1
|
Su W, Qiu J, Soufan W, El Sabagh A. Synergistic effects of melatonin and glycine betaine on seed germination, seedling growth, and biochemical attributes of maize under salinity stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14514. [PMID: 39256195 DOI: 10.1111/ppl.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
Salinity stress represents a major threat to crop production by inhibiting seed germination, growth of seedlings, and final yield and, therefore, to the social and economic prosperity of developing countries. Recently, plant growth-promoting substances have been widely used as a chemical strategy for improving plant resilience towards abiotic stresses. This study aimed to determine whether melatonin (MT) and glycine betaine (GB) alone or in combination could alleviate the salinity-induced impacts on seed germination and growth of maize seedlings. Increasing NaCl concentration from 100 to 200 mM declined seed germination rate (4.6-37.7%), germination potential (24.5-46.7%), radical length (7.7-40.0%), plumule length (2.2-35.6%), seedling fresh (1.7-41.3%) and dry weight (23.0-56.1%) compared to control (CN) plants. However, MT and GB treatments lessened the adverse effects of 100 and 150 mM NaCl and enhanced germination comparable to control plants. In addition, results from the pot experiments show that 200 mM NaCl stress disrupted the osmotic balance and persuaded oxidative stress, presented by higher electrolyte leakage, hydrogen peroxide, superoxide radicals, and malondialdehyde compared to control plants. However, compared to the NaCl treatment, NaCl+MT+GB treatment decreased the accumulation of malondialdehyde (24.2-42.1%), hydrogen peroxide (36.2-44.0%), and superoxide radicals (20.1-50.9%) by up-regulating the activity of superoxide dismutase (28.4-51.2%), catalase (82.2-111.5%), ascorbate peroxidase (40.3-59.2%), and peroxidase (62.2-117.9%), and by enhancing osmolytes accumulation, thereby reducing NaCl-induced oxidative damages. Based on these findings, the application of MT+GB is an efficient chemical strategy for improving seed germination and growth of seedlings by improving the physiological and biochemical attributes of maize under 200 mM NaCl stress.
Collapse
Affiliation(s)
- Wennan Su
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, Hebei Province, China
| | - Jiaoqi Qiu
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, Hebei Province, China
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
2
|
Sigala-Aguilar NA, López MG, Fernández-Luqueño F. Carbon-based nanomaterials as inducers of biocompounds in plants: Potential risks and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108753. [PMID: 38781637 DOI: 10.1016/j.plaphy.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Biocompounds are metabolites synthesized by plants, with clinically proven capacity in preventing and treating degenerative diseases in humans. Carbon-based nanomaterials (CNMs) are atomic structures that assume different hybridization and shape. Due to the reactive property, CNMs can induce the synthesis of metabolites, such as biocompounds in cells and various plant species, by generating reactive oxygen species (ROS). In response, plants positively or negatively regulate the expression of various families of genes and enzymes involved in physiological and metabolomic pathways of plants, such as carbon and nitrogen metabolism, which are directly involved in plant development and growth. Likewise, ROS can modulate the expression of enzymes and genes related to the adaptation of plants to stress, such as the glutathione ascorbate cycle, the shikimic acid, and phenylpropanoid pathways, from which the largest amount of biocompounds in plants are derived. This document exposes the ability of three CNMs (fullerene, graphene, and carbon nanotubes) to positively or negatively regulate the activity of enzymes and genes involved in various plant species' primary and secondary metabolism. The mechanism of action of CNMs on the production of biocompounds and the effect of the translocation of CNMs on the growth and content of primary metabolites in plants are described. Adverse effects of CNMs on plants, prospects, and possible risks involved are also discussed. The use of CNMs as inducers of biocompounds in plants could have implications and relevance for human health, crop quality, and plant adaptation and resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Nayelli Azucena Sigala-Aguilar
- Sustainability of Natural Resources and Energy Programs, Center for Research and Advanced Studies of the IPN, Saltillo, 25900, Coahuila, Mexico
| | - Mercedes G López
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the IPN, Irapuato, 36824, Guanajuato, Mexico.
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Center for Research and Advanced Studies of the IPN, Saltillo, 25900, Coahuila, Mexico.
