1
|
Yu Y, Alseekh S, Zhu Z, Zhou K, Fernie AR. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2641-2659. [PMID: 38817148 DOI: 10.1111/pbi.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.
Collapse
Affiliation(s)
- Yan Yu
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zonghe Zhu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Kejin Zhou
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Mittra PK, Rahman MA, Roy SK, Kwon SJ, Yun SH, Kun C, Zhou M, Katsube-Tanaka T, Shiraiwa T, Woo SH. Deciphering proteomic mechanisms explaining the role of glutathione as an aid in improving plant fitness and tolerance against cadmium-toxicity in Brassica napus L. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134262. [PMID: 38640678 DOI: 10.1016/j.jhazmat.2024.134262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Cadmium (Cd) hazard is a serious limitation to plants, soils and environments. Cd-toxicity causes stunted growth, chlorosis, necrosis, and plant yield loss. Thus, ecofriendly strategies with understanding of molecular mechanisms of Cd-tolerance in plants is highly demandable. The Cd-toxicity caused plant growth retardation, leaf chlorosis and cellular damages, where the glutathione (GSH) enhanced plant fitness and Cd-toxicity in Brassica through Cd accumulation and antioxidant defense. A high-throughput proteome approach screened 4947 proteins, wherein 370 were differently abundant, 164 were upregulated and 206 were downregulated. These proteins involved in energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense response, heavy metal detoxification, cytoskeleton and cell wall structure, and plant development in Brassica. Interestingly, several key proteins including glutathione S-transferase F9 (A0A078GBY1), ATP sulfurylase 2 (A0A078GW82), cystine lyase CORI3 (A0A078FC13), ferredoxin-dependent glutamate synthase 1 (A0A078HXC0), glutaredoxin-C5 (A0A078ILU9), glutaredoxin-C2 (A0A078HHH4) actively involved in antioxidant defense and sulfur assimilation-mediated Cd detoxification process confirmed by their interactome analyses. These candidate proteins shared common gene networks associated with plant fitness, Cd-detoxification and tolerance in Brassica. The proteome insights may encourage breeders for enhancing multi-omics assisted Cd-tolerance in Brassica, and GSH-mediated hazard free oil seed crop production for global food security.
Collapse
Affiliation(s)
- Probir Kumar Mittra
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Republic of Korea
| | - Md Atikur Rahman
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Republic of Korea
| | - Swapan Kumar Roy
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10 Uttara Model Town, Dhaka 1230, Bangladesh
| | - Soo-Jeong Kwon
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Republic of Korea
| | - Sung Ho Yun
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheong-ju 28119, Republic of Korea
| | - Cho Kun
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheong-ju 28119, Republic of Korea
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhongguancun Street, Haidian, Beijing 100081, China
| | - Tomoyuki Katsube-Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tatsuhiko Shiraiwa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Republic of Korea.
| |
Collapse
|
3
|
Sana S, Ramzan M, Ejaz S, Danish S, Salmen SH, Ansari MJ. Differential responses of chili varieties grown under cadmium stress. BMC PLANT BIOLOGY 2024; 24:7. [PMID: 38163887 PMCID: PMC10759427 DOI: 10.1186/s12870-023-04678-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Heavy metal cadmium (Cd) naturally occurs in soil and is a hazardous trace contaminant for humans, animals, and plants. The main sources of Cd pollution in soil include overuse of phosphatic fertilizers, manure, sewage sludge, and aerial deposition. That's why an experiment was conducted to analyze the effect of Cd toxicity in Capsicum annuum L. by selecting its seven varieties: Hybrid, Desi, Sathra, G-916, BR-763, BG-912, and F1-9226. Cadmium was spiked in soil with four levels, i.e., (0, 3, 4, and 5 mg Cd kg- 1 of soil) for a week for homogeneous dispersion of heavy metal. Chili seeds were sown in compost-filled loamy soil, and 25-day-old seedlings were transplanted into Cd-spiked soil. Cadmium increasing concentration in soil decreased chili growth characteristics, total soluble sugars, total proteins, and amino acids. On the other hand, the activities of antioxidant enzymes were increased with the increasing concentration of Cd in almost all the varieties. Treatment 5 mg Cd/kg application caused - 197.39%, -138.78%, -60.77%, -17.84%, -16.34%, -11.82% and - 10.37% decrease of carotenoids level in chili V2 (Desi) followed by V4 (G-916), V1 (Hy7brid), V7 (F1-9226), V6 (BG-912), V5 (BR-763) and V3 (Sathra) as compared to their controls. The maximum flavonoids among varieties were in V5 (BR-763), followed by V6 (BG-912), V7 (F1-9226), V3 (Sathra) and V1 (Hybrid). Flavonoids content was decreased with - 37.63% (Sathra), -34.78% (Hybrid), -33.85% (G-916), -31.96% (F1-9226), -31.44% (Desi), -30.58% (BR-763), -22.88% (BG-912) as compared to their control at 5 mg Cd/kg soil stress. The maximum decrease in POD, SOD, and CAT was - 31.81%, -25.98%, -16.39% in chili variety V7 (F1-9226) at 5 mg Cd/kg stress compared to its control. At the same time, maximum APX content decrease was - 82.91%, followed by -80.16%, -65.19%, -40.31%, -30.14%, -10.34% and - 6.45% in V4 (G-916), V2 (Desi), V3 (Sathra), V6 (BG-912), V1 (Hybrid), V7 (F1-9226) and V5 (BR-763) at 5 mg Cd/kg treatment as compared to control chili plants. The highest CAT was found in 5 chili varieties except Desi and G-916. Desi and G-916 varieties. V5 (BR-763) and V6 (BG-912) were susceptible, while V1 (Hybrid), V3 (Sathra), and V7 (F1-9226) were with intermediate growth attributes against Cd stress. Our results suggest that Desi and G-916 chili varieties are Cd tolerant and can be grown on a large scale to mitigate Cd stress naturally.
