1
|
Finch A, Joss-Moore L, Allshouse AA, Blue N, Haas DM, Grobman W, Parry S, Saade G, Silver RM. Maternal Preconception Omega-6, Omega-3, and Omega-6:Omega-3 Intake and Uterine Artery Indices in Mid-Gestation. Am J Perinatol 2025; 42:310-319. [PMID: 38917867 PMCID: PMC11733062 DOI: 10.1055/a-2351-9810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
OBJECTIVE Maternal preconception diet influences pregnancy health and fetal outcomes. We examined the relationship between preconception fatty acid (FA) intake and uterine artery indices in mid-gestation in a large, heterogeneous cohort of nulliparous individuals. STUDY DESIGN This is a secondary analysis of the nuMom2b (Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-be) study. Dietary ω-6 and ω-3 FA intake was assessed with food frequency questionnaires and uterine artery indices were obtained via Doppler studies in the second trimester. For our primary outcome of pulsatility index (PI) > 1.6, we compared proportions by each dichotomous FA exposure and tested differences with chi-square test. RESULTS For PI > 1.6, odds ratio for the unfavorable FA quartile compared with remaining quartiles for the exposures were 0.96 to 1.25, p = 0.157 (ω-6 FA); 0.97 to 1.26, p = 0.124 (ω-3 FA); 0.87 to 1.14, p = 1.00 (ω-6:ω-3 FA ratio). CONCLUSION No significant associations between self-reported maternal preconception ω-6 and ω-3 FA intake and uterine artery Doppler indices measured during the second trimester were observed. KEY POINTS · Maternal diet impacts pregnancy health/fetal outcomes.. · ω-3 and ω-6 FA intake influences cardiovascular health.. · FA intake may affect blood flow to fetoplacental unit.. · Results are limited by inadequate adherence to dietary recommendations..
Collapse
Affiliation(s)
- Amara Finch
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Lisa Joss-Moore
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Amanda A. Allshouse
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah
| | - Nathan Blue
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Murray, Utah
| | - David M. Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - William Grobman
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Samuel Parry
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - George Saade
- Department of Obstetrics and Gynecology, East Virginia Medical School, Norfolk, Virginia
| | - Robert M. Silver
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Murray, Utah
| |
Collapse
|
2
|
Nikolajeva K, Aizbalte O, Rezgale R, Cauce V, Zacs D, Meija L. The Intake of Omega-3 Fatty Acids, the Omega-3 Index in Pregnant Women, and Their Correlations with Gestational Length and Newborn Birth Weight. Nutrients 2024; 16:2150. [PMID: 38999896 PMCID: PMC11242972 DOI: 10.3390/nu16132150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND During pregnancy, the demand for omega-3 fatty acids, notably docosahexaenoic acid (DHA), escalates for both maternal and foetal health. Insufficient levels can lead to complications and can affect foetal development. This study investigated omega-3 status and its relation to dietary intake in pregnant Latvian women, along with its impact on gestational duration and newborn birth weight. METHODS The study comprised 250 pregnant and postpartum women with a mean age of 31.6 ± 4.8 years. Nutrition and omega-3 supplementation data were collected through a questionnaire covering 199 food items and 12 supplements. Fatty acids in erythrocyte membrane phospholipids were analysed via gas chromatography with flame ionization detection. RESULTS The median omega-3 fatty acid intake, including eicosapentaenoic acid (EPA) and DHA from diet and supplements, was 0.370 g/day, which is deemed sufficient. However, the median weekly fish intake (126.0 g) and daily nut/seed intake (7.4 g) were insufficient. The median omega-3 supplement intake was 1.0 g/day. No correlation between omega-3 supplement intake and the omega-3 index was observed. There was a weak correlation between the DHA intake from fish and the omega-3 index (r = 0.126, p = 0.047), while a significant correlation between the total EPA and DHA intake from various sources and the omega-3 index was noted (r = 0.163, p = 0.01). Most women (61.6%) had an omega-3 index < 4%, while 34.8% had an index between 4 and 8%, and only 3.6% had an index > 8%. Notably, significant differences in EPA levels and the omega-3 index were found among respondents with differing infant birth weights (p < 0.05). CONCLUSIONS The omega-3 intake during pregnancy adheres to the established guidelines, although fish consumption remains insufficient. A preconception evaluation of the omega-3 index is advocated to optimize prenatal intake. The indications suggest potential correlations between EPA levels, the omega-3 index, and infant birth weight.
