1
|
Yue L, Yan Y. Metabolic Regulation in Acute Respiratory Distress Syndrome: Implications for Inflammation and Oxidative Stress. Int J Chron Obstruct Pulmon Dis 2025; 20:373-388. [PMID: 39991071 PMCID: PMC11846517 DOI: 10.2147/copd.s491687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/01/2024] [Indexed: 02/25/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe and life-threatening pulmonary condition characterized by intense inflammation and disrupted oxygen exchange, which can lead to multiorgan failure. Recent findings have established ARDS as a systemic inflammatory disorder involving complex interactions between lung injury, systemic inflammation, and oxidative stress. This review examines the pivotal role of metabolic disturbances in the pathogenesis of ARDS, emphasizing their influence on inflammatory responses and oxidative stress. Common metabolic abnormalities in ARDS patients, including disruptions in carbohydrate, amino acid, and lipid metabolism, contribute significantly to the disease's severity. These metabolic dysfunctions interplay with systemic inflammation and oxidative stress, further exacerbating lung injury and worsening patient outcomes. By analyzing the regulatory mechanisms of various metabolites implicated in ARDS, we underscore the potential of targeting metabolic pathways as a therapeutic approach. Such interventions could help attenuate inflammation and oxidative stress, presenting a promising strategy for ARDS treatment. Additionally, we review potential drugs that modulate metabolic pathways, providing valuable insights into the etiology of ARDS and potential therapeutic directions. This comprehensive analysis enhances our understanding of ARDS and highlights the importance of metabolic regulation in the development of effective treatment strategies. Key findings from this review demonstrate that metabolic disturbances, particularly those affecting carbohydrate, amino acid, and lipid metabolism, play critical roles in amplifying inflammation and oxidative stress, underscoring the potential of metabolic-targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Lixia Yue
- Department of Critical Care Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, 312000, People’s Republic of China
| | - Yihe Yan
- Department of Critical Care Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, 312000, People’s Republic of China
| |
Collapse
|
2
|
Wei S, Hu Q, Ma J, Dai X, Sun Y, Han G, Meng H, Xu W, Zhang L, Ma X, Peng J, Wang Y. Acellular nerve xenografts based on supercritical extraction technology for repairing long-distance sciatic nerve defects in rats. Bioact Mater 2022; 18:300-320. [PMID: 35387172 PMCID: PMC8961471 DOI: 10.1016/j.bioactmat.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Compared to conventional artificial nerve guide conduits (NGCs) prepared using natural polymers or synthetic polymers, acellular nerve grafts (ACNGs) derived from natural nerves with eliminated immune components have natural bionic advantages in composition and structure that polymer materials do not have. To further optimize the repair effect of ACNGs, in this study, we used a composite technology based on supercritical carbon dioxide (scCO2) extraction to process the peripheral nerve of a large mammal, the Yorkshire pig, and obtained an innovative Acellular nerve xenografts (ANXs, namely, CD + scCO2 NG). After scCO2 extraction, the fat and DNA content in CD + scCO2 NG has been removed to the greatest extent, which can better supported cell adhesion and proliferation, inducing an extremely weak inflammatory response. Interestingly, the protein in the CD + scCO2 NG was primarily involved in signaling pathways related to axon guidance. Moreover, compared with the pure chemical decellularized nerve graft (CD NG), the DRG axons grew naturally on the CD + scCO2 NG membrane and extended long distances. In vivo studies further revealed that the regenerated nerve axons had basically crossed the CD + scCO2 NG 3 weeks after surgery. 12 weeks after surgery, CD + scCO2 NG was similar to autologous nerves in improving the quality of nerve regeneration, target muscle morphology and motor function recovery and was significantly better than hollow NGCs and CD NG. Therefore, we believe that the fully decellularized and fat-free porcine ACNGs may be the most promising “bridge” for repairing human nerve defects at this stage and for some time to come. The native adipose tissue inside acellular nerve xenografts hinders regenerated nerve fibers. Environmentally friendly scCO2 extraction has natural advantages in reducing fat content. Natural three-dimensional nerve basement membrane tube structure guides regenerating axons.
Collapse
|
3
|
Oda H, Tanaka S, Shinohara M, Morimura Y, Yokoyama Y, Kayawake H, Yamada Y, Yutaka Y, Ohsumi A, Nakajima D, Hamaji M, Menju T, Date H. Specialized Proresolving Lipid Meditators Agonistic to Formyl Peptide Receptor Type 2 Attenuate Ischemia-reperfusion Injury in Rat Lung. Transplantation 2022; 106:1159-1169. [PMID: 34873128 DOI: 10.1097/tp.0000000000003987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung ischemia-reperfusion injury (IRI) is a form of acute lung injury characterized by nonspecific alveolar damage and lung edema due to robust inflammation. Little is known about the roles of specialized proresolving lipid mediators (SPMs) in lung IRI. Therefore, we aimed to evaluate the dynamic changes in endogenous SPMs during the initiation and resolution of lung IRI and to determine the effects of SPM supplementation on lung IRI. METHODS We used a rat left hilar clamp model with 90 min of ischemia, followed by reperfusion. Dynamic changes in endogenous SPMs were evaluated using liquid chromatography-tandem mass spectrometry. RESULTS Endogenous SPMs in the left lung showed a decreasing trend after 1 h of reperfusion. Oxygenation improved between 3 and 7 d following reperfusion; however, the level of endogenous SPMs remained low compared with that in the naïve lung. Among SPM receptors, only formyl peptide receptor type 2 (ALX/FPR2) gene expression in the left lung was increased 3 h after reperfusion, and the inflammatory cells were immunohistochemically positive for ALX/FPR2. Administration of aspirin-triggered (AT) resolvin D1 (AT-RvD1) and AT lipoxin A4 (AT-LXA4), which are agonistic to ALX/FPR2, immediately after reperfusion improved lung function, reduced inflammatory cytokine levels, attenuated lung edema, and decreased neutrophil infiltration 3 h after reperfusion. The effects of AT-RvD1 and AT-LXA4 were not observed after pretreatment with the ALX/FPR2 antagonist. CONCLUSIONS The level of intrapulmonary endogenous SPMs decreased during lung IRI process and the administration of AT-RvD1 and AT-LXA4 prevented the exacerbation of lung injury via ALX/FPR2.
Collapse
Affiliation(s)
- Hiromi Oda
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Morimura
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuhei Yokoyama
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidenao Kayawake
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Nijmeh J, Levy BD. Lipid-Derived Mediators are Pivotal to Leukocyte and Lung Cell Responses in Sepsis and ARDS. Cell Biochem Biophys 2021; 79:449-459. [PMID: 34176102 PMCID: PMC8236093 DOI: 10.1007/s12013-021-01012-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Acute inflammation in the lung is essential for host defense against pathogens and other injuries but chronic or excessive inflammation can contribute to several common respiratory diseases. In health, the inflammatory response is controlled by several cellular and molecular mechanisms. In addition to anti-inflammatory processes, there are non-phlogistic pro-resolving mechanisms that are engaged to promote the resolution of inflammation and a return to homeostasis. Defects in the production or actions of specialized pro-resolving mediators are associated with diseases characterized by excess or chronic inflammation. In this article, we review cellular and biochemical mechanisms for specialized pro-resolving mediators in health and in sepsis and the acute respiratory distress syndrome as examples of unrestrained inflammatory responses that result in life-threatening pathology. We are honored to contribute to this special edition of the Journal to help celebrate Professor Viswanathan Natarajan's contributions to our understanding of lipid-derived mediators and metabolism in lung cell responses to inflammatory, infectious, or mechanical insults; his foundational discoveries in cell biochemistry and biophysics are continuing to catalyze further advances by the field to uncover the mechanistic underpinnings of important human diseases.
