1
|
Liu HC, Chan HS, Nargotra P, Shih HD, Kuo CH, Liu YC. Development of Stephania tetrandra S. MOORE hairy root culture process for tetrandrine production. J Biotechnol 2024; 394:11-23. [PMID: 39151800 DOI: 10.1016/j.jbiotec.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Tetrandrine, a bioactive active compound mainly found in the roots of Stephania tetrandra, exhibits various pharmacological properties. In vitro hairy root (HR) culture may serve as a promising solution for the extraction of tetrandrine, overcoming the limitations of natural cultivation. The present study describes the consistent production of tetrandrine from S. tetrandra hairy roots induced by different strains of Agrobacterium rhizogenes. Cultivation in woody plant medium (WPM) resulted in the highest HR biomass (0.056 g/petri-dish) and tetrandrine content (7.28 mg/L) as compared to other media. The maximum HR biomass (6.95 g dw/L) and tetrandrine production (68.69 mg/L) were obtained in the fifth week of cultivation. The presence of ammonium nitrate (800 mg/L), calcium nitrate (1156 mg/L), sucrose (20 g/L) and casein (2 g/L) enhanced the tetrandrine production. Moreover, the fed-batch cultivation demonstrated that the NH4NO3 (1200 mg/L) was an important growth limiting factor that yielded the highest tetrandrine amount (119.59 mg/L). The cultivation of hairy roots in a mist trickling bioreactor for eight weeks was less (26.24 mg/L) than in the flask. Despite a lower tetrandrine yield observed in bioreactors compared to flask cultures, refining the growth medium and fine-tuning bioreactor operations hold promise for boosting tetrandrine yield.
Collapse
Affiliation(s)
- Hsuan-Chieh Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Biomass Materials Technology Department, Agri-Industrial Systems Technology Division, Central Region Campus, Industrial Technology Research Institute, Nantou 54041, Taiwan.
| | - Hsiao-Sung Chan
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan.
| | - Parushi Nargotra
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Hsin-Der Shih
- Plant Pathology Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413008, Taiwan.
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Yan N, Cao J, Wang J, Zou X, Yu X, Zhang X, Si T. Seed priming with graphene oxide improves salinity tolerance and increases productivity of peanut through modulating multiple physiological processes. J Nanobiotechnology 2024; 22:565. [PMID: 39272089 PMCID: PMC11401308 DOI: 10.1186/s12951-024-02832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Graphene oxide (GO), beyond its specialized industrial applications, is rapidly gaining prominence as a nanomaterial for modern agriculture. However, its specific effects on seed priming for salinity tolerance and yield formation in crops remain elusive. Under both pot-grown and field-grown conditions, this study combined physiological indices with transcriptomics and metabolomics to investigate how GO affects seed germination, seedling salinity tolerance, and peanut pod yield. Peanut seeds were firstly treated with 400 mg L⁻¹ GO (termed GO priming). At seed germination stage, GO-primed seeds exhibited higher germination rate and percentage of seeds with radicals breaking through the testa. Meanwhile, omics analyses revealed significant enrichment in pathways associated with carbon and nitrogen metabolisms in GO-primed seeds. At seedling stage, GO priming contributed to strengthening plant growth, enhancing photosynthesis, maintaining the integrity of plasma membrane, and promoting the nutrient accumulation in peanut seedlings under 200 mM NaCl stress. Moreover, GO priming increased the activities of antioxidant enzymes, along with reduced the accumulation of reactive oxygen species (ROS) in response to salinity stress. Furthermore, the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) of peanut seedlings under GO priming were mainly related to photosynthesis, phytohormones, antioxidant system, and carbon and nitrogen metabolisms in response to soil salinity. At maturity, GO priming showed an average increase in peanut pod yield by 12.91% compared with non-primed control. Collectively, our findings demonstrated that GO plays distinguish roles in enhancing seed germination, mitigating salinity stress, and boosting pod yield in peanut plants via modulating multiple physiological processes.