| |
Collapse
|
3
|
Wang Y, Ye H, Ren F, Ren X, Zhu Y, Xiao Y, He J, Wang B. Comparative Transcriptome Analysis Revealed Candidate Gene Modules Involved in Salt Stress Response in Sweet Basil and Overexpression of ObWRKY16 and ObPAL2 Enhanced Salt Tolerance of Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1487. [PMID: 38891295 PMCID: PMC11174604 DOI: 10.3390/plants13111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Sweet basil (Ocimum basilicum L.) is an important aromatic plant with high edibility and economic value, widely distributed in many regions of the tropics including the south of China. In recent years, environmental problems, especially soil salinization, have seriously restricted the planting and spread of sweet basil. However, the molecular mechanism of the salt stress response in sweet basil is still largely unknown. In this study, seed germination, seedling growth, and chlorophyll synthesis in sweet basil were inhibited under salt stress conditions. Through comparative transcriptome analysis, the gene modules involved in the metabolic processes, oxidative response, phytohormone signaling, cytoskeleton, and photosynthesis were screened out. In addition, the landscape of transcription factors during salt treatment in sweet basil was displayed as well. Moreover, the overexpression of the WRKY transcription factor-encoding gene, ObWRKY16, and the phenylalanine ammonia-lyase-encoding gene, ObPAL2, enhanced the seed germination, seedling growth, and survival rate, respectively, of transgenic Arabidopsis, suggesting that they might be important candidates for the creation of salt-tolerant sweet basil cultivars. Our data enrich the study on salt responses in sweet basil and provide essential gene resources for genetic improvements in sweet basil in the future.
Collapse
Affiliation(s)
- Yukun Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Hong Ye
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Fei Ren
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Xiaoqiang Ren
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Yunna Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Yanhui Xiao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
4
|
Soni S, Jha AB, Dubey RS, Sharma P. Nanowonders in agriculture: Unveiling the potential of nanoparticles to boost crop resilience to salinity stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171433. [PMID: 38458469 DOI: 10.1016/j.scitotenv.2024.171433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Soil salinization significantly affects crop production by reducing crop quality and decreasing yields. Climate change can intensify salinity-related challenges, making the task of achieving global food security more complex. To address the problem of elevated salinity stress in crops, nanoparticles (NPs) have emerged as a promising solution. NPs, characterized by their small size and extensive surface area, exhibit remarkable functionality and reactivity. Various types of NPs, including metal and metal oxide NPs, carbon-based NPs, polymer-based NPs, and modified NPs, have displayed potential for mitigating salinity stress in plants. However, the effectiveness of NPs application in alleviating plant stress is dependent upon multiple factors, such as NPs size, exposure duration, plant species, particle composition, and prevailing environmental conditions. Moreover, alterations to NPs surfaces through functionalization and coating also play a role in influencing plant tolerance to salinity stress. NPs can influence cellular processes by impacting signal transduction and gene expression. They counteract reactive oxygen species (ROS), regulate the water balance, enhance photosynthesis and nutrient uptake and promote plant growth and yield. The objective of this review is to discuss the positive impacts of diverse NPs on alleviating salinity stress within plants. The intricate mechanisms through which NPs accomplish this mitigation are also discussed. Furthermore, this review addresses existing research gaps, recent breakthroughs, and prospective avenues for utilizing NPs to combat salinity stress.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
5
|
Gohari G, Jiang M, Manganaris GA, Zhou J, Fotopoulos V. Next generation chemical priming: with a little help from our nanocarrier friends. TRENDS IN PLANT SCIENCE 2024; 29:150-166. [PMID: 38233253 DOI: 10.1016/j.tplants.2023.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Plants are exposed to multiple threats linked to climate change which can cause critical yield losses. Therefore, designing novel crop management tools is crucial. Chemical priming has recently emerged as an effective technology for improving tolerance to stress factors. Several compounds such as phytohormones, reactive species, and synthetic chimeras have been identified as promising priming agents. Following remarkable developments in nanotechnology, several unique nanocarriers (NCs) have been engineered that can act as smart delivery systems. These provide an eco-friendly, next-generation method for chemical priming, leading to increased efficiency and reduced overall chemical usage. We review novel engineered NCs (NENCs) as vehicles for chemical agents in advanced priming strategies, and address challenges and opportunities to be met towards achieving sustainable agriculture.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus; Department of Horticulture, Faculty of Horticulture, University of Maragheh, Maragheh, Iran
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China
| | - George A Manganaris
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jie Zhou
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China; Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, PR China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus.
| |
Collapse
|
6
|
Stefanello R, da Silva Garcia WJ, Rossato Viana A, da Rosa Salles T, Bohn Rhoden CR. Graphene oxide decreases the effects of salt stress on Persian clover seed germination. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:47-56. [PMID: 37882219 DOI: 10.1080/15287394.2023.2274338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Among biotic and abiotic stresses, the most restrictive for plant distribution is salt stress, where different concentrations might exert harmful effects on seed germination. Recently, nanomaterials were used successfully to mitigate these stresses, indicating that plants may be able to develop normally in adverse conditions. The aim of this study was to examine the effects of graphene oxide (GO) on the germination of Persian clover seedlings under salt stress conditions. Following sown on substrate paper, seeds were tested after exposure to different concentrations of graphene oxide (0, 125, 250, or 500 mg L-1 GO), sodium chloride (0; -0.1; -0.2; -0.3, or -0.4 MPa NaCl) and/or GO + salt concomitantly, and then stored for 7 days in a germination chamber at 20°C in the presence of light. Seed germination and growth parameters of seedlings were determined. Graphene oxide demonstrated protective effect against salt stress as evident by no marked adverse effects on seed germination where GO blocked the salt-induced reduction in germination. The results obtained provide references for the safe application of nanomaterials and emphasize the significance of GO as a promising material for reducing the toxicity of salts in agriculture.
