1
|
Cheng B, Pei W, Wan K, Pan R, Zhang W. LncRNA cis- and trans-regulation provides new insight into drought stress responses in wild barley. PHYSIOLOGIA PLANTARUM 2024; 176:e14424. [PMID: 38973627 DOI: 10.1111/ppl.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Drought is one of the most common abiotic stresses that affect barley productivity. Long noncoding RNA (lncRNA) has been reported to be widely involved in abiotic stress, however, its function in the drought stress response in wild barley remains unclear. In this study, RNA sequencing was performed to identify differentially expressed lncRNAs (DElncRNA) among two wild barley and two cultivated barley genotypes. Then, the cis-regulatory networks were according to the chromosome position and the expression level correction. The GO annotation indicates that these cis-target genes are mainly involved in "ion transport transporter activity" and "metal ion transport transporter activity". Through weighted gene co-expression network analysis (WGCNA), 10 drought-related modules were identified to contract trans-regulatory networks. The KEGG annotation demonstrated that these trans-target genes were enriched for photosynthetic physiology, brassinosteroid biosynthesis, and flavonoid metabolism. In addition, we constructed the lncRNA-mediated ceRNA regulatory network by predicting the microRNA response elements (MREs). Furthermore, the expressions of lncRNAs were verified by RT-qPCR. Functional verification of a candidate lncRNA, MSTRG.32128, demonstrated its positive role in drought response and root growth and development regulation. Hormone content analysis provided insights into the regulatory mechanisms of MSTRG.32128 in root development, revealing its involvement in auxin and ethylene signal transduction pathways. These findings advance our understanding of lncRNA-mediated regulatory mechanisms in barley under drought stress. Our results will provide new insights into the functions of lncRNAs in barley responding to drought stress.
Collapse
Affiliation(s)
- Bingyun Cheng
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Wenyu Pei
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Kui Wan
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Pang Y, Zheng K, Min Q, Wang Y, Xue X, Li W, Zhao H, Qiao F, Han S. Long Noncoding RNAs in Response to Hyperosmolarity Stress, but Not Salt Stress, Were Mainly Enriched in the Rice Roots. Int J Mol Sci 2024; 25:6226. [PMID: 38892412 PMCID: PMC11172603 DOI: 10.3390/ijms25116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Due to their immobility and possession of underground parts, plants have evolved various mechanisms to endure and adapt to abiotic stresses such as extreme temperatures, drought, and salinity. However, the contribution of long noncoding RNAs (lncRNAs) to different abiotic stresses and distinct rice seedling parts remains largely uncharacterized beyond the protein-coding gene (PCG) layer. Using transcriptomics and bioinformatics methods, we systematically identified lncRNAs and characterized their expression patterns in the roots and shoots of wild type (WT) and ososca1.1 (reduced hyperosmolality-induced [Ca2+]i increase in rice) seedlings under hyperosmolarity and salt stresses. Here, 2937 candidate lncRNAs were identified in rice seedlings, with intergenic lncRNAs representing the largest category. Although the detectable sequence conservation of lncRNAs was low, we observed that lncRNAs had more orthologs within the Oryza. By comparing WT and ososca1.1, the transcription level of OsOSCA1.1-related lncRNAs in roots was greatly enhanced in the face of hyperosmolality stress. Regarding regulation mode, the co-expression network revealed connections between trans-regulated lncRNAs and their target PCGs related to OsOSCA1.1 and its mediation of hyperosmolality stress sensing. Interestingly, compared to PCGs, the expression of lncRNAs in roots was more sensitive to hyperosmolarity stress than to salt stress. Furthermore, OsOSCA1.1-related hyperosmolarity stress-responsive lncRNAs were enriched in roots, and their potential cis-regulated genes were associated with transcriptional regulation and signaling transduction. Not to be ignored, we identified a motif-conserved and hyperosmolarity stress-activated lncRNA gene (OSlncRNA), speculating on its origin and evolutionary history in Oryza. In summary, we provide a global perspective and a lncRNA resource to understand hyperosmolality stress sensing in rice roots, which helps to decode the complex molecular networks involved in plant sensing and adaptation to stressful environments.