Collapse
Affiliation(s)
- Ning Yan
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Junfeng Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, P.R. China.
| | - Jie Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China.
| |
Collapse
|
3
|
Ramirez-Builes VH, Küsters J, Thiele E, Lopez-Ruiz JC. Physiological and Agronomical Response of Coffee to Different Nitrogen Forms with and without Water Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1387. [PMID: 38794457 PMCID: PMC11125271 DOI: 10.3390/plants13101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Nitrogen (N) is the most important nutrient in coffee, with a direct impact on productivity, quality, and sustainability. N uptake by the roots is dominated by ammonium (NH4+) and nitrates (NO3-), along with some organic forms at a lower proportion. From the perspective of mineral fertilizer, the most common N sources are urea, ammonium (AM), ammonium nitrates (AN), and nitrates; an appropriate understanding of the right balance between N forms in coffee nutrition would contribute to more sustainable coffee production through the better N management of this important crop. The aim of this research was to evaluate the influences of different NH4-N/NO3-N ratios in coffee from a physiological and agronomical perspective, and their interaction with soil water levels. Over a period of 5 years, three trials were conducted under controlled conditions in a greenhouse with different growing media (quartz sand) and organic soil, with and without water stress, while one trial was conducted under field conditions. N forms and water levels directly influence physiological responses in coffee, including photosynthesis (Ps), chlorophyll content, dry biomass accumulation (DW), nutrient uptake, and productivity. In all of the trials, the plants group in soils with N ratios of 50% NH4-N/50% NO3-N, and 25% NH4-N/75% NO3-N showed better responses to water stress, as well as a higher Ps, a higher chlorophyll content, a higher N and cation uptake, higher DW accumulation, and higher productivity. The soil pH was significantly influenced by the N forms: the higher the NO3--N share, the lower the acidification level. The results allow us to conclude that the combination of 50% NH4-N/50% NO3-N and 25% NH4-N/75% NO3-N N forms in coffee improves the resistance capacity of the coffee to water stress, improves productivity, reduces the soil acidification level, and improves ion balance and nutrient uptake.
Collapse
Affiliation(s)
- Victor Hugo Ramirez-Builes
- Center for Plant Nutrition and Environmental Research Hanninghof, Yara International, 48249 Dülmen, Germany
| | - Jürgen Küsters
- Center for Plant Nutrition and Environmental Research Hanninghof, Yara International, 48249 Dülmen, Germany
| | - Ellen Thiele
- Center for Plant Nutrition and Environmental Research Hanninghof, Yara International, 48249 Dülmen, Germany
| | | |
Collapse
|
4
|
Li CZ, Ullah A, Tian P, Yu XZ. Boron deficiency energizes cyanide uptake and assimilation through activating plasma membrane H +-ATPase in rice plants. CHEMOSPHERE 2024; 352:141290. [PMID: 38280649 DOI: 10.1016/j.chemosphere.2024.141290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The effect of boron (B) deficiency on mediating the contribution of H+-ATPase in the uptake and assimilation of exogenous cyanide (CN-) is investigated. Under CN- treatments, rice seedlings with B-deficient (-B) conditions exhibited significantly higher CN- uptake and assimilation rates than B-supplemented (+B) seedlings, whereas NH4+ uptake and assimilation rates were slightly higher in -B rice seedlings than in +B. In this connection, the expression pattern of genes encoding β-CAS, ST, and H+-ATPase was assessed to unravel their role in the current scenario. The abundances of three β-CAS isogenes (OsCYS-D1, OsCYS-D2, and OsCYS-C1) in rice tissues are upregulated from both "CN--B" and "CN-+B" treatments, however, only OsCYS-C1 in roots from the "CN--B" treatments was significantly upregulated than "CN-+B" treatments. Expression patterns of ST-related genes (OsStr9, OsStr22, and OsStr23) are tissue specific, in which significantly higher upregulation of ST-related genes was observed in shoots from "CN--B" treatments than "CN-+B" treatments. Expression pattern of 7 selected H+-ATPase isogenes, OsA1, OSA2, OsA3, OsA4, OsA7, OsA8, and OsA9 are quite tissue specific between "CN-+B" and "CN--B" treatments. Among these, OsA4 and OsA7 genes were highly activated in the uptake and assimilation of exogenous CN- in -B nutrient solution. These results indicated that B deficiency disturbs the pattern of N cycles in CN--treated rice seedlings, where activation of ST during CN- assimilation decreases the flux of the innate pool of NH4+ produced from CN- assimilation by the β-CAS pathway in plants. Collectively, the B deficiency increased the uptake and assimilation of exogenous CN- through activating H+-ATPase.
