1
|
Golda M, Hoffka G, Cherry S, Tropea JE, Lountos GT, Waugh DS, Wlodawer A, Tőzsér J, Mótyán JA. P1' specificity of the S219V/R203G mutant tobacco etch virus protease. Proteins 2024; 92:1085-1096. [PMID: 38666764 PMCID: PMC11303109 DOI: 10.1002/prot.26693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 08/07/2024]
Abstract
Proteases that recognize linear amino acid sequences with high specificity became indispensable tools of recombinant protein technology for the removal of various fusion tags. Due to its stringent sequence specificity, the catalytic domain of the nuclear inclusion cysteine protease of tobacco etch virus (TEV PR) is also a widely applied reagent for enzymatic removal of fusion tags. For this reason, efforts have been made to improve its stability and modify its specificity. For example, P1' autoproteolytic cleavage-resistant mutant (S219V) TEV PR was found not only to be nearly impervious to self-inactivation, but also exhibited greater stability and catalytic efficiency than the wild-type enzyme. An R203G substitution has been reported to further relax the P1' specificity of the enzyme, however, these results were obtained from crude intracellular assays. Until now, there has been no rigorous comparison of the P1' specificity of the S219V and S219V/R203G mutants in vitro, under carefully controlled conditions. Here, we compare the P1' amino acid preferences of these single and double TEV PR mutants. The in vitro analysis was performed by using recombinant protein substrates representing 20 P1' variants of the consensus TENLYFQ*SGT cleavage site, and synthetic oligopeptide substrates were also applied to study a limited set of the most preferred variants. In addition, the enzyme-substrate interactions were analyzed in silico. The results indicate highly similar P1' preferences for both enzymes, many side-chains can be accommodated by the S1' binding sites, but the kinetic assays revealed lower catalytic efficiency for the S219V/R203G than for the S219V mutant.
Collapse
Affiliation(s)
- Mária Golda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Scott Cherry
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Joseph E. Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - David S. Waugh
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
dos Santos Ferreira MC, Pendleton A, Yeo W, Málaga Gadea FC, Camelo D, McGuire M, Brinsmade SR. In Staphylococcus aureus, the acyl-CoA synthetase MbcS supports branched-chain fatty acid synthesis from carboxylic acid and aldehyde precursors. Mol Microbiol 2024; 121:865-881. [PMID: 38366323 PMCID: PMC11167679 DOI: 10.1111/mmi.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
In the human pathogen Staphylococcus aureus, branched-chain fatty acids (BCFAs) are the most abundant fatty acids in membrane phospholipids. Strains deficient for BCFAs synthesis experience auxotrophy in laboratory culture and attenuated virulence during infection. Furthermore, the membrane of S. aureus is among the main targets for antibiotic therapy. Therefore, determining the mechanisms involved in BCFAs synthesis is critical to manage S. aureus infections. Here, we report that the overexpression of SAUSA300_2542 (annotated to encode an acyl-CoA synthetase) restores BCFAs synthesis in strains lacking the canonical biosynthetic pathway catalyzed by the branched-chain α-keto acid dehydrogenase (BKDH) complex. We demonstrate that the acyl-CoA synthetase activity of MbcS activates branched-chain carboxylic acids (BCCAs), and is required by S. aureus to utilize the isoleucine derivative 2-methylbutyraldehyde to restore BCFAs synthesis in S. aureus. Based on the ability of some staphylococci to convert branched-chain aldehydes into their respective BCCAs and our findings demonstrating that branched-chain aldehydes are in fact BCFAs precursors, we propose that MbcS promotes the scavenging of exogenous BCCAs and mediates BCFA synthesis via a de novo alternative pathway.
Collapse
Affiliation(s)
| | - Augustus Pendleton
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
- Present address:
Department of MicrobiologyCornell UniversityIthacaNew YorkUSA
| | - Won‐Sik Yeo
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | | | - Danna Camelo
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Maeve McGuire
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Shaun R. Brinsmade
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
3
|
Crosby HA, Keim K, Kwiecinski JM, Langouët-Astrié CJ, Oshima K, LaRivière WB, Schmidt EP, Horswill AR. Host-derived protease promotes aggregation of Staphylococcus aureus by cleaving the surface protein SasG. mBio 2024; 15:e0348323. [PMID: 38511930 PMCID: PMC11005337 DOI: 10.1128/mbio.03483-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.
Collapse
Affiliation(s)
- Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Klara Keim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jakub M. Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Christophe J. Langouët-Astrié
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wells B. LaRivière
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
4
|
Harris-Jones TN, Pérez Medina KM, Hackett KT, Schave MA, Klimowicz AK, Schaub RE, Dillard JP. Mutation of mltG increases peptidoglycan fragment release, cell size, and antibiotic susceptibility in Neisseria gonorrhoeae. J Bacteriol 2023; 205:e0027723. [PMID: 38038461 PMCID: PMC10729727 DOI: 10.1128/jb.00277-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Neisseria gonorrhoeae is unusual in that the bacteria release larger amounts of cell wall material as they grow as compared to related bacteria, and the released cell wall fragments induce inflammation that leads to tissue damage in infected people. The study of MltG revealed the importance of this enzyme for controlling cell wall growth, cell wall fragment production, and bacterial cell size and suggests a role for MltG in a cell wall synthesis and degradation complex. The increased antibiotic sensitivities of mltG mutants suggest that an antimicrobial drug inhibiting MltG would be useful in combination therapy to restore the sensitivity of the bacteria to cell wall targeting antibiotics to which the bacteria are currently resistant.
Collapse
Affiliation(s)
- Tiffany N. Harris-Jones
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Krizia M. Pérez Medina
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Melanie A. Schave
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amy K. Klimowicz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Malalasekara L, Escalante-Semerena JC. The coenzyme B 12 precursor 5,6-dimethylbenzimidazole is a flavin antagonist in Salmonella. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:178-194. [PMID: 37662669 PMCID: PMC10468695 DOI: 10.15698/mic2023.09.803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Salmonella enterica subsp. enterica sv. Typhimurium str. LT2 (hereafter S. Typhimurium) synthesizes adenosylcobalamin (AdoCbl, CoB12) de novo only under anoxic conditions, but it can assemble the lower ligand loop (a.k.a. the nucleotide loop) and can form the unique C-Co bond present in CoB12 in the presence or absence of molecular oxygen. During studies of nucleotide loop assembly in S. Typhimurium, we noticed that the growth of this bacterium could be arrested by the lower ligand nucleobase, namely 5,6-dimethylbenzimidazole (DMB). Here we report in vitro and in vivo evidence that shows that the structural similarity of DMB to the isoalloxazine moiety of flavin cofactors causes its deleterious effect on cell growth. We studied DMB inhibition of the housekeeping flavin dehydrogenase (Fre) and three flavoenzymes that initiate the catabolism of tricarballylate, succinate or D-alanine in S. Typhimurium. Notably, while growth with tricarballylate was inhibited by 5-methyl-benzimidazole (5-Me-Bza) and DMB, growth with succinate or glycerol was arrested by DMB but not by 5-Me-Bza. Neither unsubstituted benzimidazole nor adenine inhibited growth of S. Typhimurium at DMB inhibitory concentrations. Whole genome sequencing analysis of spontaneous mutant strains that grew in the presence of inhibitory concentrations of DMB identified mutations effecting the cycA (encodes D-Ala/D-Ser transporter) and dctA (encodes dicarboxylate transporter) genes and in the coding sequence of the tricarballylate transporter (TcuC), suggesting that increased uptake of substrates relieved DMB inhibition. We discuss two possible mechanisms of inhibition by DMB.
Collapse
|
6
|
Harris-Jones TN, Medina KMP, Hackett KT, Schave MA, Schaub RE, Dillard JP. Mutation of mltG increases peptidoglycan fragment release, cell size, and antibiotic susceptibility in Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554517. [PMID: 37662418 PMCID: PMC10473753 DOI: 10.1101/2023.08.23.554517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Infection with the Gram-negative species Neisseria gonorrhoeae leads to inflammation that is responsible for the disease symptoms of gonococcal urethritis, cervicitis, and pelvic inflammatory disease. During growth these bacteria release significant amounts of peptidoglycan (PG) fragments which elicit inflammatory responses in the human host. To better understand the mechanisms involved in PG synthesis and breakdown in N. gonorrhoeae, we characterized the effects of mutation of mltG. MltG has been identified in other bacterial species as a terminase that stops PG strand growth by cleaving the growing glycan. Mutation of mltG in N. gonorrhoeae did not affect bacterial growth rate but resulted in increased PG turnover, more cells of large size, decreased autolysis under non-growth conditions, and increased sensitivity to antibiotics that affect PG crosslinking. An mltG mutant released greatly increased amounts of PG monomers, PG dimers, and larger oligomers. In the mltG background, mutation of either ltgA or ltgD, encoding the lytic transglycosylases responsible for PG monomer liberation, resulted in wild-type levels of PG monomer release. Bacterial two-hybrid assays identified positive interactions of MltG with synthetic penicillin-binding proteins PBP1 and PBP2 and the PG-degrading endopeptidase PBP4 (PbpG). These data are consistent with MltG acting as a terminase in N. gonorrhoeae and suggest that absence of MltG activity results in excessive PG growth and extra PG in the sacculus that must be degraded by lytic transglycosylases including LtgA and LtgD. Furthermore, absence of MltG causes a cell wall defect that is manifested as large cell size and antibiotic sensitivity.
Collapse
Affiliation(s)
- Tiffany N. Harris-Jones
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Krizia M. Pérez Medina
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Melanie A. Schave
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| |
Collapse
|
7
|
Cronin JM, Yu AM. Recombinant Technologies Facilitate Drug Metabolism, Pharmacokinetics, and General Biomedical Research. Drug Metab Dispos 2023; 51:685-699. [PMID: 36948592 PMCID: PMC10197202 DOI: 10.1124/dmd.122.001008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
The development of safe and effective medications requires a profound understanding of their pharmacokinetic (PK) and pharmacodynamic properties. PK studies have been built through investigation of enzymes and transporters that drive drug absorption, distribution, metabolism, and excretion (ADME). Like many other disciplines, the study of ADME gene products and their functions has been revolutionized through the invention and widespread adoption of recombinant DNA technologies. Recombinant DNA technologies use expression vectors such as plasmids to achieve heterologous expression of a desired transgene in a specified host organism. This has enabled the purification of recombinant ADME gene products for functional and structural characterization, allowing investigators to elucidate their roles in drug metabolism and disposition. This strategy has also been used to offer recombinant or bioengineered RNA (BioRNA) agents to investigate the posttranscriptional regulation of ADME genes. Conventional research with small noncoding RNAs such as microRNAs (miRNAs) and small interfering RNAs has been dependent on synthetic RNA analogs that are known to carry a range of chemical modifications expected to improve stability and PK properties. Indeed, a novel transfer RNA fused pre-miRNA carrier-based bioengineering platform technology has been established to offer consistent and high-yield production of unparalleled BioRNA molecules from Escherichia coli fermentation. These BioRNAs are produced and processed inside living cells to better recapitulate the properties of natural RNAs, representing superior research tools to investigate regulatory mechanisms behind ADME. SIGNIFICANCE STATEMENT: This review article summarizes recombinant DNA technologies that have been an incredible boon in the study of drug metabolism and PK, providing investigators with powerful tools to express nearly any ADME gene products for functional and structural studies. It further overviews novel recombinant RNA technologies and discusses the utilities of bioengineered RNA agents for the investigation of ADME gene regulation and general biomedical research.