Collapse
Affiliation(s)
- Yanrong Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Qinyue Min
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
3
|
Imaduwage I, Hewadikaram M. Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. MOLECULAR HORTICULTURE 2024; 4:20. [PMID: 38745264 PMCID: PMC11094901 DOI: 10.1186/s43897-024-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/06/2024] [Indexed: 05/16/2024]
Abstract
The plant genome exhibits a significant amount of transcriptional activity, with most of the resulting transcripts lacking protein-coding potential. Non-coding RNAs play a pivotal role in the development and regulatory processes in plants. Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides, may play a significant role in enhancing plant resilience to various abiotic stresses, such as excessive heat, drought, cold, and salinity. In addition, the exogenous application of chemicals, such as abscisic acid and salicylic acid, can augment plant defense responses against abiotic stress. While how lncRNAs play a role in abiotic stress tolerance is relatively well-studied in model plants, this review provides a comprehensive overview of the current understanding of this function in horticultural crop plants. It also delves into the potential role of lncRNAs in chemical priming of plants in order to acquire abiotic stress tolerance, although many limitations exist in proving lncRNA functionality under such conditions.
Collapse
Affiliation(s)
- Iuh Imaduwage
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka
| | - Madhavi Hewadikaram
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka.
| |
Collapse
|
4
|
Guan C, Li W, Wang G, Yang R, Zhang J, Zhang J, Wu B, Gao R, Jia C. Transcriptomic analysis of ncRNAs and mRNAs interactions during drought stress in switchgrass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111930. [PMID: 38007196 DOI: 10.1016/j.plantsci.2023.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Switchgrass (Panicum virgatum L.) plays a pivotal role as a bioenergy feedstock in the production of cellulosic ethanol and contributes significantly to enhancing ecological grasslands and soil quality. The utilization of non-coding RNAs (ncRNAs) has gained momentum in deciphering the intricate genetic responses to abiotic stress in various plant species. Nevertheless, the current research landscape lacks a comprehensive exploration of the responses of diverse ncRNAs, including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), to drought stress in switchgrass. In this study, we employed whole transcriptome sequencing to comprehensively characterize the expression profiles of both mRNA and ncRNAs during episodes of drought stress in switchgrass. Our analysis identified a total of 12,511 mRNAs, 59 miRNAs, 38 circRNAs, and 368 lncRNAs that exhibited significant differential expression between normal and drought-treated switchgrass leaves. Notably, the majority of up-regulated mRNAs displayed pronounced enrichment within the starch and sucrose metabolism pathway, as validated through KEGG analysis. Co-expression analysis illuminated that differentially expressed (DE) lncRNAs conceivably regulated 1308 protein-coding genes in trans and 7110 protein-coding genes in cis. Furthermore, both cis- and trans-target mRNAs of DE lncRNAs exhibited enrichment in four common KEGG pathways. The intricate interplay between lncRNAs and circRNAs with miRNAs via miRNA response elements was explored within the competitive endogenous RNA (ceRNA) network framework. As a result, we constructed elaborate regulatory networks, including lncRNA-novel_miRNA480-mRNA, lncRNA-novel_miRNA304-mRNA, lncRNA/circRNA-novel_miRNA122-PvSS4, and lncRNA/circRNA-novel_miRNA14-PvSS4, and subsequently validated the functionality of the target gene, starch synthase 4 (PvSS4). Furthermore, through the overexpression of PvSS4, we ascertained its capacity to enhance drought tolerance in yeast. However, it is noteworthy that PvSS4 did not exhibit any discernible impact under salt stress conditions. These findings, as presented herein, not only contribute substantively to our understanding of ceRNA networks but also offer a basis for further investigations into their potential functions in response to drought stress in switchgrass.
Collapse
Affiliation(s)
- Cong Guan
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Wei Li
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing 100193, China
| | - Guoliang Wang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Ruimei Yang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing 100193, China
| | - Jinglei Zhang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Jinhong Zhang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Bo Wu
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Run Gao
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Chunlin Jia
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China.