Collapse
Affiliation(s)
- Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
5
|
Hao DL, Zhou JY, Li L, Qu J, Li XH, Chen RR, Kong WY, Li DD, Li JJ, Guo HL, Liu JX, Zong JQ, Chen JB. An appropriate ammonium: nitrate ratio promotes the growth of centipedegrass: insight from physiological and micromorphological analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1324820. [PMID: 38169671 PMCID: PMC10758396 DOI: 10.3389/fpls.2023.1324820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Reasonable nitrogen fertilizer application is an important strategy to maintain optimal growth of grasslands, thereby enabling them to better fulfil their ecological functions while reducing environmental pollution caused by high nitrogen fertilizer production and application. Optimizing the ammonium (NH4 +):nitrate (NO3 -) ratio is a common approach for growth promotion in crops and vegetables, but research on this topic in grass plants has not received sufficient attention. Centipedegrass, which is widely used in landscaping and ecological protection, was used as the experimental material. Different NH4 +:NO3 - ratios (0: 100, 25:75, 50:50, 75:25, 100:0) were used as the experimental treatments under hydroponic conditions. By monitoring the physiological and morphological changes under each treatment, the appropriate NH4 +:NO3 - ratio for growth and its underlying mechanism were determined. As the proportion of ammonium increased, the growth showed a "bell-shaped" response, with the maximum biomass and total carbon and nitrogen accumulation achieved with the NH4 +:NO3 - ratio of 50:50 treatment. Compared with the situation where nitrate was supplied alone, increasing the ammonium proportion increased the whole plant biomass by 93.2%, 139.7%, 59.0%, and 30.5%, the whole plant nitrogen accumulation by 44.9%, 94.6%, 32.8%, and 54.8%, and the whole plant carbon accumulation by 90.4%, 139.9%, 58.7%, and 26.6% in order. As a gateway for nitrogen input, the roots treated with an NH4 +:NO3 - ratio of 50:50 exhibited the highest ammonium and nitrate uptake rate, which may be related to the maximum total root length, root surface area, average root diameter, root volume, and largest root xylem vessel. As a gateway for carbon input, leaves treated with an NH4 +:NO3 - ratio of 50:50 exhibited the highest stomatal aperture, stomatal conductance, photosynthetic rate, transpiration rate, and photosynthetic products. The NH4 +:NO3 - ratio of 50:50 treatment had the largest stem xylem vessel area. This structure and force caused by transpiration may synergistically facilitate root-to-shoot nutrient translocation. Notably, the change in stomatal opening occurred in the early stage (4 hours) of the NH4 +:NO3 - ratio treatments, indicating that stomates are structures that are involved in the response to changes in the root NH4 +:NO3 - ratio. In summary, we recommend 50:50 as the appropriate NH4 +:NO3 - ratio for the growth of centipedegrass, which not only improves the nitrogen use efficiency but also enhances the carbon sequestration capacity.