Collapse
Affiliation(s)
- Raquel Stefanello
- Department of Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Altevir Rossato Viana
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | |
Collapse
|
7
|
Chen Z, Guo Z, Xu N, Cao X, Niu J. Graphene nanoparticles improve alfalfa (Medicago sativa L.) growth through multiple metabolic pathways under salinity-stressed environment. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154092. [PMID: 37716315 DOI: 10.1016/j.jplph.2023.154092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Graphene, one of the emerging carbon nanomaterials, has many advantages and applications. Salinity stress seriously affects ecology and agroforestry worldwide. The effects of graphene on alfalfa under salinity stress were investigated. The results indicated that graphene promoted alfalfa growth under non-salinity stress but caused some degree of damage to root cells and leaf parameters. Graphene used in salinity stress had a positive effect on growth parameters, chlorophyll, photosynthetic gas parameters, stomatal opening, ion balance, osmotic homeostasis, cell membrane integrity and antioxidant system, while it decreased Na+, lipid peroxidation and reactive oxygen species levels. Correlation analysis revealed that most of the parameters were significantly correlated; and principal component analysis indicated that the first two dimensions (78.1% and 4.1%) explained 82.2% of the total variability, and the majority of them exceeded the average contribution. Additionally, Gene Ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis showed that there were numerous differentially expressed genes and pathways to regulate alfalfa responding to salinity stress. Taken together, the findings reveal that graphene does not enter the plant, but improves the properties and adsorption of soil to enhance salt tolerance and seedling growth of alfalfa through morphological, physiological, biochemical, and transcriptomic aspects. Furthermore, this study provides a reference for the application of graphene to improve soil environment and agricultural production.
Collapse
Affiliation(s)
- Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Nan Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xinlong Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
8
|
Panahirad S, Gohari G, Mahdavinia G, Jafari H, Kulak M, Fotopoulos V, Alcázar R, Dadpour M. Foliar application of chitosan-putrescine nanoparticles (CTS-Put NPs) alleviates cadmium toxicity in grapevine (Vitis vinifera L.) cv. Sultana: modulation of antioxidant and photosynthetic status. BMC PLANT BIOLOGY 2023; 23:411. [PMID: 37667189 PMCID: PMC10478426 DOI: 10.1186/s12870-023-04420-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Cadmium (Cd) stress displays critical damage to the plant growth and health. Uptake and accumulation of Cd in plant tissues cause detrimental effects on crop productivity and ultimately impose threats to human beings. For this reason, a quite number of attempts have been made to buffer the adverse effects or to reduce the uptake of Cd. Of those strategies, the application of functionalized nanoparticles has lately attracted increasing attention. Former reports clearly noted that putrescine (Put) displayed promising effects on alleviating different stress conditions like Cd and similarly chitosan (CTS), as well as its nano form, demonstrated parallel properties in this regard besides acting as a carrier for many loads with different applications in the agriculture industry. Herein, we, for the first time, assayed the potential effects of nano-conjugate form of Put and CTS (CTS-Put NP) on grapevine (Vitis vinifera L.) cv. Sultana suffering from Cd stress. We hypothesized that their nano conjugate combination (CTS-Put NPs) could potentially enhance Put proficiency, above all at lower doses under stress conditions via CTS as a carrier for Put. In this regard, Put (50 mg L- 1), CTS (0.5%), Put 50 mg L- 1 + CTS 0.5%" and CTS-Put NPs (0.1 and 0.5%) were applied on grapevines under Cd-stress conditions (0 and 10 mg kg- 1). The interactive effects of CTS-Put NP were investigated through a series of physiological and biochemical assays. RESULTS The findings of present study clearly revealed that CTS-Put NPs as optimal treatments alleviated adverse effects of Cd-stress condition by enhancing chlorophyll (chl) a, b, carotenoids, Fv/Fm, Y(II), proline, total phenolic compounds, anthocyanins, antioxidant enzymatic activities and decreasing Y (NO), leaf and root Cd content, EL, MDA and H2O2. CONCLUSIONS In conclusion, CTS-Put NPs could be applied as a stress protection treatment on plants under diverse heavy metal toxicity conditions to promote plant health, potentially highlighting new avenues for sustainable crop production in the agricultural sector under the threat of climate change.
