1
|
Wen M, Hu W, Li L, Long P, Han Z, Ke JP, Deng Z, Zhu M, Zhang L. Developed metabolomics approach reveals the non-volatile color-contributing metabolites during Keemun congou black tea processing. Food Chem 2025; 463:141222. [PMID: 39270495 DOI: 10.1016/j.foodchem.2024.141222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
While key aroma and taste compounds of Keemun Congou black teas (KCBT) form during aeration and thermal stages, it is still unknown whether these processing stages also produce non-volatile color-contributing metabolites. Through integrating metabolomics with correlation and ridge regression analyses, 190 metabolites were identified as marker compounds that reclassified 15 KCBT samples collected from five processing stages into four groups. Meanwhile, the results of quantification and heatmap analysis showed that the concentrations of theaflavins and theasinensins significantly increased, as catechin decreased, after rolling, while flavonoid aglycones and polyunsaturated fatty acids increased throughout drying. Regression analysis between marker compound levels and total color difference values (∆E) revealed that the major color contributors were 3,5-dicaffeoylquinic acid, glucosyl-dehydrodigallic acid, theacitrin A, kaempferol-O-robinobioside, and (-)-epigallocatechin, with regression coefficients (absolute value) exceeding 4 × 10-2. Overall, the present study confirmed that rolling and drying were the two vital stages responsible for the color formation of KCBT.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Wei Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Lu Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhiyang Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
De Prato L, Timmins M, Ansari O, Ruthrof KX, Hardy GESJ, Howieson J, O’Hara G. Semi-quantitative analysis of cannabinoids in hemp (Cannabis sativa L.) using gas chromatography coupled to mass spectrometry. J Cannabis Res 2022; 4:51. [PMID: 36138416 PMCID: PMC9503267 DOI: 10.1186/s42238-022-00161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hemp (Cannabis sativa L.) is a producer of cannabinoids. These organic compounds are of increasing interest due to their potential applications in the medicinal field. Advances in analytical methods of identifying and quantifying these molecules are needed.
Method
This study describes a new method of cannabinoid separation from plant material using gas chromatography-mass spectrometry (GC-MS) as the analytical tool to detect low abundance cannabinoids that will likely have implications for future therapeutical treatments. A novel approach was adopted to separate trichomes from plant material to analyse cannabinoids of low abundance not observed in raw plant extract. Required plant sample used for analysis was greatly reduced compared to other methods. Derivatisation method was simplified and deconvolution software was utilised to recognise unknown cannabinoid compounds of low abundance.
Results
The method produces well-separated spectra and allows the detection of major and minor cannabinoids. Ten cannabinoids that had available standards could be identified and quantified and numerous unidentified cannabinoids or pathway intermediates based on GC-MS spectra similarities could be extracted and analysed simultaneously with this method.
Conclusions
This is a rapid novel extraction and analytical method from plant material that can identify major and minor cannabinoids using a simple technique. The method will be of use to future researchers seeking to study the multitude of cannabinoids whose values are currently not understood.
Collapse
|
3
|
Murovec J, Eržen JJ, Flajšman M, Vodnik D. Analysis of Morphological Traits, Cannabinoid Profiles, THCAS Gene Sequences, and Photosynthesis in Wide and Narrow Leaflet High-Cannabidiol Breeding Populations of Medical Cannabis. FRONTIERS IN PLANT SCIENCE 2022; 13:786161. [PMID: 35283868 PMCID: PMC8907982 DOI: 10.3389/fpls.2022.786161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Cannabis sativa L. is one of the oldest cultivated crops, used in medicine for millennia due to therapeutic characteristics of the phytocannabinoids it contains. Its medicinal properties are highly influenced by the chemotype, that is, the ratio of the two main cannabinoids cannabidiol (CBD) and Δ-9-tetrahydrocannabinol (THC). Based on published data, the chemotype should correlate with plant morphology, genetics, and photosynthetic properties. In this work, we investigated leaf morphology, plant growth characteristics, cannabinoid profiles, THCAS gene sequences, and plant photosynthetic traits in two breeding populations of medical cannabis (MX-CBD-11 and MX-CBD-707). The populations differed significantly in morphological traits. The MX-CBD-11 plants were taller, less branched, and their leaves had narrower leaflets than the bushier, wideleaved MX-CBD-707 plants, and there were significant differences between populations in the dry biomass of different plant parts. Based on these morphological differences, MX-CBD-11 was designated as a narrow leaflet drug type or vernacular "Sativa" type, while MX-CBD-707 was classified as wide leaflet drug type or "Indica" type. Chemical characterisation revealed a discrepancy between the expected chemotypes based on plant morphology; although both populations have high CBD, within each Type II (CBD/THC intermediate) and Type III (CBD dominant) plants were detected. The THCAS gene sequence analysis clustered the plants based on their chemotypes and showed high similarity to the THCAS sequences deposited in NCBI. In silico complementary analysis, using published molecular markers for chemotype determination, showed their low discrimination power in our two populations, demonstrating the genotype dependence of the molecular markers. Basic photosynthetic traits derived from light and CO2 response curves were similar in the populations. However, measurements of gas exchange under chamber conditions revealed higher stomatal conductivity and photosynthesis in MX-CBD-707 plants, which were also characterised by higher day respiration. The results of this study showed that based on visual appearance and some morphological measurements, it is not possible to determine a plant's chemotype. Visually homogenous plants had different cannabinoid profiles and, vice versa, morphologically distinct plants contained similar CBD and THC content. The two chemotypes identified in our experimental plants therefore did not correlate with plant visual appearance, leaf morphometry, and photosynthetic properties of the populations studied. Correlation was only demonstrated with the respect to THCAS sequences, which showed great discrimination power between the chemotypes.