Collapse
Affiliation(s)
- Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jin-Yan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jia Qu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Xiao-Hui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Rong-Rong Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Wei-Yi Kong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Dan-Dan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jian-Jian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jian-Xiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jun-Qin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jing-Bo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
6
|
Ma D, Teng W, Yi B, Lin Y, Pan Y, Wang L. Effects of the nitrate and ammonium ratio on plant characteristics and Erythropalum scandens Bl. substrates. PLoS One 2023; 18:e0289659. [PMID: 37540657 PMCID: PMC10403090 DOI: 10.1371/journal.pone.0289659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023] Open
Abstract
Erythropalum scandens Bl. is a woody vegetable with high nitrogen demand that inhabits southern China. Ammonium and nitrate are the two main forms of inorganic nitrogen that plants directly absorb. A pot experiment was performed to determine the growth, physiological responses, and preferences of 12-month-old E. scandens seedlings for ammonium and nitrate. Aboveground and underground growth indexes, biomass, physiological and biochemical indexes (chlorophyll [Chl], soluble sugar, soluble protein and free proline contents), and substrate pH and nitrogen contents were determined under different nitrate and ammonium ratios (0 NO3-: 100 NH4+, 25 NO3-: 75 NH4+, 50 NO3-: 50 NH4+, 75 NO3-: 25 NH4+, and 100 NO3-: 0 NH4+), and the control (0 NO3-: 0 NH4+). The results showed that ammonium and nitrate improved the growth and physiological status of E. scandens seedlings in most of the treatments compared to the control. The aboveground growth status and biomass accumulation of E. scandens seedlings were significantly better under the 0 NO3-: 100 NH4+ treatment during fertilization compared with all other treatments. However, the growth status of the underground parts was not significantly different among treatments. Significant differences in osmoregulator content, except for soluble sugars, and Chl content were observed. Soluble sugars and soluble proteins were highest under the 0 NO3-: 100 NH4+ treatment at the end of fertilization (day 175). However, free proline accumulated during fertilization and the increase in NO3- indicated that excessive use of NO3- had a negative effect on the E. scandens seedlings. The order of accumulating nitrogen content was leaves > roots > stems. The highest N accumulation occurred in the aboveground parts under the 0 NO3-: 100 NH4+ treatment, whereas the highest N accumulation occurred in the underground parts under the 50 NO3-: 50 NH4+ treatment. Substrate pH increased at the end of fertilization (day 175) compared with the middle stage (day 75), while total nitrogen, ammonium, and nitrate were highly significantly different among the treatments. Total nitrogen and NH4+ content were the highest under the 0 NO3-: 100 NH4+ treatment, while NO3- content was the highest under the 100 NO3-: 0 NH4+ treatment. In conclusion, 12-month-old E. scandens seedlings grew best, and had better physiological conditions in NH4+ than NO3-. The 0 NO3-:100 NH4+ treatment (ammonium chloride 3.82 g/plant) resulted in the best growth and physiological conditions. Most of the growth and physiological indexes were inhibited with the increase in nitrate.
Collapse
Affiliation(s)
- Daocheng Ma
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Weichao Teng
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Biao Yi
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Yongzhi Lin
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Yuanyuan Pan
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Linghui Wang
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| |
Collapse
|
7
|
Duan Y, Yang H, Yang H, Wei Z, Che J, Wu W, Lyu L, Li W. Physiological and Morphological Responses of Blackberry Seedlings to Different Nitrogen Forms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1480. [PMID: 37050106 PMCID: PMC10097381 DOI: 10.3390/plants12071480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Blackberries are an emerging third-generation fruit that are popular in Europe, and specific nitrogen (N) supply is an important factor affecting their growth and development. To study the optimal N fertilizer for blackberry seedlings, no N (CK), nitrate (NO3-)-N, ammonium (NH4+)-N and urea were applied to one-year-old 'Ningzhi 4' blackberry plants at a key growth period (from May to August) to explore the effects of different N forms on the physiological characteristics. Correlation and principal component analysis were used to determine the relationships between various indexes. Ammonium (NH4+) or urea-fed plants had a better growth state, showed a greater plant height, biomass, SPAD values and enhanced antioxidant enzyme activities and photosynthesis. In addition, NH4+ was beneficial to the accumulation of sugars and amino acids in leaves and roots, and promoted the transport of auxin and cytokinin to leaves. NO3- significantly inhibited root growth and increased the contents of active oxygen, malondialdehyde and antioxidants in roots. Correlation and principal component analysis showed that growth and dry matter accumulation were closely related to the antioxidant system, photosynthetic characteristics, amino acids and hormone content. Our study provides a new idea for N regulation mechanism of blackberry and proposes a scientific fertilization strategy.