Collapse
Affiliation(s)
- Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Gholamreza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Hessam Jafari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Igdir, Turkey
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mohammadreza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
9
|
Bhattacharya N, Cahill DM, Yang W, Kochar M. Graphene as a nano-delivery vehicle in agriculture - current knowledge and future prospects. Crit Rev Biotechnol 2023; 43:851-869. [PMID: 35815813 DOI: 10.1080/07388551.2022.2090315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Graphene has triggered enormous interest in, and exploration of, its applications in diverse areas of science and technology due to its unique properties. While graphene has displayed great potential as a nano-delivery system for drugs and biomolecules in biomedicine, its application as a nanocarrier in agriculture has only begun to be explored. Conventional fertilizers and agricultural delivery systems have a number of disadvantages, such as: fast release of the active ingredient, low delivery efficiency, rapid degradation and low stability that often leads to their over-application and consequent environmental problems. Advanced nano fertilizers with high carrier efficiency and slow and controlled release are now considered the gold standard for promoting agricultural sustainability while protecting the environment. Graphene's attractive properties include large surface area, chemical stability, mechanical stability, tunable surface chemistry and low toxicity making it a promising material on which to base agricultural delivery systems. Recent research has demonstrated considerable success in the use of graphene for agricultural applications, including its utilization as a delivery vehicle for plant nutrients and crop protection agents, as well as in post-harvest management of crops. This review, therefore, presents a comprehensive overview of the current status of graphene-based nanocarriers in agriculture. Additionally, the review outlines the surface functionalization methods used for effective molecular delivery, various strategies for nano-vehicle design and the underlying features necessary for a graphene-based agro-delivery system. Finally, the review discusses directions for further research in optimization of graphene-based nanocarriers.
Collapse
Affiliation(s)
- Nandini Bhattacharya
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gual Pahari, Haryana, India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Mandira Kochar
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gual Pahari, Haryana, India
| |
Collapse
|
10
|
Malekzadeh MR, Roosta HR, Kalaji HM. GO nanoparticles mitigate the negative effects of salt and alkalinity stress by enhancing gas exchange and photosynthetic efficiency of strawberry plants. Sci Rep 2023; 13:8457. [PMID: 37231167 DOI: 10.1038/s41598-023-35725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
Considering the potential use of nanomaterials, particularly carbon-based nanostructures, in agriculture, we conducted a study to investigate the effect of graphene oxide (GO) on strawberry plants under salinity and alkalinity stress conditions. We used GO concentrations of 0, 2.5, 5, 10, and 50 mg/L, and applied stress treatments at three levels: without stress, salinity (80 mM NaCl), and alkalinity (40 mM NaHCO3). Our results indicate that both salinity and alkalinity stress negatively impacted the gas exchange parameters of the strawberry plants. However, the application of GO significantly improved these parameters. Specifically, GO increased PI, Fv, Fm, and RE0/RC parameters, as well as chlorophyll and carotenoid contents in the plants. Moreover, the use of GO significantly increased the early yield and dry weight of leaves and roots. Therefore, it can be concluded that the application of GO can enhance the photosynthetic performance of strawberry plants, and improve their resistance to stress conditions.
Collapse
Affiliation(s)
- Mohammad Reza Malekzadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, 7718817111, Iran.
| | - Hamid Reza Roosta
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Science, 159 Nowoursynowska St., 02-776, Warsaw, Poland
- Institute of Technology and Life Sciences-National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| |
Collapse
|
11
|
Panahirad S, Dadpour M, Gohari G, Akbari A, Mahdavinia G, Jafari H, Kulak M, Alcázar R, Fotopoulos V. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticle: A promising stress-protecting agent against cadmium stress in grapevine (Vitis vinifera cv. Sultana). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107653. [PMID: 36965321 DOI: 10.1016/j.plaphy.2023.107653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Due to their sessile nature, plant cannot escape from stress factors in their growing environment, in either biotic or abiotic nature. Amid the abiotic stress factors; high levels of soil cadmium (Cd) impose heavy metal stress on plants, resulting in critical injuries and reduced agronomic performance. In order to buffer the adverse effects of Cd stress, novel nanoparticles (NP) have been applied and notable improvements have been reported. According to the literature, the protective roles of polyamines (e.g., Putrescine; Put) and carbon quantum dots (CQD) have been reported with respect to the plant productivity under either stress or non-stress conditions. Those reports led us to hypothesize that the conjugation of Put and CQD (Put-CQD NPs) might lead to further augmented performance of plants under stress and non-stress conditions. In this regard, we successfully synthesized a novel nanomaterial Put-CQD NPs. In this respect, Put (50 mg L-1), CQD (50 mg L-1) and Put-CQD NPs (25 and 50 mg L-1) were sprayed in 'Sultana' grapevines under Cd stress (10 mg kg-1). As expected, upon stress, Cd content in leaf and root tissues increased by 103.40% and 65.15%, respectively (p < 0.05). The high uptake and accumulation of Cd in plant tissues were manifested in significant alterations of physiological and biochemical attributes of the plant. Concerning stress markers, Cd stress caused increases in content of induced MDA, H2O2, and proline as well as electrolyte leakage rate. As expected, Cd stress caused critical reductions in fresh and dry leaf weight by 21.31% and 42.34%, respectively (p < 0.05). On the other hand, both Put-CQD NPs increased fresh and dry leaf weigh up to approximately 30%. The Cd-mediated disturbances in photosynthetic pigments and chlorophyll fluorescence were buffered with Put-CQD NPs. Of the defence system, enzymatic (SOD, APX, GP) as well as anthocyanin and phenolics were induced by both Cd stress and Put-CQD NPs (p < 0.05). On the other hand, Cd stress reduced content of polyamines (putrescine (Put), spermine (Spm) and spermidine (Spd) by 39.28%, 53.36%, and 39.26%, respectively (p < 0.05). However, the reduction levels were buffered by the treatments. Considering the effectiveness of both NP concentrations, the lower dose (25 mg L-1) could be considered as an optimal concentration. To our knowledge, this is the first report of its kind as a potential agent to reduce the adverse effects of Cd stress in grapevines.