Collapse
Affiliation(s)
- Ksenija Nikolajeva
- Riga East Clinical University Hospital, 2 Hipokrata Street, LV-1038 Rīga, Latvia
- Doctoral Department, Faculty of Medicine, Rīga Stradiņš University, 16 Dzirciema Street, LV-1007 Rīga, Latvia
| | - Olga Aizbalte
- Faculty of Master's Study Program, Nutrition Science, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Rīga, Latvia
| | - Roberta Rezgale
- Faculty of Medicine, Rīga Stradiņš University, 16 Dzirciema Street, LV-1007 Rīga, Latvia
| | - Vinita Cauce
- Faculty of Medicine, Rīga Stradiņš University, 16 Dzirciema Street, LV-1007 Rīga, Latvia
| | - Dzintars Zacs
- Scientific Institute of Food Safety, Animal Health, and Environment, Lejupes Street 3, LV-1076 Rīga, Latvia
| | - Laila Meija
- Riga East Clinical University Hospital, 2 Hipokrata Street, LV-1038 Rīga, Latvia
- Department of Public Health and Epidemiology, Rīga Stradiņš University, 9 Kronvalda bulvāris, LV-1010 Rīga, Latvia
| |
Collapse
|
3
|
Lund-Blix NA, Bjerregaard AA, Tapia G, Størdal K, Brantsæter AL, Strøm M, Halldorsson TI, Granstrøm C, Svensson J, Joner G, Skrivarhaug T, Njølstad PR, Olsen SF, Stene LC. No association between long-chain n-3 fatty acid intake during pregnancy and risk of type 1 diabetes in offspring in two large Scandinavian pregnancy cohorts. Diabetologia 2024; 67:1023-1028. [PMID: 38502240 PMCID: PMC11058590 DOI: 10.1007/s00125-024-06125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate whether higher dietary intake of marine n-3 fatty acids during pregnancy is associated with a lower risk of type 1 diabetes in children. METHODS The Danish National Birth Cohort (DNBC) and the Norwegian Mother, Father and Child Cohort Study (MoBa) together include 153,843 mother-child pairs with prospectively collected data on eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake during pregnancy from validated food frequency questionnaires. Type 1 diabetes diagnosis in children (n=634) was ascertained from national diabetes registries. RESULTS There was no association between the sum of EPA and DHA intake during pregnancy and risk of type 1 diabetes in offspring (pooled HR per g/day of intake: 1.00, 95% CI 0.88, 1.14), with consistent results for both the MoBa and the DNBC. Robustness analyses gave very similar results. CONCLUSIONS/INTERPRETATION Initiation of a trial of EPA and DHA during pregnancy to prevent type 1 diabetes in offspring should not be prioritised.
