performed, one with the VX2 cultivar and the other with the VX3 cultivar of energy cane, which were cultivated in pots with sand and a nutrient solution. In both experiments, treatments followed a factorial scheme 2x2, designed based on the sufficiency and deficiency of Fe, being combined with the absence or presence of Si (2.5 mmol L-1), disposed in a randomized blocks design with six replicates. In the condition of Fe sufficiency, plants were cultivated in a solution containing 368 µmol L-1 of Fe, while plants cultivated under deficiency were initially submitted to cultivation with a 54 µmol L-1 concentration of Fe for 30 days, and later, with Fe complete omission for 60 days. The supply of Si was carried out by applying 15 fertirrigations with Si (via root and leaf) during the initial stage of seedling development, and after transplanting, the nutrient solution was added daily (via root). Results and discussion Both cultivars of energy cane were sensitive to Fe deficiency in the absence of Si, impairing its growth by causing stress and pigment degradation, thus reducing the photosynthesis efficiency. The supply of Si mitigated the damages caused by Fe deficiency in both cultivars, by increasing Fe accumulation in new and intermediate leaves, stem, and roots in the VX2 cultivar, and in new, intermediate, and old leaves and stem in the VX3 cultivar, which in turn reduced stress and favored both the nutritional and photosynthesis efficiency, while increasing the dry matter production. Si by modulating physiological and nutritional mechanisms, mitigates Fe deficiency in two energy cane cultivars. It was concluded that Si can be used as a strategy to improve growth and nutrition of energy cane in environments that are susceptible to Fe deficiency.
Collapse
Affiliation(s)
- Gelza Carliane Marques Teixeira
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Antonio Márcio Souza Rocha
- Laboratory of Biogeochemistry, Department of Technology, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Murilo Bassan Princi
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Caio Soares de Andrade
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
3
|
Orzoł A, Cruzado-Tafur E, Gołębiowski A, Rogowska A, Pomastowski P, Górecki RJ, Buszewski B, Szultka-Młyńska M, Głowacka K. Comprehensive Study of Si-Based Compounds in Selected Plants ( Pisum sativum L., Medicago sativa L., Triticum aestivum L.). Molecules 2023; 28:4311. [PMID: 37298792 PMCID: PMC10254194 DOI: 10.3390/molecules28114311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This review describes the role of silicon (Si) in plants. Methods of silicon determination and speciation are also reported. The mechanisms of Si uptake by plants, silicon fractions in the soil, and the participation of flora and fauna in the Si cycle in terrestrial ecosystems have been overviewed. Plants of Fabaceae (especially Pisum sativum L. and Medicago sativa L.) and Poaceae (particularly Triticum aestivum L.) families with different Si accumulation capabilities were taken into consideration to describe the role of Si in the alleviation of the negative effects of biotic and abiotic stresses. The article focuses on sample preparation, which includes extraction methods and analytical techniques. The methods of isolation and the characterization of the Si-based biologically active compounds from plants have been overviewed. The antimicrobial properties and cytotoxic effects of known bioactive compounds obtained from pea, alfalfa, and wheat were also described.