Collapse
Affiliation(s)
- Sundas Sana
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
- Al-Waili foundation of Science, New York, USA
| |
Collapse
|
4
|
Liu Z, Lu Q, Zhao Y, Wei J, Liu M, Duan X, Lin M. Ameliorating Effects of Graphene Oxide on Cadmium Accumulation and Eco-Physiological Characteristics in a Greening Hyperaccumulator ( Lonicera japonica Thunb.). PLANTS (BASEL, SWITZERLAND) 2023; 13:19. [PMID: 38202327 PMCID: PMC10780341 DOI: 10.3390/plants13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Graphene oxide (GO), as a novel carbon-based nanomaterial (CBN), has been widely applied to every respect of social life due to its unique composite properties. The widespread use of GO inevitably promotes its interaction with heavy metal cadmium (Cd), and influences its functional behavior. However, little information is available on the effects of GO on greening hyperaccumulators under co-occurring Cd. In this study, we chose a typical greening hyperaccumulator (Lonicera japonica Thunb.) to show the effect of GO on Cd accumulation, growth, net photosynthesis rate (Pn), carbon sequestration and oxygen release functions of the plant under Cd stress. The different GO-Cd treatments were set up by (0, 10, 50 and 100 mg L-1) GO and (0, 5 and 25 mg L-1) Cd in solution culture. The maximum rate of Cd accumulation in the roots and shoots of the plant were increased by 10 mg L-1 GO (exposed to 5 mg L-1 Cd), indicating that low-concentration GO (10 mg L-1) combined with low-concentration Cd (5 mg L-1) might stimulate the absorption of Cd by L. japonica. Under GO treatments without Cd, the dry weight of root and shoot biomass, Pn value, carbon sequestration per unit leaf area and oxygen release per unit leaf area all increased in various degrees, especially under 10 mg L-1 GO, were 20.67%, 12.04%, 35% and 28.73% higher than the control. Under GO-Cd treatments, it is observed that the cooperation of low-concentration GO (10 mg L-1) and low-concentration Cd (5 mg L-1) could significantly stimulate Cd accumulation, growth, photosynthesis, carbon sequestration and oxygen release functions of the plant. These results indicated that suitable concentrations of GO could significantly alleviate the effects of Cd on L. japonica, which is helpful for expanding the phytoremediation application of greening hyperaccumulators faced with coexistence with environment of nanomaterials and heavy metals.
Collapse
Affiliation(s)
- Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Qingxuan Lu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Yi Zhao
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Jianbing Wei
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Miao Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Xiangbo Duan
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Maosen Lin
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
5
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
6
|
Mittra PK, Roy SK, Rahman MA, Naimuzzaman M, Kwon SJ, Yun SH, Cho K, Katsube-Tanaka T, Shiraiwa T, Woo SH. Proteome insights of citric acid-mediated cadmium toxicity tolerance in Brassica napus L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115461-115479. [PMID: 37882925 DOI: 10.1007/s11356-023-30442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Cadmium (Cd) is a toxic substance that is uptake by plants from soils, Cd easily transfers into the food chain. Considering global food security, eco-friendly, cost-effective, and metal detoxification strategies are highly demandable for sustainable food crop production. The purpose of this study was to investigate how citric acid (CA) alleviates or tolerates Cd toxicity in Brassica using a proteome approach. In this study, the global proteome level was significantly altered under Cd toxicity with or without CA supplementation in Brassica. A total of 4947 proteins were identified using the gel-free proteome approach. Out of these, 476 proteins showed differential abundance between the treatment groups, wherein 316 were upregulated and 160 were downregulated. The gene ontology analysis reveals that differentially abundant proteins were involved in different biological processes including energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense, heavy metal detoxification, plant development, and cytoskeleton and cell wall structure in Brassica leaves. Interestingly, several candidate proteins such as superoxide dismutase (A0A078GZ68) L-ascorbate peroxidase 3 (A0A078HSG4), glutamine synthetase (A0A078HLB2), glutathione S-transferase DHAR1 (A0A078HPN8), glutamine synthetase (A0A078HLB2), cysteine synthase (A0A078GAD3), S-adenosylmethionine synthase 2 (A0A078JDL6), and thiosulfate/3-mercaptopyruvate sulfur transferase 2 (A0A078H905) were involved in antioxidant defense system and sulfur assimilation-involving Cd-detoxification process in Brassica. These findings provide new proteome insights into CA-mediated Cd-toxicity alleviation in Brassica, which might be useful to oilseed crop breeders for enhancing heavy metal tolerance in Brassica using the breeding program, with sustainable and smart Brassica production in a metal-toxic environment.