Collapse
Affiliation(s)
| | - Anne A Bjerregaard
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Centre for Clinical Research and Prevention, Copenhagen University Hospitals - Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| | - German Tapia
- Norwegian Institute of Public Health, Oslo, Norway
| | - Ketil Størdal
- Norwegian Institute of Public Health, Oslo, Norway
- Faculty of Medicine, Division of Paediatric and Adolescent Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Marin Strøm
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- University of the Faroe Islands, Torshavn, Faroe Islands
| | - Thorhallur I Halldorsson
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Charlotta Granstrøm
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jannet Svensson
- Steno Diabetes Center Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Geir Joner
- Faculty of Medicine, Division of Paediatric and Adolescent Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Torild Skrivarhaug
- Faculty of Medicine, Division of Paediatric and Adolescent Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Pål R Njølstad
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Sjurdur F Olsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- University of the Faroe Islands, Torshavn, Faroe Islands
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lars C Stene
- Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
4
|
Dicklin MR, Anthony JC, Winters BL, Maki KC. ω-3 Polyunsaturated Fatty Acid Status Testing in Humans: A Narrative Review of Commercially Available Options. J Nutr 2024; 154:1487-1504. [PMID: 38522783 DOI: 10.1016/j.tjnut.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
There is an increasing body of evidence supporting a link between low intakes of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) and numerous diseases and health conditions. However, few people are achieving the levels of fish/seafood or eicosapentaenoic acid and docosahexaenoic acid intake recommended in national and international guidelines. Knowledge of a person's ω-3 LCPUFA status will benefit the interpretation of research results and could be expected to lead to an increased effort to increase intake. Dietary intake survey methods are often used as a surrogate for measuring ω-3 PUFA tissue status and its impact on health and functional outcomes. However, because individuals vary widely in their ability to digest and absorb ω-3 PUFA, analytical testing of biological samples is desirable to accurately evaluate ω-3 PUFA status. Adipose tissue is the reference biospecimen for measuring tissue fatty acids, but less-invasive methods, such as measurements in whole blood or its components (e.g., plasma, serum, red blood cell membranes) or breast milk are often used. Numerous commercial laboratories provide fatty acid testing of blood and breast milk samples by different methods and present their results in a variety of reports such as a full fatty acid profile, ω-3 and ω-6 fatty acid profiles, fatty acid ratios, as well as the Omega-3 Index, the Holman Omega-3 Test, OmegaScore, and OmegaCheck, among others. This narrative review provides information about the different ways to measure ω-3 LCPUFA status (including both dietary assessments and selected commercially available analytical tests of blood and breast milk samples) and discusses evidence linking increased ω-3 LCPUFA intake or status to improved health, focusing on cardiovascular, neurological, pregnancy, and eye health, in support of recommendations to increase ω-3 LCPUFA intake and testing.
Collapse
Affiliation(s)
| | | | | | - Kevin C Maki
- Midwest Biomedical Research, Addison, IL, United States; Indiana University School of Public Health, Bloomington, IN, United States.
| |
Collapse
|
5
|
Cordey C, Webb NM, Haeusler M. Take it to the limit: The limitations of energetic explanations for birth timing in humans. Evol Med Public Health 2023; 11:415-428. [PMID: 38022799 PMCID: PMC10644907 DOI: 10.1093/emph/eoad035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
A hallmark of modern humans is that our newborns are neurologically immature compared to other primates. It is disputed whether this so-called secondary altriciality evolved due to remodelling of the pelvis associated with bipedal locomotion, as suggested by the obstetrical dilemma hypothesis, or from maternal energetic limitations during pregnancy. Specifically, the 'Energetics of Gestation and Growth' (EGG) hypothesis posits that birth is initiated when foetal energy requirements exceed the maximum sustained maternal metabolic rate during pregnancy at around 2.1 × basal metabolic rate (BMR) of the non-pregnant, non-lactating condition (NPNL). However, the metabolic threshold argued under the EGG framework is derived from one study with a small sample size of only 12 women from the UK. Accordingly, we performed a meta-analysis of all published studies on metabolic scopes during pregnancy to better account for variability. After excluding 3 studies with methodological issues, a total of 12 studies with 303 women from 5 high- and 3 low-income countries were analysed. On average, pregnancy was found to be less metabolically challenging than previously suggested. The studies revealed substantial variation in metabolic scope during pregnancy, which was not reflected by variation in birth timing. Further, in a third of the studies, the metabolic rates exceeded 2.1 × BMRNPNL. Our simulation of foetal energy requirements demonstrated that this metabolic threshold of 2.1 × BMRNPNL cannot realistically be crossed by the foetus around the time of birth. These findings imply that metabolic constraints are not the main limiting factor dictating gestation length.