Collapse
Affiliation(s)
- Joseph M Cronin
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| |
Collapse
|
8
|
Glassey E, King AM, Anderson DA, Zhang Z, Voigt CA. Functional expression of diverse post-translational peptide-modifying enzymes in Escherichia coli under uniform expression and purification conditions. PLoS One 2022; 17:e0266488. [PMID: 36121811 PMCID: PMC9484694 DOI: 10.1371/journal.pone.0266488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
RiPPs (ribosomally-synthesized and post-translationally modified peptides) are a class of pharmaceutically-relevant natural products expressed as precursor peptides before being enzymatically processed into their final functional forms. Bioinformatic methods have illuminated hundreds of thousands of RiPP enzymes in sequence databases and the number of characterized chemical modifications is growing rapidly; however, it remains difficult to functionally express them in a heterologous host. One challenge is peptide stability, which we addressed by designing a RiPP stabilization tag (RST) based on a small ubiquitin-like modifier (SUMO) domain that can be fused to the N- or C-terminus of the precursor peptide and proteolytically removed after modification. This is demonstrated to stabilize expression of eight RiPPs representative of diverse phyla. Further, using Escherichia coli for heterologous expression, we identify a common set of media and growth conditions where 24 modifying enzymes, representative of diverse chemistries, are functional. The high success rate and broad applicability of this system facilitates: (i) RiPP discovery through high-throughput “mining” and (ii) artificial combination of enzymes from different pathways to create a desired peptide.
Collapse
Affiliation(s)
- Emerson Glassey
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Andrew M. King
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Daniel A. Anderson
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zhengan Zhang
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Christopher A. Voigt
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Gething C, Ferrar J, Misra B, Howells G, Andrzejewski AL, Bowen ME, Choi UB. Conformational change of Syntaxin-3b in regulating SNARE complex assembly in the ribbon synapses. Sci Rep 2022; 12:9261. [PMID: 35661757 PMCID: PMC9166750 DOI: 10.1038/s41598-022-09654-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Neurotransmitter release of synaptic vesicles relies on the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consisting of syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the synaptic vesicle. The formation of the SNARE complex progressively zippers towards the membranes, which drives membrane fusion between the plasma membrane and the synaptic vesicle. However, the underlying molecular mechanism of SNARE complex regulation is unclear. In this study, we investigated the syntaxin-3b isoform found in the retinal ribbon synapses using single-molecule fluorescence resonance energy transfer (smFRET) to monitor the conformational changes of syntaxin-3b that modulate the SNARE complex formation. We found that syntaxin-3b is predominantly in a self-inhibiting closed conformation, inefficiently forming the ternary SNARE complex. Conversely, a phosphomimetic mutation (T14E) at the N-terminal region of syntaxin-3b promoted the open conformation, similar to the constitutively open form of syntaxin LE mutant. When syntaxin-3b is bound to Munc18-1, SNARE complex formation is almost completely blocked. Surprisingly, the T14E mutation of syntaxin-3b partially abolishes Munc18-1 regulation, acting as a conformational switch to trigger SNARE complex assembly. Thus, we suggest a model where the conformational change of syntaxin-3b induced by phosphorylation initiates the release of neurotransmitters in the ribbon synapses.
Collapse
Affiliation(s)
- Claire Gething
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Joshua Ferrar
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Bishal Misra
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Giovanni Howells
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.,Quantum-Si, Inc, Guilford, CT, 06437, USA
| | - Ucheor B Choi
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,Quantum-Si, Inc, Guilford, CT, 06437, USA.
| |
Collapse
|
10
|
Costa FG, Villa EA, Escalante-Semerena JC. A method for the efficient adenosylation of corrinoids. Methods Enzymol 2022; 668:87-108. [PMID: 35589203 DOI: 10.1016/bs.mie.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosylcobamides (AdoCbas) are coenzymes required by organisms from all domains of life to perform challenging chemical reactions. AdoCbas are characterized by a cobalt-containing tetrapyrrole ring, where an adenosyl group is covalently attached to the cobalt ion via a unique Co-C organometallic bond. During catalysis, this bond is homolytically cleaved by AdoCba-dependent enzymes to form an adenosyl radical that is critical for intra-molecular rearrangements. The formation of the Co-C bond is catalyzed by a family of enzymes known as ATP:Co(I)rrinoid adenosyltransferases (ACATs). ACATs adenosylate Cbas in two steps: (I) they generate a planar, Co(II) four-coordinate Cba to facilitate the reduction of Co(II) to Co(I), and (II) they transfer the adenosyl group from ATP to the Co(I) ion. To synthesize adenosylated corrinoids in vitro, it is imperative that anoxic conditions are maintained to avoid oxidation of Co(II) or Co(I) ions. Here we describe a method for the enzymatic synthesis and quantification of specific AdoCbas.
Collapse
Affiliation(s)
- Flavia G Costa
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Elizabeth A Villa
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
11
|
Malalasekara L, Escalante-Semerena JC. A method for the isolation of α-ribazole from vitamin B 12, and its enzymatic conversion to α-ribazole 5'-phosphate. Methods Enzymol 2022; 668:125-136. [PMID: 35589191 DOI: 10.1016/bs.mie.2021.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cobamides (Cbas) are the largest coenzymes known and are used by cells in all domains of life. These molecules are characterized by a central cobalt-containing tetrapyrrole ring with two opposing axial ligands on the α and β faces of the ring. All biologically active forms of Cbas have a 5'-deoxyadenosyl group as the upper (Coβ) ligand that is covalently attached to the cobalt ion of the ring. In contrast, the lower ligand is a nucleobase of diverse chemical structure; however, nucleobases are usually derivatives of benzimidazole or purine. Phenol and p-cresol can also serve as the nucleobase, but they cannot form a coordination bond with the cobalt ion of the ring because they lack a free pair of electrons. The Cba incorporating 5,6-dimethylbenzimidazole (DMB) is known as cobalamin (Cbl), and the coenzymic form of cobalamin is known as adenosylcobalamin (AdoCbl). A common vitamer of cobalamin has a cyano group as the upper ligand. This vitamer is known as cyanocobalamin (CNCbl), which is commercially marketed as vitamin B12. Here, we describe a combination of chemical hydrolysis of cobalamin with the enzymatic dephosphorylation of the resulting α-R-3'-phosphate to yield α-R, which we enzymically convert to the pathway intermediate α-R-5'-phosphate (α-RP). The methods describe herein can be readily scaled up to generate large amounts of α-RP.
Collapse
Affiliation(s)
- Lahiru Malalasekara
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
12
|
Jeter VL, Escalante-Semerena JC. Elevated Levels of an Enzyme Involved in Coenzyme B 12 Biosynthesis Kills Escherichia coli. mBio 2022; 13:e0269721. [PMID: 35012330 PMCID: PMC8749415 DOI: 10.1128/mbio.02697-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Cobamides are cobalt-containing cyclic tetrapyrroles involved in the metabolism of organisms from all domains of life but produced de novo only by some bacteria and archaea. The pathway is thought to involve up to 30 enzymes, five of which comprise the so-called "late" steps of cobamide biosynthesis. Two of these reactions activate the corrin ring, one activates the nucleobase, a fourth one condenses activated precursors, and a phosphatase yields the final product of the pathway. The penultimate step is catalyzed by a polytopic integral membrane protein, namely, the cobamide (5'-phosphate) synthase, also known as cobamide synthase. At present, the reason for the association of all putative and bona fide cobamide synthases to cell membranes is unclear and intriguing. Here, we show that, in Escherichia coli, elevated levels of cobamide synthase kill the cell by dissipating the proton motive force and compromising membrane stability. We also show that overproduction of the phosphatase that catalyzes the last step of the pathway or phage shock protein A prevents cell death when the gene encoding cobamide synthase is overexpressed. We propose that in E. coli, and probably all cobamide producers, cobamide synthase anchors a multienzyme complex responsible for the assembly of vitamin B12 and other cobamides. IMPORTANCE E. coli is the best-studied prokaryote, and some strains of this bacterium are human pathogens. We show that when the level of the enzyme that catalyzes the penultimate step of vitamin B12 biosynthesis is elevated, the viability of E. coli decreases. These findings are of broad significance because the enzyme alluded to is an integral membrane protein in all cobamide-producing bacteria, many of which are human pathogens. Our results may provide new avenues for the development of antimicrobials, because none of the enzymes involved in vitamin B12 biosynthesis are present in mammalian cells.
Collapse
Affiliation(s)
- Victoria L. Jeter
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
13
|
Genetic analysis using vitamin B 6 antagonist 4-deoxypyridoxine uncovers a connection between pyridoxal 5'-phosphate and coenzyme A metabolism in Salmonella enterica. J Bacteriol 2022; 204:e0060721. [PMID: 35099985 DOI: 10.1128/jb.00607-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for organisms in all three domains of life. Despite the central role of PLP, many aspects of vitamin B6 metabolism, including its integration with other biological pathways, are not fully understood. In this study, we examined the metabolic perturbations caused by the vitamin B6 antagonist 4-deoxypyridoxine (dPN) in a ptsJ mutant of Salmonella enterica serovar Typhimurium LT2. Our data suggest that PdxK (PL/PN/PM kinase, EC 2.7.1.35) phosphorylates dPN to 4-deoxypyridoxine 5'-phosphate (dPNP), which in turn can compromise the de novo biosynthesis of PLP. The data are consistent with the hypothesis that accumulated dPNP inhibits GlyA (serine hydroxymethyltransferase, EC 2.1.2.1) and/or GcvP (glycine decarboxylase, EC 1.4.4.2), two PLP-dependent enzymes involved in the generation of one-carbon units. Our data suggest this inhibition leads to reduced flux to coenzyme A precursors and subsequently lower synthesis of CoA and thiamine. This study uncovers a link between vitamin B6 metabolism and the biosynthesis of CoA and thiamine, highlighting the integration of biochemical pathways in microbes. IMPORTANCE PLP is a ubiquitous cofactor required by enzymes in diverse metabolic networks. The data herein expand our understanding of the toxic effects of dPN, a vitamin B6 antagonist often used to mimic vitamin B6 deficiency and to study PLP-dependent enzyme kinetics. In addition to de novo PLP biosynthesis, we define a metabolic connection between vitamin B6 metabolism and synthesis of thiamine and CoA. This work provides a foundation for the use of dPN to study vitamin B6 metabolism in other organisms.