Collapse
Affiliation(s)
- Probir Kumar Mittra
- Department of Crop Science, Chungbuk National University, Cheong-Ju, 28644, Republic of Korea
| | - Swapan Kumar Roy
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10 Uttara Model Town, Dhaka, 1230, Bangladesh
| | - Md Atikur Rahman
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea
| | - Mollah Naimuzzaman
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10 Uttara Model Town, Dhaka, 1230, Bangladesh
| | - Soo-Jeong Kwon
- Department of Crop Science, Chungbuk National University, Cheong-Ju, 28644, Republic of Korea
| | - Sung Ho Yun
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheong-Ju, 28119, Republic of Korea
| | - Kun Cho
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheong-Ju, 28119, Republic of Korea
| | - Tomoyuki Katsube-Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Tatsuhiko Shiraiwa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-Ju, 28644, Republic of Korea.
| |
Collapse
|
7
|
Zeng Z, Chen J, Liu X, Li Y, Zhang Y, Cai H, Chen J, Rao D, Shen W. Ultrasonic treatment alleviated cadmium stress in sugarcane via improving antioxidant activity and physiological and biochemical status. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115381. [PMID: 37597288 DOI: 10.1016/j.ecoenv.2023.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Cadmium (Cd) is a toxic element that endangers crop growth and affects food safety and human health. Therefore, the study of Cd mitigation technology is important. Ultrasonic treatment can improve crop growth and enhance their ability to resist various abiotic stresses. In this study, the effect of ultrasonic treatment on alleviating sugarcane Cd stress was studied in a barrel experiment using sugarcane varieties 'ROC22' and 'LC05-136' as test materials. Sugarcane buds without ultrasonic treatment and with ultrasonic treatment (20-40 kHz mixed frequency ultrasound for 2 min, dry treatment) were planted in soil with Cd contents of 0, 50, 100, 250, and 500 mg·kg-1. Compared with non-ultrasonic treatment, Ultrasonic treatment significantly increased the activities of antioxidant enzymes in sugarcane, significantly increased the content of osmoregulation substances, significantly reduced the content of superoxide anion (the highest decreases reached 11.55%) and malondialdehyde (the highest decreases reached 20.59%), and significantly increased the expression level of metallothionein (MT)-related genes, with the expression of ScMT1 increased by 8.80-37.49% and the expression of ScMT2-1-5 increased by 1.55-69.33%. In addition, ultrasonic treatment significantly reduced the Cd contents in sugarcane roots, stems, leaves, bagasse, and juice (the highest reduction in Cd content was 49.18%). In general, ultrasonic treatment regulated the metabolism of reactive oxygen species and MT-related gene expression in sugarcane, increased the Cd tolerance of sugarcane, promoted photosynthesis in sugarcane leaves, improved root morphology, enhanced sugarcane growth, and increased cane and sugar yield.
Collapse
Affiliation(s)
- Zhen Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiaoyun Chen
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangli Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongjia Li
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yi Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huabo Cai
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianwen Chen
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Dehua Rao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wankuan Shen
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Sugarcane Research Laboratory, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
8
|
Liu Z, An J, Lu Q, Yang C, Mu Y, Wei J, Hou Y, Meng X, Zhao Z, Lin M. Effects of Cadmium Stress on Carbon Sequestration and Oxygen Release Characteristics in A Landscaping Hyperaccumulator- Lonicera japonica Thunb. PLANTS (BASEL, SWITZERLAND) 2023; 12:2689. [PMID: 37514303 PMCID: PMC10385468 DOI: 10.3390/plants12142689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The carbon sequestration and oxygen release of landscape plants are dominant ecological service functions, which can play an important role in reducing greenhouse gases, improving the urban heat island effect and achieving carbon peaking and carbon neutrality. In the present study, we are choosing Lonicera japonica Thunb. as a model plant to show the effects of Cd stress on growth, photosynthesis, carbon sequestration and oxygen release characteristics. Under 5 mg kg-1 of Cd treatment, the dry weight of roots and shoots biomass and the net photosynthetic rate (PN) in L. japonica had a significant increase, and with the increase in Cd treatment concentration, the dry weight of roots and shoots biomass and PN in the plant began to decrease. When the Cd treatment concentration was up to 125 mg kg-1, the dry weight of root and shoots biomass and PN in the plant decreased by 5.29%, 1.94% and 2.06%, and they had no significant decrease compared with the control, indicating that the plant still had a good ability for growth and photoenergy utilization even under high concentrations of Cd stress. The carbon sequestration and oxygen release functions in terms of diurnal assimilation amounts (P), carbon sequestration per unit leaf area (WCO2), oxygen release per unit leaf area (WO2), carbon sequestration per unit land area (PCO2) and oxygen release per unit land area (PO2) in L. japonica had a similar change trend with the photosynthesis responses under different concentrations of Cd treatments, which indicated that L. japonica as a landscaping Cd-hyperaccumulator, has a good ability for carbon sequestration and oxygen release even under high concentrations of Cd stress. The present study will provide a useful guideline for effectively developing the ecological service functions of landscaping hyperaccumulators under urban Cd-contaminated environment.