Collapse
Affiliation(s)
- Yongkang Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Haiyan Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (W.W.); (L.L.)
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Zhiwen Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (W.W.); (L.L.)
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (W.W.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| |
Collapse
|
8
|
Kong L, Zhang Y, Zhang B, Li H, Wang Z, Si J, Fan S, Feng B. Does energy cost constitute the primary cause of ammonium toxicity in plants? PLANTA 2022; 256:62. [PMID: 35994155 DOI: 10.1007/s00425-022-03971-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Nitrate (NO3-) and ammonium (NH4+) are the main nitrogen (N) sources and key determinants for plant growth and development. In recent decades, NH4+, which is a double-sided N compound, has attracted considerable amounts of attention from researchers. Elucidating the mechanisms of NH4+ toxicity and exploring the means to overcome this toxicity are necessary to improve agricultural sustainability. In this review, we discuss the current knowledge concerning the energy consumption and production underlying NH4+ metabolism and toxicity in plants, such as N uptake; assimilation; cellular pH homeostasis; and functions of the plasma membrane (PM), vacuolar H+-ATPase and H+-pyrophosphatase (H+-PPase). We also discuss whether the overconsumption of energy is the primary cause of NH4+ toxicity or constitutes a fundamental strategy for plants to adapt to high-NH4+ stress. In addition, the effects of regulators on energy production and consumption and other physiological processes are listed for evaluating the possibility of high energy costs associated with NH4+ toxicity. This review is helpful for exploring the tolerance mechanisms and for developing NH4+-tolerant varieties as well as agronomic techniques to alleviate the effects of NH4+ stress in the field.
Collapse
Affiliation(s)
- Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan, 250100, China
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan, 250100, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan, 250100, China
| | - Huawei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan, 250100, China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan, 250100, China
| | - Jisheng Si
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan, 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan, 250014, China.
| | - Bo Feng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan, 250100, China.
| |
Collapse
|
9
|
Pradana R, Hernández-Martín JA, Martínez-Hernández V, Meffe R, de Santiago-Martín A, Pérez Barbón A, de Bustamante I. Attenuation mechanisms and key parameters to enhance treatment performance in vegetation filters: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113752. [PMID: 34547571 DOI: 10.1016/j.jenvman.2021.113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/29/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
In times when environmental concerns are on the rise and the search of ways to reduce waste generation and to create a circular economy is booming, Nature Based Solutions (NBSs) play a very important role. Vegetation Filters (VFs) are a type of Land Application System (LAS) in which wastewater is used to irrigate a forestry plantation to treat the water and produce biomass. VFs show multiple benefits that render this technology a suitable solution for wastewater treatment, especially for scattered populations or isolated buildings that lack of connection to sewer systems. This review aims to provide a comprehensive state of the art of VF implementation, highlighting the do's and don'ts for a successful performance focusing on those factors that are essential to water treatment. Results show that VFs have a great treatment capacity when all involving factors are considered, and their efficiency tends to increase with time, as the VF develops and "gets older". Indeed, the presence of fine-textured soils, the selection of a proper vegetation species, the use of pre-treated wastewater and a water balance-based irrigation schedule alternating wetting and -drying cycles are all factors that help to achieve the best performance. However, it is necessary to design and follow a simple but rigorous operation and maintenance schedule to avoid system failure, which could lead to NO3-N leaching towards groundwater.