Collapse
Affiliation(s)
- Aleksandra Orzoł
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
| | - Edith Cruzado-Tafur
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| | - Adrian Gołębiowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Ryszard J. Górecki
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| |
Collapse
|
4
|
Nikolić D, Bosnić D, Samardžić J. Silicon in action: Between iron scarcity and excess copper. FRONTIERS IN PLANT SCIENCE 2023; 14:1039053. [PMID: 36818840 PMCID: PMC9935840 DOI: 10.3389/fpls.2023.1039053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Essential micronutrients belonging to the transition metals, such as Fe and Cu, are indispensable for plant growth and stress tolerance; however, when present in excess, they can become potentially dangerous producers of reactive oxygen species. Therefore, their homeostases must be strictly regulated. Both microelement deficiencies and elevated concentrations of heavy metals in the soil are global problems that reduce the nutritional value of crops and seriously affect human health. Silicon, a beneficial element known for its protective properties, has been reported to alleviate the symptoms of Cu toxicity and Fe deficiency stress in plants; however, we are still far from a comprehensive understanding of the underlying molecular mechanisms. Although Si-mediated mitigation of these stresses has been clearly demonstrated for some species, the effects of Si vary depending on plant species, growing conditions and experimental design. In this review, the proposed mechanistic models explaining the effect of Si are summarized and discussed. Iron and copper compete for the common metal transporters and share the same transport routes, hence, inadequate concentration of one element leads to disturbances of another. Silicon is reported to beneficially influence not only the distribution of the element supplied below or above the optimal concentration, but also the distribution of other microelements, as well as their molar ratios. The influence of Si on Cu immobilization and retention in the root, as well as Si-induced Fe remobilization from the source to the sink organs are of vital importance. The changes in cellular Cu and Fe localization are considered to play a crucial role in restoring homeostasis of these microelements. Silicon has been shown to stimulate the accumulation of metal chelators involved in both the mobilization of deficient elements and scavenging excess heavy metals. Research into the mechanisms of the ameliorative effects of Si is valuable for reducing mineral stress in plants and improving the nutritional value of crops. This review aims to provide a thorough and critical overview of the current state of knowledge in this field and to discuss discrepancies in the observed effects of Si and different views on its mode of action.
Collapse
|
5
|
Wang Z, Wang X, Liu S, Yang Y, Li Y, Chen S, Wang G, Zhang X, Ye Y, Hu L, Zhou Q, Wang F, Chen X. Sub-Cellular Distribution of Zinc in Different Vegetative Organs and Their Contribution to Grains Zinc Accumulation in Rice Under Different Nitrogen and Zinc Supply. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:294-303. [PMID: 0 DOI: 10.1007/s00344-021-10547-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/19/2021] [Indexed: 05/24/2023]
|
6
|
Raza T, Abbas M, Amna, Imran S, Khan MY, Rebi A, Rafie-Rad Z, Eash NS. Impact of Silicon on Plant Nutrition and Significance of Silicon Mobilizing Bacteria in Agronomic Practices. SILICON 2023; 15:3797-3817. [PMCID: PMC9876760 DOI: 10.1007/s12633-023-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/13/2023] [Indexed: 08/01/2023]
Abstract
Globally, rejuvenation of soil health is a major concern due to the continuous loss of soil fertility and productivity. Soil degradation decreases crop yields and threatens global food security. Improper use of chemical fertilizers coupled with intensive cultivation further reduces both soil health and crop yields. Plants require several nutrients in varying ratios that are essential for the plant to complete a healthy growth and development cycle. Soil, water, and air are the sources of these essential macro- and micro-nutrients needed to complete plant vegetative and reproductive cycles. Among the essential macro-nutrients, nitrogen (N) plays a significant in non-legume species and without sufficient plant access to N lower yields result. While silicon (Si) is the 2nd most abundant element in the Earth’s crust and is the backbone of soil silicate minerals, it is an essential micro-nutrient for some plants. Silicon is just beginning to be recognized as an important micronutrient to some plant species and, while it is quite abundant, Si is often not readily available for plant uptake. The manufacturing cost of synthetic silica-based fertilizers is high, while absorption of silica is quite slow in soil for many plants. Rhizosphere biological weathering processes includes microbial solubilization processes that increase the dissolution of minerals and increases Si availability for plant uptake. Therefore, an important strategy to improve plant silicon uptake could be field application of Si-solubilizing bacteria. In this review, we evaluate the role of Si in seed germination, growth, and morphological development and crop yield under various biotic and abiotic stresses, different pools and fluxes of silicon (Si) in soil, and the bacterial genera of the silicon solubilizing microorganisms. We also elaborate on the detailed mechanisms of Si-solubilizing/mobilizing bacteria involved in silicate dissolution and uptake by a plant in soil. Last, we discuss the potential of silicon and silicon solubilizing/mobilizing to achieve environmentally friendly and sustainable crop production.