Collapse
Affiliation(s)
- Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mohammadreza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran; Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholamreza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Hessam Jafari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Turkiye
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| |
Collapse
|
12
|
Gohari G, Panahirad S, Mohammadi A, Kulak M, Dadpour MR, Lighvan ZM, Sharifi S, Eftekhari-Sis B, Szafert S, Fotopoulos V, Akbari A. Characterization of Octa-aminopropyl polyhedral oligomeric silsesquioxanes (OA-POSS) nanoparticles and their effect on sweet basil (Ocimum basilicum L.) response to salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:89-102. [PMID: 36706695 DOI: 10.1016/j.plaphy.2023.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Salt stress is of the most detrimental abiotic stress factors on either crop or non-crop species. Of the strategies employed to boost the performance of the plants against harmful impacts of salt stress; application of novel nano-engineered particles have recently gained great attention as a promising tool. Octa-aminopropyl polyhedral oligomeric silsesquioxanes nanoparticles (OA-POSS NPs) were synthesized and then a foliar-application of OA-POSS NPs were carried out on sweet basil plants subjected to the salt stress. In that context, interactive effects of OA-POSS NPs (25, 50 and 100 mg L-1) and salinity stress (50 and 100 mM NaCl) were assayed by estimating a series of agronomic, physiological, biochemical and analytical parameters. OA-POSS NPs decreased the harmful effects of salinity by increasing photosynthetic pigment content, adjusting chlorophyll fluorescence, and triggering non-enzymatic (phenolic content) and enzymatic antioxidant components. The findings suggested that 25 mg L-1 OA-POSS NPs is the optimum concentration for sweet basil grown under salt stress. Considering the essential oil profile, estragole was the predominant compound with a percentage higher than 50% depending on the treatment. In comparison to the control group, 50 mM NaCl did not significantly affect estragole content, whilst 100 mM NaCl caused a substantial increase in estragole content. Regarding OA-POSS NPs treatments, increments by 16.8%, 11.8% and 17.5% were observed following application with 25, 50 and 100 mg L-1, respectively. Taken together, the current study provides evidence that POSS NPs can be employed as novel, 'green' growth promoting agents in combating salt stress in sweet basil.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran; Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus.
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Asghar Mohammadi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Turkiye
| | - Mohamad Reza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zohreh Mehri Lighvan
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran
| | - Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot Curie 14, 50383 Wrocław, Poland
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
13
|
Tang Y, Peng J, Lin J, Zhang M, Tian Y, Shang Y, Chen S, Bao X, Wang Q. A HD-Zip I transcription factor from physic nut, JcHDZ21, confers sensitive to salinity in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1097265. [PMID: 36875584 PMCID: PMC9977192 DOI: 10.3389/fpls.2023.1097265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
HD-Zip is a plant-specific transcription factor that plays an important regulatory role in plant growth and stress response. However, there have been few reports on the functions of members of the physic nut HD-Zip gene family. In this study, we cloned a HD-Zip I family gene from physic nut by RT-PCR, and named JcHDZ21. Expression pattern analysis showed that JcHDZ21 gene had the highest expression in physic nut seeds, and salt stress inhibited the expression of JcHDZ21 gene. Subcellular localization and transcriptional activity analysis showed that JcHDZ21 protein is localized in the nucleus and has transcriptional activation activity. Salt stress results indicated that JcHDZ21 transgenic plants were smaller and had more severe leaf yellowing compared to those of the wild type. Physiological indicators showed that transgenic plants had higher electrical conductivity and MDA content, and lower proline and betaine content compared with wild-type plants under salt stress. In addition, the expression of abiotic stress-related genes in JcHDZ21 transgenic plants was significantly lower than that in wild type under salt stress. Our results showed that ectopic expression of JcHDZ21 increased the sensitivity of transgenic Arabidopsis to salt stress. This study provides a theoretical basis for the future application of JcHDZ21 gene in the breeding of physic nut stress-tolerant varieties.