Collapse
Affiliation(s)
- Julie Nijmeh
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Tułowiecka N, Kotlęga D, Bohatyrewicz A, Szczuko M. Could Lipoxins Represent a New Standard in Ischemic Stroke Treatment? Int J Mol Sci 2021; 22:ijms22084207. [PMID: 33921615 PMCID: PMC8074032 DOI: 10.3390/ijms22084207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
Introduction: Cardiovascular diseases including stroke are one of the most common causes of death. Their main cause is atherosclerosis and chronic inflammation in the body. An ischemic stroke may occur as a result of the rupture of unstable atherosclerotic plaque. Cardiovascular diseases are associated with uncontrolled inflammation. The inflammatory reaction produces chemical mediators that stimulate the resolution of inflammation. One of these mediators is lipoxins—pro-resolving mediators that are derived from the omega-6 fatty acid family, promoting inflammation relief and supporting tissue regeneration. Aim: The aim of the study was to review the available literature on the therapeutic potential of lipoxins in the context of ischemic stroke. Material and Methods: Articles published up to 31 January 2021 were included in the review. The literature was searched on the basis of PubMed and Embase in terms of the entries: ‘stroke and lipoxin’ and ‘stroke and atherosclerosis’, resulting in over 110 articles in total. Studies that were not in full-text English, letters to the editor, and conference abstracts were excluded. Results: In animal studies, the injection/administration of lipoxin A4 improved the integrity of the blood–brain barrier (BBB), decreased the volume of damage caused by ischemic stroke, and decreased brain edema. In addition, lipoxin A4 inhibited the infiltration of neutrophils and the production of cytokines and pro-inflammatory chemokines, such as interleukin (Il-1β, Il-6, Il-8) and tumor necrosis factor-α (TNF-α). The beneficial effects were also observed after introducing the administration of lipoxin A4 analog—BML-111. BML-111 significantly reduces the size of a stroke and protects the cerebral cortex, possibly by reducing the permeability of the blood–brain barrier. Moreover, more potent than lipoxin A4, it has an anti-inflammatory effect by inhibiting the production of pro-inflammatory cytokines and increasing the amount of anti-inflammatory cytokines. Conclusions: Lipoxins and their analogues may find application in reducing damage caused by stroke and improving the prognosis of patients after ischemic stroke.
Collapse
Affiliation(s)
- Nikola Tułowiecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24 Street, 71-460 Szczecin, Poland;
| | - Dariusz Kotlęga
- Department of Neurology, District Hospital, 67-200 Głogów, Poland;
| | - Andrzej Bohatyrewicz
- Department of Orthopaedics, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24 Street, 71-460 Szczecin, Poland;
- Correspondence: ; Tel.: +48-91-441-4810; Fax: +48-91-441-4807
| |
Collapse
|
7
|
Dwyer GK, Turnquist HR. Untangling Local Pro-Inflammatory, Reparative, and Regulatory Damage-Associated Molecular-Patterns (DAMPs) Pathways to Improve Transplant Outcomes. Front Immunol 2021; 12:611910. [PMID: 33708206 PMCID: PMC7940545 DOI: 10.3389/fimmu.2021.611910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
Detrimental inflammatory responses after solid organ transplantation are initiated when immune cells sense pathogen-associated molecular patterns (PAMPs) and certain damage-associated molecular patterns (DAMPs) released or exposed during transplant-associated processes, such as ischemia/reperfusion injury (IRI), surgical trauma, and recipient conditioning. These inflammatory responses initiate and propagate anti-alloantigen (AlloAg) responses and targeting DAMPs and PAMPs, or the signaling cascades they activate, reduce alloimmunity, and contribute to improved outcomes after allogeneic solid organ transplantation in experimental studies. However, DAMPs have also been implicated in initiating essential anti-inflammatory and reparative functions of specific immune cells, particularly Treg and macrophages. Interestingly, DAMP signaling is also involved in local and systemic homeostasis. Herein, we describe the emerging literature defining how poor outcomes after transplantation may result, not from just an over-abundance of DAMP-driven inflammation, but instead an inadequate presence of a subset of DAMPs or related molecules needed to repair tissue successfully or re-establish tissue homeostasis. Adverse outcomes may also arise when these homeostatic or reparative signals become dysregulated or hijacked by alloreactive immune cells in transplant niches. A complete understanding of the critical pathways controlling tissue repair and homeostasis, and how alloimmune responses or transplant-related processes disrupt these will lead to new immunotherapeutics that can prevent or reverse the tissue pathology leading to lost grafts due to chronic rejection.
Collapse
Affiliation(s)
- Gaelen K Dwyer
- Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Hēth R Turnquist
- Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Libreros S, Shay AE, Nshimiyimana R, Fichtner D, Martin MJ, Wourms N, Serhan CN. A New E-Series Resolvin: RvE4 Stereochemistry and Function in Efferocytosis of Inflammation-Resolution. Front Immunol 2021; 11:631319. [PMID: 33643307 PMCID: PMC7902526 DOI: 10.3389/fimmu.2020.631319] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
The resolution of the acute inflammatory response is governed by phagocytes actively clearing apoptotic cells and pathogens. Biosynthesis of the specialized pro-resolving mediators (SPMs) is pivotal in the resolution of inflammation via their roles in innate immune cells. Resolvin E4 (RvE4: 5S,15S-dihydroxy-eicosapentaenoic acid) is a newly uncovered member of the E-series resolvins biosynthesized from eicosapentaenoic acid (EPA) recently elucidated in physiologic hypoxia. This new resolvin was termed RvE4 given its ability to increase efferocytosis of apoptotic cells by macrophages. Herein, we report on the total organic synthesis of RvE4 confirming its unique structure, complete stereochemistry assignment and function. This synthetic RvE4 matched the physical properties of biogenic RvE4 material, i.e. ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, as well as bioactivity. We confirmed RvE4 potent responses with human M2 macrophage efferocytosis of human apoptotic neutrophils and senescent red blood cells. Together, these results provide direct evidence for the assignment of the complete stereochemistry of RvE4 as 5S,15S-dihydroxy-6E,8Z,11Z,13E,17Z-eicosapentaenoic acid and its bioactions in human phagocyte response.