Collapse
|
14
|
Ijoma GN, Heri SM, Matambo TS, Tekere M. Trends and Applications of Omics Technologies to Functional Characterisation of Enzymes and Protein Metabolites Produced by Fungi. J Fungi (Basel) 2021; 7:700. [PMID: 34575737 PMCID: PMC8464691 DOI: 10.3390/jof7090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Identifying and adopting industrial applications for proteins and enzymes derived from fungi strains have been at the focal point of several studies in recent times. To facilitate such studies, it is necessary that advancements and innovation in mycological and molecular characterisation are concomitant. This review aims to provide a detailed overview of the necessary steps employed in both qualitative and quantitative research using the omics technologies that are pertinent to fungi characterisation. This stems from the understanding that data provided from the functional characterisation of fungi and their metabolites is important towards the techno-economic feasibility of large-scale production of biological products. The review further describes how the functional gaps left by genomics, internal transcribe spacer (ITS) regions are addressed by transcriptomics and the various techniques and platforms utilised, including quantitive reverse transcription polymerase chain reaction (RT-qPCR), hybridisation techniques, and RNA-seq, and the insights such data provide on the effect of environmental changes on fungal enzyme production from an expressional standpoint. The review also offers information on the many available bioinformatics tools of analysis necessary for the analysis of the overwhelming data synonymous with the omics approach to fungal characterisation.
Collapse
Affiliation(s)
- Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Sylvie M. Heri
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Tonderayi S. Matambo
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Memory Tekere
- Department of Environmental Science, College of Agricultural and Environmental Science, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa;
| |
Collapse
|
15
|
Mattes TA, Malalasekara L, Escalante-Semerena JC. Functional Studies of α-Riboside Activation by the α-Ribazole Kinase (CblS) from Geobacillus kaustophilus. Biochemistry 2021; 60:2011-2021. [PMID: 34105957 DOI: 10.1021/acs.biochem.1c00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the initial characterization of the α-ribazole (α-R) kinase enzyme of Geobacillus kaustophilus (GkCblS), which converts α-R to α-R-phosphate (α-RP) during the synthesis of cobamides. We implemented a continuous spectrophotometric assay to obtain kinetic parameters for several potential substrates and to study the specificity of the enzyme for α-N-linked ribosides. The apparent Km values for α-R and ATP were 358 and 297 μM, respectively. We also report methods for synthesizing and quantifying non-commercially available α-ribosides and β-ribazole (β-R). Purified GkCblS activated α-R and other α-ribosides, including α-adenosine (α-Ado). GkCblS did not phosphorylate β-N-linked glycosides like β-adenosine or β-R. Expression of G. kaustophilus cblS+ in a Salmonella enterica subsp. enterica sv Typhimurium LT2 (S. enterica) strain lacking the nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyl transferase (CobT) enzyme resulted in the activation of various benzimidazole α-ribosides, and the synthesis of benzimidazolyl cobamides to levels that supported robust growth. Notably, α-Ado did not support growth under similar conditions, in spite of the fact that GkCblS phosphorylated α-Ado in vitro. When α-Ado was provided at a very high concentration, growth was observed. This result suggested that in S. enterica α-Ado transport may be inefficient. We conclude that GkCblS has specificity for α-N-glycosidic bonds, but not for the base in α-ribosides.
Collapse
Affiliation(s)
- Theodoric A Mattes
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, United States
| | - Lahiru Malalasekara
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, United States
| | | |
Collapse
|
16
|
Santos ARS, Gerhardt ECM, Parize E, Pedrosa FO, Steffens MBR, Chubatsu LS, Souza EM, Passaglia LMP, Sant'Anna FH, de Souza GA, Huergo LF, Forchhammer K. NAD + biosynthesis in bacteria is controlled by global carbon/nitrogen levels via PII signaling. J Biol Chem 2020; 295:6165-6176. [PMID: 32179648 PMCID: PMC7196632 DOI: 10.1074/jbc.ra120.012793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Indexed: 01/01/2023] Open
Abstract
NAD+ is a central metabolite participating in core metabolic redox reactions. The prokaryotic NAD synthetase enzyme NadE catalyzes the last step of NAD+ biosynthesis, converting nicotinic acid adenine dinucleotide (NaAD) to NAD+. Some members of the NadE family use l-glutamine as a nitrogen donor and are named NadEGln. Previous gene neighborhood analysis has indicated that the bacterial nadE gene is frequently clustered with the gene encoding the regulatory signal transduction protein PII, suggesting a functional relationship between these proteins in response to the nutritional status and the carbon/nitrogen ratio of the bacterial cell. Here, using affinity chromatography, bioinformatics analyses, NAD synthetase activity, and biolayer interferometry assays, we show that PII and NadEGln physically interact in vitro, that this complex relieves NadEGln negative feedback inhibition by NAD+. This mechanism is conserved in distantly related bacteria. Of note, the PII protein allosteric effector and cellular nitrogen level indicator 2-oxoglutarate (2-OG) inhibited the formation of the PII-NadEGln complex within a physiological range. These results indicate an interplay between the levels of ATP, ADP, 2-OG, PII-sensed glutamine, and NAD+, representing a metabolic hub that may balance the levels of core nitrogen and carbon metabolites. Our findings support the notion that PII proteins act as a dissociable regulatory subunit of NadEGln, thereby enabling the control of NAD+ biosynthesis according to the nutritional status of the bacterial cell.
Collapse
Affiliation(s)
- Adrian Richard Schenberger Santos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil; Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | | | - Erick Parize
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil
| | - Fabio Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil
| | - Maria Berenice Reynaud Steffens
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil
| | - Leda Satie Chubatsu
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil
| | - Emanuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP:91501-970 CP 15053 Brazil
| | - Fernando Hayashi Sant'Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP:91501-970 CP 15053 Brazil
| | - Gustavo Antônio de Souza
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal/RN, CEP: 59072-970 Brazil
| | - Luciano Fernandes Huergo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, CEP: 81531-980 Brazil; Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany; Setor Litoral, UFPR, Matinhos, Paraná, CEP: 83260-000 Brazil.
| | - Karl Forchhammer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany.
| |
Collapse
|
17
|
Crosby HA, Tiwari N, Kwiecinski JM, Xu Z, Dykstra A, Jenul C, Fuentes EJ, Horswill AR. The Staphylococcus aureus ArlRS two-component system regulates virulence factor expression through MgrA. Mol Microbiol 2020; 113:103-122. [PMID: 31618469 PMCID: PMC7175635 DOI: 10.1111/mmi.14404] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Gram-positive bacterium, Staphylococcus aureus, is a versatile pathogen that can sense and adapt to a wide variety of environments within the human host, in part through its 16 two-component regulatory systems. The ArlRS two-component system has been shown to affect many cellular processes in S. aureus, including autolysis, biofilm formation, capsule synthesis and virulence. Yet the molecular details of this regulation remained largely unknown. We used RNA sequencing to identify the ArlRS regulon, and found 70% overlap with that of the global regulator MgrA. These genes included cell wall-anchored adhesins (ebh, sdrD), polysaccharide and capsule synthesis genes, cell wall remodeling genes (lytN, ddh), the urease operon, genes involved in metal transport (feoA, mntH, sirA), anaerobic metabolism genes (adhE, pflA, nrdDG) and a large number of virulence factors (lukSF, lukAB, nuc, gehB, norB, chs, scn and esxA). We show that ArlR directly activates expression of mgrA and identify a probable ArlR-binding site (TTTTCTCAT-N4 -TTTTAATAA). A highly similar sequence is also found in the spx P2 promoter, which was recently shown to be regulated by ArlRS. We also demonstrate that ArlS has kinase activity toward ArlR in vitro, although it has slower kinetics than other similar histidine kinases.
Collapse
Affiliation(s)
- Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Nitija Tiwari
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jakub M. Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Zhen Xu
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Allison Dykstra
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Christian Jenul
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Ernesto J Fuentes
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| |
Collapse
|
18
|
Burckhardt RM, VanDrisse CM, Tucker AC, Escalante-Semerena JC. New AMP-forming acid:CoA ligases from Streptomyces lividans, some of which are posttranslationally regulated by reversible lysine acetylation. Mol Microbiol 2019; 113:253-269. [PMID: 31677300 DOI: 10.1111/mmi.14414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
Abstract
In nature, organic acids are a commonly used source of carbon and energy. Many bacteria use AMP-forming acid:CoA ligases to convert organic acids into their corresponding acyl-CoA derivatives, which can then enter metabolism. The soil environment contains a broad diversity of organic acids, so it is not surprising that bacteria such as Streptomyces lividans can activate many of the available organic acids. Our group has shown that the activity of many acid:CoA ligases is posttranslationally controlled by acylation of an active-site lysine. In some cases, the modification is reversed by deacylases of different types. We identified eight new acid:CoA ligases in S. lividans TK24. Here, we report the range of organic acids that each of these enzymes can activate, and determined that two of the newly identified CoA ligases were under NAD+ -dependent sirtuin deacylase reversible lysine (de)acetylation control, four were not acetylated by two acetyltransferases used in this work, and two were acetylated but not deacetylated by sirtuin. This work provides insights into the broad organic-acid metabolic capabilities of S. lividans, and sheds light into the control of the activities of CoA ligases involved in the activation of organic acids in this bacterium.
Collapse
Affiliation(s)
| | | | - Alex C Tucker
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
19
|
Keller S, Wetterhorn KM, Vecellio A, Seeger M, Rayment I, Schubert T. Structural and functional analysis of an l-serine O-phosphate decarboxylase involved in norcobamide biosynthesis. FEBS Lett 2019; 593:3040-3053. [PMID: 31325159 DOI: 10.1002/1873-3468.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 11/11/2022]
Abstract
Structural diversity of natural cobamides (Cbas, B12 vitamers) is limited to the nucleotide loop. The loop is connected to the cobalt-containing corrin ring via an (R)-1-aminopropan-2-ol O-2-phosphate (AP-P) linker moiety. AP-P is produced by the l-threonine O-3-phosphate (l-Thr-P) decarboxylase CobD. Here, the CobD homolog SMUL_1544 of the organohalide-respiring epsilonproteobacterium Sulfurospirillum multivorans was characterized as a decarboxylase that produces ethanolamine O-phosphate (EA-P) from l-serine O-phosphate (l-Ser-P). EA-P is assumed to serve as precursor of the linker moiety of norcobamides that function as cofactors in the respiratory reductive dehalogenase. SMUL_1544 (SmCobD) is a pyridoxal-5'-phosphate (PLP)-containing enzyme. The structural analysis of the SmCobD apoprotein combined with the characterization of truncated mutant proteins uncovered a role of the SmCobD N-terminus in efficient l-Ser-P conversion.
Collapse
Affiliation(s)
- Sebastian Keller
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Karl M Wetterhorn
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Alison Vecellio
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Mark Seeger
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Ivan Rayment
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Torsten Schubert
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
20
|
Tavares NK, Stracey N, Brunold TC, Escalante-Semerena JC. The l-Thr Kinase/l-Thr-Phosphate Decarboxylase (CobD) Enzyme from Methanosarcina mazei Gö1 Contains Metallocenters Needed for Optimal Activity. Biochemistry 2019; 58:3260-3279. [PMID: 31268299 PMCID: PMC6667302 DOI: 10.1021/acs.biochem.9b00268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The MM2060 (cobD) gene from Methanosarcina mazei strain Gö1 encodes a protein (MmCobD) with l-threonine kinase (PduX) and l-threonine-O-3-phosphate decarboxylase (CobD) activities. In addition to the unexpected l-Thr kinase activity, MmCobD has an extended carboxy-terminal (C-terminal) region annotated as a putative metal-binding zinc finger-like domain. Here, we demonstrate that the C-terminus of MmCobD is a ferroprotein containing ∼25 non-heme iron atoms per monomer of protein. The absence of the C-terminus substantially reduces, but does not abolish, enzymatic activities in vitro and in vivo. Single-residue substitutions of C-terminal putative Fe-binding cysteinyl and histidinyl residues resulted in the loss of Fe and changes in enzyme activity levels. Salmonella enterica ΔpduX and ΔcobD strains were used as heterologous hosts to assess coenzyme B12 biosynthesis as a function of 17 MmCobD variants tested. Some of the latter displayed 5-fold higher enzymatic activity in vitro and enhanced the growth rate of the S. enterica strains that synthesized them. Most of the MmCobD variants tested were up to 6-fold less active in vitro and supported slow growth rates of the S. enterica strains that synthesized them; some substitutions abolished enzyme activity. MmCobD exhibited an ultraviolet-visible absorption spectrum consistent with [4Fe-4S] clusters that appeared to be susceptible to oxidation by H2O2 and reduction by sodium dithionite. The presence of FeS clusters in MmCobD was corroborated by electron paramagnetic resonance and magnetic circular dichroism studies. Collectively, our results suggest that MmCobD contains one or more diamagnetic [4Fe-4S]2+ center(s) that may play a structural or regulatory role.