Collapse
Affiliation(s)
- Cédric Cordey
- Institute of Evolutionary Medicine, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Nicole M Webb
- Institute of Evolutionary Medicine, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Department of Palaeoanthropology, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Martin Haeusler
- Institute of Evolutionary Medicine, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
6
|
Li LJ, Du R, Ouidir M, Lu R, Chen Z, Weir NL, Tsai MY, Albert PS, Zhang C. Early Pregnancy Maternal Plasma Phospholipid Saturated Fatty Acids and Fetal Growth: Findings from a Multi-Racial/Ethnic Birth Cohort in US. Nutrients 2023; 15:3287. [PMID: 37571228 PMCID: PMC10420908 DOI: 10.3390/nu15153287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Saturated fatty acids (SFAs) during pregnancy are associated with disrupted metabolic programming among offspring at birth and later growth. We examined plasma phospholipid SFAs in early pregnancy and fetal growth throughout pregnancy. We enrolled 321 pregnant women from the NICHD Fetal Growth Studies-Singleton Cohort at gestational weeks 8-13. Ultrasonogram schedules were randomly assigned to capture weekly fetal growth. We measured plasma phospholipid SFAs at early pregnancy using blood samples and modeled fetal growth trajectories across tertiles of SFAs with cubic splines using linear mixed models after full adjustment. We then compared pairwise weekly fetal growth biometrics referencing the lowest tertile in each SFA using the Wald test. We found that even-chain and very long even-chain SFAs were inversely associated, whereas odd-chain SFAs were positively associated with fetal weight and size. Compared with the lowest tertile, the highest tertile of pentadecanoic acid (15:0) had a greater fetal weight and size, starting from week 13 until late pregnancy (at week 39: 3429.89 vs. 3269.08 g for estimated fetal weight; 328.14 vs. 323.00 mm for head circumference). Our findings could inspire future interventions using an alternative high-fat diet rich in odd-chain SFAs for optimal fetal growth.
Collapse
Affiliation(s)
- Ling-Jun Li
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117575, Singapore;
- Global Centre for Asian Women’s Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117575, Singapore
- NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ARCLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117575, Singapore
- Human Potential Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117575, Singapore
| | - Ruochen Du
- Biostatics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117575, Singapore;
| | - Marion Ouidir
- Institute for Advanced Biosciences, Grenoble Aples University, Site Santé, Allée des Alpes, 38700 La Tronche, France;
| | - Ruijin Lu
- Division of Biostatistics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Zhen Chen
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Natalie L. Weir
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (N.L.W.); (M.Y.T.)
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (N.L.W.); (M.Y.T.)
| | - Paul S. Albert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Cuilin Zhang
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117575, Singapore;
- Global Centre for Asian Women’s Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117575, Singapore
- NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ARCLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117575, Singapore
- Human Potential Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
7
|
Gu X, Liu H, Luo W, Wang X, Wang H, Li L. Di-2-ethylhexyl phthalate-induced miR-155–5p promoted lipid metabolism via inhibiting cAMP/PKA signaling pathway in human trophoblastic HTR-8/Svneo cells. Reprod Toxicol 2022; 114:22-31. [DOI: 10.1016/j.reprotox.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
|
8
|
Using a Very Low Energy Diet to Achieve Substantial Preconception Weight Loss in Women with Obesity: A Review of the Safety and Efficacy. Nutrients 2022; 14:nu14204423. [PMID: 36297107 PMCID: PMC9608905 DOI: 10.3390/nu14204423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity in women of reproductive age is common. Emerging evidence suggests that maternal obesity not only increases the risk of adverse pregnancy outcomes but also has an enduring impact on the metabolic health of the offspring. Given this, management of obesity prior to pregnancy is critically important. Almost all international guidelines suggest that women with obesity should aim to achieve weight loss prior to pregnancy. However, current pre-conception weight loss therapies are sub-optimal. Lifestyle modification typically results in modest weight loss. This may assist fertility but does not alter pregnancy outcomes. Bariatric surgery results in substantial weight loss, which improves pregnancy outcomes for the mother but may be harmful to the offspring. Alternative approaches to the management of obesity in women planning pregnancy are needed. Very low energy diets (VLEDs) have been proposed as a possible tool to assist women with obesity achieve weight loss prior to conception. While VLEDs can induce substantial and rapid weight loss, there are concerns about the impact of rapid weight loss on maternal nutrition prior to pregnancy and about inadvertent exposure of the early fetus to ketosis. The purpose of this review is to examine the existing literature regarding the safety and efficacy of a preconception VLED program as a tool to achieve substantial weight loss in women with obesity.