Collapse
Affiliation(s)
- Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ashley E Shay
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - David Fichtner
- Cayman Chemical, Research and Development Department, Ann Arbor, MI, United States
| | - Michael J Martin
- Cayman Chemical, Research and Development Department, Ann Arbor, MI, United States
| | - Nicholas Wourms
- Cayman Chemical, Research and Development Department, Ann Arbor, MI, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Corazza BJM, Martinho FC, Khoury RD, Toia CC, Orozco EIF, Prado RF, Machado FP, Valera MC. Clinical influence of calcium hydroxide and N-acetylcysteine on the levels of resolvins E1 and D2 in apical periodontitis. Int Endod J 2020; 54:61-73. [PMID: 32896000 DOI: 10.1111/iej.13403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023]
Abstract
AIM To investigate the presence of resolvins E1 (RvE1) and D2 (RvD2) in teeth with primary endodontic infections and apical periodontitis, and to assess the influence of calcium hydroxide medication [Ca(OH)2 ], in association with 2% chlorhexidine gel (2% CHX gel), and N-acetylcysteine (NAC) on the levels of RvE1 and RvD2 in periapical tissues. METHODOLOGY Thirty-six single-rooted teeth with primary endodontic infections and apical periodontitis were selected and randomly divided into three groups according to the medication: [Ca(OH)2 ] + saline solution (SSL) [Ca(OH)2 + SSL group] (n = 12), Ca(OH)2 + 2% chlorhexidine gel [Ca(OH)2 + 2% CHX gel group] (n = 12) and NAC [NAC group] (n = 12). Samples were collected from the periapical interstitial fluid at two different sampling times: before (S1) and after 14 days of intracanal medications (S2). Resolvins were measured using the enzyme-linked immunosorbent assay. Data were analysed using paired t-test, Wilcoxon test and Kruskal-Wallis test, followed by Dunn's post hoc test; all statistical tests were performed at a significance level of 5%. RESULTS RvE1 and RvD2 were detected in 100% of the samples (36/36) at S1 and S2. Ca(OH)2 medication did not increase the levels of RvE1 or RvD2 (both P > 0.05); however, NAC significantly increased the levels of RvE1 and RvD2 after 14 days of treatment (P < 0.05). CONCLUSIONS RvE1 and RvD2 were detected in periapical tissues from teeth with root canal infections. Moreover, calcium hydroxide medication did not increase the levels of resolvins in apical periodontitis. In contrast, the use of NAC intracanal medication significantly increased the levels of RvE1 and RvD2 after 14 days of treatment.
Collapse
Affiliation(s)
- B J M Corazza
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - F C Martinho
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - R D Khoury
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - C C Toia
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - E I F Orozco
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - R F Prado
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - F P Machado
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - M C Valera
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
10
|
Chen J, Purvis GSD, Collotta D, Al Zoubi S, Sugimoto MA, Cacace A, Martin L, Colas RA, Collino M, Dalli J, Thiemermann C. RvE1 Attenuates Polymicrobial Sepsis-Induced Cardiac Dysfunction and Enhances Bacterial Clearance. Front Immunol 2020; 11:2080. [PMID: 32983159 PMCID: PMC7492649 DOI: 10.3389/fimmu.2020.02080] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022] Open
Abstract
The development of cardiac dysfunction caused by microbial infection predicts high mortality in sepsis patients. Specialized pro-resolving mediators (SPMs) mediate resolution of inflammation in many inflammatory diseases, and are differentially expressed in plasma of sepsis patients. Here, we investigated whether the levels of SPMs are altered in the murine septic heart following polymicrobial sepsis-induced cardiac dysfunction. Ten weeks-old male C57BL/6 mice were subjected to polymicrobial sepsis induced by cecal ligation and puncture (CLP), which is a clinically relevant sepsis model receiving analgesics, antibiotics, and fluid resuscitation. CLP caused a significant systolic dysfunction assessed by echocardiography. The hearts were subjected to LC-MS/MS based lipid mediator profiling. Many SPMs were significantly reduced in septic hearts, among which RvE1 had a ~93-fold reduction. Treatment of CLP mice with synthetic RvE1 (1 μg/mouse i.v.) at 1 h after CLP increased peritoneal macrophages number, particularly MHC II- macrophages. RvE1 reduced pro-inflammatory gene expression (interleukin-1β, interleukin-6, and CCL2) in lipopolysaccharide-stimulated bone marrow-derived macrophages (BMDMs) in vitro. RvE1 attenuated cardiac dysfunction in septic mice and increased cardiac phosphorylated Akt; decreased cardiac phosphorylated IκB kinase α/β, nuclear translocation of the NF-κB subunit p65, extracellular signal-regulated kinase 1/2, and c-Jun amino-terminal kinases 1/2. Most notably, RvE1 treatment reduced peritoneal bacterial load and promoted phagocytosis activity of BMDMs. In conclusion, cardiac SPMs, particularly RvE1, are substantially reduced in mice with polymicrobial sepsis. Delayed therapeutic administration of RvE1 to mice with polymicrobial sepsis attenuates the cardiac dysfunction through modulating immuno-inflammatory responses. In addition to the above effects, the ability to enhance bacterial clearance makes RvE1 an ideal therapeutic to reduce the sequalae of polymicrobial sepsis.
Collapse
Affiliation(s)
- Jianmin Chen
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gareth S D Purvis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sura Al Zoubi
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Department of Basic Medical Sciences, School of Medicine, Al-Balqa Applied University, As-Salt, Jordan
| | - Michelle A Sugimoto
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Antonino Cacace
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Diabetes Complication Research Centre, School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Lukas Martin
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Department of Intensive Care and Intermediate Care, RWTH University Hospital Aachen, Aachen, Germany
| | - Roman A Colas
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Jesmond Dalli
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Christoph Thiemermann
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
11
|
Wang H, Zhao Q, Luo D, Yin Y, Li T, Zhao M. Resolvin E1 Inhibits Corneal Allograft Rejection in High-Risk Corneal Transplantation. Invest Ophthalmol Vis Sci 2019; 59:3911-3919. [PMID: 30073362 DOI: 10.1167/iovs.18-24562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the effects of Resolvin E1 (RvE1) on corneal allograft rejection in a high -risk corneal allograft transplantation model. Methods High-risk corneal beds were created via placement of intrastromal sutures in the corneas of BALB/c mice for 2 weeks. Allogeneic corneal transplantation was performed by transplanting corneas of C57BL/6 mice onto BALB/c hosts. RvE1 or normal saline (control) was subconjunctivally injected. Allograft survival was observed by slit lamp biomicroscope, and inflammatory cell infiltration was detected by hematoxylin and eosin and immunohistochemistry. The percentage of Th1, Th17, and Treg cells in draining lymph nodes (DLNs) were evaluated by flow cytometric analysis. The levels of Th1, Th2, and Th17-associated cytokines in the grafts were measured by cytometric bead array and real-time PCR. Results RvE1 treatment significantly improved allograft survival compared to the control group. After RvE1 treatment, the infiltration of neutrophils and CD4+ T (Th1/Th17) cells were decreased in corneal grafts, and the percentage of Th1/Th17 cells in DLNs were reduced. In addition, RvE1 treatment significantly reduced the mRNA expression of proinflammatory cytokines in the graft including IL-1α, IL-1β, TNF-α, IL-2, IL-6, IFN-γ, IL-17A, IL-17F, IL-21, and IL-22 as well as the protein level of the proinflammatory cytokines, including IL-2, TNF, IL-6, IFN-γ, and IL-17. However, RvE1 treatment did not alter the percentage of Treg cells in DLNs and the expression of IL-4, IL-5, and IL-10. Conclusions RvE1 treatment improves allogeneic corneal graft survival in a high-risk corneal transplantation model via inhibiting the Th1/Th17-related inflammation.