Collapse
Affiliation(s)
- Yuehui Tang
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Jingrui Peng
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Jin Lin
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Miaomiao Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Yun Tian
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Yaqian Shang
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Shuying Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Xinxin Bao
- School of Journalism and Communication, Zhoukou Normal University, Henan, Zhoukou, China
| | - Qiyuan Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| |
Collapse
|
14
|
Arikan B, Alp FN, Ozfidan-Konakci C, Balci M, Elbasan F, Yildiztugay E, Cavusoglu H. Fe 2O 3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. CHEMOSPHERE 2022; 307:136048. [PMID: 35987272 DOI: 10.1016/j.chemosphere.2022.136048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The ever-increasing plastic pollution in soil and water resources raises concerns about its effects on terrestrial plants and agroecosystems. Although there are many reports about the contamination with nanoplastics on plants, the presence of magneto-assisted nanomaterials enabling the removal of their adverse impacts still remains unclear. Therefore, the purpose of the current study is to evaluate the potential of nanomaterial Fe2O3-modified graphene oxide (FGO, 50-250 mg L-1) to eliminate the adverse effects of nanoplastics in plants. Wheat plants exposed to polystyrene nanoplastics concentrations (PS, 10, 50 and 100 mg L-1) showed decreased growth, water content and loss of photosynthetic efficiency. PS toxicity negatively altered gas exchange, antenna structure and electron transport in photosystems. Although the antioxidant system was partially activated (only superoxide dismutase (SOD), NADPH oxidase (NOX) and glutathione reductase (GR)) in plants treated with PS, it failed to prevent PS-triggered oxidative damage, as showing lipid peroxidation and hydrogen peroxide (H2O2) levels. FGOs eliminated the adverse impacts of PS pollution on growth, water status, gas exchange and oxidative stress markers. In addition, FGOs preserve the biochemical reactions of photosynthesis by actively increasing chlorophyll fluorescence parameters in the stressed-wheat leaves. The activities of all enzymatic antioxidants increased, and the H2O2 and TBARS contents decreased. GSH-mediated detoxifying antioxidants such as glutathione S-transferase (GST) and glutathione peroxidase (GPX) were stimulated by FGOs against PS pollution. FGOs also triggered the enzymes and non-enzymes related to the Asada-Halliwell cycle and protected the regeneration of ascorbate (AsA) and glutathione (GSH). Our findings indicated that FGO had the potential to mitigate nanoplastic-induced damage in wheat by regulating water relations, protecting photosynthesis reactions and providing efficient ROS scavenging with high antioxidant capacity. This is the first report on removing PS-induced damage by FGO applications in wheat leaves.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Melike Balci
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
15
|
Sarkar MM, Pradhan N, Subba R, Saha P, Roy S. Sugar-terminated carbon-nanodots stimulate osmolyte accumulation and ROS detoxification for the alleviation of salinity stress in Vigna radiata. Sci Rep 2022; 12:17567. [PMID: 36266315 PMCID: PMC9585090 DOI: 10.1038/s41598-022-22241-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
In recent times, nanotechnology has emerged as an efficient tool to manage the adverse effect of environmental stresses on plants. In this connection, carbon-nanodots (CNDs) have been reported to ameliorate the negative impacts of salinity stress. Further, surface modification of CNDs is believed to augment their stress-alleviating potential, however, very little has been known about the potential of surface-functionalized CNDs. In this purview, two sugar (trehalose and glucose) terminated CNDs (CNPT and CNPG) have been synthesized and assessed for their stress-alleviating effects on Vigna radiata (a salt-sensitive legume) seedlings subjected to different concentrations of NaCl (0, 50, and 100 mM). The synthesized CNDs (CNPT and CNPG) exhibited a hydrodynamic size of 20-40 nm and zeta potential of up to - 22 mV with a 5-10 nm core. These water-soluble nanomaterials exhibited characteristic fluorescence emission properties viz. orange and greenish-yellow for CNPT and CNPG respectively. The successful functionalization of the sugar molecules on the CND cores was further confirmed using FTIR, XRD, and AFM. The results indicated that the application of both the CNDs improved seed germination, growth, pigment content, ionic and osmotic balance, and most importantly, the antioxidant defense which decreased ROS accumulation. At the same time, CNPT and CNPG exhibited no toxicity in the Allium cepa root tip bioassay. Therefore, it can be concluded that sugar-terminated CNDs improved the plant responses to salinity stress by facilitating sugar uptake to the aerial part of the seedlings.