Collapse
|
9
|
Kim SY, Lee YJ, An SM, Kim MJ, Jeong JS, Kim DS, Lim Y, Jung EM, Kim SC, An BS. Dynamic regulation of lipid metabolism in the placenta of in vitro and in vivo models of Gestational Diabetes Mellitus. Biol Reprod 2022; 107:1311-1318. [PMID: 35932454 DOI: 10.1093/biolre/ioac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate lipid metabolism in the placenta of Gestational diabetes mellitus (GDM) individuals and to evaluate its effect on the fetus. We examined the expression of lipogenesis- and lipolysis-related proteins in the in vitro and in vivo GDM placenta models. The levels of sterol regulatory element binding protein-1c (SREBP-1c) were increased, and fat accumulated more during early hyperglycemia, indicating that lipogenesis was stimulated. When hyperglycemia was further extended, lipolysis was activated due to the phosphorylation of hormone-sensitive lipase (HSL) and expression of adipose triglyceride lipase (ATGL). In the animal model of GDM and in the placenta of GDM patients during the extended stage of GDM, the expression of SREBP-1c decreased and the deposition of fat increased. Similar to the results obtained in the in vitro study, lipolysis was enhanced in the animal and human placenta of extended GDM. These results suggest that fat synthesis may be stimulated by lipogenesis in the placenta when the blood glucose level is high. Subsequently, the accumulated fat can be degraded by lipolysis and more fat and its metabolites can be delivered to the fetus when the GDM condition is extended at the late stage of gestation. Imbalanced fat metabolism in the placenta and fetus of GDM patients can cause metabolic complications in the fetus, including fetal macrosomia, obesity, and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- So Young Kim
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Young Joo Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Min An
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Min Jae Kim
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Jea Sic Jeong
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Da Som Kim
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yong Lim
- Department of Clinical Laboratory Science, College of Nursing and Healthcare Science, Dong-Eui University, Busan, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Seung-Chul Kim
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
10
|
Haeusler M, Grunstra ND, Martin RD, Krenn VA, Fornai C, Webb NM. The obstetrical dilemma hypothesis: there's life in the old dog yet. Biol Rev Camb Philos Soc 2021; 96:2031-2057. [PMID: 34013651 PMCID: PMC8518115 DOI: 10.1111/brv.12744] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
The term 'obstetrical dilemma' was coined by Washburn in 1960 to describe the trade-off between selection for a larger birth canal, permitting successful passage of a big-brained human neonate, and the smaller pelvic dimensions required for bipedal locomotion. His suggested solution to these antagonistic pressures was to give birth prematurely, explaining the unusual degree of neurological and physical immaturity, or secondary altriciality, observed in human infants. This proposed trade-off has traditionally been offered as the predominant evolutionary explanation for why human childbirth is so challenging, and inherently risky, compared to that of other primates. This perceived difficulty is likely due to the tight fit of fetal to maternal pelvic dimensions along with the convoluted shape of the birth canal and a comparatively low degree of ligamentous flexibility. Although the ideas combined under the obstetrical dilemma hypothesis originated almost a century ago, they have received renewed attention and empirical scrutiny in the last decade, with some researchers advocating complete rejection of the hypothesis and its assumptions. However, the hypothesis is complex because it presently captures several, mutually non-exclusive ideas: (i) there is an evolutionary trade-off resulting from opposing selection pressures on the pelvis; (ii) selection favouring a narrow pelvis specifically derives from bipedalism; (iii) human neonates are secondarily altricial because they are born relatively immature to ensure that they fit through the maternal bony pelvis; (iv) as a corollary to the asymmetric selection pressure for a spacious birth canal in females, humans evolved pronounced sexual dimorphism of pelvic shape. Recently, the hypothesis has been challenged on both empirical and theoretical grounds. Here, we appraise the original ideas captured under the 'obstetrical dilemma' and their subsequent evolution. We also evaluate complementary and alternative explanations for a tight fetopelvic fit and obstructed labour, including ecological factors related to nutrition and thermoregulation, constraints imposed by the stability of the pelvic floor or by maternal and fetal metabolism, the energetics of bipedalism, and variability in pelvic shape. This reveals that human childbirth is affected by a complex combination of evolutionary, ecological, and biocultural factors, which variably constrain maternal pelvic form and fetal growth. Our review demonstrates that it is unwarranted to reject the obstetrical dilemma hypothesis entirely because several of its fundamental assumptions have not been successfully discounted despite claims to the contrary. As such, the obstetrical dilemma remains a tenable hypothesis that can be used productively to guide evolutionary research.