| |
Collapse
|
5
|
Magar ND, Shah P, Barbadikar KM, Bosamia TC, Madhav MS, Mangrauthia SK, Pandey MK, Sharma S, Shanker AK, Neeraja CN, Sundaram RM. Long non-coding RNA-mediated epigenetic response for abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108165. [PMID: 38064899 DOI: 10.1016/j.plaphy.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024]
Abstract
Plants perceive environmental fluctuations as stress and confront several stresses throughout their life cycle individually or in combination. Plants have evolved their sensing and signaling mechanisms to perceive and respond to a variety of stresses. Epigenetic regulation plays a critical role in the regulation of genes, spatiotemporal expression of genes under stress conditions and imparts a stress memory to encounter future stress responses. It is quintessential to integrate our understanding of genetics and epigenetics to maintain plant fitness, achieve desired genetic gains with no trade-offs, and durable long-term stress tolerance. The long non-coding RNA >200 nts having no coding potential (or very low) play several roles in epigenetic memory, contributing to the regulation of gene expression and the maintenance of cellular identity which include chromatin remodeling, imprinting (dosage compensation), stable silencing, facilitating nuclear organization, regulation of enhancer-promoter interactions, response to environmental signals and epigenetic switching. The lncRNAs are involved in a myriad of stress responses by activation or repression of target genes and hence are potential candidates for deploying in climate-resilient breeding programs. This review puts forward the significant roles of long non-coding RNA as an epigenetic response during abiotic stresses in plants and the prospects of deploying lncRNAs for designing climate-resilient plants.
Collapse
Affiliation(s)
- Nakul D Magar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India; Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Priya Shah
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Kalyani M Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Tejas C Bosamia
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gujarat, 364002, India
| | - M Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Arun K Shanker
- Plant Physiology, ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, 500059, India
| | - C N Neeraja
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - R M Sundaram
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| |
Collapse
|
6
|
Liu J, Wei L, Feng S. Research progress of non-coding RNAs in vegetable responses to abiotic stresses. Gene 2023:147537. [PMID: 37301448 DOI: 10.1016/j.gene.2023.147537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Vegetable crops play a crucial role in agricultural production, providing essential vitamins and minerals necessary for a healthy diet. Recently, there has been growing interest in cultivating vegetable varieties with outstanding agricultural and economic traits. However, vegetable production is often exposed to various abiotic stresses like soil drought, temperature fluctuations, and heavy metal stress, which can negatively impact yield and quality. While previous research has investigated the physiological responses of vegetable crops to such stressors, less attention has been given to genetic networks. Plants respond to environmental stress mainly by adapting first and then reacting, thereby enhancing their resistance to stress. Typically, different abiotic stresses trigger epigenetic changes, which can regulate non-coding RNAs. Therefore, studying the epigenetic mechanisms of vegetable crop responses to abiotic stress can provide insights into the molecular response mechanisms of plants under stress. This knowledge has practical applications in breeding vegetable crops for resistance. This article summarizes the primary research findings on the regulation of non-coding RNAs and their expression levels in vegetable crops exposed to abiotic stresses to guide molecular breeding approaches for vegetable crops.
Collapse
Affiliation(s)
- Jipeng Liu
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Liang Wei
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Shengjun Feng
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
7
|
Punyasu N, Kalapanulak S, Saithong T. CO 2 recycling by phospho enolpyruvate carboxylase enables cassava leaf metabolism to tolerate low water availability. FRONTIERS IN PLANT SCIENCE 2023; 14:1159247. [PMID: 37229106 PMCID: PMC10204807 DOI: 10.3389/fpls.2023.1159247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Cassava is a staple crop that acclimatizes well to dry weather and limited water availability. The drought response mechanism of quick stomatal closure observed in cassava has no explicit link to the metabolism connecting its physiological response and yield. Here, a genome-scale metabolic model of cassava photosynthetic leaves (leaf-MeCBM) was constructed to study on the metabolic response to drought and stomatal closure. As demonstrated by leaf-MeCBM, leaf metabolism reinforced the physiological response by increasing the internal CO2 and then maintaining the normal operation of photosynthetic carbon fixation. We found that phosphoenolpyruvate carboxylase (PEPC) played a crucial role in the accumulation of the internal CO2 pool when the CO2 uptake rate was limited during stomatal closure. Based on the model simulation, PEPC mechanistically enhanced drought tolerance in cassava by providing sufficient CO2 for carbon fixation by RuBisCO, resulting in high production of sucrose in cassava leaves. The metabolic reprogramming decreased leaf biomass production, which may lead to maintaining intracellular water balance by reducing the overall leaf area. This study indicates the association of metabolic and physiological responses to enhance tolerance, growth, and production of cassava in drought conditions.