Collapse
Affiliation(s)
- Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qingxuan Lu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Chuanjia Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Yitao Mu
- College of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China
| | - Jianbing Wei
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Yongxia Hou
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Xiangyu Meng
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Zhuo Zhao
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Maosen Lin
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
9
|
Lyčka M, Barták M, Helia O, Kopriva S, Moravcová D, Hájek J, Fojt L, Čmelík R, Fajkus J, Fojtová M. Sulfate supplementation affects nutrient and photosynthetic status of Arabidopsis thaliana and Nicotiana tabacum differently under prolonged exposure to cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130527. [PMID: 36495640 DOI: 10.1016/j.jhazmat.2022.130527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Hydroponic experiments were performed to examine the effect of prolonged sulfate limitation combined with cadmium (Cd) exposure in Arabidopsis thaliana and a potential Cd hyperaccumulator, Nicotiana tabacum. Low sulfate treatments (20 and 40 µM MgSO4) and Cd stress (4 µM CdCl2) showed adverse effects on morphology, photosynthetic and biochemical parameters and the nutritional status of both species. For example, Cd stress decreased NO3- root content under 20 µM MgSO4 to approximately 50% compared with respective controls. Interestingly, changes in many measured parameters, such as chlorophyll and carotenoid contents, the concentrations of anions, nutrients and Cd, induced by low sulfate supply, Cd exposure or a combination of both factors, were species-specific. Our data showed opposing effects of Cd exposure on Ca, Fe, Mn, Cu and Zn levels in roots of the studied plants. In A. thaliana, levels of glutathione, phytochelatins and glucosinolates demonstrated their distinct involvement in response to sub-optimal growth conditions and Cd stress. In shoot, the levels of phytochelatins and glucosinolates in the organic sulfur fraction were not dependent on sulfate supply under Cd stress. Altogether, our data showed both common and species-specific features of the complex plant response to prolonged sulfate deprivation and/or Cd exposure.
Collapse
Affiliation(s)
- Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.
| | - Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanislav Kopriva
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Dana Moravcová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Josef Hájek
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, 612 00 Brno, Czech Republic
| | - Richard Čmelík
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, 612 00 Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
10
|
Hu Y, Zhou X, Shi A, Yu Y, Rensing C, Zhang T, Xing S, Yang W. Exogenous silicon promotes cadmium (Cd) accumulation in Sedum alfredii Hance by enhancing Cd uptake and alleviating Cd toxicity. FRONTIERS IN PLANT SCIENCE 2023; 14:1134370. [PMID: 36895873 PMCID: PMC9988946 DOI: 10.3389/fpls.2023.1134370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Soil Cadmium (Cd) pollution has become a serious environmental problem. Silicon (Si) plays key roles in alleviating Cd toxicity in plants. However, the effects of Si on mitigation of Cd toxicity and accumulation of Cd by hyperaccumulators are largely unknown. This study was conducted to investigate the effect of Si on Cd accumulation and the physiological characteristics of Cd hyperaccumulator Sedum alfredii Hance under Cd stress. Results showed that, exogenous Si application promoted the biomass, Cd translocation and concentration of S. alfredii, with an increased rate of 21.74-52.17% for shoot biomass, and 412.39-621.00% for Cd accumulation. Moreover, Si alleviated Cd toxicity by: (i) increasing chlorophyll contents, (ii) improving antioxidant enzymes, (iii) enhancing cell wall components (lignin, cellulose, hemicellulose and pectin), (iv) raising the secretion of organic acids (oxalic acid, tartaric acid and L-malic acid). The RT-PCR analysis of genes that involved in Cd detoxification showed that the expression of SaNramp3, SaNramp6, SaHMA2 and SaHMA4 in roots were significantly decreased by 11.46-28.23%, 6.61-65.19%, 38.47-80.87%, 44.80-69.85% and 33.96-71.70% in the Si treatments, while Si significantly increased the expression of SaCAD. This study expanded understanding on the role of Si in phytoextraction and provided a feasible strategy for assisting phytoextraction Cd by S. alfredii. In summary, Si facilitated the Cd phytoextraction of S. alfredii by promoting plant growth and enhancing the resistance of plants to Cd.