Collapse
Affiliation(s)
- Norbert K. Tavares
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | - Nuru Stracey
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA
| | | |
Collapse
|
21
|
Campos F, Álvarez JA, Ortiz-Severín J, Varas MA, Lagos CF, Cabrera R, Álvarez SA, Chávez FP. Fluorescence enzymatic assay for bacterial polyphosphate kinase 1 (PPK1) as a platform for screening antivirulence molecules. Infect Drug Resist 2019; 12:2237-2242. [PMID: 31413600 PMCID: PMC6662176 DOI: 10.2147/idr.s181906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/26/2019] [Indexed: 11/26/2022] Open
Abstract
Inorganic polyphosphate (polyP) and its metabolic enzymes are important in several cellular processes related with virulence and antibiotic susceptibility. Accordingly, bacterial polyP synthesis has been proposed as a good target for designing novel antivirulence molecules as alternative to conventional antibiotics. In most pathogenic bacteria, polyphosphate kinase 1 (PPK1), in charge of polyP synthesis from ATP, is widely conserved. Current colorimetric and radioactive polyP synthesis enzymatic assays are not suitable for high-throughput screening of PPK1 inhibitors. Given the ability of polyP to modify the excitation-emission spectra of DAPI (4ʹ-6-diamidino-2-phenylindole), a fluorescence assay was previously developed by using a purified recombinant PPK1 enzyme from Escherichia coli. In this work we have developed a suitable methodology for high-throughput measurement of E. coli PPK1 activity. This platform can be used for the screening putative antimicrobial molecules for related enteropathogenic bacteria.
Collapse
Affiliation(s)
- Francisca Campos
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Javiera A Álvarez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Javiera Ortiz-Severín
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Macarena A Varas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Carlos F Lagos
- Chemical Biology & Drug Discovery Laboratory, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago de Chile, Chile
| | - Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Sergio A Álvarez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Santiago de Chile, Chile
| | - Francisco P Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
22
|
Briones X, Villalobos V, Queneau Y, Danna CS, Muñoz R, Ríos HE, Pavez J, Páez M, Cabrera R, Tamayo L, Urzúa MD. Surfaces based on amino acid functionalized polyelectrolyte films towards active surfaces for enzyme immobilization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109938. [PMID: 31499948 DOI: 10.1016/j.msec.2019.109938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Surface based on polyelectrolytes functionalized with amino acids onto amino-terminated solid surfaces of silicon wafers was prepared, with the purpose of evaluate the chemical functionality of the polyelectrolyte films in adsorption and catalytic activity of an enzyme. In this work, the adsorption of the enzyme glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides (LmG6PD) was studied as model. The polyelectrolytes were obtained from poly (maleic anhydride-alt-vinylpyrrolidone) [poly(MA-alt-VP)] and functionalized with amino acids of different hydropathy index: glutamine (Gln), tyrosine (Tyr) and methionine (Met). The polyelectrolytes were adsorbed onto the amino-terminated silicon wafer at pH 3.5 and 4.5 and at low and high ionic strength. At low ionic strength and pH 3.5, the largest quantity of adsorbed polyelectrolyte was on the films containing glutamine moiety as the most hydrophilic amino acid in the side chain of polymer chain (5.88 mg/m2), whereas at high ionic strength and pH 4.5, the lowest quantity was in films containing tyrosine moiety in the side chain (1.88 mg/m2). The films were characterized by ellipsometry, contact angle measurements and atomic force microscopy (AFM). The polyelectrolyte films showed a moderate degree of hydrophobicity, the methionine derivative being the most hydrophobic film. With the aim of evaluate the effect of the amino acid moieties on the ability of the surface to adsorb enzymes, we study the activity of the enzyme on these surfaces. We observed that the polarity of the side chain of the amino acid in the polyelectrolyte affected the quantity of LmG6PD adsorbed, as well as its specific activity, showing that films prepared from poly(MA-alt-VP) functionalized with Met provide the best enzymatic performance. The results obtained demonstrated that the surfaces prepared from polyelectrolytes functionalized with amino acids could be an attractive and simple platform for the immobilization of enzymes, which could be of interest for biocatalysis applications.
Collapse
Affiliation(s)
- Ximena Briones
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile; Centro de Química Médica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Las Condes 12438 Lo Barnechea, Santiago 7710162, Chile
| | - Valeria Villalobos
- Universidad Autónoma de Chile, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, El Llano Subercaseaux 2801, San Miguel, Chile des 12438 Lo Barnechea, Santiago 7710162, Chile
| | - Yves Queneau
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Univ Lyon, ICBMS, UMR 5246 CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, 1 rue Victor grignard, Bâtiment Lederer, Université Claude Bernard, 69622 Villeurbanne cedex, France
| | - Caroline Silva Danna
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Rodrigo Muñoz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Hernán E Ríos
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Jorge Pavez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Soft Matter Research-Technology Center, SMAT-C, Av. B. O'Higgins 3363, Santiago, Chile
| | - Maritza Páez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Soft Matter Research-Technology Center, SMAT-C, Av. B. O'Higgins 3363, Santiago, Chile
| | - Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Marcela D Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| |
Collapse
|
23
|
Drennan AC, Krishna S, Seeger MA, Andreas MP, Gardner JM, Sether EKR, Jaspersen SL, Rayment I. Structure and function of Spc42 coiled-coils in yeast centrosome assembly and duplication. Mol Biol Cell 2019; 30:1505-1522. [PMID: 30969903 PMCID: PMC6724696 DOI: 10.1091/mbc.e19-03-0167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 11/12/2022] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are membraneless organelles whose duplication and assembly is necessary for bipolar mitotic spindle formation. The structural organization and functional roles of major proteins in these organelles can provide critical insights into cell division control. Spc42, a phosphoregulated protein with an N-terminal dimeric coiled-coil (DCC), assembles into a hexameric array at the budding yeast SPB core, where it functions as a scaffold for SPB assembly. Here, we present in vitro and in vivo data to elucidate the structural arrangement and biological roles of Spc42 elements. Crystal structures reveal details of two additional coiled-coils in Spc42: a central trimeric coiled-coil and a C-terminal antiparallel DCC. Contributions of the three Spc42 coiled-coils and adjacent undetermined regions to the formation of an ∼145 Å hexameric lattice in an in vitro lipid monolayer assay and to SPB duplication and assembly in vivo reveal structural and functional redundancy in Spc42 assembly. We propose an updated model that incorporates the inherent symmetry of these Spc42 elements into a lattice, and thereby establishes the observed sixfold symmetry. The implications of this model for the organization of the central SPB core layer are discussed.
Collapse
Affiliation(s)
- Amanda C. Drennan
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| | | | - Mark A. Seeger
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| | | | | | | | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| |
Collapse
|
24
|
Kwiecinski JM, Crosby HA, Valotteau C, Hippensteel JA, Nayak MK, Chauhan AK, Schmidt EP, Dufrêne YF, Horswill AR. Staphylococcus aureus adhesion in endovascular infections is controlled by the ArlRS-MgrA signaling cascade. PLoS Pathog 2019; 15:e1007800. [PMID: 31116795 PMCID: PMC6548404 DOI: 10.1371/journal.ppat.1007800] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/04/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a leading cause of endovascular infections. This bacterial pathogen uses a diverse array of surface adhesins to clump in blood and adhere to vessel walls, leading to endothelial damage, development of intravascular vegetations and secondary infectious foci, and overall disease progression. In this work, we describe a novel strategy used by S. aureus to control adhesion and clumping through activity of the ArlRS two-component regulatory system, and its downstream effector MgrA. Utilizing a combination of in vitro cellular assays, and single-cell atomic force microscopy, we demonstrated that inactivation of this ArlRS—MgrA cascade inhibits S. aureus adhesion to a vast array of relevant host molecules (fibrinogen, fibronectin, von Willebrand factor, collagen), its clumping with fibrinogen, and its attachment to human endothelial cells and vascular structures. This impact on S. aureus adhesion was apparent in low shear environments, and in physiological levels of shear stress, as well as in vivo in mouse models. These effects were likely mediated by the de-repression of giant surface proteins Ebh, SraP, and SasG, caused by inactivation of the ArlRS—MgrA cascade. In our in vitro assays, these giant proteins collectively shielded the function of other surface adhesins and impaired their binding to cognate ligands. Finally, we demonstrated that the ArlRS—MgrA regulatory cascade is a druggable target through the identification of a small-molecule inhibitor of ArlRS signaling. Our findings suggest a novel approach for the pharmacological treatment and prevention of S. aureus endovascular infections through targeting the ArlRS—MgrA regulatory system. Adhesion is central to the success of Staphylococcus aureus as a bacterial pathogen. We describe a novel mechanism through which S. aureus alters adhesion to ligands by regulating expression of giant inhibitory surface proteins. These giant proteins shield normal surface adhesins, preventing binding to ligands commonly found in the bloodstream and vessel walls. Using this unique regulatory scheme, S. aureus can bypass the need for individualized regulation of numerous adhesins to control overall adhesive properties. Our study establishes the importance of these giant proteins for S. aureus pathogenesis and demonstrates that a single regulatory cascade can be targeted for treating infections.
Collapse
Affiliation(s)
- Jakub M. Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Claire Valotteau
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joseph A. Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Manasa K. Nayak
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Anil K. Chauhan
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
25
|
Insights into the Function of the N-Acetyltransferase SatA That Detoxifies Streptothricin in Bacillus subtilis and Bacillus anthracis. Appl Environ Microbiol 2019; 85:AEM.03029-18. [PMID: 30658980 DOI: 10.1128/aem.03029-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Acylation of epsilon amino groups of lysyl side chains is a widespread modification of proteins and small molecules in cells of all three domains of life. Recently, we showed that Bacillus subtilis and Bacillus anthracis encode the GCN5-related N-acetyltransferase (GNAT) SatA that can acetylate and inactivate streptothricin, which is a broad-spectrum antibiotic produced by actinomycetes in the soil. To determine functionally relevant residues of B. subtilis SatA (BsSatA), a mutational screen was performed, highlighting the importance of a conserved area near the C terminus. Upon inspection of the crystal structure of the B. anthracis Ames SatA (BaSatA; PDB entry 3PP9), this area appears to form a pocket with multiple conserved aromatic residues; we hypothesized this region contains the streptothricin-binding site. Chemical and site-directed mutagenesis was used to introduce missense mutations into satA, and the functionality of the variants was assessed using a heterologous host (Salmonella enterica). Results of isothermal titration calorimetry experiments showed that residue Y164 of BaSatA was important for binding streptothricin. Results of size exclusion chromatography analyses showed that residue D160 was important for dimerization. Together, these data advance our understanding of how SatA interacts with streptothricin.IMPORTANCE This work provides insights into how an abundant antibiotic found in soil is bound to the enzyme that inactivates it. This work identifies residues for the binding of the antibiotic and probes the contributions of substituting side chains for those in the native protein, providing information regarding hydrophobicity, size, and flexibility of the antibiotic binding site.
