1
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
2
|
García JE, Pagnussat LA, Amenta MB, Casanovas EM, Diaz PR, Labarthe MM, Martino MV, Groppa MD, Creus CM, Maroniche GA. Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation. Appl Microbiol Biotechnol 2024; 108:543. [PMID: 39729258 DOI: 10.1007/s00253-024-13391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system. The resulting recombinant strain, Az19F, did not accumulate trehalose, was affected in its capacity to cope with salt-, osmotic-, and UV-stress, and showed higher reactive oxygen species levels. Physiological alterations were also observed under normal conditions, such as increased growth in biofilms, higher motility, and decreased auxin secretion. Even so, the capacity of Az19F to colonize maize roots was not affected, either under normal or drought conditions. When inoculated in maize, both Az19 and Az19F strains promoted plant growth similarly under normal irrigation. However, unlike Az19, the trehalose-deficient strain Az19F could not improve the height, aerial fresh weight, or relative water content of maize plants under drought. Notably, Az19F triggered an exacerbated oxidative response in the plants, resulting in higher levels of antioxidant and phenolic compounds. We conclude that the role of trehalose metabolism in A. argentinense Az19 transcends stress tolerance, being also important for normal bacterial physiology and its plant growth-promoting activity under drought. KEY POINTS: • Trehalose is required by Az19 for full tolerance to salt-, osmotic-, and UV-stress. • A restriction in trehalose accumulation alters Az19 normal cell physiology. • Trehalose contributes to Az19-induced maize growth promotion under drought.
Collapse
Affiliation(s)
- Julia E García
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros S/N, Hurlingham, B1713, Buenos Aires, Argentina
| | - Luciana A Pagnussat
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Vieytes 3103, B7602, Mar del Plata, Buenos Aires, Argentina
| | - Melina B Amenta
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - E Mabel Casanovas
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - Pablo R Diaz
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina
| | - María M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina
| | - María V Martino
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - María D Groppa
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET-Universidad de Buenos Aires (UBA), C1113, Junin 956, Buenos Aires, Argentina
| | - Cecilia M Creus
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - Guillermo A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina.
| |
Collapse
|
3
|
Zhang S, Gao J, Lan X, Zhang L, Lian W, Wang C, Shen Z, Li X, Liu J. Drought Stress Inhibits the Accumulation of Rotenoids and the Biosynthesis of Drought-Responsive Phytohormones in Mirabilis himalaica (Edgew.) Heim Calli. Genes (Basel) 2024; 15:1644. [PMID: 39766910 PMCID: PMC11675678 DOI: 10.3390/genes15121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background:Mirabilis himalaica, distributed in the high-altitude, arid, and semi-arid regions of Xizang, exhibits great tolerance to drought, which is rich in rotenoids and other secondary metabolites. It is still unknown, though, how drought stress influences rotenoid synthesis in M. himalaica. Methods: In this study, the calli of M. himalaica were subjected to 5% PEG6000 for 0, 20, and 40 h and divided into control group (CK), mild-drought-treated group (M), and high-drought-treated group (H), respectively. We then analyzed the relative content of three main rotenoids in M. himalaica using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS). Results: Our findings demonstrated that the content of rotenoids was significantly reduced under drought stress. Transcriptome analysis subsequently revealed 14,525 differentially expressed genes (DEGs) between the different treatments. Furthermore, these DEGs exhibited enrichment in pathways associated with isoflavone biosynthesis and hormone signaling pathways. Key genes with decreased expression patterns during drought stress were also found to be involved in rotenoid accumulation and drought-responsive phytohormone signaling, including abscisic acid (ABA), auxin (IAA), and jasmonic acid (JA). Conclusions: These findings elucidate the molecular processes of drought resistance in M. himalaica and shed light on the relationship between rotenoid production and drought stress in M. himalaica.
Collapse
Affiliation(s)
- Shiyi Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (L.Z.); (X.L.)
| | - Jiaqi Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (L.Z.); (X.L.)
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaozhong Lan
- Medicinal Plants Research Centre, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Linfan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (L.Z.); (X.L.)
| | - Weipeng Lian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (L.Z.); (X.L.)
| | - Chenglin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (L.Z.); (X.L.)
| | - Zhanyun Shen
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315500, China
| | - Xiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (L.Z.); (X.L.)
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (L.Z.); (X.L.)
| |
Collapse
|
4
|
Groover A, Holbrook NM, Polle A, Sala A, Medlyn B, Brodersen C, Pittermann J, Gersony J, Sokołowska K, Bogar L, McDowell N, Spicer R, David-Schwartz R, Keller S, Tschaplinski TJ, Preisler Y. Tree drought physiology: critical research questions and strategies for mitigating climate change effects on forests. THE NEW PHYTOLOGIST 2024. [PMID: 39690524 DOI: 10.1111/nph.20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to better understand tree drought physiology and how new technologies and interdisciplinary approaches can be used to address them. Our discussion focuses on how trees change wood development to mitigate water stress, hormonal responses to drought, genetic variation underlying adaptive drought phenotypes, how trees 'remember' prior stress exposure, and how symbiotic soil microbes affect drought response. Next, we identify opportunities for using research findings to enhance or develop new strategies for managing drought effects on forests, ranging from matching genotypes to environments, to enhancing seedling resilience through nursery treatments, to landscape-scale monitoring and predictions. We conclude with a discussion of the need for co-producing research with land managers and extending research to forests in critical ecological regions beyond the temperate zone.