Collapse
Affiliation(s)
- Martin Haeusler
- Institute of Evolutionary MedicineUniversity of ZurichWinterthurerstrasse 190Zürich8057Switzerland
| | - Nicole D.S. Grunstra
- Konrad Lorenz Institute (KLI) for Evolution and Cognition ResearchMartinstrasse 12Klosterneuburg3400Austria
- Department of Evolutionary BiologyUniversity of ViennaUniversity Biology Building (UBB), Carl Djerassi Platz 1Vienna1030Austria
- Mammal CollectionNatural History Museum ViennaBurgring 7Vienna1010Austria
| | - Robert D. Martin
- Institute of Evolutionary MedicineUniversity of ZurichWinterthurerstrasse 190Zürich8057Switzerland
- The Field Museum1400 S Lake Shore DrChicagoIL60605U.S.A.
| | - Viktoria A. Krenn
- Institute of Evolutionary MedicineUniversity of ZurichWinterthurerstrasse 190Zürich8057Switzerland
- Department of Evolutionary AnthropologyUniversity of ViennaUniversity Biology Building (UBB), Carl Djerassi Platz 1Vienna1030Austria
| | - Cinzia Fornai
- Institute of Evolutionary MedicineUniversity of ZurichWinterthurerstrasse 190Zürich8057Switzerland
- Department of Evolutionary AnthropologyUniversity of ViennaUniversity Biology Building (UBB), Carl Djerassi Platz 1Vienna1030Austria
| | - Nicole M. Webb
- Institute of Evolutionary MedicineUniversity of ZurichWinterthurerstrasse 190Zürich8057Switzerland
- Senckenberg Research Institute and Natural History Museum FrankfurtSenckenberganlage 25Frankfurt am Main60325Germany
| |
Collapse
|
11
|
Belcastro L, Ferreira CS, Saraiva MA, Mucci DB, Murgia A, Lai C, Vigor C, Oger C, Galano JM, Pinto GDA, Griffin JL, Torres AG, Durand T, Burton GJ, Sardinha FLC, El-Bacha T. Decreased Fatty Acid Transporter FABP1 and Increased Isoprostanes and Neuroprostanes in the Human Term Placenta: Implications for Inflammation and Birth Weight in Maternal Pre-Gestational Obesity. Nutrients 2021; 13:2768. [PMID: 34444927 PMCID: PMC8398812 DOI: 10.3390/nu13082768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
The rise in prevalence of obesity in women of reproductive age in developed and developing countries might propagate intergenerational cycles of detrimental effects on metabolic health. Placental lipid metabolism is disrupted by maternal obesity, which possibly affects the life-long health of the offspring. Here, we investigated placental lipid metabolism in women with pre-gestational obesity as a sole pregnancy complication and compared it to placental responses of lean women. Open profile and targeted lipidomics were used to assess placental lipids and oxidised products of docosahexaenoic (DHA) and arachidonic acid (AA), respectively, neuroprostanes and isoprostanes. Despite no overall signs of lipid accumulation, DHA and AA levels in placentas from obese women were, respectively, 2.2 and 2.5 times higher than those from lean women. Additionally, a 2-fold increase in DHA-derived neuroprostanes and a 1.7-fold increase in AA-derived isoprostanes were seen in the obese group. These changes correlated with a 70% decrease in placental FABP1 protein. Multivariate analyses suggested that neuroprostanes and isoprostanes are associated with maternal and placental inflammation and with birth weight. These results might shed light on the molecular mechanisms associated with altered placental fatty acid metabolism in maternal pre-gestational obesity, placing these oxidised fatty acids as novel mediators of placental function.