Collapse
Affiliation(s)
- Han Wang
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Qingqing Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Luo
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yizhou Yin
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Ting Li
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Min Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
12
|
de Gaetano M, McEvoy C, Andrews D, Cacace A, Hunter J, Brennan E, Godson C. Specialized Pro-resolving Lipid Mediators: Modulation of Diabetes-Associated Cardio-, Reno-, and Retino-Vascular Complications. Front Pharmacol 2018; 9:1488. [PMID: 30618774 PMCID: PMC6305798 DOI: 10.3389/fphar.2018.01488] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Diabetes and its associated chronic complications present a healthcare challenge on a global scale. Despite improvements in the management of chronic complications of the micro-/macro-vasculature, their growing prevalence and incidence highlights the scale of the problem. It is currently estimated that diabetes affects 425 million people globally and it is anticipated that this figure will rise by 2025 to 700 million people. The vascular complications of diabetes including diabetes-associated atherosclerosis and kidney disease present a particular challenge. Diabetes is the leading cause of end stage renal disease, reflecting fibrosis leading to organ failure. Moreover, diabetes associated states of inflammation, neo-vascularization, apoptosis and hypercoagulability contribute to also exacerbate atherosclerosis, from the metabolic syndrome to advanced disease, plaque rupture and coronary thrombosis. Current therapeutic interventions focus on regulating blood glucose, glomerular and peripheral hypertension and can at best slow the progression of diabetes complications. Recently advanced knowledge of the pathogenesis underlying diabetes and associated complications revealed common mechanisms, including the inflammatory response, insulin resistance and hyperglycemia. The major role that inflammation plays in many chronic diseases has led to the development of new strategies aiming to promote the restoration of homeostasis through the "resolution of inflammation." These strategies aim to mimic the spontaneous activities of the 'specialized pro-resolving mediators' (SPMs), including endogenous molecules and their synthetic mimetics. This review aims to discuss the effect of SPMs [with particular attention to lipoxins (LXs) and resolvins (Rvs)] on inflammatory responses in a series of experimental models, as well as evidence from human studies, in the context of cardio- and reno-vascular diabetic complications, with a brief mention to diabetic retinopathy (DR). These data collectively support the hypothesis that endogenously generated SPMs or synthetic mimetics of their activities may represent lead molecules in a new discipline, namely the 'resolution pharmacology,' offering hope for new therapeutic strategies to prevent and treat, specifically, diabetes-associated atherosclerosis, nephropathy and retinopathy.
Collapse
Affiliation(s)
- Monica de Gaetano
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Caitriona McEvoy
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
- Renal Transplant Program, University Health Network, Toronto, ON, Canada
| | - Darrell Andrews
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antonino Cacace
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Jonathan Hunter
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Krishnamoorthy N, Abdulnour REE, Walker KH, Engstrom BD, Levy BD. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiol Rev 2018; 98:1335-1370. [PMID: 29717929 DOI: 10.1152/physrev.00026.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Katherine H Walker
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Braden D Engstrom
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
14
|
Wilusz M, Cieniawski D, Wasilewski G, Kuźniewski M, Sułowicz W, Sztefko K. Fatty acids profile in patients after heart or renal transplantation who developed metabolic complications. Adv Med Sci 2018; 63:367-373. [PMID: 30125818 DOI: 10.1016/j.advms.2018.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 04/26/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Diabetes mellitus and hyperlipidemia are frequently observed after organ transplantation. It is known that in these disorders the fatty acid metabolism is impaired. The aim of this study was to compare the fatty acid profile in the heart and renal transplant recipients who developed metabolic disorders since there is no such research available. MATERIALS AND METHODS The study included 55 patients treated with tacrolimus (Tac) after heart (n = 14; mean age: 60.4 ± 9.1) or renal (n = 41; mean age: 51 ± 13) transplantation. Diabetes and hyperlipidemia was present in 35.7% and 28.5% of heart transplant recipients, and 19.5% and 41% of renal transplant recipients. Concentrations of fatty acid in phospholipids fraction in serum were measured by gas chromatography. RESULTS The concentration of C20:5 fatty acid was lower in heart transplant recipients, as compared to renal transplant recipients (p = 0.001), whereas the level of C20+C18:3 fatty acid and the ratio of n-6/n-3 was higher (p = 0.01; p = 0.03, respectively). The observed differences were not related to metabolic disorders. Negative correlation between C16:1 and eGFR was seen in heart transplant recipients (p = 001). In renal transplant recipients with metabolic disorders, the concentration of C20:5 was correlated positively whereas the n-6/n-3 ratio was correlated negatively with eGFR (p < 0.001, p = 0.01, respectively). Hyperlipidemic renal transplant recipients had higher concentration of C20:2 (p = 0.02), C20:4 (p = 0.05), n-6 (0.04) and total fatty acid (p = 0.01) than patients without metabolic disorders. CONCLUSION The fatty acid profile differs depending on the transplanted organ, but the differences are not related to the metabolic disorders. The role of fatty acid in kidney function varies between heart transplant recipients and renal transplant recipients and depends on type of fatty acid.
Collapse
|
15
|
Glinton K, DeBerge M, Yeap XY, Zhang J, Forbess J, Luo X, Thorp EB. Acute and chronic phagocyte determinants of cardiac allograft vasculopathy. Semin Immunopathol 2018; 40:593-603. [PMID: 30141073 DOI: 10.1007/s00281-018-0699-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
Abstract
Post-transplant immunosuppression has reduced the incidence of T cell-mediated acute rejection, yet long-term cardiac graft survival rates remain a challenge. An important determinant of chronic solid organ allograft complication is accelerated vascular disease of the transplanted graft. In the case of cardiac allograft vasculopathy (CAV), the precise cellular etiology remains inadequately understood; however, histologic evidence hints at the accumulation and activation of innate phagocytes as a causal contributing factor. This includes monocytes, macrophages, and immature dendritic cell subsets. In addition to crosstalk with adaptive T and B immune cells, myeloid phagocytes secrete paracrine signals that directly activate fibroblasts and vascular smooth muscle cells, both of which contribute to fibrous intimal thickening. Though maladaptive phagocyte functions may promote CAV, directed modulation of myeloid cell function, at the molecular level, holds promise for tolerance and prolonged cardiac graft function.
Collapse
Affiliation(s)
- Kristofor Glinton
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, 300 East Superior St, Chicago, IL, 60611, USA.,Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Matthew DeBerge
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, 300 East Superior St, Chicago, IL, 60611, USA.,Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Xin-Yi Yeap
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, 300 East Superior St, Chicago, IL, 60611, USA.,Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Jenny Zhang
- Department of Surgery, The Feinberg School of Medicine, Northwestern University, 251 East Huron St, Chicago, IL, 60611, USA
| | - Joseph Forbess
- Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Xunrong Luo
- Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL, 60611, USA.,Department of Surgery, The Feinberg School of Medicine, Northwestern University, 251 East Huron St, Chicago, IL, 60611, USA.,Department of Medicine, The Feinberg School of Medicine, Northwestern University, 251 East Huron St, Chicago, IL, 60611, USA
| | - Edward B Thorp
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, 300 East Superior St, Chicago, IL, 60611, USA. .,Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
16
|
Targeting formyl peptide receptors to facilitate the resolution of inflammation. Eur J Pharmacol 2018; 833:339-348. [PMID: 29935171 DOI: 10.1016/j.ejphar.2018.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The formyl peptide receptors (FPRs) are G protein coupled receptors that recognize a broad range of structurally distinct pathogen and danger-associated molecular patterns and mediate host defense to infection and tissue injury. It became evident that the cellular distribution and biological functions of FPRs extend beyond myeloid cells and governing their activation and trafficking. In recent years, significant progress has been made to position FPRs at check points that control the resolution of inflammation, tissue repair and return to homeostasis. Accumulating data indicate a role for FPRs in an ever-increasing range of human diseases, including atherosclerosis, chronic obstructive pulmonary disease, asthma, autoimmune diseases and cancer, in which dysregulated or defective resolution are increasingly recognized as critical component of the pathogenesis. This review summarizes recent advances on how FPRs recognize distinct ligands and integrate opposing cues to govern various responses and will discuss how this knowledge could be harnessed for developing novel therapeutic strategies to counter inflammation that underlies many human diseases.