Collapse
Affiliation(s)
- Taqi Raza
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| | | | - Amna
- Department of Plant Sciences, Quaid-I-Azam University Islamabad, Islamabad, Pakistan
| | - Shakeel Imran
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yahya Khan
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ansa Rebi
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Zeinab Rafie-Rad
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Neal S. Eash
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| |
Collapse
|
7
|
Shi Y, Guo S, Zhao X, Xu M, Xu J, Xing G, Zhang Y, Ahammed GJ. Comparative physiological and transcriptomics analysis revealed crucial mechanisms of silicon-mediated tolerance to iron deficiency in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1094451. [PMID: 36618612 PMCID: PMC9811145 DOI: 10.3389/fpls.2022.1094451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/07/2023]
Abstract
Iron (Fe) deficiency is a common abiotic stress in plants grown in alkaline soil that causes leaf chlorosis and affects root development due to low plant-available Fe concentration. Silicon (Si) is a beneficial element for plant growth and can also improve plant tolerance to abiotic stress. However, the effect of Si and regulatory mechanisms on tomato plant growth under Fe deficiency remain largely unclear. Here, we examined the effect of Si application on the photosynthetic capacity, antioxidant defense, sugar metabolism, and organic acid contents under Fe deficiency in tomato plants. The results showed that Si application promoted plant growth by increasing photosynthetic capacity, strengthening antioxidant defense, and reprogramming sugar metabolism. Transcriptomics analysis (RNA-seq) showed that Si application under Fe deficiency up-regulated the expression of genes related to antioxidant defense, carbohydrate metabolism and organic acid synthesis. In addition, Si application under Fe deficiency increased Fe distribution to leaves and roots. Combined with physiological assessment and molecular analysis, these findings suggest that Si application can effectively increase plant tolerance to low Fe stress and thus can be implicated in agronomic management of Fe deficiency for sustainable crop production. Moreover, these findings provide important information for further exploring the genes and underlying regulatory mechanisms of Si-mediated low Fe stress tolerance in crop plants.
Collapse
Affiliation(s)
- Yu Shi
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shuxun Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xin Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Mengzhu Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yi Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, Henan, China
| |
Collapse
|
8
|
Mavrič Čermelj A, Fideršek E, Golob A, Kacjan Maršić N, Vogel Mikuš K, Germ M. Different Concentrations of Potassium Silicate in Nutrient Solution Affects Selected Growth Characteristics and Mineral Composition of Barley (Hordeum vulgare L.). PLANTS 2022; 11:plants11111405. [PMID: 35684178 PMCID: PMC9182727 DOI: 10.3390/plants11111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
This study was undertaken to determine the effect of potassium silicate (K2SiO3) on the physiological and growth characteristics and elemental composition of barley plants. Hydroponically grown barley (Hordeum vulgare L.) var. Wilma was exposed to four different levels of Si in the form of K2SiO3 at concentrations of 0 (Si0), 0.5 (Si0.5), 1 (Si1) or 1.5 (Si1.5) mM Si. Plants were analyzed for root length, number of dry leaves, number of trichomes, electron transport system activity in mitochondria (ETS), leaf pigment content and elemental composition of roots and leaves. Treatment with Si0.5 significantly increased the concentration of total chlorophylls, root length and ETS activity in barley. Plants with no Si added to the nutrient solution had significantly more dry leaves than plants from all Si-treated groups. Necrosis was observed in Si0 plants, while leaf damage was not visible in treated plants. According to the results of the study, we evidenced that plants were stressed due to Si deficiency. The addition of K2SiO3 significantly affected the concentration of Si, K, Ca, Cl, S, Mn, Fe and Zn in roots and leaves of barley. In barley treated with Si0.5, plants showed the best performance in terms of their physiological characteristics and growth.