Collapse
Affiliation(s)
- Mahima Misti Sarkar
- grid.412222.50000 0001 1188 5260Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal 734013 India
| | - Nibedita Pradhan
- School of Bioscience, Indian Institute of Technology, Kharagpur, West Midnapore, West Bengal 721101 India
| | - Rewaj Subba
- grid.412222.50000 0001 1188 5260Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal 734013 India
| | - Puja Saha
- grid.412222.50000 0001 1188 5260Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal 734013 India
| | - Swarnendu Roy
- grid.412222.50000 0001 1188 5260Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal 734013 India
| |
Collapse
|
16
|
Gohari G, Farhadi H, Panahirad S, Zareei E, Labib P, Jafari H, Mahdavinia G, Hassanpouraghdam MB, Ioannou A, Kulak M, Fotopoulos V. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. Int J Biol Macromol 2022; 224:893-907. [DOI: 10.1016/j.ijbiomac.2022.10.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
17
|
Jampilek J, Kralova K. Advances in Biologically Applicable Graphene-Based 2D Nanomaterials. Int J Mol Sci 2022; 23:6253. [PMID: 35682931 PMCID: PMC9181547 DOI: 10.3390/ijms23116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Climate change and increasing contamination of the environment, due to anthropogenic activities, are accompanied with a growing negative impact on human life. Nowadays, humanity is threatened by the increasing incidence of difficult-to-treat cancer and various infectious diseases caused by resistant pathogens, but, on the other hand, ensuring sufficient safe food for balanced human nutrition is threatened by a growing infestation of agriculturally important plants, by various pathogens or by the deteriorating condition of agricultural land. One way to deal with all these undesirable facts is to try to develop technologies and sophisticated materials that could help overcome these negative effects/gloomy prospects. One possibility is to try to use nanotechnology and, within this broad field, to focus also on the study of two-dimensional carbon-based nanomaterials, which have excellent prospects to be used in various economic sectors. In this brief up-to-date overview, attention is paid to recent applications of graphene-based nanomaterials, i.e., graphene, graphene quantum dots, graphene oxide, graphene oxide quantum dots, and reduced graphene oxide. These materials and their various modifications and combinations with other compounds are discussed, regarding their biomedical and agro-ecological applications, i.e., as materials investigated for their antineoplastic and anti-invasive effects, for their effects against various plant pathogens, and as carriers of bioactive agents (drugs, pesticides, fertilizers) as well as materials suitable to be used in theranostics. The negative effects of graphene-based nanomaterials on living organisms, including their mode of action, are analyzed as well.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
18
|
Ozfidan-Konakci C, Alp FN, Arikan B, Balci M, Parmaksizoglu Z, Yildiztugay E, Cavusoglu H. The effects of fullerene on photosynthetic apparatus, chloroplast-encoded gene expression, and nitrogen assimilation in Zea mays under cobalt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13720. [PMID: 35596692 DOI: 10.1111/ppl.13720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanostructures, such as the water-soluble fullerene (FLN) derivatives, are considered perspective agents for agriculture. FLN can be a novel nano-agent modulating plant response against stress conditions. However, the mechanism underlying the impacts of FLN on plants in agroecosystems remains unclear. Zea mays was exposed to exogenous C60 -FLN applications (FLN1: 100; FLN2: 250; and FLN3: 500 mg L-1 ) with/without cobalt stress (Co, 300 μM) for 3 days (d). In the maize chloroplasts, Co stress disrupted the photosynthetic efficiency and the expression of genes related to the photosystems (psaA and psbA). FLNs effectively improved the efficiency and photochemical reaction of photosystems. Co stress induced the accumulation of reactive oxygen species (ROS) as confirmed by ROS-specific fluorescence in guard cells. Co stress increased only chloroplastic superoxide dismutase (SOD) and peroxidase (POX). Stress triggered oxidative damages in maize chloroplasts, measured as an increase in TBARS content. In Co-stressed seedlings exposed to FLN1 and FLN2 exposures, the hydrogen peroxide (H2 O2 ) was scavenged through the nonenzymes/enzymes-related to the AsA-GSH cycle by preserving ascorbate (AsA) conversion, as well as GSH/GSSG and glutathione (GSH) redox state. Also, the alleviation effect of FLN3 against stress could be attributed to increased glutathione S-transferase (GST) activity and AsA regeneration. FLN applications reversed the inhibitory effects of Co stress on nitrogen assimilation. In maize chloroplasts, FLN increased the activities of nitrate reductase (NR), glutamate dehydrogenase (GDH), nitrite reductase (NiR), and glutamine synthetase (GS), which provided conversion of inorganic nitrogen (N) into organic N. The ammonium (NH4 + ) toxicity was removed via GS and GDH but not glutamate synthase (GOGAT). The increased NAD-GDH (deaminating) and NADH-GDH (aminating) activities indicated that GDH was needed more for NH4 + detoxification. Therefore, FLN exposure to Co-stressed maize plants might play a role in N metabolism regarding the partitioning of N assimilates. Exogenous FLN conceivably removed Co toxicity by improving the expressions of genes related to reaction center proteins of photosystems, increasing the level of enzymes related to the defense system, and improving the N assimilation in maize chloroplasts.