Collapse
|
17
|
Dushianthan A, Cusack R, Grocott MPW, Postle AD. Abnormal liver phosphatidylcholine synthesis revealed in patients with acute respiratory distress syndrome. J Lipid Res 2018; 59:1034-1045. [PMID: 29716960 PMCID: PMC5983399 DOI: 10.1194/jlr.p085050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with a severe pro-inflammatory response; although decreased plasma cholesterol concentration has been linked to systemic inflammation, any association of phospholipid metabolic pathways with ARDS has not been characterized. Plasma phosphatidylcholine (PC), the major phospholipid of circulating lipoproteins, is synthesized in human liver by two biologically diverse pathways: the cytidine diphosphocholine (CDP):choline and phosphatidylethanolamine N-methyltransferase (PEMT) pathways. Here, we used ESI-MS/MS both to characterize plasma PC compositions and to quantify metabolic fluxes of both pathways using stable isotopes in patients with severe ARDS and in healthy controls. Direct incorporation of methyl-D9-choline estimated CDP:choline pathway flux, while PEMT flux was determined from incorporations of one and two methyl-D3 groups derived from methyl-D9-choline. The results of MS/MS analysis showed significant alterations in plasma PC composition in patients with ARDS versus healthy controls. In particular, the increased overall methyl-D9-PC enrichment and, most importantly, the much lower methyl-D3-PC and methyl-D6-PC enrichments suggest increased flux through the CDP:choline pathway and reduced flux through the PEMT pathway in ARDS. To our knowledge, this study is the first to demonstrate significant plasma PC molecular compositional changes combined with associated alterations in the dynamics of PC synthetic pathways in patients with ARDS.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- National Institute for Health Research Southampton Biomedical Research Centre University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, United Kingdom; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom; Critical Care/Anaesthesia and Perioperative Medicine Research Unit, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, United Kingdom
| | - Rebecca Cusack
- National Institute for Health Research Southampton Biomedical Research Centre University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, United Kingdom; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom; Critical Care/Anaesthesia and Perioperative Medicine Research Unit, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, United Kingdom
| | - Michael P W Grocott
- National Institute for Health Research Southampton Biomedical Research Centre University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, United Kingdom; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom; Critical Care/Anaesthesia and Perioperative Medicine Research Unit, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, United Kingdom
| | - Anthony D Postle
- National Institute for Health Research Southampton Biomedical Research Centre University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, United Kingdom; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.
| |
Collapse
|
18
|
Hamilton JA, Hasturk H, Kantarci A, Serhan CN, Van Dyke T. Atherosclerosis, Periodontal Disease, and Treatment with Resolvins. Curr Atheroscler Rep 2017; 19:57. [PMID: 29110146 DOI: 10.1007/s11883-017-0696-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review aims to discuss the existing evidence on the link between atherosclerosis and periodontitis by particularly presenting new findings that link the pathology and therapy of these diseases. Acute vascular ischemic events that can lead to stroke or myocardial infarction are initiated by inflammatory processes leading to rupture or erosion of plaques susceptible to thrombosis ("high risk" or "vulnerable"). These are highly inflamed plaques residing in the media and adventitia that may not be detected by angiography measurments of luminal narrowing. Statistically significant excess risk for atherosclerotic cardiovascular disease has been reported in persons with periodontitis independent of established risk factors. We hypothesized that the systemic pathologic links also represent potential therapeutic links. RECENT FINDINGS We recently demonstrated that periodontal inflammation promotes atherosclerotic plaque inflammation and destabilization. As discrete pathological regions, these plaques with a high susceptibility to rupture can be imaged and differentiated from lower risk plaques. In cholesterol-fed rabbits with periodontal disease, circulating inflammatory mediators were also significantly elevated thereby contributing to "vulnerable blood," a systemic characteristic of high risk for cardiovascular events. New studies show that certain lipid mediators, including lipoxins and resolvins, are potent in preventing and possibly treating a number of inflammation-associated diseases, including periodontitis and vascular inflammation. The concept of the vulnerable patient and the pro-resolving approach open new terrain for discovery of paradigm-changing therapies for the prevention and treatment of two of the most common diseases of man. Importantly, lipoxins and resolvins are natural receptor agonists that do not exhibit the same pro-atherogenic side effects attributed to anti-inflammatory medications (e.g., NSAIDs) but rather coordinate resolution of inflammation and a return to homeostasis.
Collapse
Affiliation(s)
- James A Hamilton
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, W302, Boston, MA, 02118-2526, USA.
| | - Hatice Hasturk
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| |
Collapse
|
19
|
Gelman AE, Fisher AJ, Huang HJ, Baz MA, Shaver CM, Egan TM, Mulligan MS. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: Mechanisms: A 2016 Consensus Group Statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36:1114-1120. [PMID: 28818404 DOI: 10.1016/j.healun.2017.07.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Andrew J Fisher
- Institute of Transplantation, Freeman Hospital and Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Howard J Huang
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Maher A Baz
- Departments of Medicine and Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Ciara M Shaver
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas M Egan
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Micheal S Mulligan
- Department of Surgery, Division of Cardiothoracic Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
20
|
|
21
|
Application of Corey–Bakshi–Shibata, Corey–Kim, Corey–Seebach, Corey–Winter, Corey–Link, and Corey–Ganem–Gilman in organic and total synthesis. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1677-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Mateu-de Antonio J, Echeverría-Esnal D. Intravenous lipid emulsions in kidney transplant patients requiring parenteral nutrition. Nutrition 2016; 32:397-8. [PMID: 26732836 DOI: 10.1016/j.nut.2015.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 11/25/2022]
|
23
|
Abstract
The immune response comprises not only pro-inflammatory and anti-inflammatory pathways but also pro-resolution mechanisms that serve to balance the need of the host to target microbial pathogens while preventing excess inflammation and bystander tissue damage. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids to serve as a novel class of immunoresolvents that limit acute responses and orchestrate the clearance of tissue pathogens, dying cells and debris from the battlefield of infectious inflammation. SPMs are composed of lipoxins, E-series and D-series resolvins, protectins and maresins. Individual members of the SPM family serve as agonists at cognate receptors to induce cell-type specific responses. Important regulatory roles for SPMs have been uncovered in host responses to several microorganisms, including bacterial, viral, fungal and parasitic pathogens. SPMs also promote the resolution of non-infectious inflammation and tissue injury. Defects in host SPM pathways contribute to the development of chronic inflammatory diseases. With the capacity to enhance host defence and modulate inflammation, SPMs represent a promising translational approach to enlist host resolution programmes for the treatment of infection and excess inflammation.
Here, the authors detail our current understanding of specialized pro-resolving mediators (SPMs), a family of endogenous mediators that have important roles in promoting the resolution of inflammation. With a focus on the lungs, they discuss the contribution of SPMs to infectious and chronic inflammatory diseases and their emerging therapeutic potential. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids and have important roles in orchestrating the resolution of tissue inflammation — that is, catabasis. Host responses to tissue infection elicit acute inflammation in an attempt to control invading pathogens. SPMs are lipid mediators that are part of a larger family of pro-resolving molecules, which includes proteins and gases, that together restrain inflammation and resolve the infection. These immunoresolvents are distinct from immunosuppressive molecules as they not only dampen inflammation but also promote host defence. Here, we focus primarily on SPMs and their roles in lung infection and inflammation to illustrate the potent actions these mediators play in restoring tissue homeostasis after an infection.