Collapse
Affiliation(s)
- Ying Hu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueqi Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanshuang Yu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taoxiang Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Liu Z, Tian L, Chen M, Zhang L, Lu Q, Wei J, Duan X. Hormesis Responses of Growth and Photosynthetic Characteristics in Lonicera japonica Thunb. to Cadmium Stress: Whether Electric Field Can Improve or Not? PLANTS (BASEL, SWITZERLAND) 2023; 12:933. [PMID: 36840281 PMCID: PMC9960363 DOI: 10.3390/plants12040933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
"Hormesis" is considered a dose-response phenomenon mainly observed at hyperaccumulator plants under heavy metals stress. In this study, the effects of electric fields on hormesis responses in Lonicera japonica Thunb. under cadmium (Cd) treatments were investigated by assessing the plant growth and photosynthetic characteristics. Under Cd treatments without electric fields, the parameters of plant growth and photosynthetic characteristics increased significantly when exposed to 5 mg L-1 Cd, and decreased slightly when exposed to 25 mg L-1 Cd, showing an inverted U-shaped trend, which confirmed that low concentration Cd has a hormesis effect on L. japonica. Under electric fields, different voltages significantly promoted the inverted U-shaped trend of the hormesis effect on the plant, especially by 2 V cm-1 voltage. Under 2 V cm-1 voltage, the dry weight of the root and leaf biomass exposed to 5 mg L-1 Cd increased significantly by 38.38% and 42.14%, and the photosynthetic pigment contents and photosynthetic parameters were also increased significantly relative to the control, indicating that a suitable electric field provides better improvements for the hormesis responses of the plant under Cd treatments. The synergistic benefits of the 5 mg L-1 Cd and 2 V cm-1 electric field in terms of the enhanced hormesis responses of growth and photosynthetic characteristics could contribute to the promoted application of electro-phytotechnology.
Collapse
Affiliation(s)
- Zhouli Liu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Mengdi Chen
- Academy of Forest and Grassland Inventory and Planning of National Forestry and Grassland Administration, Beijing 100714, China
| | - Luhua Zhang
- State Owned Ying’emen Forest Farm of Qingyuan Manchu Autonomous County, Fushun 113306, China
| | - Qingxuan Lu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Jianbing Wei
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Xiangbo Duan
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| |
Collapse
|
12
|
Rahman MA, Woo JH, Lee SH, Park HS, Kabir AH, Raza A, El Sabagh A, Lee KW. Regulation of Na +/H + exchangers, Na +/K + transporters, and lignin biosynthesis genes, along with lignin accumulation, sodium extrusion, and antioxidant defense, confers salt tolerance in alfalfa. FRONTIERS IN PLANT SCIENCE 2022; 13:1041764. [PMID: 36420040 PMCID: PMC9676661 DOI: 10.3389/fpls.2022.1041764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 06/12/2023]
Abstract
Accumulation of high sodium (Na+) leads to disruption of metabolic processes and decline in plant growth and productivity. Therefore, this study was undertaken to clarify how Na+/H+ exchangers and Na+/K+ transporter genes contribute to Na+ homeostasis and the substantial involvement of lignin biosynthesis genes in salt tolerance in alfalfa (Medicago sativa L.), which is poorly understood. In this study, high Na+ exhibited a substantial reduction of morphophysiological indices and induced oxidative stress indicators in Xingjiang Daye (XJD; sensitive genotype), while Zhongmu (ZM; tolerant genotype) remained unaffected. The higher accumulation of Na+ and the lower accumulation of K+ and K+/(Na+ + K+) ratio were found in roots and shoots of XJD compared with ZM under salt stress. The ZM genotype showed a high expression of SOS1 (salt overly sensitive 1), NHX1 (sodium/hydrogen exchanger 1), and HKT1 (high-affinity potassium transporter 1), which were involved in K+ accumulation and excess Na+ extrusion from the cells compared with XJD. The lignin accumulation was higher in the salt-adapted ZM genotype than the sensitive XJD genotype. Consequently, several lignin biosynthesis-related genes including 4CL2, CCoAOMT, COMT, CCR, C4H, PAL1, and PRX1 exhibited higher mRNA expression in salt-tolerant ZM compared with XJD. Moreover, antioxidant enzyme (catalase, superoxide dismutase, ascorbate peroxidase, and glutathione reductase) activity was higher in ZM relative to XJD. This result suggests that high antioxidant provided the defense against oxidative damages in ZM, whereas low enzyme activity with high Na+ triggered the oxidative damage in XJD. These findings together illustrate the ion exchanger, antiporter, and lignin biosysthetic genes involving mechanistic insights into differential salt tolerance in alfalfa.