Collapse
Affiliation(s)
- Anja Mavrič Čermelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
- Correspondence:
| | - Eva Fideršek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| | - Nina Kacjan Maršić
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| | - Katarina Vogel Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| |
Collapse
|
9
|
Hernandez-Apaolaza L. Priming With Silicon: A Review of a Promising Tool to Improve Micronutrient Deficiency Symptoms. FRONTIERS IN PLANT SCIENCE 2022; 13:840770. [PMID: 35300007 PMCID: PMC8921768 DOI: 10.3389/fpls.2022.840770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 05/24/2023]
Abstract
Priming consists of a short pretreatment or preconditioning of seeds or seedlings with different types of primers (biological, chemical, or physical), which activates various mechanisms that improve plant vigor. In addition, stress responses are also upregulated with priming, obtaining plant phenotypes more tolerant to stress. As priming is thought to create a memory in plants, it is impairing a better resilience against stress situations. In today's world and due to climatic change, almost all plants encounter stresses with different severity. Lots of these stresses are relevant to biotic phenomena, but lots of them are also relevant to abiotic ones. In both these two conditions, silicon application has strong and positive effects when used as a priming agent. Several Si seed priming experiments have been performed to cope with several abiotic stresses (drought, salinity, alkaline stress), and Si primers have been used in non-stress situations to increase seed or seedlings vigor, but few has been done in the field of plant recovery with Si after a stress situation, although promising results have been referenced in the scarce literature. This review pointed out that Si could be successfully used in seed priming under optimal conditions (increased seed vigor), to cope with several stresses and also to recover plants from stressful situations more rapidly, and open a promising research topic to investigate, as priming is not an expensive technique and is easy to introduce by growers.
Collapse
|
10
|
Lozano-González JM, Valverde C, Hernández CD, Martin-Esquinas A, Hernández-Apaolaza L. Beneficial Effect of Root or Foliar Silicon Applied to Cucumber Plants under Different Zinc Nutritional Statuses. PLANTS (BASEL, SWITZERLAND) 2021; 10:2602. [PMID: 34961073 PMCID: PMC8703335 DOI: 10.3390/plants10122602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 05/14/2023]
Abstract
Zinc (Zn) is an essential micronutrient involved in a large variety of physiological processes, and its deficiency causes mainly growth and development disturbances, as well as oxidative stress, which results in the overproduction and accumulation of reactive oxygen species (ROS). A possible environmentally friendly solution is the application of silicon (Si), an element that has shown beneficial effects under abiotic and biotic stresses on many crops. Si could be applied through the roots or leaves. The aim of this work is to study the effect of Si applied to the root or shoot in cucumber plants under different Zn statuses (sufficiency, deficiency, and re-fertilization). Cucumber plants were grown in hydroponics, with 1.5 mM Si applied at the nutrient solution or sprayed on the leaves. During the different Zn statuses, SPAD index, fresh weight, ROS, and Si, Zn, P, Cu and B mineral concentration were determined. The results suggested that Si application had no effect during sufficiency and deficiency periods, however, during re-fertilization foliar application of Si, it showed faster improvement in SPAD index, better increment of fresh weight, and a decrease in ROS quantity, probably due to a memory effect promoted by Si previous application during the growing period. In summary, Si application to cucumber plants could be used to prepare plants to cope with a future stress situation, such as Zn deficiency, due to its prompt recovery after overcoming the stress period.
Collapse
Affiliation(s)
| | | | | | | | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049 Madrid, Spain; (J.M.L.-G.); (C.V.); (C.D.H.); (A.M.-E.)
| |
Collapse
|
11
|
Verma PK, Verma S, Chakrabarty D, Pandey N. Biotechnological Approaches to Enhance Zinc Uptake and Utilization Efficiency in Cereal Crops. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2021; 21:2412-2424. [DOI: 10.1007/s42729-021-00532-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 06/27/2023]
|
12
|
Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M. Interactions of Silicon With Essential and Beneficial Elements in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:697592. [PMID: 34249069 PMCID: PMC8261142 DOI: 10.3389/fpls.2021.697592] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).