Collapse
Affiliation(s)
- R Pradana
- Grupo Eulen (Madrid), Calle del Valle de Tobalina, 56, 28021, Madrid, Spain; IMDEA Agua, Avda Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, A-II km 33,0, 28805, Alcalá de Henares, Madrid, Spain.
| | | | | | - R Meffe
- IMDEA Agua, Avda Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | | | - A Pérez Barbón
- IMDEA Agua, Avda Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - I de Bustamante
- IMDEA Agua, Avda Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, A-II km 33,0, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
10
|
Du W, Zhang Y, Si J, Zhang Y, Fan S, Xia H, Kong L. Nitrate alleviates ammonium toxicity in wheat ( Triticum aestivum L.) by regulating tricarboxylic acid cycle and reducing rhizospheric acidification and oxidative damage. PLANT SIGNALING & BEHAVIOR 2021; 16:1991687. [PMID: 34753392 PMCID: PMC9208799 DOI: 10.1080/15592324.2021.1991687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ammonium (NH4+) is one of the most important nutrients required by plants. However, a high concentration of NH4+ as the sole nitrogen source suppresses plant growth. Although nitrate (NO3-) can alleviate NH4+ toxicity, the mechanisms underlying this ability have not been fully elucidated. In this study, wheat plants were cultivated in hydroponic solution with 7.5 mM NO3- (control), 7.5 mM NH4+ (sole ammonium, SA) or 7.5 mM NH4+ plus 1.0 mM NO3- (ammonium and nitrate, AN). The results showed that compared with the control, the SA treatment significantly decreased root growth, protein content and the concentrations of most intermediates and the activity of enzymes from the tricarboxylic acid (TCA) cycle. Moreover, increased the activity of plasma membrane H+-ATPase and the rate of H+ efflux along roots, caused solution acidification, and increased the activity of mitochondrial respiratory chain complexes I-IV and the contents of protein-bound carbonyls and malondialdehyde in roots. SA treatment induced ultrastructure disruption and reduced the viability of root cells. Compared with the SA treatment, the AN treatment increased root growth, protein content, the concentrations of most intermediates and the activity of enzymes from the TCA cycle. Furthermore, AN treatment decreased the rate of H+ efflux, retarded medium acidification, decreased protein carbonylation and lipid peroxidation in roots and relieved ultrastructure disruption and increased the viability of root cells. Taken together, these results indicate that NO3--dependent alleviation of NH4+ toxicity in wheat seedlings is closely associated with physiological processes that mediate TCA cycle, relieve rhizospheric acidification and decrease the production of ROS and oxidative damage.
Collapse
Affiliation(s)
- Wanying Du
- College of Life Science, Shandong Normal University, Jinan, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jisheng Si
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yan Zhang
- College of Life Science, Shandong Normal University, Jinan, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan, China
| | - Haiyong Xia
- College of Life Science, Shandong Normal University, Jinan, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lingan Kong
- College of Life Science, Shandong Normal University, Jinan, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- CONTACT Lingan Kong Crop Research Institute, Shandong Academy of Agricultural Sciences , 202Gongyebei Road, Jinan250100, China
| |
Collapse
|
11
|
Noori A, Bharath LP, White JC. Type-specific impacts of silver on the protein profile of tomato ( Lycopersicon esculentum L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:12-24. [PMID: 34000928 DOI: 10.1080/15226514.2021.1919052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNPs) are particularly among the widely used nanomaterials in medicine, industry, and agriculture. The small size and large surface area of AgNPs and other nanomaterials result in their high reactivity in biological systems. To better understand the effects of AgNPs on plants at the molecular level, tomato (Lycopersicon esculentum L.) seedlings were exposed to 30 mg/L silver in the form of nanoparticle (AgNPs), ionic (AgNO3), or bulk (Ag0) in 50% Hoagland media for 7 days. The effects of silver on the expression of plant membrane transporters H+-ATPase, vacuolar type H+-ATPase (V-ATPase), and enzymes isocitrate dehydrogenase (IDH), and catalase in roots was assessed using RT-qPCR and immunofluorescence-confocal microscopy. We observed significantly higher expression of catalase in plants exposed to AgNPs (Fold of expression 1.1) and AgNO3 (Fold of expression 1.2) than the control