Collapse
Affiliation(s)
- Nattharat Punyasu
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| |
Collapse
|
8
|
Aghdam MS, Mukherjee S, Flores FB, Arnao MB, Luo Z, Corpas FJ. Functions of Melatonin during Postharvest of Horticultural Crops. PLANT & CELL PHYSIOLOGY 2023; 63:1764-1786. [PMID: 34910215 DOI: 10.1093/pcp/pcab175] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| | - Francisco Borja Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia 30100, Spain
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
9
|
Guo X, Yu X, Xu Z, Zhao P, Zou L, Li W, Geng M, Zhang P, Peng M, Ruan M. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2389-2405. [PMID: 36053917 PMCID: PMC9674314 DOI: 10.1111/pbi.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Glutaredoxins (GRXs) are essential for reactive oxygen species (ROS) homeostasis in responses of plants to environment changes. We previously identified several drought-responsive CC-type GRXs in cassava, an important tropical crop. However, how CC-type GRX regulates ROS homeostasis of cassava under drought stress remained largely unknown. Here, we report that a drought-responsive CC-type GRX, namely MeGRXC3, was associated with activity of catalase in the leaves of 100 cultivars (or unique unnamed genotypes) of cassava under drought stress. MeGRXC3 negatively regulated drought tolerance by modulating drought- and abscisic acid-induced stomatal closure in transgenic cassava. It antagonistically regulated hydrogen peroxide (H2 O2 ) accumulation in epidermal cells and guard cells. Moreover, MeGRXC3 interacted with two catalases of cassava, MeCAT1 and MeCAT2, and regulated their activity in vivo. Additionally, MeGRXC3 interacts with a cassava TGA transcription factor, MeTGA2, in the nucleus, and regulates the expression of MeCAT7 through a MeTGA2-MeMYB63 pathway. Overall, we demonstrated the roles of MeGRXC3 in regulating activity of catalase at both transcriptional and post-translational levels, therefore involving in ROS homeostasis and stomatal movement in responses of cassava to drought stress. Our study provides the first insights into how MeGRXC3 may be used in molecular breeding of cassava crops.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Ziyin Xu
- College of Tropical CropsHainan UniversityHaikouChina
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Mengting Geng
- College of Tropical CropsHainan UniversityHaikouChina
| | - Peng Zhang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| |
Collapse
|
10
|
Yang Y, Gao Y, Li Y, Li X. Identification and differential analysis of noncoding RNAs in response to drought in Phyllostachys aureosulcata f. spectabilis. FRONTIERS IN PLANT SCIENCE 2022; 13:1040470. [PMID: 36438105 PMCID: PMC9686404 DOI: 10.3389/fpls.2022.1040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The role of noncoding RNAs (ncRNAs) in plant resistance to abiotic stresses is increasingly being discovered. Drought stress is one of the most common stresses that affecting plant growth, and high intensity drought has a significant impact on the normal growth of plants. In this study, a high-throughput sequencing was performed on plant tissue samples of Phyllostachys aureosulcata f. spectabilis C. D. Chu et C. S. Chao by drought treatment for 0, 2, 4 and 6 days. The sequencing results were analysed bioinformatically. We detected 336,946 RNAs among all 12 samples, including 192,098 message RNAs (mRNAs), 142,761 long noncoding RNAs (lncRNAs), 1,670 circular RNAs (circRNAs), and 417 microRNAs (miRNAs). We detected 2,419 differentially expressed (DE) ncRNAs, including 213 DE circRNAs, 2,088 DE lncRNAs and 118 DE miRNAs. Then, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to functionally predict DE ncRNAs. The results showed that most DE ncRNAs are involved in the response to drought stress, mainly in biochemical reactions involved in some metabolites, as well as in organelle activities. In addition, we validated two random circRNAs and demonstrated their circularity. We also found a stable internal reference gene available for Phyllostachys aureosulcata f. spectabilis and validated the accuracy of this experiment by quantitative real-time polymerase chain reaction (qRT-PCR).