Collapse
Affiliation(s)
- Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Jae Hoon Woo
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Sang-Hoon Lee
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Hyung Soo Park
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Ki-Won Lee
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| |
Collapse
|
13
|
Yi L, Wu M, Yu F, Song Q, Zhao Z, Liao L, Tong J. Enhanced cadmium phytoremediation capacity of poplar is associated with increased biomass and Cd accumulation under nitrogen deposition conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114154. [PMID: 36228354 DOI: 10.1016/j.ecoenv.2022.114154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) deposition plays a significant role in soil cadmium (Cd) phytoremediation, and poplar has been considered for the remediation of contaminated soil because of its enormous biomass and strong Cd resistance. To reveal the underlying physiological and root phenotypic mechanisms of N deposition affecting Cd phytoextraction in poplar, we assessed root phenotypic characteristics, Cd absorption and translocation, chlorophyll fluorescence performance, and antioxidant enzyme activities of a clone of Populus deltoides × P. nigra through combined greenhouse Cd and N experiments. Our results showed that Cd significantly changed the root phenotype by reducing root length, tip number, and diameter. Cd also caused the peroxidation of lipids, damaged the photosystem II (PSII) reaction centre, and reduced photosynthetic capacity, resulting in a decrease in biomass accumulation in poplar. The N60 (60 kg N·ha-1·yr-1) and N90 (90 kg N·ha-1·yr-1) treatments promoted the net photosynthetic rate of poplar by increasing the activity of antioxidant enzymes and proline content and repairing the PSII reaction centre, thus increasing the biomass accumulation of poplar exposed to Cd stress. Simultaneously, the N60 and N90 treatments might have increased Cd uptake from the soil by upregulating total root length, root tips, and fine root length. Cd mainly accumulated in roots and stems but not in leaves. The N30 (30 kg N·ha-1·yr-1) treatment had no obvious effects on these parameters compared with the single Cd treatment. Consequently, our study suggested that adequate N can improve biomass and Cd accumulation to enhance the phytoremediation capacity of poplar for Cd, which might be related to the improvement of leaf physiological defence and the change in root phenotypic characteristics.
Collapse
Affiliation(s)
- Lita Yi
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Mengyuan Wu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Fei Yu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.
| | - Qi Song
- Department of Health and Agriculture, Hangzhou Wanxiang Polytechnic, Hangzhou 310023, China
| | - Zihao Zhao
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Liang Liao
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiali Tong
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
14
|
Kabir AH, Rahman MA, Rahman MM, Brailey‐Jones P, Lee K, Bennetzen JL. Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots. J Appl Microbiol 2022; 133:2760-2778. [PMID: 35665578 PMCID: PMC9796762 DOI: 10.1111/jam.15651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023]
Abstract
AIMS Iron (Fe) deficiency in soil is a continuing problem for soybean (Glycine max L.) production, partly as a result of continuing climate change. This study elucidates how Trichoderma harzianum strain T22 (TH) mitigates growth retardation associated with Fe-deficiency in a highly sensitive soybean cultivar. METHODS AND RESULTS Soil TH supplementation led to mycelial colonization and the presence of UAOX1 gene in roots that caused substantial improvement in chlorophyll score, photosynthetic efficiency and morphological parameters, indicating a positive influence on soybean health. Although rhizosphere acidification was found to be a common feature of Fe-deficient soybean, the upregulation of Fe-reductase activity (GmFRO2) and total phenol secretion were two of the mechanisms that substantially increased the Fe availability by TH. Heat-killed TH applied to soil caused no improvement in photosynthetic attributes and Fe-reductase activity, confirming the active role of TH in mitigating Fe-deficiency. Consistent increases in tissue Fe content and increased Fe-transporter (GmIRT1, GmNRAMP2a, GmNRAMP2b and GmNRAMP7) mRNA levels in roots following TH supplementation were observed only under Fe-deprivation. Root cell death, electrolyte leakage, superoxide (O2 •- ) and hydrogen peroxide (H2 O2 ) substantially declined due to TH in Fe-deprived plants. Further, the elevation of citrate and malate concentration along with the expression of citrate synthase (GmCs) and malate synthase (GmMs) caused by TH suggest improved chelation of Fe in Fe-deficient plants. Results also suggest that TH has a role in triggering antioxidant defence by increasing the activity of glutathione reductase (GR) along with elevated S-metabolites (glutathione and methionine) to stabilize redox status under Fe-deficiency. CONCLUSIONS TH increases the availability and mobilization of Fe by inducing Fe-uptake pathways, which appears to help provide resistance to oxidative stress associated with Fe-shortage in soybean. SIGNIFICANCE AND IMPACT OF THE STUDY These findings indicate that while Fe deficiency does not affect the rate or degree of TH hyphal association in soybean roots, the beneficial effects of TH alone may be Fe deficiency-dependent.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of BotanyUniversity of RajshahiRajshahiBangladesh
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| | - Md Mostafizur Rahman
- Molecular Plant Physiology Laboratory, Department of BotanyUniversity of RajshahiRajshahiBangladesh
| | - Philip Brailey‐Jones
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| | - Ki‐Won Lee
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Jeffrey L. Bennetzen
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| |
Collapse
|
15
|
You Y, Wang Y, Zhang S, Sun X, Liu H, Guo EY, Du S. Different pathways for exogenous ABA-mediated down-regulation of cadmium accumulation in plants under different iron supplies. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129769. [PMID: 36027744 DOI: 10.1016/j.jhazmat.2022.129769] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Exogenous abscisic acid (ABA) could inhibit cadmium (Cd) accumulation in plants; however, its performance in an uneven iron (Fe) background remains unknown. Here, we found that the inhibitory effects of ABA on Cd accumulation in plants were optimal under nonlimiting Fe availability (25 and 50 µM), causing a reduction of 25-50 %, whereas only a 0-29 % decrease was observed in a Fe-free or -deficient (5 µM) medium. Although ABA significantly inhibited the expression of IRT1 under different Fe supplies, the inhibitory effects of ABA on Cd accumulation were lower (or absent) in irt1-mutants than in wild-type plants growing under nonlimiting Fe availability, whereas no significant difference was found under Fe deficiency. The mechanisms by which ABA reduces Cd accumulation under different Fe environments may differ. Furthermore, under Fe sufficiency, ABA increased Fe levels of root apoplasts by 91 % without changing the activity level of root ferric reductase (FCR). In contrast, ABA resulted in a 17 % decrease in Fe concentration in apoplasts and a 37 % decrease in FCR activity under Fe-deficient conditions. Thus, under Fe sufficiency, plants may show a reduced accumulation of Cd by accumulating more Fe in the apoplasts, which in turn inhibits the expression of IRT1. However, plants are more prone to redirect apoplastic Fe to prevent Cd accumulation under Fe deficiency. The different mechanisms of inhibition of Cd accumulation by ABA under different Fe supplies revealed in this study may provide guidelines for the precise regulation of Cd accumulation in crops via ABA-based strategies.