Collapse
|
24
|
Duvall MG, Levy BD. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur J Pharmacol 2015; 785:144-155. [PMID: 26546247 DOI: 10.1016/j.ejphar.2015.11.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/11/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Essential fatty acids can serve as important regulators of inflammation. A new window into mechanisms for the resolution of inflammation was opened with the identification and structural elucidation of mediators derived from these fatty acids with pro-resolving capacity. Inflammation is necessary to ensure the continued health of the organism after an insult or injury; however, unrestrained inflammation can lead to injury "from within" and chronic changes that may prove both morbid and fatal. The resolution phase of inflammation, once thought to be a passive event, is now known to be a highly regulated, active, and complex program that terminates the inflammatory response once the threat has been contained. Specialized pro-resolving mediators (SPMs) are biosynthesized from omega-3 essential fatty acids to resolvins, protectins, and maresins and from omega-6 fatty acids to lipoxins. Through cell-specific actions mediated through select receptors, these SPMs are potent regulators of neutrophil infiltration, cytokine and chemokine production, and clearance of apoptotic neutrophils by macrophages, promoting a return to tissue homeostasis. This process appears to be defective in several common human lung diseases, such as asthma and COPD, which are characterized by chronic unrestrained inflammation and significant associated morbidity. Here, we highlight translational research in animal models of disease and with human subjects that sheds light on this rapidly evolving area of science and review the molecular and cellular components of the resolution of lung inflammation.
Collapse
Affiliation(s)
- Melody G Duvall
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Romano M, Cianci E, Simiele F, Recchiuti A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur J Pharmacol 2015; 760:49-63. [DOI: 10.1016/j.ejphar.2015.03.083] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 02/08/2023]
|
26
|
Börgeson E, Johnson AMF, Lee YS, Till A, Syed GH, Ali-Shah ST, Guiry PJ, Dalli J, Colas RA, Serhan CN, Sharma K, Godson C. Lipoxin A4 Attenuates Obesity-Induced Adipose Inflammation and Associated Liver and Kidney Disease. Cell Metab 2015; 22:125-37. [PMID: 26052006 PMCID: PMC4584026 DOI: 10.1016/j.cmet.2015.05.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/22/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
Abstract
The role of inflammation in obesity-related pathologies is well established. We investigated the therapeutic potential of LipoxinA4 (LXA4:5(S),6(R),15(S)-trihydroxy-7E,9E,11Z,13E,-eicosatetraenoic acid) and a synthetic 15(R)-Benzo-LXA4-analog as interventions in a 3-month high-fat diet (HFD; 60% fat)-induced obesity model. Obesity caused distinct pathologies, including impaired glucose tolerance, adipose inflammation, fatty liver, and chronic kidney disease (CKD). Lipoxins (LXs) attenuated obesity-induced CKD, reducing glomerular expansion, mesangial matrix, and urinary H2O2. Furthermore, LXA4 reduced liver weight, serum alanine-aminotransferase, and hepatic triglycerides. LXA4 decreased obesity-induced adipose inflammation, attenuating TNF-α and CD11c(+) M1-macrophages (MΦs), while restoring CD206(+) M2-MΦs and increasing Annexin-A1. LXs did not affect renal or hepatic MΦs, suggesting protection occurred via attenuation of adipose inflammation. LXs restored adipose expression of autophagy markers LC3-II and p62. LX-mediated protection was demonstrable in adiponectin(-/-) mice, suggesting that the mechanism was adiponectin independent. In conclusion, LXs protect against obesity-induced systemic disease, and these data support a novel therapeutic paradigm for treating obesity and associated pathologies.
Collapse
Affiliation(s)
- Emma Börgeson
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, Institute for Metabolomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Affair, San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, La Jolla, CA 92093, USA; Diabetes Complications Research Centre, UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Andrew M F Johnson
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andreas Till
- Division of Biological Sciences and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Reconstructive Neurobiology, LIFE&BRAIN, University Clinic Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Gulam Hussain Syed
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92093, USA
| | - Syed Tasadaque Ali-Shah
- Centre for Synthesis and Chemical Biology, UCD Conway Institute, UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, UCD Conway Institute, UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kumar Sharma
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, Institute for Metabolomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Affair, San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, La Jolla, CA 92093, USA
| | - Catherine Godson
- Diabetes Complications Research Centre, UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
27
|
Abstract
Inflammation is a protective response essential for maintaining human health and for fighting disease. As an active innate immune reaction to challenge, inflammation gives rise to clinical cardinal signs: rubor, calor, dolor, tumor and functio laesa. Termination of acute inflammation was previously recognized as a passive process; a natural decay of pro-inflammatory signals. We now understand that the natural resolution of inflammation involves well-integrated, active, biochemical programs that return tissues to homeostasis. This review focuses on recent advances in the understanding of the role of endogenous lipid mediators that modulate cellular fate and inflammation. Biosynthesis of eicosanoids and other lipids in exudates coincides with changes in the types of inflammatory cells. Resolution of inflammation is initiated by an active class switch in lipid mediators, such as classic prostaglandins and leukotrienes, to the production of proresolution mediators. Endogenous pro-resolving lipid mediators, including arachidonic acid-derived lipoxins, aspirin-triggered lipoxins, ω3-eicosapentaenoic acid-derived resolvins of the E-series, docosahexaenoic acid-derived resolvins of the D-series, protectins and maresins, are biosynthesized during the resolution phase of acute inflammation. Depending on the type of injury and the type of tissue, the initial cells that respond are polymorphonuclear leukocytes, monocytes/macrophages, epithelial cells or endothelial cells. The selective interaction of specific lipid mediators with G protein-coupled receptors expressed on innate immune cells (e.g. G protein-coupled receptor 32, lipoxin A4 receptor/formyl peptide receptor2, chemokine-like receptor 1, leukotriene B4 receptor type 1 and cabannoid receptor 2) induces cessation of leukocyte infiltration; vascular permeability/edema returns to normal with polymorphonuclear neutrophil death (mostly via apoptosis), the nonphlogistic infiltration of monocyte/macrophages and the removal (by macrophages) of apoptotic polymorphonuclear neutrophils, foreign agents (bacteria) and necrotic debris from the site. While an acute inflammatory response that is resolved in a timely manner prevents tissue injury, inadequate resolution and failure to return tissue to homeostasis results in neutrophil-mediated destruction and chronic inflammation. A better understanding of the complex mechanisms of lipid agonist mediators, cell targets and actions allows us to exploit and develop novel therapeutic strategies to treat human inflammatory diseases, including periodontal diseases.
Collapse
|
28
|
Mori DN, Kreisel D, Fullerton JN, Gilroy DW, Goldstein DR. Inflammatory triggers of acute rejection of organ allografts. Immunol Rev 2015; 258:132-44. [PMID: 24517430 DOI: 10.1111/imr.12146] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solid organ transplantation is a vital therapy for end stage diseases. Decades of research have established that components of the adaptive immune system are critical for transplant rejection, but the role of the innate immune system in organ transplantation is just emerging. Accumulating evidence indicates that the innate immune system is activated at the time of organ implantation by the release of endogenous inflammatory triggers. This review discusses the nature of these triggers in organ transplantation and also potential mediators that may enhance inflammation resolution after organ implantation.