Collapse
|
11
|
Samarfard S, Ghorbani A, Karbanowicz TP, Lim ZX, Saedi M, Fariborzi N, McTaggart AR, Izadpanah K. Regulatory non-coding RNA: The core defense mechanism against plant pathogens. J Biotechnol 2022; 359:82-94. [PMID: 36174794 DOI: 10.1016/j.jbiotec.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
Plant pathogens damage crops and threaten global food security. Plants have evolved complex defense networks against pathogens, using crosstalk among various signaling pathways. Key regulators conferring plant immunity through signaling pathways include protein-coding genes and non-coding RNAs (ncRNAs). The discovery of ncRNAs in plant transcriptomes was first considered "transcriptional noise". Recent reviews have highlighted the importance of non-coding RNAs. However, understanding interactions among different types of noncoding RNAs requires additional research. This review attempts to consider how long-ncRNAs, small-ncRNAs and circular RNAs interact in response to pathogenic diseases within different plant species. Developments within genomics and bioinformatics could lead to the further discovery of plant ncRNAs, knowledge of their biological roles, as well as an understanding of their importance in exploiting the recent molecular-based technologies for crop protection.
Collapse
Affiliation(s)
- Samira Samarfard
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, the Islamic Republic of Iran.
| | | | - Zhi Xian Lim
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mahshid Saedi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, the Islamic Republic of Iran
| | - Niloofar Fariborzi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Alistair R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Keramatollah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, the Islamic Republic of Iran
| |
Collapse
|
12
|
Drought tolerance improvement in Solanum lycopersicum: an insight into "OMICS" approaches and genome editing. 3 Biotech 2022; 12:63. [PMID: 35186660 PMCID: PMC8825918 DOI: 10.1007/s13205-022-03132-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Solanum lycopersicum (tomato) is an internationally acclaimed vegetable crop that is grown worldwide. However, drought stress is one of the most critical challenges for tomato production, and it is a crucial task for agricultural biotechnology to produce drought-resistant cultivars. Although breeders have done a lot of work on the tomato to boost quality and quantity of production and enhance resistance to biotic and abiotic stresses, conventional tomato breeding approaches have been limited to improving drought tolerance because of the intricacy of drought traits. Many efforts have been made to better understand the mechanisms involved in adaptation and tolerance to drought stress in tomatoes throughout the years. "Omics" techniques, such as genomics, transcriptomics, proteomics, and metabolomics in combination with modern sequencing technologies, have tremendously aided the discovery of drought-responsive genes. In addition, the availability of biotechnological tools, such as plant transformation and the recently developed genome editing system for tomatoes, has opened up wider opportunities for validating the function of drought-responsive genes and the generation of drought-tolerant varieties. This review highlighted the recent progresses for tomatoes improvement against drought stress through "omics" and "multi-omics" technologies including genetic engineering. We have also discussed the roles of non-coding RNAs and genome editing techniques for drought stress tolerance improvement in tomatoes.
Collapse
|
13
|
Tahaei SA, Nasri M, Soleymani A, Ghooshchi F, Oveysi M. Plant growth regulators affecting corn (Zea mays L.) physiology and rab17 expression under drought conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
15
|
Altaf MA, Shahid R, Ren MX, Mora-Poblete F, Arnao MB, Naz S, Anwar M, Altaf MM, Shahid S, Shakoor A, Sohail H, Ahmar S, Kamran M, Chen JT. Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. PHYSIOLOGIA PLANTARUM 2021; 172:820-846. [PMID: 33159319 DOI: 10.1111/ppl.13262] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 05/06/2023]
Abstract
Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-violet radiation. The full potential of melatonin in regulating physiological functions in higher plants still needs to be explored by further research.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Economics, Hainan University, Haikou, China
| | - Ming-Xun Ren
- Center for Terrestrial Biodiversity of the South China Sea, College of Ecology and Environment, Hainan University, Haikou, China
| | | | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Safina Naz
- Department of Horticulture, Faculty of Agricultural Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Anwar
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | | | - Sidra Shahid
- Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Lleida, Spain
| | - Hamza Sohail
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Das SK, Zinta G. Mechanistic insights on melatonin-mediated drought stress mitigation in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1212-1226. [PMID: 33305363 DOI: 10.1111/ppl.13307] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 05/21/2023]
Abstract
Drought stress imposes a serious threat to crop productivity and nutritional security. Drought adaptation mechanisms involve complex regulatory network comprising of various sensory and signaling molecules. In this context, melatonin has emerged as a potential signaling molecule playing a crucial role in imparting stress tolerance in plants. Melatonin pretreatment regulates various plant physiological processes such as osmoregulation, germination, photosynthesis, senescence, primary/secondary metabolism, and hormonal cross-talk under water deficit conditions. Melatonin-mediated regulation of ascorbate-glutathione (AsA-GSH) cycle plays a crucial role to scavenge reactive oxygen species generated in the cells during drought. Here, in this review, the current knowledge on the role of melatonin to ameliorate adverse effects of drought by modulating morphological, physiological, and redox regulatory processes is discussed. The role of melatonin to improve water absorption capacity of roots by regulating aquaporin channels and hormonal cross-talk involved in drought stress mitigation are also discussed. Overall, melatonin is a versatile bio-molecule involved in growth promotion and yield enhancement under drought stress that makes it a suitable candidate for eco-friendly crop production to ensure food security.