Collapse
Affiliation(s)
- Yue You
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; ZheJiang Zone-King Environmental Sci & Tech Co., Ltd., Hangzhou 310064, China
| | - Yun Wang
- Planting Technology Extension Center of Dongyang, Jinhua 322100, China
| | - Siyu Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaohang Sun
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | | | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
16
|
Heat Shock Proteins and Antioxidant Genes Involved in Heat Combined with Drought Stress Responses in Perennial Rye Grass. Life (Basel) 2022; 12:life12091426. [PMID: 36143461 PMCID: PMC9506360 DOI: 10.3390/life12091426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The frequent occurrence of heat and drought stress can severely reduce agricultural production of field crops. In comparison to a single stress, the combination of both heat (H) and drought (D) further reduce plant growth, survival and yield. This study aimed to explore the transcriptional responses of heat shock protein (HSP) and antioxidant genes under H combined D stress in perennial rye grass (PRG). The results demonstrated that oxidative stress indicators (hydrogen peroxide, lipid peroxidation) significantly increased, particularly in the case of combined H and D treatment, suggesting that oxidative stress-induced damage occurred in plants under the combined stresses. Transcriptional responses of heat shock protein 70 (HSP70), heat shock protein 90-6 (HSP90-6), and the mitochondrial small heat shock protein HSP26.2 (HSP26.2) occurred rapidly, and showed high level of expression particularly under H and D stress. Antioxidant genes including ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), copper–zinc superoxide dismutase (Cu/ZnSOD), peroxidase (POD), ferredoxin–thioredoxin (FTR), thioredoxin (Trx), 2-cysteine peroxiredoxin (2-Cys Prx) showed response to combined H and D, followed by either D or H stress alone in rye grass. An interactome map revealed the close partnership of these heat shock protein genes and antioxidant genes, respectively. These candidate genes were predominantly linked to stress responses and antioxidant defense in plants. These findings may advance our understanding about the HSP and the antioxidant genes underlying combined abiotic stress response and tolerance in perennial rye grass.
Collapse
|
17
|
Guo Z, Lv J, Zhang H, Hu C, Qin Y, Dong H, Zhang T, Dong X, Du N, Piao F. Red and blue light function antagonistically to regulate cadmium tolerance by modulating the photosynthesis,antioxidant defense system and Cd uptake in cucumber(Cucumis sativus L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128412. [PMID: 35236029 DOI: 10.1016/j.jhazmat.2022.128412] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is highly toxic to both plants and humans.Light plays crucial roles in plant growth, development and stress responses, but how light functions in plant Cd response remain unclear.Here,we found that Cd treatment significantly induced the expression of PHYB but not PHYA and CRY1 in leaves and roots of cucumber. Correspondingly,compared with white light (W) during Cd stress,red light(R) increased Cd sensitivity,whereas blue light (B) enhanced Cd tolerance as evidenced by decreased Cd-induced chlorosis, growth inhibition, photosynthesis inhibition and chloroplast ultrastructure damage.Furthermore,B markedly increased the transcripts and activities of the antioxidant enzymes including ascorbate peroxidase (APX),catalase (CAT),superoxide dismutase (SOD) and glutathione reductase (GR),as well as glutathione (GSH) content and GSH1 expression, resulting in hydrogen peroxide (H2O2) and superoxide (O2.-) reduction,but R treatment showed the opposite trend. Moreover, R and B markedly up-regulated and down-regulated the expression levels of Cd uptake and transport genes including IRT1, NRAMP1 and HMA3, leading to more and less Cd accumulation than the W-treated plants in both shoots and roots, respectively under Cd stress. Collectively, our data clearly demonstrate that R and B function antagonistically to regulate Cd tolerance in cucumber via modulating the photosynthesis, antioxidant defense system and Cd uptake, providing a novel light quality control strategy to enhance crop Cd tolerance and food safety.