Collapse
Affiliation(s)
- Daniel N Mori
- Departments of Internal Medicine and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
29
|
Effect of immunosuppressive therapy on the serum fatty acids of phospholipids fraction in patients after heart transplantation. Transplant Proc 2014; 46:2825-9. [PMID: 25380928 DOI: 10.1016/j.transproceed.2014.09.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effects of tacrolimus (Tac) and cyclosporine (CsA) on lipid profile is well known; however, little is known about the changes in fatty acids (FA) of phosholipids fraction (PL) in heart transplant patients after treatment with these immunosuppressants. This study aimed to investigate the effect of Tac and CsA on serum FA of PL in heart transplant patients. METHODS The study included 23 patients after heart transplantation on Tac (n = 14; group II) or CsA (n = 9; group I). Eleven healthy persons served as a control group. Serum FA of PL were extracted, separated on Sep-Pak NH2, methylated, and measured with the use of gas chromatography. Chemstation software was used to analyze the data. RESULTS No differences between the studied groups and control were noted for saturated FA, monounsaturated FA, polyunsaturated FA (PUFA), total FA, and PUFA n-6. The mean value of PUFA n-3 was significantly higher in the CsA group compared with the Tac group (P < .015) and control (P < .002) as well as in the Tac group compared with control (P < .001). For individual FA, higher mean concentration, compared with control, was found for C24, C20:2, C20:4, and C22:6 (P < .001 in all cases) and lower for C18:2cis (P < .001 in both groups) and for C18:3 in the Tac group. The mean values of PUFA n-6 to PUFA n-3 ratios were lower than in control (both P < .001). CONCLUSIONS Different pattern of FA of PL may indicate the different FA metabolism in heart transplant patients treated by different immunosuppressants. This should be taken into account when FA supplementation in these patients is considered.
Collapse
|
30
|
Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol 2014; 7:a016311. [PMID: 25359497 PMCID: PMC4315926 DOI: 10.1101/cshperspect.a016311] [Citation(s) in RCA: 368] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mounting of the acute inflammatory response is crucial for host defense and pivotal to the development of chronic inflammation, fibrosis, or abscess formation versus the protective response and the need of the host tissues to return to homeostasis. Within self-limited acute inflammatory exudates, novel families of lipid mediators are identified, named resolvins (Rv), protectins, and maresins, which actively stimulate cardinal signs of resolution, namely, cessation of leukocytic infiltration, counterregulation of proinflammatory mediators, and the uptake of apoptotic neutrophils and cellular debris. The biosynthesis of these resolution-phase mediators in sensu stricto is initiated during lipid-mediator class switching, in which the classic initiators of acute inflammation, prostaglandins and leukotrienes (LTs), switch to produce specialized proresolving mediators (SPMs). In this work, we review recent evidence on the structure and functional roles of these novel lipid mediators of resolution. Together, these show that leukocyte trafficking and temporal spatial signals govern the resolution of self-limited inflammation and stimulate homeostasis.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
31
|
Qu Q, Xuan W, Fan GH. Roles of resolvins in the resolution of acute inflammation. Cell Biol Int 2014; 39:3-22. [PMID: 25052386 DOI: 10.1002/cbin.10345] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/09/2014] [Indexed: 12/31/2022]
Abstract
Resolution is an active process that terminates inflammatory response to maintain health. Acute inflammation and its timely resolution are important in host response to danger signals. Unresolved inflammation is associated with widely recurrent diseases. Resolvins, including the D and E series, are endogenous lipid mediators generated during the resolution phase of acute of inflammation from the ω-3 PUFAs, DHA, and EPA. They have anti-inflammatory and pro-resolving properties that have been determined in many inflammation studies in animal models. In this review, we provide an updated overview of biosynthesis, actions, and signaling pathways of resolvins, thereby underscoring their diverse protective roles and introducing novel therapeutic strategies for inflammation-associated diseases.
Collapse
Affiliation(s)
- Qing Qu
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, China
| | | | | |
Collapse
|
32
|
Hawkins KE, DeMars KM, Singh J, Yang C, Cho HS, Frankowski JC, Doré S, Candelario-Jalil E. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem 2013; 129:130-42. [PMID: 24225006 DOI: 10.1111/jnc.12607] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/23/2013] [Accepted: 11/08/2013] [Indexed: 02/03/2023]
Abstract
Resolution of inflammation is an emerging new strategy to reduce damage following ischemic stroke. Lipoxin A4 (LXA4 ) is an anti-inflammatory, pro-resolution lipid mediator with high affinity binding to ALX, the lipoxin A4 receptor. Since LXA4 is rapidly inactivated, potent analogs have been created, including the ALX agonist BML-111. We hypothesized that post-ischemic intravenous administration of BML-111 would provide protection to the neurovascular unit and reduce neuroinflammation in a rat stroke model. Animals were subjected to 90 min of middle cerebral artery occlusion (MCAO) and BML-111 was injected 100 min and 24 h after stroke onset and animals euthanized at 48 h. Post-ischemic treatment with BML-111 significantly reduced infarct size, decreased vasogenic edema, protected against blood-brain barrier disruption, and reduced hemorrhagic transformation. Matrix metalloproteinase-9 and matrix metalloproteinase-3 were significantly reduced following BML-111 treatment. Administration of BML-111 dramatically decreased microglial activation, as seen with CD68, and neutrophil infiltration and recruitment, as assessed by levels of myeloperoxidase and intracellular adhesion molecule-1. The tight junction protein zona occludens-1 was protected from degradation following treatment with BML-111. These results indicate that post-ischemic activation of ALX has pro-resolution effects that limit the inflammatory damage in the cerebral cortex and helps maintain blood-brain barrier integrity after ischemic stroke.
Collapse
Affiliation(s)
- Kimberly E Hawkins
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Resolvin D1 and its GPCRs in resolution circuits of inflammation. Prostaglandins Other Lipid Mediat 2013; 107:64-76. [DOI: 10.1016/j.prostaglandins.2013.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022]
|
34
|
Börgeson E, Sharma K. Obesity, immunomodulation and chronic kidney disease. Curr Opin Pharmacol 2013; 13:618-24. [PMID: 23751262 DOI: 10.1016/j.coph.2013.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/20/2022]
Abstract
Obesity-induced inflammation is associated with numerous pathologies and is an independent risk factor of chronic kidney disease (CKD). The prevalence of CKD is escalating and current therapeutic strategies are seriously lacking in efficacy, and immunomodulation has been suggested as a potential new therapeutic approach. Indeed, specialized pro-resolving mediators (SPMs), such as lipoxins (LXs), resolvins and protectins, have demonstrated protection in adipose inflammation, restoring insulin sensitivity and adiponectin production, while modulating leukocyte infiltration and promoting resolution in visceral adipose tissue. Furthermore, SPMs display direct renoprotective effect. Thus we review current evidence of immunomodulation as a potential strategy to subvert obesity-related CKD.