Collapse
Affiliation(s)
- Rahul Kumar Tiwari
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ravinder Kumar
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Kumar Nishant Chourasia
- Division of Crop Improvement, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Kailash Chandra Naga
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Dharmendra Kumar
- Division of Crop Physiology, Biochemistry and Post-harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sourav Kumar Das
- Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
17
|
Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production. Curr Pharm Biotechnol 2021; 22:341-359. [PMID: 32469697 DOI: 10.2174/1389201021666200529101942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. OBJECTIVE This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. RESULTS So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. CONCLUSION The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
18
|
Jha UC, Nayyar H, Jha R, Khurshid M, Zhou M, Mantri N, Siddique KHM. Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation. BMC PLANT BIOLOGY 2020; 20:466. [PMID: 33046001 PMCID: PMC7549229 DOI: 10.1186/s12870-020-02595-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/12/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND The immobile nature of plants means that they can be frequently confronted by various biotic and abiotic stresses during their lifecycle. Among the various abiotic stresses, water stress, temperature extremities, salinity, and heavy metal toxicity are the major abiotic stresses challenging overall plant growth. Plants have evolved complex molecular mechanisms to adapt under the given abiotic stresses. Long non-coding RNAs (lncRNAs)-a diverse class of RNAs that contain > 200 nucleotides(nt)-play an essential role in plant adaptation to various abiotic stresses. RESULTS LncRNAs play a significant role as 'biological regulators' for various developmental processes and biotic and abiotic stress responses in animals and plants at the transcription, post-transcription, and epigenetic level, targeting various stress-responsive mRNAs, regulatory gene(s) encoding transcription factors, and numerous microRNAs (miRNAs) that regulate the expression of different genes. However, the mechanistic role of lncRNAs at the molecular level, and possible target gene(s) contributing to plant abiotic stress response and adaptation, remain largely unknown. Here, we review various types of lncRNAs found in different plant species, with a focus on understanding the complex molecular mechanisms that contribute to abiotic stress tolerance in plants. We start by discussing the biogenesis, type and function, phylogenetic relationships, and sequence conservation of lncRNAs. Next, we review the role of lncRNAs controlling various abiotic stresses, including drought, heat, cold, heavy metal toxicity, and nutrient deficiency, with relevant examples from various plant species. Lastly, we briefly discuss the various lncRNA databases and the role of bioinformatics for predicting the structural and functional annotation of novel lncRNAs. CONCLUSIONS Understanding the intricate molecular mechanisms of stress-responsive lncRNAs is in its infancy. The availability of a comprehensive atlas of lncRNAs across whole genomes in crop plants, coupled with a comprehensive understanding of the complex molecular mechanisms that regulate various abiotic stress responses, will enable us to use lncRNAs as potential biomarkers for tailoring abiotic stress-tolerant plants in the future.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Rintu Jha
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Khurshid
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nitin Mantri
- School of Science, RMIT University, Plenty Road, Bundoora. Victoria. 3083., Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
19
|
Melatonin-Induced Water Stress Tolerance in Plants: Recent Advances. Antioxidants (Basel) 2020; 9:antiox9090809. [PMID: 32882822 PMCID: PMC7554692 DOI: 10.3390/antiox9090809] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
Water stress (drought and waterlogging) is severe abiotic stress to plant growth and development. Melatonin, a bioactive plant hormone, has been widely tested in drought situations in diverse plant species, while few studies on the role of melatonin in waterlogging stress conditions have been published. In the current review, we analyze the biostimulatory functions of melatonin on plants under both drought and waterlogging stresses. Melatonin controls the levels of reactive oxygen and nitrogen species and positively changes the molecular defense to improve plant tolerance against water stress. Moreover, the crosstalk of melatonin and other phytohormones is a key element of plant survival under drought stress, while this relationship needs further investigation under waterlogging stress. In this review, we draw the complete story of water stress on both sides-drought and waterlogging-through discussing the previous critical studies under both conditions. Moreover, we suggest several research directions, especially for waterlogging, which remains a big and vague piece of the melatonin and water stress puzzle.