Collapse
|
26
|
SNZ3 Encodes a PLP Synthase Involved in Thiamine Synthesis in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:335-344. [PMID: 30498136 PMCID: PMC6385983 DOI: 10.1534/g3.118.200831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyridoxal 5′-phosphate (the active form of vitamin B6) is a cofactor that is important for a broad number of biochemical reactions and is essential for all forms of life. Organisms that can synthesize pyridoxal 5′-phosphate use either the deoxyxylulose phosphate-dependent or -independent pathway, the latter is encoded by a two-component pyridoxal 5′-phosphate synthase. Saccharomyces cerevisiae contains three paralogs of the two-component SNZ/SNO pyridoxal 5′-phosphate synthase. Past work identified the biochemical activity of Snz1p, Sno1p and provided in vivo data that SNZ1 was involved in pyridoxal 5′-phosphate biosynthesis. Snz2p and Snz3p were considered redundant isozymes and no growth condition requiring their activity was reported. Genetic data herein showed that either SNZ2 or SNZ3 are required for efficient thiamine biosynthesis in Saccharomyces cerevisiae. Further, SNZ2 or SNZ3 alone could satisfy the cellular requirement for pyridoxal 5′-phosphate (and thiamine), while SNZ1 was sufficient for pyridoxal 5′-phosphate synthesis only if thiamine was provided. qRT-PCR analysis determined that SNZ2,3 are repressed ten-fold by the presence thiamine. In total, the data were consistent with a requirement for PLP in thiamine synthesis, perhaps in the Thi5p enzyme, that could only be satisfied by SNZ2 or SNZ3. Additional data showed that Snz3p is a pyridoxal 5′-phosphate synthase in vitro and is sufficient to satisfy the pyridoxal 5′-phosphate requirement in Salmonella enterica when the medium has excess ammonia.
Collapse
|
27
|
Jeter VL, Mattes TA, Beattie NR, Escalante-Semerena JC. A New Class of Phosphoribosyltransferases Involved in Cobamide Biosynthesis Is Found in Methanogenic Archaea and Cyanobacteria. Biochemistry 2019; 58:951-964. [PMID: 30640434 DOI: 10.1021/acs.biochem.8b01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cobamides are coenzymes used by cells from all domains of life but made de novo by only some bacteria and archaea. The last steps of the cobamide biosynthetic pathway activate the corrin ring and the lower ligand base, condense the activated intermediates, and dephosphorylate the product prior to the release of the biologically active coenzyme. In bacteria, a phosphoribosyltransferase (PRTase) enyzme activates the base into its α-mononucleotide. The enzyme from Salmonella enterica ( SeCobT) has been extensively biochemically and structurally characterized. The crystal structure of the putative PRTase from the archaeum Methanocaldococcus jannaschii ( MjCobT) is known, but its function has not been validated. Here we report the in vivo and in vitro characterization of MjCobT. In vivo, in vitro, and phylogenetic data reported here show that MjCobT belongs to a new class of NaMN-dependent PRTases. We also show that the Synechococcus sp. WH7803 CobT protein has PRTase activity in vivo. Lastly, results of isothermal titration calorimetry and analytical ultracentrifugation analysis show that the biologically active form of MjCobT is a dimer, not a trimer, as suggested by its crystal structure.
Collapse
|
28
|
Coenzyme F 420-Dependent Glucose-6-Phosphate Dehydrogenase-Coupled Polyglutamylation of Coenzyme F 420 in Mycobacteria. J Bacteriol 2018; 200:JB.00375-18. [PMID: 30249701 DOI: 10.1128/jb.00375-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
Coenzyme F420 plays a key role in the redox metabolisms of various archaea and bacteria, including Mycobacterium tuberculosis In M. tuberculosis, F420-dependent reactions have been linked to several virulence factors. F420 carries multiple glutamate residues in the side chain, forming F420-n species (n, number of glutamate residues), and the length of this side chain impacts cellular physiology. M. tuberculosis strains with F420 species carrying shorter side chains exhibit resistance to delamanid and pretomanid, two new tuberculosis (TB) drugs. Thus, the process of polyglutamylation of F420 is of great interest. It has been known from genetic analysis that in mycobacteria an F420-0 γ-glutamyl ligase (FbiB) introduces up to seven glutamate residues into F420 However, purified FbiB of M. tuberculosis (MtbFbiB) is either inefficient or incapable of incorporating more than two glutamates. We found that, in vitro, MtbFbiB synthesized side chains containing up to seven glutamate residues if F420 was presented to the enzyme in a two-electron reduced state (F420H2). Our genetic analysis in Mycobacterium bovis BCG and Mycobacterium smegmatis and an analysis of literature data on M. tuberculosis revealed that in these mycobacteria the polyglutamylation process requires the assistance of F420-dependent glucose-6-phosphate dehydrogenase (Fgd) which reduces F420 to F420H2 We hypothesize that, starting with F420-0H2, the amino-terminal domain of FbiB builds F420-2H2, which is then transferred to the carboxy-terminal domain for further glutamylation; F420-2H2 modifies the carboxy-terminal domain structurally to accommodate longer glutamyl chains. This system is analogous to folylpolyglutamate synthase, which introduces more than one glutamate residue into folate only after this vitamin is reduced to tetrahydrofolate.IMPORTANCE Coenzyme F420-dependent reactions of Mycobacterium tuberculosis, which causes tuberculosis, potentially contributes to the virulence of this bacterium. The coenzyme carries a glutamic acid-derived tail, the length of which influences the metabolism of M. tuberculosis Mutations that eliminate the production of F420 with longer tails make M. tuberculosis resistant to two new tuberculosis drugs. This report describes that the synthesis of longer glutamyl tails of F420 requires concerted actions of two enzymes, one of which reduces the coenzyme prior to the action of the other, which catalyzes polyglutamylation. This knowledge will help to develop more effective tuberculosis (TB) drugs. Remarkably, the introduction of multiple glutamate residues into the sidechain of folate (vitamin B9) requires similar concerted actions, where one enzyme reduces the vitamin to tetrahydrofolate and the other catalyzes polyglutamylation; folate is required for DNA and amino acid synthesis. Thus, the reported research has also revealed a key similarity between two important cellular systems.
Collapse
|
29
|
Tavares NK, VanDrisse CM, Escalante-Semerena JC. Rhodobacterales use a unique L-threonine kinase for the assembly of the nucleotide loop of coenzyme B 12. Mol Microbiol 2018; 110:239-261. [PMID: 30098062 DOI: 10.1111/mmi.14100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several of the enzymes involved in the conversion of adenosylcobyric acid (AdoCby) to adenosylcobamide (AdoCba) are yet to be identified and characterized in some cobamide (Cba)-producing prokaryotes. Using a bioinformatics approach, we identified the bluE gene (locus tag RSP_0788) of Rhodobacter sphaeroides 2.4.1 as a putative functional homolog of the L-threonine kinase enzyme (PduX, EC 2.7.1.177) of S. enterica. In AdoCba, (R)-1-aminopropan-2-ol O-phosphate (AP-P) links the nucleotide loop to the corrin ring; most known AdoCba producers derive AP-P from L-Thr-O-3-phosphate (L-Thr-P). Here, we show that RsBluE has L-Thr-independent ATPase activity in vivo and in vitro. We used 31 P-NMR spectroscopy to show that RsBluE generates L-Thr-P at the expense of ATP and is unable to use L-Ser as a substrate. BluE from R. sphaeroides or Rhodobacter capsulatus restored AdoCba biosynthesis in S. enterica ΕpduX and R. sphaeroides ΕbluE mutant strains. R. sphaeroides ΕbluE strains exhibited a decreased pigment phenotype that was restored by complementation with BluE. Finally, phylogenetic analyses revealed that bluE was restricted to the genomes of a few Rhodobacterales that appear to have a preference for a specific form of Cba, namely Coᴽ-(ᴽ-5,6-dimethylbenzimidazolyl-Coᵦ-adenosylcobamide (a.k.a. adenosylcobalamin, AdoCbl; coenzyme B12 , CoB12 ).
Collapse
|
30
|
Tavares NK, Zayas CL, Escalante-Semerena JC. The Methanosarcina mazei MM2060 Gene Encodes a Bifunctional Kinase/Decarboxylase Enzyme Involved in Cobamide Biosynthesis. Biochemistry 2018; 57:4478-4495. [PMID: 29950091 PMCID: PMC6143143 DOI: 10.1021/acs.biochem.8b00546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cobamides (Cbas) are synthesized by many archaea, but some aspects of Cba biosynthesis in these microorganisms remain unclear. Here, we demonstrate that open reading frame MM2060 in the archaeum Methanosarcina mazei strain Gö1 encodes a bifunctional enzyme with l-threonine- O-3-phosphate (l-Thr-P) decarboxylase (EC 4.1.1.81) and l-Thr kinase activities (EC 2.7.1.177). In Salmonella enterica, where Cba biosynthesis has been extensively studied, the activities mentioned above are encoded by separate genes, namely, cobD and pduX, respectively. The activities associated with the MM2060 protein ( MmCobD) were validated in vitro and in vivo. In vitro, MmCobD used ATP and l-Thr as substrates and generated ADP, l-Thr-P, and ( R)-1-aminopropan-2-ol O-phosphate as products. Notably, MmCobD has a 111-amino acid C-terminal extension of unknown function, which contains a putative metal-binding motif. This C-terminal domain alone did not display activity either in vivo or in vitro. Although the C-terminal MmCobD domain was not required for l-Thr-P decarboxylase or l-Thr kinase activities in vivo, its absence negatively affected both activities. In vitro results suggested that this domain may have a regulatory or substrate-gating role. When purified under anoxic conditions, MmCobD displayed Michaelis-Menten kinetics and had a 1000-fold higher affinity for ATP and a catalytic efficiency 1300-fold higher than that of MmCobD purified under oxic conditions. To the best of our knowledge, MmCobD is the first example of a new class of l-Thr-P decarboxylases that also have l-Thr kinase activity. An archaeal protein with l-Thr kinase activity had not been identified prior to this work.