Collapse
Affiliation(s)
- Jelena Pavlovic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kostic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Predrag Bosnic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ernest A. Kirkby
- Faculty of Biological Sciences, Leeds University, Leeds, United Kingdom
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Martín-Esquinas A, Hernández-Apaolaza L. Rice responses to silicon addition at different Fe status and growth pH. Evaluation of ploidy changes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:296-307. [PMID: 33892228 DOI: 10.1016/j.plaphy.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/10/2021] [Indexed: 05/14/2023]
Abstract
It has been described in rice that Si only plays a physical barrier that does not allow Fe to enter cell apoplast, causing Fe deficiency responses even under Fe sufficiency growth conditions. Most of the conclusions were attained at acidic pH, but rice is also grown at calcareous conditions, which especially induce Fe deficiency in the plants. In this study, we assay the effect of Si in rice suffering both Fe deficiency and sufficiency in hydroponics at two pHs (5.5 and 7.5). Plant biometric parameters, ROS concentration, enzymatic activities, and total phenolic compounds, as well as ploidy levels, have been determined. In general, both pHs promoted similar rice responses under Fe sufficiency and deficiency status, but at pH 7.5, stress was favored. Flow cytometry studies revealed that Fe deficiency increased the percentage of cells in higher ploidy levels. Moreover, under this Fe status, Si addition enhanced this effect. This increase contributed to maintaining chloroplast structure which may have preserved antioxidant activities, and fortified cell walls, diminishing Fe uptake. The first is considered a beneficial effect as plants presented acceptable SPAD values, well chloroplast structure, and qualitatively high fluorescence observed by confocal microscopy, even under Fe deficiency. But contributes to intensify the Fe shortage, by decreasing apoplast Fe pools. In summary, Si addition to rice plants may not only behave as an apoplastic barrier but may also protect plant chloroplast and alter the plant endoreplication cycle, giving a memory effect to cope with present and future stresses.
Collapse
Affiliation(s)
- Alexandra Martín-Esquinas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049, Madrid, Spain.
| |
Collapse
|
14
|
Hernández-Apaolaza L, Escribano L, Zamarreño ÁM, García-Mina JM, Cano C, Carrasco-Gil S. Root Silicon Addition Induces Fe Deficiency in Cucumber Plants, but Facilitates Their Recovery After Fe Resupply. A Comparison With Si Foliar Sprays. FRONTIERS IN PLANT SCIENCE 2020; 11:580552. [PMID: 33424881 PMCID: PMC7793930 DOI: 10.3389/fpls.2020.580552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/02/2020] [Indexed: 05/27/2023]
Abstract
Silicon has not been cataloged as an essential element for higher plants. However, it has shown beneficial effects on many crops, especially under abiotic and biotic stresses. Silicon fertilization was evaluated for the first time on plants exposed to fluctuations in an Fe regime (Fe sufficiency followed by Fe deficiency and, in turn, by Fe resupply). Root and foliar Si applications were compared using cucumber plants that were hydroponically grown in a growth chamber under different Fe nutritional statuses and Si applied either to the roots or to the shoots. The SPAD index, Fe, and Mn concentration, ROS, total phenolic compounds, MDA concentration, phytohormone balance, and cell cycle were determined. The results obtained showed that the addition of Si to the roots induced an Fe shortage in plants grown under optimal or deficient Fe nutritional conditions, but this was not observed when Si was applied to the leaves. Plant recovery following Fe resupply was more effective in the Si-treated plants than in the untreated plants. A relationship between the ROS concentration, hormonal balance, and cell cycle under different Fe regimes and in the presence or absence of Si was also studied. The contribution of Si to this signaling pathway appears to be related more to the induction of Fe deficiency, than to any direct biochemical or metabolic processes. However, these roles could not be completely ruled out because several hormone differences could only be explained by the addition of Si.
Collapse
Affiliation(s)
| | - Laura Escribano
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángel Mª Zamarreño
- Department of Environmental Biology, Sciences School, University of Navarra, Pamplona, Spain
| | - José Mª García-Mina
- Department of Environmental Biology, Sciences School, University of Navarra, Pamplona, Spain
| | - Carlos Cano
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Carrasco-Gil
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Vaculík M, Lukačová Z, Bokor B, Martinka M, Tripathi DK, Lux A. Alleviation mechanisms of metal(loid) stress in plants by silicon: a review. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6744-6757. [PMID: 32569367 DOI: 10.1093/jxb/eraa288] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/15/2020] [Indexed: 05/06/2023]
Abstract
Silicon (Si), although not considered as an essential element for plants in general, can ameliorate the phytotoxicity induced by excess metal(loid)s whether non-essential (e.g. Cd, Pb, Cr, Al, As, and Sb) or essential (e.g. Cu, Ni, and Zn). The Si-enhanced resistance allowing plants to cope with this type of abiotic stress has been developed at multiple levels in plants. Restriction of root uptake and immobilization of metal(loid)s in the rhizosphere by Si is probably one of the first defence mechanism. Further, retention of elements in the root apoplasm might enhance the resistance and vigour of plants. At the cellular level, the formation of insoluble complexes between Si and metal(loid)s and their storage within cell walls help plants to decrease available element concentration and restrict symplasmic uptake. Moreover, Si influences the oxidative status of plants by modifying the activity of various antioxidants, improves membrane stability, and acts on gene expression, although its exact role in these processes is still not well understood. This review focuses on all currently known plant-based mechanisms related to Si supply and involved in amelioration of stress caused by excess metal(loid)s.