Collapse
|
20
|
Moustafa-Farag M, Mahmoud A, Arnao MB, Sheteiwy MS, Dafea M, Soltan M, Elkelish A, Hasanuzzaman M, Ai S. Melatonin-Induced Water Stress Tolerance in Plants: Recent Advances. Antioxidants (Basel) 2020. [PMID: 32882822 DOI: 10.20944/preprints202008.0359.v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Water stress (drought and waterlogging) is severe abiotic stress to plant growth and development. Melatonin, a bioactive plant hormone, has been widely tested in drought situations in diverse plant species, while few studies on the role of melatonin in waterlogging stress conditions have been published. In the current review, we analyze the biostimulatory functions of melatonin on plants under both drought and waterlogging stresses. Melatonin controls the levels of reactive oxygen and nitrogen species and positively changes the molecular defense to improve plant tolerance against water stress. Moreover, the crosstalk of melatonin and other phytohormones is a key element of plant survival under drought stress, while this relationship needs further investigation under waterlogging stress. In this review, we draw the complete story of water stress on both sides-drought and waterlogging-through discussing the previous critical studies under both conditions. Moreover, we suggest several research directions, especially for waterlogging, which remains a big and vague piece of the melatonin and water stress puzzle.
Collapse
Affiliation(s)
- Mohamed Moustafa-Farag
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Horticulture Research Institute, Agriculture Research Center, 9 Gmaa St, Giza 12619, Egypt
| | - Ahmed Mahmoud
- Horticulture Research Institute, Agriculture Research Center, 9 Gmaa St, Giza 12619, Egypt
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Marino B Arnao
- Department of Plant Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Dafea
- Horticulture Research Institute, Agriculture Research Center, 9 Gmaa St, Giza 12619, Egypt
| | - Mahmoud Soltan
- Horticulture and Crop Science Department, Ohio Agricultural Research and Development Center, Columbus, The Ohio State University, Columbus, OH 43210, USA
- Vegetable Production under Modified Environment Department, Horticulture Research Institute, Agriculture Research Center, Cairo 11865, Egypt
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Shaoying Ai
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
21
|
Li F, Shi T, He A, Huang X, Gong J, Yi Y, Zhang J. Bacillus amyloliquefaciens LZ04 improves the resistance of Arabidopsis thaliana to high calcium stress and the potential role of lncRNA-miRNA-mRNA regulatory network in the resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:166-180. [PMID: 32222680 DOI: 10.1016/j.plaphy.2020.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 05/22/2023]
Abstract
Bacillus amyloliquefaciens is a non-pathogenic and plant growth-promoting rhizobacterium that enhances plant resistance to drought and diseases. Arabidopsis thaliana is a multipurpose model plant for exploring microorganism-plant interactions and a crucial vegetal tool for molecular research. Non-coding RNAs are RNA molecules involved in the regulation of various biological functions and constitute a research hotspot in the field of plant biology. In this study, the effect of B. amyloliquefaciens treatment on the resistance of A. thaliana to high calcium stress was analyzed. The transcriptome sequencing of A. thaliana roots under four treatment conditions was performed to screen differentially expressed lncRNAs, mRNAs and miRNAs. Functional analysis was also performed to understand the potential mechanism by which B. amyloliquefaciens-regulated lncRNAs, miRNAs and mRNAs affect the resistance of A. thaliana to high calcium stress. The results indicated that B. amyloliquefaciens treatment increased the resistance of A. thaliana to high calcium stress. A set of differentially expressed lncRNAs, mRNAs and miRNAs were screened between the high calcium and control group on one hand, and high calcium and high calcium + B. amyloliquefaciens groups on the other hand. Functional analysis indicated that the differentially expressed mRNAs and miRNA were involved in various biological functions and that transcriptional dysregulation caused by high calcium stress involves metabolic processes rather than defense responses. Conclusively, B. amyloliquefaciens may improve the resistance of A. thaliana to high calcium stress via a lncRNA-miRNA-mRNA regulatory network. These findings will contribute to the development of agriculture in karst regions with high calcium content.