Collapse
Affiliation(s)
- Norbert K. Tavares
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Carmen L. Zayas
- Department of Bacteriology, University of Wisconsin, Madison, 53706, USA
| | | |
Collapse
|
31
|
Brown HA, Vinogradov E, Gilbert M, Holden HM. The Mycobacterium tuberculosis complex has a pathway for the biosynthesis of 4-formamido-4,6-dideoxy-d-glucose. Protein Sci 2018; 27:1491-1497. [PMID: 29761597 DOI: 10.1002/pro.3443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022]
Abstract
Recent studies have demonstrated that the O-antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N-formylated sugars (3-formamido-3,6-dideoxy-d-glucose or 4-formamido-4,6-dideoxy-d-glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6-dehydratase, a pyridoxal 5'-phosphate or PLP-dependent aminotransferase, and an N-formyltransferase. To date, there have been no published reports of N-formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N-formyltransferase. Given that M. tuberculosis produces l-rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6-dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N-formylated sugar in M. tuberculosis, namely a PLP-dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP-4-formamido-4,6-dideoxy-d-glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - Evgeny Vinogradov
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A OR6, Canada
| | - Michel Gilbert
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A OR6, Canada
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
32
|
Abstract
Spatial control of intracellular signaling relies on signaling proteins sensing their subcellular environment. In many cases, a large number of upstream signals are funneled to a master regulator of cellular behavior, but it remains unclear how individual proteins can rapidly integrate a complex array of signals within the appropriate spatial niche within the cell. As a model for how subcellular spatial information can control signaling activity, we have reconstituted the cell pole-specific control of the master regulator kinase/phosphatase CckA from the asymmetrically dividing bacterium Caulobacter crescentus CckA is active as a kinase only when it accumulates within a microdomain at the new cell pole, where it colocalizes with the pseudokinase DivL. Both proteins contain multiple PAS domains, a multifunctional class of sensory domains present across the kingdoms of life. Here, we show that CckA uses its PAS domains to integrate information from DivL and its own oligomerization state to control the balance of its kinase and phosphatase activities. We reconstituted the DivL-CckA complex on liposomes in vitro and found that DivL directly controls the CckA kinase/phosphatase switch, and that stimulation of either CckA catalytic activity depends on the second of its two PAS domains. We further show that CckA oligomerizes through a multidomain interaction that is critical for stimulation of kinase activity by DivL, while DivL stimulation of CckA phosphatase activity is independent of CckA homooligomerization. Our results broadly demonstrate how signaling factors can leverage information from their subcellular niche to drive spatiotemporal control of cell signaling.
Collapse
|
33
|
Choi UB, Zhao M, White KI, Pfuetzner RA, Esquivies L, Zhou Q, Brunger AT. NSF-mediated disassembly of on- and off-pathway SNARE complexes and inhibition by complexin. eLife 2018; 7:36497. [PMID: 29985126 PMCID: PMC6130971 DOI: 10.7554/elife.36497] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022] Open
Abstract
SNARE complex disassembly by the ATPase NSF is essential for neurotransmitter release and other membrane trafficking processes. We developed a single-molecule FRET assay to monitor repeated rounds of NSF-mediated disassembly and reassembly of individual SNARE complexes. For ternary neuronal SNARE complexes, disassembly proceeds in a single step within 100 msec. We observed short- (<0.32 s) and long-lived (≥0.32 s) disassembled states. The long-lived states represent fully disassembled SNARE complex, while the short-lived states correspond to failed disassembly or immediate reassembly. Either high ionic strength or decreased αSNAP concentration reduces the disassembly rate while increasing the frequency of short-lived states. NSF is also capable of disassembling anti-parallel ternary SNARE complexes, implicating it in quality control. Finally, complexin-1 competes with αSNAP binding to the SNARE complex; addition of complexin-1 has an effect similar to that of decreasing the αSNAP concentration, possibly differentially regulating cis and trans SNARE complexes disassembly.
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
34
|
Abstract
Microbial secondary metabolites, including isocyanide moieties, have been extensively mined for their repertoire of bioactive properties. Although the first naturally occurring isocyanide (xanthocillin) was isolated from the fungus Penicillium notatum over half a century ago, the biosynthetic origins of fungal isocyanides remain unknown. Here we report the identification of a family of isocyanide synthases (ICSs) from the opportunistic human pathogen Aspergillus fumigatus Comparative metabolomics of overexpression or knockout mutants of ICS candidate genes led to the discovery of a fungal biosynthetic gene cluster (BGC) that produces xanthocillin (xan). Detailed analysis of xanthocillin biosynthesis in A. fumigatus revealed several previously undescribed compounds produced by the xan BGC, including two novel members of the melanocin family of compounds. We found both the xan BGC and a second ICS-containing cluster, named the copper-responsive metabolite (crm) BGC, to be transcriptionally responsive to external copper levels and further demonstrated that production of metabolites from the xan BGC is increased during copper starvation. The crm BGC includes a novel type of fungus-specific ICS-nonribosomal peptide synthase (NRPS) hybrid enzyme, CrmA. This family of ICS-NRPS hybrid enzymes is highly enriched in fungal pathogens of humans, insects, and plants. Phylogenetic assessment of all ICSs spanning the tree of life shows not only high prevalence throughout the fungal kingdom but also distribution in species not previously known to harbor BGCs, indicating an untapped resource of fungal secondary metabolism.IMPORTANCE Fungal ICSs are an untapped resource in fungal natural product research. Their isocyanide products have been implicated in plant and insect pathogenesis due to their ability to coordinate transition metals and disable host metalloenzymes. The discovery of a novel isocyanide-producing family of hybrid ICS-NRPS enzymes enriched in medically and agriculturally important fungal pathogens may reveal mechanisms underlying pathogenicity and afford opportunities to discover additional families of isocyanides. Furthermore, the identification of noncanonical ICS BGCs will enable refinement of BGC prediction algorithms to expand on the secondary metabolic potential of fungal and bacterial species. The identification of genes related to ICS BGCs in fungal species not previously known for secondary metabolite-producing capabilities (e.g., Saccharomyces spp.) contributes to our understanding of the evolution of BGC in fungi.
Collapse
|
35
|
Cellular Stoichiometry of Methyl-Accepting Chemotaxis Proteins in Sinorhizobium meliloti. J Bacteriol 2018; 200:JB.00614-17. [PMID: 29263102 DOI: 10.1128/jb.00614-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/15/2017] [Indexed: 12/29/2022] Open
Abstract
The chemosensory system in Sinorhizobium meliloti has several important deviations from the widely studied enterobacterial paradigm. To better understand the differences between the two systems and how they are optimally tuned, we determined the cellular stoichiometry of the methyl-accepting chemotaxis proteins (MCPs) and the histidine kinase CheA in S. meliloti Quantitative immunoblotting was used to determine the total amount of MCPs and CheA per cell in S. meliloti The MCPs are present in the cell in high abundance (McpV), low abundance (IcpA, McpU, McpX, and McpW), and very low abundance (McpY and McpZ), whereas McpT was below the detection limit. The approximate cellular ratio of these three receptor groups is 300:30:1. The chemoreceptor-to-CheA ratio is 23.5:1, highly similar to that seen in Bacillus subtilis (23:1) and about 10 times higher than that in Escherichia coli (3.4:1). Different from E. coli, the high-abundance receptors in S. meliloti are lacking the carboxy-terminal NWETF pentapeptide that binds the CheR methyltransferase and CheB methylesterase. Using transcriptional lacZ fusions, we showed that chemoreceptors are positively controlled by the master regulators of motility, VisNR and Rem. In addition, FlbT, a class IIA transcriptional regulator of flagellins, also positively regulates the expression of most chemoreceptors except for McpT and McpY, identifying chemoreceptors as class III genes. Taken together, these results demonstrate that the chemosensory complex and the adaptation system in S. meliloti deviates significantly from the established enterobacterial paradigm but shares some similarities with B. subtilisIMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti is of great agricultural importance because of its nitrogen-fixing properties, which enhances growth of its plant symbiont, alfalfa. Chemotaxis provides a competitive advantage for bacteria to sense their environment and interact with their eukaryotic hosts. For a better understanding of the role of chemotaxis in these processes, detailed knowledge on the regulation and composition of the chemosensory machinery is essential. Here, we show that chemoreceptor gene expression in S. meliloti is controlled through the main transcriptional regulators of motility. Chemoreceptor abundance is much lower in S. meliloti than in Escherichia coli and Bacillus subtilis Moreover, the chemoreceptor-to-kinase CheA ratio is different from that of E. coli but similar to that of B. subtilis.
Collapse
|
36
|
VanDrisse CM, Escalante-Semerena JC. In Streptomyces lividans, acetyl-CoA synthetase activity is controlled by O-serine and N ɛ -lysine acetylation. Mol Microbiol 2018; 107:577-594. [PMID: 29266439 PMCID: PMC5796852 DOI: 10.1111/mmi.13901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 01/17/2023]
Abstract
Protein acetylation is a rapid mechanism for control of protein function. Acetyl-CoA synthetase (AMP-forming, Acs) is the paradigm for the control of metabolic enzymes by lysine acetylation. In many bacteria, type I or II protein acetyltransferases acetylate Acs, however, in actinomycetes type III protein acetyltransferases control the activity of Acs. We measured changes in the activity of the Streptomyces lividans Acs (SlAcs) enzyme upon acetylation by PatB using in vitro and in vivo analyses. In addition to the acetylation of residue K610, residue S608 within the acetylation motif of SlAcs was also acetylated (PKTRSGK610 ). S608 acetylation rendered SlAcs inactive and non-acetylatable by PatB. It is unclear whether acetylation of S608 is enzymatic, but it was clear that this modification occurred in vivo in Streptomyces. In S. lividans, an NAD+ -dependent sirtuin deacetylase from Streptomyces, SrtA (a homologue of the human SIRT4 protein) was needed to maintain SlAcs function in vivo. We have characterized a sirtuin-dependent reversible lysine acetylation system in Streptomyces lividans that targets and controls the Acs enzyme of this bacterium. These studies raise questions about acetyltransferase specificity, and describe the first Acs enzyme in any organism whose activity is modulated by O-Ser and Nɛ -Lys acetylation.
Collapse
|
37
|
Han Y, Guo W, Su B, Guo Y, Wang J, Chu B, Yang G. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag. Protein Expr Purif 2018; 142:25-31. [DOI: 10.1016/j.pep.2017.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 11/28/2022]
|
38
|
Wetterhorn KM, Gabardi K, Michlmayr H, Malachova A, Busman M, McCormick SP, Berthiller F, Adam G, Rayment I. Determinants and Expansion of Specificity in a Trichothecene UDP-Glucosyltransferase from Oryza sativa. Biochemistry 2017; 56:6585-6596. [DOI: 10.1021/acs.biochem.7b01007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Karl M. Wetterhorn
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kaitlyn Gabardi
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Herbert Michlmayr
- Department
of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Alexandra Malachova
- Christian
Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical
Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse
20, 3430 Tulln, Austria
| | - Mark Busman
- Mycotoxin
Prevention and Applied Microbiology Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Susan P. McCormick
- Mycotoxin
Prevention and Applied Microbiology Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Franz Berthiller
- Christian
Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical
Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse
20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department
of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Ivan Rayment
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
39
|
The PrpF protein of Shewanella oneidensis MR-1 catalyzes the isomerization of 2-methyl-cis-aconitate during the catabolism of propionate via the AcnD-dependent 2-methylcitric acid cycle. PLoS One 2017; 12:e0188130. [PMID: 29145506 PMCID: PMC5690661 DOI: 10.1371/journal.pone.0188130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/01/2017] [Indexed: 11/23/2022] Open
Abstract
The 2-methylcitric acid cycle (2-MCC) is a common route of propionate catabolism in microorganisms. In Salmonella enterica, the prpBCDE operon encodes most of the 2-MCC enzymes. In other organisms, e.g., Shewanella oneidensis MR-1, two genes, acnD and prpF replace prpD, which encodes 2-methylcitrate dehydratase. We showed that together, S. oneidensis AcnD and PrpF (SoAcnD, SoPrpF) compensated for the absence of PrpD in a S. enterica prpD strain. We also showed that SoAcnD had 2-methylcitrate dehydratase activity and that PrpF has aconitate isomerase activity. Here we report in vitro evidence that the product of the SoAcnD reaction is an isomer of 2-methyl-cis-aconitate (2-MCA], the product of the SePrpD reaction. We show that the SoPrpF protein isomerizes the product of the AcnD reaction into the PrpD product (2-MCA], a known substrate of the housekeeping aconitase (AcnB]. Given that SoPrpF is an isomerase, that SoAcnD is a dehydratase, and the results from in vivo and in vitro experiments reported here, it is likely that 4-methylaconitate is the product of the AcnD enzyme. Results from in vivo studies using a S. enterica prpD strain show that SoPrpF variants with substitutions of residues K73 or C107 failed to support growth with propionate as the sole source of carbon and energy. High-resolution (1.22 Å) three-dimensional crystal structures of PrpFK73E in complex with trans-aconitate or malonate provide insights into the mechanism of catalysis of the wild-type protein.