Collapse
Affiliation(s)
- Andrew Groover
- USDA Forest Service Northern Research Station, Burlington, VT, 05446, USA
- Institute of Forest Genetics, USDA Forest Service Pacific Southwest Research Station, Placerville, CA, 95667, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Belinda Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Jessica Gersony
- Department of Biological Sciences, Smith College, Northampton, MA, 01060, USA
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Laura Bogar
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Nate McDowell
- Atmospheric, Climate, and Earth Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| | - Stephen Keller
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Agriculture Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| |
Collapse
|
5
|
Singh VP, Tripathi DK, Palma JM, Corpas FJ. Editorial: ROS and phytohormones: Two ancient chemical players in new roles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109149. [PMID: 39406665 DOI: 10.1016/j.plaphy.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Affiliation(s)
- Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad Prayagraj-211002, India.
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida-201313, India.
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, E-18008, Granada, Spain.
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, E-18008, Granada, Spain.
| |
Collapse
|
6
|
Tang X, Chen M, Li X, Zhang X, Wang P, Xu Y, Li J, Qin Z. Synthesis, Plant Growth Regulatory Activity, and Transcriptome Analysis of Novel Opabactin Analogs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597654 DOI: 10.1021/acs.jafc.3c09429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Abscisic acid (ABA), a phytohormone, and its analogs have been found to enhance plant resistance to various biotic and abiotic stresses, particularly drought, by activating the ABA signaling pathway. This study used a combination of structure-directed design and molecular docking screening methods to synthesize a novel series of opabactin (OP) analogs. Among them, compounds 4a-4d and 5a showed comparable or superior activity to OP in bioassays, including seed germination and seedling growth inhibition in A. thaliana and rice, stomatal closure, and drought resistance in wheat and soybean. Further transcriptome analysis revealed distinct mechanisms of action between compound 4c and iso-PhABA in enhancing drought tolerance in A. thaliana. These findings highlight the application prospect of 4c and its analogs in agricultural cultivation, particularly in drought resistance. Additionally, they provide new insights into the mechanisms by which different ABA receptor agonists enhance drought resistance.
Collapse
Affiliation(s)
- Xianjun Tang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Minghui Chen
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaobin Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xueqin Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yanjun Xu
- College of Science, China Agricultural University, Beijing 100193, China
| | | | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Gao Q, Liu Y, Liu Y, Dai C, Zhang Y, Zhou F, Zhu Y. Salicylic Acid Modulates the Osmotic System and Photosynthesis Rate to Enhance the Drought Tolerance of Toona ciliata. PLANTS (BASEL, SWITZERLAND) 2023; 12:4187. [PMID: 38140515 PMCID: PMC10747095 DOI: 10.3390/plants12244187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Toona ciliata M. Roem. is a valuable and fast-growing timber species which is found in subtropical regions; however, drought severely affects its growth and physiology. Although the exogenous application of salicylic acid (SA) has been proven to enhance plant drought tolerance by regulating the osmotic system and photosynthesis rate, the physiological processes involved in the regulation of drought tolerance by SA in various plants differ. Therefore, drought mitigation techniques tailored for T. ciliata should be explored or developed for the sustainable development of the timber industry. We selected 2-year-old T. ciliata seedlings for a potting experiment, set the soil moisture at 45%, and subjected some of the T. ciliata seedlings to a moderate drought (MD) treatment; to others, 0.5 mmol/L exogenous SA (MD + SA) was applied as a mitigation test, and we also conducted a control using a normal water supply at 70% soil moisture (CK). Our aim was to investigate the mitigating effects of exogenous SA on the growth condition, osmotic system, and photosynthesis rate of T. ciliata under drought stress conditions. OPLS-VIP was used to analyze the main physiological factors that enable exogenous SA to alleviate drought-induced injury in T. ciliata. The results indicated that exogenous SA application increased the growth of the ground diameter, plant height, and leaf blades and enhanced the drought tolerance of the T. ciliata seedlings by maintaining the balance of their osmotic systems, improving their gas exchange parameters, and restoring the activity of their PSII reaction centers. The seven major physiological factors that enabled exogenous SA to mitigate drought-induced injury in the T. ciliata seedlings were the soluble proteins (Sp), net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), stomatal opening window (Sow), activity of the photosystem II reaction center (ΦPSII), and electron transfer rate (ETR). Of these, Sp was the most dominant factor. There was a synergistic effect between the osmotic system and the photosynthetic regulation of drought injury in the T. ciliata seedlings. Overall, our study confirms that exogenous SA enhances the drought tolerance of T. ciliata by modulating the osmotic system and photosynthesis rate.
Collapse
Affiliation(s)
- Qi Gao
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yamin Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yumin Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Chongwen Dai
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yulin Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Fanbo Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yating Zhu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|