Collapse
Affiliation(s)
- Fei Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China; Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Tianlong Shi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China; Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Aolei He
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaolong Huang
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China; Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Jiyi Gong
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China; Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Yin Yi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China; Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China.
| | - Jinlin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
22
|
Suksamran R, Saithong T, Thammarongtham C, Kalapanulak S. Genomic and Transcriptomic Analysis Identified Novel Putative Cassava lncRNAs Involved in Cold and Drought Stress. Genes (Basel) 2020; 11:E366. [PMID: 32231066 PMCID: PMC7230406 DOI: 10.3390/genes11040366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the regulation of complex cellular processes, including transcriptional and post-transcriptional regulation of gene expression relevant for development and stress response, among others. Compared to other important crops, there is limited knowledge of cassava lncRNAs and their roles in abiotic stress adaptation. In this study, we performed a genome-wide study of ncRNAs in cassava, integrating genomics- and transcriptomics-based approaches. In total, 56,840 putative ncRNAs were identified, and approximately half the number were verified using expression data or previously known ncRNAs. Among these were 2229 potential novel lncRNA transcripts with unmatched sequences, 250 of which were differentially expressed in cold or drought conditions, relative to controls. We showed that lncRNAs might be involved in post-transcriptional regulation of stress-induced transcription factors (TFs) such as zinc-finger, WRKY, and nuclear factor Y gene families. These findings deepened our knowledge of cassava lncRNAs and shed light on their stress-responsive roles.
Collapse
Affiliation(s)
- Rungaroon Suksamran
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Chinae Thammarongtham
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology at King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| |
Collapse
|
23
|
Fu XZ, Zhang XY, Qiu JY, Zhou X, Yuan M, He YZ, Chun CP, Cao L, Ling LL, Peng LZ. Whole-transcriptome RNA sequencing reveals the global molecular responses and ceRNA regulatory network of mRNAs, lncRNAs, miRNAs and circRNAs in response to copper toxicity in Ziyang Xiangcheng (Citrus junos Sieb. Ex Tanaka). BMC PLANT BIOLOGY 2019; 19:509. [PMID: 31752684 PMCID: PMC6873749 DOI: 10.1186/s12870-019-2087-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/20/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Copper (Cu) toxicity has become a potential threat for citrus production, but little is known about related mechanisms. This study aims to uncover the global landscape of mRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) in response to Cu toxicity so as to construct a regulatory network of competing endogenous RNAs (ceRNAs) and to provide valuable knowledge pertinent to Cu response in citrus. RESULTS Tolerance of four commonly used rootstocks to Cu toxicity was evaluated, and 'Ziyang Xiangcheng' (Citrus junos) was found to be the most tolerant genotype. Then the roots and leaves sampled from 'Ziyang Xiangcheng' with or without Cu treatment were used for whole-transcriptome sequencing. In total, 5734 and 222 mRNAs, 164 and 5 lncRNAs, 45 and 17 circRNAs, and 147 and 130 miRNAs were identified to be differentially expressed (DE) in Cu-treated roots and leaves, respectively, in comparison with the control. Gene ontology enrichment analysis showed that most of the DEmRNAs and targets of DElncRNAs and DEmiRNAs were annotated to the categories of 'oxidation-reduction', 'phosphorylation', 'membrane', and 'ion binding'. The ceRNA network was then constructed with the predicted pairs of DEmRNAs-DEmiRNAs and DElncRNAs-DEmiRNAs, which further revealed regulatory roles of these DERNAs in Cu toxicity. CONCLUSIONS A large number of mRNAs, lncRNAs, circRNAs, and miRNAs in 'Ziyang Xiangcheng' were altered in response to Cu toxicity, which may play crucial roles in mitigation of Cu toxicity through the ceRNA regulatory network in this Cu-tolerant rootstock.
Collapse
Affiliation(s)
- Xing-Zheng Fu
- Citrus Research Institute, Southwest University, Chongqing, 400712, China.
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China.
| | - Xiao-Yong Zhang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Jie-Ya Qiu
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Xue Zhou
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Meng Yuan
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Yi-Zhong He
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Chang-Pin Chun
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Li Cao
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Li-Li Ling
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Liang-Zhi Peng
- Citrus Research Institute, Southwest University, Chongqing, 400712, China.
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400712, China.
| |
Collapse
|