Collapse
|
40
|
In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation. Appl Environ Microbiol 2017; 83:AEM.01590-17. [PMID: 28842538 DOI: 10.1128/aem.01590-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022] Open
Abstract
Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for streptothricin acetyltransferase A, formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA+ restored streptothricin resistance to B. subtilissatA (BsSatA) strains. Purified BsSatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity (Kd [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilissatA+ in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil.IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis The initial characterization of the enzyme provides insights into its mechanism of catalysis.
Collapse
|
41
|
Lenz JD, Hackett KT, Dillard JP. A Single Dual-Function Enzyme Controls the Production of Inflammatory NOD Agonist Peptidoglycan Fragments by Neisseria gonorrhoeae. mBio 2017; 8:e01464-17. [PMID: 29042497 PMCID: PMC5646250 DOI: 10.1128/mbio.01464-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023] Open
Abstract
Neisseria gonorrhoeae gonococcus (GC) is a Gram-negative betaproteobacterium and causative agent of the sexually transmitted infection gonorrhea. During growth, GC releases lipooligosaccharide (LOS) and peptidoglycan (PG) fragments, which contribute significantly to the inflammatory damage observed during human infection. In ascending infection of human Fallopian tubes, inflammation leads to increased risk of ectopic pregnancy, pelvic inflammatory disease, and sterility. Of the PG fragments released by GC, most are disaccharide peptide monomers, and of those, 80% have tripeptide stems despite the observation that tetrapeptide stems make up 80% of the assembled cell wall. We identified a serine-protease l,d-carboxypeptidase, NGO1274 (LdcA), as the enzyme responsible for converting cell wall tetrapeptide-stem PG to released tripeptide-stem PG. Unlike characterized cytoplasmic LdcA homologs in gammaproteobacteria, LdcA in GC is exported to the periplasm, and its localization is critical for its activity in modifying PG fragments for release. Distinct among other characterized l,d-carboxypeptidases, LdcA from GC is also capable of catalyzing the cleavage of specific peptide cross-bridges (endopeptidase activity). To define the role of ldcA in pathogenesis, we demonstrate that ldcA disruption results in both loss of NOD1-dependent NF-κB activation and decreased NOD2-dependent NF-κB activation while not affecting Toll-like receptor (TLR) agonist release. Since the human intracellular peptidoglycan receptor NOD1 (hNOD1) specifically recognizes PG fragments with a terminal meso-DAP rather than d-alanine, we conclude that LdcA is required for GC to provoke NOD1-dependent responses in cells of the human host.IMPORTANCE The macromolecular meshwork of peptidoglycan serves essential functions in determining bacterial cell shape, protecting against osmotic lysis, and defending cells from external assaults. The conserved peptidoglycan structure, however, is also recognized by eukaryotic pattern recognition receptors, which can trigger immune responses against bacteria. Many bacteria can induce an inflammatory response through the intracellular peptidoglycan receptor NOD1, but Neisseria gonorrhoeae serves as an extreme example, releasing fragments of peptidoglycan into the environment during growth that specifically antagonize human NOD1. Understanding the peptidoglycan breakdown mechanisms that allow Neisseria to promote NOD1 activation, rather than avoiding or suppressing immune detection, is critical to understanding the pathogenesis of this increasingly drug-resistant organism. We identify a peptidoglycan l,d-carboxypeptidase responsible for converting liberated peptidoglycan fragments into the human NOD1 agonist and find that the same enzyme has endopeptidase activity on certain peptidoglycan cross-links, the first described combination of those two activities in a single enzyme.
Collapse
Affiliation(s)
- Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kathleen T Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
42
|
Schomer RA, Thomas MG. Characterization of the Functional Variance in MbtH-like Protein Interactions with a Nonribosomal Peptide Synthetase. Biochemistry 2017; 56:5380-5390. [PMID: 28880538 PMCID: PMC5902190 DOI: 10.1021/acs.biochem.7b00517] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many nonribosomal peptide synthetases (NRPSs) require MbtH-like proteins (MLPs) for solubility or for activation of amino acid substrate by the adenylation domain. MLPs are capable of functional crosstalk with noncognate NRPSs at varying levels. Using enterobactin biosynthesis in Escherichia coli as a model MLP-dependent NRPS system, we use in vivo and in vitro techniques to characterize how seven noncognate MLPs influence the function of the enterobactin NRPS EntF when the cognate MLP, YbdZ, is absent. Using a series of in vitro assays to analyze EntF solubility, adenylation, aminoacylation, and in vitro enterobactin production, we show that interactions between MLPs and NRPSs are multifaceted and more complex than previously appreciated. We separate MLP influence on solubility and function in a manner that shows altered solubility is not indicative of a functional MLP/NRPS pair. Although much of the functional variation among these noncognates can be explained by differences in EntF affinity for an MLP or the extent an MLP alters EntF l-Ser affinity, we demonstrate that MLPs can have a broader impact beyond solubility and adenylation. First, we show that a noncognate MLP can affect formation of l-Ser-S-EntF. Second, under in vitro conditions saturating for substrate and MLP, enterobactin production remains compromised in the absence of an appropriate MLP partner. These data suggest that we expand our investigations into how the MLPs influence NRPS enzymology. A more detailed understanding of these influences will be essential for downstream engineering of hybrid NRPS systems.
Collapse
Affiliation(s)
- Rebecca A. Schomer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
43
|
Susanti D, Loganathan U, Compton A, Mukhopadhyay B. A Reexamination of Thioredoxin Reductase from Thermoplasma acidophilum, a Thermoacidophilic Euryarchaeon, Identifies It as an NADH-Dependent Enzyme. ACS OMEGA 2017; 2:4180-4187. [PMID: 28884159 PMCID: PMC5579543 DOI: 10.1021/acsomega.7b00640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Flavin-containing Trx reductase (TrxR) of Thermoplasma acidophilum (Ta), a thermoacidophilic facultative anaerobic archaeon, lacks the structural features for the binding of 2'-phosphate of nicotinamide adenine dinucleotide phosphate (NADPH), and this feature has justified the observed lack of activity with NADPH; NADH has also been reported to be ineffective. Our recent phylogenetic analysis identified Ta-TrxR as closely related to the NADH-dependent enzymes of Thermotoga maritima and Desulfovibrio vulgaris, both being anaerobic bacteria. This observation instigated a reexamination of the activity of the enzyme, which showed that Ta-TrxR is NADH dependent; the apparent Km for NADH was 3.1 μM, a physiologically relevant value. This finding is consistent with the observation that NADH:TrxR has thus far been found primarily in anaerobic bacteria and archaea.
Collapse
Affiliation(s)
- Dwi Susanti
- Department
of Biochemistry, Biocomplexity Institute, and Virginia Tech Carilion School of
Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Usha Loganathan
- Department
of Biochemistry, Biocomplexity Institute, and Virginia Tech Carilion School of
Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Austin Compton
- Department
of Biochemistry, Biocomplexity Institute, and Virginia Tech Carilion School of
Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Biswarup Mukhopadhyay
- Department
of Biochemistry, Biocomplexity Institute, and Virginia Tech Carilion School of
Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
44
|
Li X, Michlmayr H, Schweiger W, Malachova A, Shin S, Huang Y, Dong Y, Wiesenberger G, McCormick S, Lemmens M, Fruhmann P, Hametner C, Berthiller F, Adam G, Muehlbauer GJ. A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium Head Blight resistance in transgenic wheat. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2187-2197. [PMID: 28407119 PMCID: PMC5447872 DOI: 10.1093/jxb/erx109] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fusarium Head Blight is a disease of cereal crops that causes severe yield losses and mycotoxin contamination of grain. The main causal pathogen, Fusarium graminearum, produces the trichothecene toxins deoxynivalenol or nivalenol as virulence factors. Nivalenol-producing isolates are most prevalent in Asia but co-exist with deoxynivalenol producers in lower frequency in North America and Europe. Previous studies identified a barley UDP-glucosyltransferase, HvUGT13248, that efficiently detoxifies deoxynivalenol, and when expressed in transgenic wheat results in high levels of type II resistance against deoxynivalenol-producing F. graminearum. Here we show that HvUGT13248 is also capable of converting nivalenol into the non-toxic nivalenol-3-O-β-d-glucoside. We describe the enzymatic preparation of a nivalenol-glucoside standard and its use in development of an analytical method to detect the nivalenol-glucoside conjugate. Recombinant Escherichia coli expressing HvUGT13248 glycosylates nivalenol more efficiently than deoxynivalenol. Overexpression in yeast, Arabidopsis thaliana, and wheat leads to increased nivalenol resistance. Increased ability to convert nivalenol to nivalenol-glucoside was observed in transgenic wheat, which also exhibits type II resistance to a nivalenol-producing F. graminearum strain. Our results demonstrate the HvUGT13248 can act to detoxify deoxynivalenol and nivalenol and provide resistance to deoxynivalenol- and nivalenol-producing Fusarium.