Collapse
Affiliation(s)
- Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Melike Balci
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Zeynep Parmaksizoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Konya, Turkey
| |
Collapse
|
19
|
Li Z, Zhu L, Zhao F, Li J, Zhang X, Kong X, Wu H, Zhang Z. Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:843994. [PMID: 35392516 PMCID: PMC8981240 DOI: 10.3389/fpls.2022.843994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The area of salinized land is gradually expanding cross the globe. Salt stress seriously reduces the yield and quality of crops and endangers food supply to meet the demand of the increased population. The mechanisms underlying nano-enabled plant tolerance were discussed, including (1) maintaining ROS homeostasis, (2) improving plant's ability to exclude Na+ and to retain K+, (3) improving the production of nitric oxide, (4) increasing α-amylase activities to increase soluble sugar content, and (5) decreasing lipoxygenase activities to reduce membrane oxidative damage. The possible commonly employed mechanisms such as alleviating oxidative stress damage and maintaining ion homeostasis were highlighted. Further, the possible role of phytohormones and the molecular mechanisms in nano-enabled plant salt tolerance were discussed. Overall, this review paper aims to help the researchers from different field such as plant science and nanoscience to better understand possible new approaches to address salinity issues in agriculture.
Collapse
Affiliation(s)
- Zengqiang Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fameng Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangjun Kong
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
20
|
Azimi F, Oraei M, Gohari G, Panahirad S, Farmarzi A. Chitosan-selenium nanoparticles (Cs-Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:257-268. [PMID: 34391200 DOI: 10.1016/j.plaphy.2021.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 08/08/2021] [Indexed: 05/27/2023]
Abstract
In view of damaging impacts of cadmium (Cd) toxicity on various vital processes of plants and strategies for alleviating these effects, selenium (Se) application has been recently achieved great attention. In addition, chitosan (CS) and its nano-form, besides many positive effects on plants, could be considered as an excellent adsorption matrix and a carrier for a wide range of materials like Se with various applications in agricultural sector. For that point, the combination nano-form of Se and CS (CS-Se NPs), using CS as a carrier and control releaser for Se, could enhance Se efficiency particularly at lower doses under stress conditions. Therefore, Se (10 mg L-1), CS (0.1%) and CS-Se NPs (in two concentrations; 5 and 10 mg L-1) were applied on Moldavian balm plant under 0, 2.5 and 5 mg kg-1 Cd-stress conditions. The results demonstrated that mostly Se and CS-Se NPs treatments could lessen negative effects of Cd-stress conditions through enhancing agronomic traits, photosynthetic pigments, chlorophyll fluorescence parameters and SPAD, proline, phenols, antioxidant enzymes activities and some dominant constituents of essential oils and decreasing MDA and H2O2. These encouraging impacts were more significant at lower dose of CS-Se NPs (5 mg L-1) introducing it as the best treatment to ameliorate Moldavian balm performance under Cd-stress conditions. In conclusion, CS-Se NPs could be considered as a supportive approach in plant production mainly under different heavy metal stressful conditions and probably a potential plant growth promoting and stress protecting agent with new outlooks for applying in agricultural sector.
Collapse
Affiliation(s)
- Fatemeh Azimi
- Department of Horticultural Sciences, Faculty of Agriculture, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| | - Mehdi Oraei
- Department of Horticultural Sciences, Faculty of Agriculture, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Farmarzi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| |
Collapse
|
21
|
Wang Y, Bian Z, Pan T, Cao K, Zou Z. Improvement of tomato salt tolerance by the regulation of photosynthetic performance and antioxidant enzyme capacity under a low red to far-red light ratio. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:806-815. [PMID: 34530325 DOI: 10.1016/j.plaphy.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 05/04/2023]
Abstract
The red light (R) to far-red light (FR) ratio (R:FR) regulates plant responses to salt stress, but the regulation mechanism is still unclear. In this study, tomato seedlings were grown under half-strength Hoagland solution with or without 150 mM NaCl at two different R:FR ratios (7.4 and 0.8). The photosynthetic capacity, antioxidant enzyme activities, and the phenotypes at chloroplast ultrastructure and whole plant levels were investigated. The results showed that low R:FR significantly alleviated the damage of tomato seedlings from salt stress. On day 4, 8, and 12 at low R:FR, the maximum photochemical quantum yields (Fv/Fm) of photosystem II (PSII) were increased by 4.53%, 3.89%, and 16.49%, respectively; the net photosynthetic rates (Pn) of leaves were increased by 16.21%, 90.81%, and 118.00%, respectively. Low R:FR enhanced the integrity and stability of the chloroplast structure of salinity-treated plants through maintaining the high activities of antioxidant enzymes and mitigated the degradation rate of photosynthetic pigments caused by reactive oxygen species (ROS) under salt stress. The photosynthesis, antioxidant enzyme-related gene expression, and transcriptome sequencing analysis of tomato seedlings under different treatments were also investigated. Low R:FR promoted the de novo synthesis of D1 protein via triggering psbA expression, and upregulated the transcripts of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) related genes. Meanwhile, the transcriptome analysis confirmed the positive function of low R:FR on enhancing tomato salinity stress tolerance from the regulation of photosynthesis and ROS scavenging systems.
Collapse
Affiliation(s)
- Yunlong Wang
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Zhonghua Bian
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan, 610299, China
| | - Tonghua Pan
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Kai Cao
- Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Zhirong Zou
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|