Collapse
Affiliation(s)
- Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| | - Zuzana Lukačová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Comenius University Science Park, Ilkovicova 8, Bratislava, Slovakia
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sect 125, Noida, Uttar Pradesh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| |
Collapse
|
16
|
Ibrahim MFM, Abd El-Samad G, Ashour H, El-Sawy AM, Hikal M, Elkelish A, El-Gawad HA, El-Yazied AA, Hozzein WN, Farag R. Regulation of Agronomic Traits, Nutrient Uptake, Osmolytes and Antioxidants of Maize as Influenced by Exogenous Potassium Silicate under Deficit Irrigation and Semiarid Conditions. AGRONOMY 2020; 10:1212. [DOI: 10.3390/agronomy10081212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Understanding the link between the protective role of potassium silicate (K2SiO3) against water shortage and the eventual grain yield of maize plants is still limited under semiarid conditions. Therefore, in this study, we provide insights into the underlying metabolic responses, mineral nutrients uptake and some nonenzymatic and enzymatic antioxidants that may differ in maize plants as influenced by the foliar application of K2SiO3 (0, 1 and 2 mM) under three drip irrigation regimes (100, 75 and 50% of water requirements). Our results indicated that, generally, plants were affected by both moderate and severe deficit irrigation levels. Deficit irrigation decreased shoot dry weight, root dry weight, leaf area index (LAI), relative water content (RWC), N, P, K, Ca, Fe, Zn, carotenoids, grain yield and its parameters, while root/shoot ratio, malondialdehyde (MDA), proline, soluble sugars, ascorbic acid, soluble phenols, peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), and ascorbate peroxidase (APX) were improved. The foliar applications of K2SiO3 relatively alleviated water stress-induced damage. In this respect, the treatment of 2 mM K2SiO3 was more effective than others and could be recommended to mitigate the effect of deficit irrigation on maize plants. Moreover, correlation analysis revealed a close link between yield and the most studied traits.
Collapse
|
17
|
Peris-Felipo FJ, Benavent-Gil Y, Hernández-Apaolaza L. Silicon beneficial effects on yield, fruit quality and shelf-life of strawberries grown in different culture substrates under different iron status. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:23-31. [PMID: 32361399 DOI: 10.1016/j.plaphy.2020.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 05/09/2023]
Abstract
The silicon application either as foliar or to the radicular system of strawberry plants was investigated. Fortuna strawberry plants were grown in two different substrates (coconut fibre and organic substrate) under optimal (20 μM) or low (5 μM) iron (Fe) conditions. During the study, crop parameters including leaf area, SPAD and fruit yield were measured. At harvest, fruit quality and post-harvest shelf-life were evaluated. Results indicated that "Fortuna" strawberries plants had a poor development in coconut fibre and excellent growth and yield in the organic substrate. In the coconut fibre substrate, no differences in foliar area, fruit diameter, colour, pH and shelf-life were observed related to the Si addition under deficient Fe conditions, but an increased in weight and the firmness of the fruits, as well as in fructose content was shown. However, when 20 μM Fe were supplied, the root application of Si significantly increases: protein, mineral and sugar content, as well as fruit shelf-life by an average of 1.5 days. Likewise, the radicular silicon application to the organic substrate considerably improved yield, fruit diameter, fruit weight, glucose and fructose fruit content and the fruit shelf-life without causing distinguishable chemical or physicochemical changes. In summary, Si application to Fortuna strawberries through the roots could be a good solution to increase fruit quality and yield and to increase benefits from the agronomical point of view. Further studies in other strawberry varieties and dose rates will allow knowing with better precision how the radicular application of silicon contributes to yield and fruit shelf-life.