Collapse
Affiliation(s)
- Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Jingli Lv
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Huimei Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Chunyan Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Yanping Qin
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Han Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China.
| |
Collapse
|
18
|
Electric Field-Enhanced Cadmium Accumulation and Photosynthesis in a Woody Ornamental Hyperaccumulator—Lonicera japonica Thunb. PLANTS 2022; 11:plants11081040. [PMID: 35448768 PMCID: PMC9030930 DOI: 10.3390/plants11081040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
The multi-system of electro-phytotechnology using a woody ornamental cadmium (Cd) hyperaccumulator (Lonicera japonica Thunb.) is a new departure for environmental remediation. The effects of four electric field conditions on Cd accumulation, growth, and photosynthesis of L. japonica under four Cd treatments were investigated. Under 25 and 50 mg L−1 Cd treatments, Cd accumulation in L. japonica was enhanced significantly compared to the control and reached 1110.79 mg kg−1 in root and 428.67 mg kg−1 in shoots influenced by the electric field, especially at 2 V cm−1, and with higher bioaccumulation coefficient (BC), translocation factor (TF), removal efficiency (RE), and the maximum Cd uptake, indicating that 2 V cm−1 voltage may be the most suitable electric field for consolidating Cd-hyperaccumulator ability. It is accompanied by increased root and shoots biomass and photosynthetic parameters through the electric field effect. These results show that a suitable electric field may improve the growth, hyperaccumulation, and photosynthetic ability of L.japonica. Meanwhile, low Cd supply (5 mg L−1) and medium voltage (2 V cm−1) improved plant growth and photosynthetic capacity, conducive to the practical application to a plant facing low concentration Cd contamination in the real environment.
Collapse
|
19
|
Yolcu S, Alavilli H, Ganesh P, Asif M, Kumar M, Song K. An Insight into the Abiotic Stress Responses of Cultivated Beets ( Beta vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010012. [PMID: 35009016 PMCID: PMC8747243 DOI: 10.3390/plants11010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Cultivated beets (sugar beets, fodder beets, leaf beets, and garden beets) belonging to the species Beta vulgaris L. are important sources for many products such as sugar, bioethanol, animal feed, human nutrition, pulp residue, pectin extract, and molasses. Beta maritima L. (sea beet or wild beet) is a halophytic wild ancestor of all cultivated beets. With a requirement of less water and having shorter growth period than sugarcane, cultivated beets are preferentially spreading from temperate regions to subtropical countries. The beet cultivars display tolerance to several abiotic stresses such as salt, drought, cold, heat, and heavy metals. However, many environmental factors adversely influence growth, yield, and quality of beets. Hence, selection of stress-tolerant beet varieties and knowledge on the response mechanisms of beet cultivars to different abiotic stress factors are most required. The present review discusses morpho-physiological, biochemical, and molecular responses of cultivated beets (B. vulgaris L.) to different abiotic stresses including alkaline, cold, heat, heavy metals, and UV radiation. Additionally, we describe the beet genes reported for their involvement in response to these stress conditions.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India;
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| |
Collapse
|
20
|
Nitric Oxide Prevents Fe Deficiency-Induced Photosynthetic Disturbance, and Oxidative Stress in Alfalfa by Regulating Fe Acquisition and Antioxidant Defense. Antioxidants (Basel) 2021; 10:antiox10101556. [PMID: 34679691 PMCID: PMC8533379 DOI: 10.3390/antiox10101556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Iron (Fe) deficiency impairs photosynthetic efficiency, plant growth and biomass yield. This study aimed to reveal the role of nitric oxide (NO) in restoring Fe-homeostasis and oxidative status in Fe-deficient alfalfa. In alfalfa, a shortage of Fe negatively affected the efficiency of root andshoot length, leaf greenness, maximum quantum yield PSII (Fv/Fm), Fe, S, and Zn accumulation, as well as an increase in H2O2 accumulation. In contrast, in the presence of sodium nitroprusside (SNP), a NO donor, these negative effects of Fe deficiency were largely reversed. In response to the SNP, the expression of Fe transporters (IRT1, NRAMP1) and S transporter (SULTR1;2) genes increased in alfalfa. Additionally, the detection of NO generation using fluorescence microscope revealed that SNP treatment increased the level of NO signal, indicating that NO may act as regulatory signal in response to SNP in plants. Interestingly, the increase of antioxidant genes and their related enzymes (Fe-SOD, APX) in response to SNP treatment suggests that Fe-SOD and APX are key contributors to reducing ROS (H2O2) accumulation and oxidative stress in alfalfa. Furthermore, the elevation of Ascorbate-glutathione (AsA-GSH) pathway-related genes (GR and MDAR) Fe-deficiency with SNP implies that the presence of NO relates to enhanced antioxidant defense against Fe-deficiency stress.
Collapse
|