Collapse
|
4
|
Liu C, Huang Y, Wu F, Liu W, Ning Y, Huang Z, Tang S, Liang Y. Plant adaptability in karst regions. JOURNAL OF PLANT RESEARCH 2021; 134:889-906. [PMID: 34258691 DOI: 10.1007/s10265-021-01330-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Karst ecosystems are formed by dissolution of soluble rocks, usually with conspicuous landscape features, such as sharp peaks, steep slopes and deep valleys. The plants in karst regions develop special adaptability. Here, we reviewed the research progresses on plant adaptability in karst regions, including drought, high temperature and light, high-calcium stresses responses and the strategies of water utilization for plants, soil nutrients impact, human interference and geographical traits on karst plants. Drought, high temperature and light change their physiological and morphological structures to adapt to karst environments. High-calcium and soil nutrients can transfer surplus nutrients to special parts of plants to avoid damage of high nutrient concentration. Therefore, karst plants can make better use of limited water. Human interference also affects geographical distribution of karst plants and their growing environment. All of these aspects may be analyzed to provide guidance and suggestions for related research on plant adaptability mechanisms.
Collapse
Affiliation(s)
- Chunni Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yang Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Feng Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Wenjing Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yiqiu Ning
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Zhenrong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Shaoqing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China.
| |
Collapse
|
5
|
Rashid A, Ali V, Khajuria M, Faiz S, Gairola S, Vyas D. GC-MS based metabolomic approach to understand nutraceutical potential of Cannabis seeds from two different environments. Food Chem 2020; 339:128076. [PMID: 33152869 DOI: 10.1016/j.foodchem.2020.128076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/17/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022]
Abstract
Cannabis sativa L. is a valuable plant that has regained its importance for medicinal use. Gas chromatography-mass spectrometry based untargeted metabolomic study was conducted in seeds of two accessions from different environments. A total of 236 metabolites were observed, and 43 metabolites were found differentially significant (p ≤ 0.05) in both the accessions. Based on the qualitative and quantitative accumulation of the nutraceutically important amino acids, cannabinoids, alkaloids, and fatty acids, the high altitude temperate Himalayan accession (CAN2) was found to have an advantage over the low altitude subtropical accession (CAN1). Seed oil from CAN2 showed the exclusive presence of linoleic acid and α- linolenic acid. The reducing power and DNA nicking assay on the methanolic extracts suggested higher antioxidant and nutraceutical potential in CAN2 and corroborated with the metabolic content of phenols and flavonoids. The environmental effect on the antioxidant and nutraceutical value in seeds is further discussed.
Collapse
Affiliation(s)
- Aatif Rashid
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, J & K 180001, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India
| | - Villayat Ali
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, J & K 180001, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India
| | - Manu Khajuria
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, J & K 180001, India
| | - Sheenam Faiz
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, J & K 180001, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India
| | - Sumeet Gairola
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, J & K 180001, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India
| | - Dhiraj Vyas
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, J & K 180001, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India.
| |
Collapse
|
6
|
Oladele JO, Ajayi EI, Oyeleke OM, Oladele OT, Olowookere BD, Adeniyi BM, Oyewole OI, Oladiji AT. A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants. Heliyon 2020; 6:e04897. [PMID: 32929412 PMCID: PMC7480258 DOI: 10.1016/j.heliyon.2020.e04897] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Despite the frightening mortality rate associated with COVID-19, there is no known approved drug to effectively combat the pandemic. COVID-19 clinical manifestations include fever, fatigue, cough, shortness of breath, and other complications. At present, there is no known effective treatment or vaccine that can mitigate/inhibit SARS-CoV-2. Available clinical intervention for COVID-19 is only palliative and limited to support. Thus, there is an exigent need for effective and non-invasive treatment. This article evaluates the possible mechanism of actions of SARS-CoV-2 and present Nigeria based medicinal plants which have pharmacological and biological activities that can mitigate the hallmarks of the pathogenesis of COVID-19. SARS-CoV-2 mode of actions includes hyper-inflammation characterized by a severe and fatal hyper-cytokinaemia with multi-organ failure; immunosuppression; reduction of angiotensin-converting enzyme 2 (ACE2) to enhance pulmonary vascular permeability causing damage to the alveoli; and further activated by open reading frame (ORF)3a, ORF3b, and ORF7a via c-Jun N- terminal kinase (JNK) pathway which induces lung damage. These mechanisms of action of SARS-CoV-2 can be mitigated by a combination therapy of medicinal herbs based on their pharmacological activities. Since the clinical manifestations of COVID-19 are multifactorial with co-morbidities, we strongly recommend the use of combined therapy such that two or more herbs with specific therapeutic actions are administered to combat the mediators of the disease.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Ebenezer I. Ajayi
- Membrane Biophysics and Nanotechnology Laboratories, Mercedes and Martin Ferreyra Institute of Medicine, IMMF-INIMEC-CONICET-UNC, Cordoba, Argentina
- Diabesity Complications & Other Neglected Infectious Diseases Group, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | - Oyedotun M. Oyeleke
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Oluwaseun T. Oladele
- Phytomedicine and Molecular Toxicology Research Laboratories, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | - Boyede D. Olowookere
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Boluwaji M. Adeniyi
- Centre of Excellence for Food Technology and Research -Benue State University, Nigerian Stored Products Research Institute, Ibadan, Nigeria
| | - Olu I. Oyewole
- Phytomedicine and Molecular Toxicology Research Laboratories, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | | |
Collapse
|