Collapse
Affiliation(s)
- Emma Börgeson
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, Institute for Metabolomic Medicine, University of California San Diego, La Jolla, CA, United States
| | | |
Collapse
|
35
|
Amin R, Chen JX, Cotterill IC, Emrich D, Ganley D, Khmelnitsky YL, McLaws MD, Michels PC, Schwartz CE, Thomas D, Yan J, Yang Q. Improved Synthesis of the C16–C20 Segment of Resolvin E1 Using Enantioselective Ketone Reduction and Lipase-Catalyzed Resolution. Org Process Res Dev 2013. [DOI: 10.1021/op4000384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rasidul Amin
- Chemical Development, AMRI, 21 Corporate Circle, Albany, New
York 12203, United States
| | - Jian-Xie Chen
- Chemical Development, AMRI, 7001 Performance Drive, North
Syracuse, New York 13212, United States
| | - Ian C. Cotterill
- Fermentation and
Biotransformations, AMRI,
21 Corporate Circle, Albany, New York 12203, United States
| | - Daniel Emrich
- Chemical Development, AMRI, 7001 Performance Drive, North
Syracuse, New York 13212, United States
| | - Daniel Ganley
- Chemical Development, AMRI, 7001 Performance Drive, North
Syracuse, New York 13212, United States
| | - Yuri L. Khmelnitsky
- Fermentation and
Biotransformations, AMRI,
21 Corporate Circle, Albany, New York 12203, United States
| | - Mark D. McLaws
- Chemical Development, AMRI, 21 Corporate Circle, Albany, New
York 12203, United States
| | - Peter C. Michels
- Fermentation and
Biotransformations, AMRI,
21 Corporate Circle, Albany, New York 12203, United States
| | - C. Eric Schwartz
- Resolvyx Pharmaceuticals, 222 Third Street, Cambridge, Massachusetts 02142, United States
| | - Deb Thomas
- Chemical Development, AMRI, 7001 Performance Drive, North
Syracuse, New York 13212, United States
| | - Jun Yan
- Chemical Development, AMRI, 21 Corporate Circle, Albany, New
York 12203, United States
| | - Qiang Yang
- Chemical Development, AMRI, 21 Corporate Circle, Albany, New
York 12203, United States
| |
Collapse
|
36
|
Hong S, Lu Y. Omega-3 fatty acid-derived resolvins and protectins in inflammation resolution and leukocyte functions: targeting novel lipid mediator pathways in mitigation of acute kidney injury. Front Immunol 2013; 4:13. [PMID: 23386851 PMCID: PMC3558681 DOI: 10.3389/fimmu.2013.00013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/07/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammation, in conjunction with leukocytes, plays a key role in most acute kidney injury (AKI). Non-resolving renal inflammation leads to chronic fibrosis and renal failure. Resolvin D series (RvDs) and E series (RvEs), protectins, and maresins (MaRs) are endogenous omega-3 fatty acid-derived lipid mediators (LMs) that potently promote inflammation resolution by shortening neutrophil life span and promoting macrophage (Mf) non-phelogistic phagocytosis of apoptotic cells and the subsequent exit of Mfs from inflammatory tissue. 14S,21R-dihydroxy docosahexaenoic acid (14S,21R-diHDHA), a Mf-produced autacrine, reprograms Mfs to rescue vascular endothelia. RvD1, RvE1, or 14S,21R-diHDHA also switches Mfs to the phenotype that produces pro-resolving interleukin-10. RvDs or protectin/neuroprotectin D1 (PD1/NPD1) inhibits neutrophil infiltration into injured kidneys, blocks toll-like receptor -mediated inflammatory activation of Mfs and mitigates renal functions. RvDs also repress renal interstitial fibrosis, and PD1 promotes renoprotective heme-oxygenase-1 expression. These findings provide novel approaches for targeting inflammation resolution and LMs or modulation of LM-associated pathways for developing better clinical treatments for AKI.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, Health Science Center, Louisiana State University New Orleans, LA, USA
| | | |
Collapse
|
37
|
Lipoxygenase products in the urine correlate with renal function and body temperature but not with acute transplant rejection. Lipids 2012; 48:167-75. [PMID: 23275077 DOI: 10.1007/s11745-012-3751-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
Abstract
Acute transplant rejection is the leading cause of graft loss in the first months after kidney transplantation. Lipoxygenase products mediate pro- and anti-inflammatory actions and thus we aimed to correlate the histological reports of renal transplant biopsies with urinary lipoxygenase products concentrations to evaluate their role as a diagnostic marker. This study included a total of 34 kidney transplant recipients: 17 with an acute transplant rejection and 17 controls. LTE4, LTB4, 12-HETE and 15-HETE concentrations were measured by enzyme immunoassay. Urinary lipoxygenase product concentrations were not significantly changed during an acute allograft rejection. Nevertheless, LTB4 concentrations correlated significantly with the body temperature (P ≤ 0.05) 3 months after transplantation, and 12- and 15-HETE concentrations correlated significantly with renal function (P ≤ 0.05) 2 weeks after transplantation. In conclusion, our data show a correlation for LTB4 with the body temperature 3 months after transplantation and urinary 12- and 15-HETE concentrations correlate positively with elevated serum creatinine concentrations but do not predict acute allograft rejection.
Collapse
|
38
|
Recchiuti A, Serhan CN. Pro-Resolving Lipid Mediators (SPMs) and Their Actions in Regulating miRNA in Novel Resolution Circuits in Inflammation. Front Immunol 2012; 3:298. [PMID: 23093949 PMCID: PMC3477628 DOI: 10.3389/fimmu.2012.00298] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/07/2012] [Indexed: 12/12/2022] Open
Abstract
Unresolved inflammation is associated with several widely occurring diseases such as arthritis, periodontal diseases, cancer, and atherosclerosis. Endogenous mechanisms that curtail excessive inflammation and prompt its timely resolution are of considerable interest. In recent years, previously unrecognized chemical mediators derived from polyunsaturated fatty acids were identified that control the acute inflammatory response by activating local resolution programs. Among these are the so-called specialized pro-resolving lipid mediators (SPMs) that include lipoxins (LX), resolvins (Rv), protectins (PD), and maresins (MaR), because they are enzymatically biosynthesized during resolution of self-limited inflammation. They each possess distinct chemical structures and regulate cellular pathways by their ability to activate pro-resolving G-protein coupled receptors (GPCRs) in a stereospecific manner. For instance, RvD1 controls several miRNAs of interest in self-limited acute inflammation that counter-regulate the mediators and proteins that are involved in inflammation. Here, we overview some of the biosynthesis and mechanisms of SPM actions with focus on the recently reported miR involved in their pro-resolving responses that underscore their beneficial actions in the regulation of acute inflammation and its timely resolution. The elucidation of these mechanisms operating in vivo to keep acute inflammation within physiologic boundaries as well as stimulate resolution have opened resolution pharmacology and many new opportunities to target inflammation-related human pathologies via activating resolution mechanisms.
Collapse
Affiliation(s)
- Antonio Recchiuti
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Boston, MA, USA
| | | |
Collapse
|
39
|
Omega-3 fatty acids and their lipid mediators: Towards an understanding of resolvin and protectin formation. Prostaglandins Other Lipid Mediat 2012; 97:73-82. [DOI: 10.1016/j.prostaglandins.2012.01.005] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/03/2012] [Accepted: 01/25/2012] [Indexed: 01/04/2023]
|
40
|
Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochem J 2011; 437:185-97. [PMID: 21711247 PMCID: PMC3133883 DOI: 10.1042/bj20110327] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inflammation when unchecked is associated with many prevalent disorders such as the classic inflammatory diseases arthritis and periodontal disease, as well as the more recent additions that include diabetes and cardiovascular maladies. Hence mechanisms to curtail the inflammatory response and promote catabasis are of immense interest. In recent years, evidence has prompted a paradigm shift whereby the resolution of acute inflammation is a biochemically active process regulated in part by endogenous PUFA (polyunsaturated fatty acid)-derived autacoids. Among these are a novel genus of SPMs (specialized proresolving mediators) that comprise novel families of mediators including lipoxins, resolvins, protectins and maresins. SPMs have distinct structures and act via specific G-protein seven transmembrane receptors that signal intracellular events on selective cellular targets activating proresolving programmes while countering pro-inflammatory signals. An appreciation of these endogenous pathways and mediators that control timely resolution opened a new terrain for therapeutic approaches targeted at stimulating resolution of local inflammation. In the present review, we provide an overview of the biosynthesis and actions of resolvin E1, underscoring its protective role in vascular systems and regulating platelet responses. We also give an overview of newly described resolution circuitry whereby resolvins govern miRNAs (microRNAs), and transcription factors that counter-regulate pro-inflammatory chemokines, cytokines and lipid mediators.
Collapse
|