Collapse
Affiliation(s)
- Xin Li
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Wolfgang Schweiger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Alexandra Malachova
- Department of Agrobiotechnology, IFA-Tulln, Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Sanghyun Shin
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Yadong Huang
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Susan McCormick
- USDA-ARS, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, USA
| | - Marc Lemmens
- Institute for Biotechnology in Plant Production, Department of Agrobiotechnolgy, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Philipp Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | - Franz Berthiller
- Department of Agrobiotechnology, IFA-Tulln, Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Gary J Muehlbauer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
45
|
Morales FE, Forsse JS, Andre TL, McKinley-Barnard SK, Hwang PS, Anthony IG, Tinsley GM, Spillane M, Grandjean PW, Ramirez A, Willoughby DS. BAIBA Does Not Regulate UCP-3 Expression in Human Skeletal Muscle as a Response to Aerobic Exercise. J Am Coll Nutr 2017; 36:200-209. [PMID: 28318397 DOI: 10.1080/07315724.2016.1256240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE β-Aminoisobutyric acid (BAIBA) has shown to modulate uncoupling protein (UCP)-1 expression, which is mainly expressed in white adipose tissue; however, no studies to date have analyzed its potential effect on the main uncoupling protein of skeletal muscle, UCP-3. The main goal of this study was to assess the potential effect of acute aerobic exercise on serum BAIBA and skeletal muscle UCP-3. The secondary goal was to assess the potential involvement of the transcription factors proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and peroxisome proliferator-activated receptor alpha (PPARα), as well as free fatty acids (FFAs) in UCP-3 expression. A tertiary goal of the study was to evaluate the potential effect of consuming a preexercise meal on the outcome of the first 2 objectives. METHODS In a randomized crossover design, untrained participants performed 2 acute cycling sessions (350 kcal at 70% of their VO2peak) after 2 experimental conditions: (1) consumption of a multi-macronutrient shake and (2) a fasting period of 8 hours. Blood samples were taken at baseline, preexercise, postexercise, 1 hour, and 4 hours postexercise, and muscle biopsies were taken at the last 4 time points. UCP-3 protein concentration and expression, as well as the mRNA expression of PGC-1α and PPARα, were measured in muscle, and BAIBA, glucose, and FFA were measured in serum. RESULTS Aerobic exercise failed to induce a significant effect on serum BAIBA, PGC-1α, and PPARα regardless on the feeding condition. Despite the lack of effect of exercise on the previous variables, UCP-3 expression and protein concentration significantly increased in the shake condition. CONCLUSION The expression of human skeletal muscle UCP-3 as a result of exercise might be controlled by factors other than BAIBA.
Collapse
Affiliation(s)
- Flor E Morales
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Jeffrey S Forsse
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Thomas L Andre
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | | | - Paul S Hwang
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Ian G Anthony
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Grant M Tinsley
- c Department of Kinesiology and Sport Management , Texas Tech University , Lubbock , Texas
| | - Mike Spillane
- d Department of Nutrition , Tecnológico de Monterrey , Monterrey , N.L. , México
| | - Peter W Grandjean
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Alejandro Ramirez
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Darryn S Willoughby
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| |
Collapse
|
46
|
Wang S, Choi UB, Gong J, Yang X, Li Y, Wang AL, Yang X, Brunger AT, Ma C. Conformational change of syntaxin linker region induced by Munc13s initiates SNARE complex formation in synaptic exocytosis. EMBO J 2017; 36:816-829. [PMID: 28137749 PMCID: PMC5350566 DOI: 10.15252/embj.201695775] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 01/04/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1 adopts a closed conformation when bound to Munc18-1, preventing binding to synaptobrevin-2 and SNAP-25 to form the ternary SNARE complex. Although it is known that the MUN domain of Munc13-1 catalyzes the transition from the Munc18-1/syntaxin-1 complex to the SNARE complex, the molecular mechanism is unclear. Here, we identified two conserved residues (R151, I155) in the syntaxin-1 linker region as key sites for the MUN domain interaction. This interaction is essential for SNARE complex formation in vitro and synaptic vesicle priming in neuronal cultures. Moreover, this interaction is important for a tripartite Munc18-1/syntaxin-1/MUN complex, in which syntaxin-1 still adopts a closed conformation tightly bound to Munc18-1, whereas the syntaxin-1 linker region changes its conformation, similar to that of the LE mutant of syntaxin-1 when bound to Munc18-1. We suggest that the conformational change of the syntaxin-1 linker region induced by Munc13-1 initiates ternary SNARE complex formation in the neuronal system.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ucheor B Choi
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jihong Gong
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Xiaoyu Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Austin L Wang
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Axel T Brunger
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Michlmayr H, Varga E, Lupi F, Malachová A, Hametner C, Berthiller F, Adam G. Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077. Toxins (Basel) 2017; 9:E58. [PMID: 28208765 PMCID: PMC5331437 DOI: 10.3390/toxins9020058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 01/25/2023] Open
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin occurring in Fusarium-infected cereals. Glucosylation is an important plant defense mechanism and generally reduces the acute toxicity of mycotoxins to humans and animals. Toxicological information about ZEN-glucosides is limited due to the unavailability of larger amounts required for animal studies. HvUGT14077, a recently-validated ZEN-conjugating barley UDP-glucosyltransferase was expressed in Escherichia coli, affinity purified, and characterized. HvUGT14077 possesses high affinity (Km = 3 µM) and catalytic efficiency (kcat/Km = 190 s-1·mM-1) with ZEN. It also efficiently glucosylates the phase-I ZEN-metabolites α-zearalenol and β-zearalenol, with kcat/Km of 40 and 74 s-1·mM-1, respectively. HvUGT14077 catalyzes O-glucosylation at C-14 and C-16 with preference of 14-glucoside synthesis. Furthermore, relatively slow consecutive formation of 14,16-di-glucosides was observed; their structures were tentatively identified by mass spectrometry and for ZEN-14,16-di-glucoside confirmed by nuclear magnetic resonance spectroscopy. Recombinant HvUGT14077 allowed efficient preparative synthesis of ZEN-glucosides, yielding about 90% ZEN-14-glucoside and 10% ZEN-16-glucoside. The yield of ZEN-16-glucoside could be increased to 85% by co-incubation with a β-glucosidase highly selective for ZEN-14-glucoside. Depletion of the co-substrate UDP-glucose was counteracted by a sucrose synthase based regeneration system. This strategy could also be of interest to increase the yield of minor glucosides synthesized by other glucosyltransferases.
Collapse
Affiliation(s)
- Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria.
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.
| | - Elisabeth Varga
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Francesca Lupi
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via-Napoli 25, 71122 Foggia, Italy.
| | - Alexandra Malachová
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Franz Berthiller
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria.
| |
Collapse
|
48
|
Mattes TA, Escalante-Semerena JC. Salmonella enterica synthesizes 5,6-dimethylbenzimidazolyl-(DMB)-α-riboside. Why some Firmicutes do not require the canonical DMB activation system to synthesize adenosylcobalamin. Mol Microbiol 2016; 103:269-281. [PMID: 27748967 DOI: 10.1111/mmi.13555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2016] [Indexed: 01/01/2023]
Abstract
5,6-Dimethylbenzimidazolyl-(DMB)-α-ribotide [α-ribazole-5'-phosphate (α-RP)] is an intermediate in the biosynthesis of adenosylcobalamin (AdoCbl) in many prokaryotes. In such microbes, α-RP is synthesized by nicotinate mononucleotide (NaMN):DMB phosphoribosyltransferases (CobT in Salmonella enterica), in a reaction that is considered to be the canonical step for the activation of the base of the nucleotide present in adenosylcobamides. Some Firmicutes lack CobT-type enzymes but have a two-protein system comprised of a transporter (i.e., CblT) and a kinase (i.e., CblS) that can salvage exogenous α-ribazole (α-R) from the environment using CblT to take up α-R, followed by α-R phosphorylation by CblS. We report that Geobacillus kaustophilus CblT and CblS proteins restore α-RP synthesis in S. enterica lacking the CobT enzyme. We also show that a S. enterica cobT strain that synthesizes GkCblS ectopically makes only AdoCbl, even under growth conditions where the synthesis of pseudoCbl is favored. Our results indicate that S. enterica synthesizes α-R, a metabolite that had not been detected in this bacterium and that GkCblS has a strong preference for DMB-ribose over adenine-ribose as substrate. We propose that in some Firmicutes DMB is activated to α-RP via α-R using an as-yet-unknown route to convert DMB to α-R and CblS to convert α-R to α-RP.
Collapse
Affiliation(s)
- Theodoric A Mattes
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
49
|
Phosphinothricin Acetyltransferases Identified Using In Vivo, In Vitro, and Bioinformatic Analyses. Appl Environ Microbiol 2016; 82:7041-7051. [PMID: 27694229 DOI: 10.1128/aem.02604-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/20/2022] Open
Abstract
Acetylation of small molecules is widespread in nature, and in some cases, cells use this process to detoxify harmful chemicals. Streptomyces species utilize a Gcn5 N-acetyltransferase (GNAT), known as Bar, to acetylate and detoxify a self-produced toxin, phosphinothricin (PPT), a glutamate analogue. Bar homologues, such as MddA from Salmonella enterica, acetylate methionine analogues such as methionine sulfoximine (MSX) and methionine sulfone (MSO), but not PPT, even though Bar homologues are annotated as PPT acetyltransferases. S. enterica was used as a heterologous host to determine whether or not putative PPT acetyltransferases from various sources could acetylate PPT, MSX, and MSO. In vitro and in vivo analyses identified substrates acetylated by putative PPT acetyltransferases from Deinococcus radiodurans (DR_1057 and DR_1182) and Geobacillus kaustophilus (GK0593 and GK2920). In vivo, synthesis of DR_1182, GK0593, and GK2920 blocked the inhibitory effects of PPT, MSX, and MSO. In contrast, DR_1057 did not detoxify any of the above substrates. Results of in vitro studies were consistent with the in vivo results. In addition, phylogenetic analyses were used to predict the functionality of annotated PPT acetyltransferases in Burkholderia xenovorans, Bacillus subtilis, Staphylococcus aureus, Acinetobacter baylyi, and Escherichia coli IMPORTANCE: The work reported here provides an example of the use of a heterologous system for the identification of enzyme function. Many members of this superfamily of proteins do not have a known function, or it has been annotated solely on the basis of sequence homology to previously characterized enzymes. The critical role of Gcn5 N-acetyltransferases (GNATs) in the modulation of central metabolic processes, and in controlling metabolic stress, necessitates approaches that can reveal their physiological role. The combination of in vivo, in vitro, and bioinformatics approaches reported here identified GNATs that can acetylate and detoxify phosphinothricin.
Collapse
|
50
|
C-terminal domain of mammalian complexin-1 localizes to highly curved membranes. Proc Natl Acad Sci U S A 2016; 113:E7590-E7599. [PMID: 27821736 DOI: 10.1073/pnas.1609917113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In presynaptic nerve terminals, complexin regulates spontaneous "mini" neurotransmitter release and activates Ca2+-triggered synchronized neurotransmitter release. We studied the role of the C-terminal domain of mammalian complexin in these processes using single-particle optical imaging and electrophysiology. The C-terminal domain is important for regulating spontaneous release in neuronal cultures and suppressing Ca2+-independent fusion in vitro, but it is not essential for evoked release in neuronal cultures and in vitro. This domain interacts with membranes in a curvature-dependent fashion similar to a previous study with worm complexin [Snead D, Wragg RT, Dittman JS, Eliezer D (2014) Membrane curvature sensing by the C-terminal domain of complexin. Nat Commun 5:4955]. The curvature-sensing value of the C-terminal domain is comparable to that of α-synuclein. Upon replacement of the C-terminal domain with membrane-localizing elements, preferential localization to the synaptic vesicle membrane, but not to the plasma membrane, results in suppression of spontaneous release in neurons. Membrane localization had no measurable effect on evoked postsynaptic currents of AMPA-type glutamate receptors, but mislocalization to the plasma membrane increases both the variability and the mean of the synchronous decay time constant of NMDA-type glutamate receptor evoked postsynaptic currents.
Collapse
|