Collapse
Affiliation(s)
- Francisco Javier Peris-Felipo
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Yaiza Benavent-Gil
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/ Agustín Escardino Benlloch, 7, 46980, Paterna, Spain
| | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049, Madrid, Spain.
| |
Collapse
|
18
|
Cui JL, Zhao YP, Lu YJ, Chan TS, Zhang LL, Tsang DCW, Li XD. Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. ENVIRONMENT INTERNATIONAL 2019; 126:717-726. [PMID: 30878867 DOI: 10.1016/j.envint.2019.02.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Long term mining activities can cause significant metal pollution in the environment, thereby showing potential risk to the paddy field. Elucidating the interfacial processes of trace metals from contaminated paddy soil to rice within the rhizosphere can provide important information on metal biogeochemistry and food safety. The current study aims to explore the spatial distribution and molecular speciation of Cu from rhizosphere to rice plant in a mining-impacted paddy soil, and reveal the possible uptake mechanisms. X-ray absorption near edge structure (XANES) analysis indicated that Cu was primarily associated with iron oxide and sulfide in soil with a minor proportion of organic complexed species. In the rice samples, Cu showed much higher concentrations in the roots than the shoots, as most Cu was sequestered in the root surface and epidermis (primarily in the form of C/N ligands bound Cu species), rather than root xylem, as identified by micro X-ray fluorescence (μ-XRF) imaging coupling with μ-XANES. By contrast, in the root xylem, thiol-S bound Cu(I) complex was observed, representing the reduced product of Cu(II) by thiol-S ligands in rice root. The absorbed Cu was probably transported from the root to the aerial part as C/N ligand bound Cu complex such as Cu-histidine like species, which was observed in the root xylem. The large retention capacity and reduction of Cu(II) in rice root alleviated Cu toxicity to rice, which was beneficial for food safety (e.g., lower concentration of Cu in rice grains). These findings showed for the first time that the uptake mechanisms by rice from field contaminated sites, which shed light on Cu detoxification process and potential remediation strategies.
Collapse
Affiliation(s)
- Jin-Li Cui
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yan-Ping Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ying-Jui Lu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Li-Li Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
19
|
Nikolic DB, Nesic S, Bosnic D, Kostic L, Nikolic M, Samardzic JT. Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution. FRONTIERS IN PLANT SCIENCE 2019; 10:416. [PMID: 31024590 PMCID: PMC6460936 DOI: 10.3389/fpls.2019.00416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
The beneficial effects of silicon (Si) have been shown on plants using reduction-based strategy for iron (Fe) acquisition. Here we investigated the influence of Si on Fe deficiency stress alleviation in barley (Hordeum vulgare), a crop plant which uses the chelation-based strategy for Fe acquisition. Analyses of chlorophyll content, ROS accumulation, antioxidative status, concentrations of Fe and other micronutrients, along with the expression of Strategy II genes were studied in response to Si supply. Si successfully ameliorated Fe deficiency in barley, diminishing chlorophyll and biomass loss, and improving the activity of antioxidative enzymes, resulting in lowered reactive oxidative species accumulation in the youngest leaves. Alleviation of Fe deficiency stress correlated well with the Si-induced increase of Fe content in the youngest leaves, while it was decreased in root. Moreover, Si nutrition lowered accumulation of other micronutrients in the youngest leaves of Fe deprived plants, by retaining them in the root. On the transcriptional level, Si led to an expedient increase in the expression of genes involved in Strategy II Fe acquisition in roots at the early stage of Fe deficiency stress, while decreasing their expression in a prolonged stress response. Expression of Strategy II genes was remarkably upregulated in the leaves of Si supplied plants. This study broadens the perspective of mechanisms of Si action, providing evidence for ameliorative effects of Si on Strategy II plants, including its influence on accumulation and distribution of microelements, as well as on the expression of the Strategy II genes.
Collapse
Affiliation(s)
- Dragana B. Nikolic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- *Correspondence: Dragana B. Nikolic,
| | - Sofija Nesic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Bosnic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kostic
- Plant Nutrition Research Group, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Miroslav Nikolic
- Plant Nutrition Research Group, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Jelena T. Samardzic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|