group. The immunofluorescence imaging of the proteins confirmed the gene expression data; the expression of the enzyme catalase was upregulated 41, 216, and 770% higher than the control group in plants exposed to AgNPs, Ag0, and AgNO3, respectively. Exposure to AgnO3 resulted in the upregulation (fold of expression 1.2) of H+-ATPase and downregulation (fold of expression 0.7) of V-ATPase. A significant reduction in the expression of the redox-sensitive tricarboxylic cycle (TCA) enzyme mitochondrial IDH was observed in plants exposed to AgNPs (38%), AgNO3 (48%), or Ag0 (77%) compared to the control. This study shows that exposure to silver affects the expression of genes and protein involved in membrane transportation and oxidative response. The ionic form of silver had the most significant effect on the expression of genes and proteins compared to other forms of silver. The results from this study improve our understanding about the molecular effects of different forms of silver on important crop species. Novelty statementSilver nanoparticles released into the environment can be oxidized and be transformed into ionic form. Both the particulate and ionic forms of silver can be taken by plants and affect plants physiological and molecular responses. Despite the extensive research in this area, there is a scarce of information about the effects of silver nanoparticles on the expression of membrane transporters especially H+-ATPase involved in regulating cells' electrochemical charge, and the activity of enzymes involved in oxidative stress responses. This is a unique study that evaluates the expression of cellular proton transporters and enzymes of redox balance and energy metabolisms such as membrane transporters, H+-ATPase, and V-ATPases, and enzymes catalase and IDH. The results provide us valuable information about the impact of silver on plants at the molecular level by evaluating the expression of genes and proteins. Key MessageThe exposure of plants to silver as an environmental stressor affects the expression of genes and proteins involved in maintaining cell's electrochemical gradient (H+-ATPase, V-ATPase) and redox potential (IDH, catalase).
Collapse
Affiliation(s)
- Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| |
Collapse
|
12
|
Cheng H, Wu B, Wang S, Wei M, Wang C. Nitrogen application and osmotic stress antagonistically affect wheat seed germination and seedling growth. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1289-1300. [PMID: 33689505 DOI: 10.1080/15226514.2021.1895715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atmospheric nitrogen (N) deposition (AtNiDe) and drought stress (DS) have strongly affected plant growth. However, previous research has primarily focused on the effects of AtNiDe with various levels and DS on plant growth (especially seed germination and seedling growth). This study aimed to evaluate the single and combined effects of AtNiDe with four types (compounds: NH4-N, NO3-N, CO(NH2)2-N, and a mixture of the three types of N) and DS (three levels: control, low, and high) on wheat seed germination and seedling growth. The AtNiDe treatment increased wheat seed germination and seedling growth. Mixed N exerted a greater positive effect on wheat seed germination and seedling growth than single N forms. Organic N also had a greater positive effect on wheat seed germination and seedling growth than reduced inorganic N. The DS treatment decreased wheat seed germination and seedling growth. The AtNiDe treatment alleviated the adverse effects of DS on wheat seed germination and seedling growth. Mixed N had the greatest effect on alleviating the adverse effects of DS on wheat seed germination and seedling growth. Thus, AtNiDe and DS antagonistically affected wheat seed germination and seedling growth. NOVELTY STATEMENT This study assessed the single and combined effects of atmospheric nitrogen deposition with four types and drought stress at three levels on wheat seed germination and seedling growth. Generally, nitrogen and drought antagonistically affected wheat seed germination and seedling growth.
Collapse
Affiliation(s)
- Huiyuan Cheng
- Institute of Environment and Ecology and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Bingde Wu
- Institute of Environment and Ecology and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, China
| | - Shu Wang
- Institute of Environment and Ecology and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Mei Wei
- Institute of Environment and Ecology and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Congyan Wang
- Institute of Environment and Ecology and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|