Collapse
Affiliation(s)
- Livia Belcastro
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Carolina S. Ferreira
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
| | - Marcelle A. Saraiva
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Daniela B. Mucci
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Antonio Murgia
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; (A.M.); (J.L.G.)
| | - Carla Lai
- Department of Environmental and Life Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Gabriela D. A. Pinto
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; (A.M.); (J.L.G.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2BX, UK
| | - Alexandre G. Torres
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
- Lipid Biochemistry and Lipidomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 Route de Mende, 34293 Montpellier, France; (C.V.); (C.O.); (J.-M.G.); (T.D.)
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK;
| | - Fátima L. C. Sardinha
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.B.); (M.A.S.); (D.B.M.)
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.F.); (G.D.A.P.); (A.G.T.)
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK;
| |
Collapse
|
12
|
[Research advances in the effect of long-chain polyunsaturated fatty acids on neonates]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021. [PMID: 34266537 PMCID: PMC8292656 DOI: 10.7499/j.issn.1008-8830.2104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Adequate supply of long-chain polyunsaturated fatty acids (LCPUFAs) is of great importance for neonates, especially preterm infants. In particular, n-3 LCPUFAs and n-6 LCPUFAs play a key role in brain development, immune regulation, and disease prevention. Lack of LCPUFAs may lead to neurodevelopmental impairment, affect the development of neonatal immune system, and result in neonatal diseases. This article reviews related research advances in the physiological function of LCPUFAs and its effect on neonates, so as to provide reference for clinical application.
Collapse
|
13
|
Zou R, El Marroun H, Voortman T, Hillegers M, White T, Tiemeier H. Maternal polyunsaturated fatty acids during pregnancy and offspring brain development in childhood. Am J Clin Nutr 2021; 114:124-133. [PMID: 33742211 DOI: 10.1093/ajcn/nqab049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Emerging evidence suggests an association of maternal PUFA concentrations during pregnancy with child cognitive and neuropsychiatric outcomes such as intelligence and autistic traits. However, little is known about prenatal maternal PUFAs in relation to child brain development, which may underlie these associations. OBJECTIVES We aimed to investigate the association of maternal PUFA status during pregnancy with child brain morphology, including volumetric and white matter microstructure measures. METHODS This study was embedded in a prospective population-based study. In total, 1553 mother-child dyads of Dutch origin were included. Maternal plasma glycerophospholipid PUFAs were assessed in midpregnancy. Child brain morphologic outcomes, including total gray and white matter volumes, as well as white matter microstructure quantified by global fractional anisotropy and mean diffusivity, were measured using MRI (including diffusion tensor imaging) at age 9-11 y. RESULTS Maternal ω-3 (n-3) long-chain PUFA (LC-PUFA) concentrations during pregnancy had an inverted U-shaped relation with child total gray volume (linear term: β: 16.7; 95% CI: 2.0, 31.5; quadratic term: β: -1.1; 95% CI: -2.1, -0.07) and total white matter volume (linear term: β: 15.7; 95% CI: 3.6, 27.8; quadratic term: β: -1.0; 95% CI: -1.8, -0.16). Maternal gestational ω-6 LC-PUFA concentrations did not predict brain volumetric differences in children, albeit the linolenic acid concentration was inversely associated with child total white matter volume. Maternal PUFA status during pregnancy was not related to child white matter microstructure. CONCLUSIONS Sufficient maternal ω-3 PUFAs during pregnancy may be related to more optimal child brain development in the long term. In particular, exposure to lower ω-3 PUFA concentrations in fetal life was associated with less brain volume in childhood. Maternal ω-6 LC-PUFAs were not related to child brain morphology.
Collapse
Affiliation(s)
- Runyu Zou
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Social and Behavioral Sciences, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
14
|
Woodard V, Thoene M, Van Ormer M, Thompson M, Hanson C, Natarajan SK, Mukherjee M, Yuil-Valdes A, Nordgren TM, Ulu A, Harris Jackson K, Anderson-Berry A. Intrauterine Transfer of Polyunsaturated Fatty Acids in Mother-Infant Dyads as Analyzed at Time of Delivery. Nutrients 2021; 13:nu13030996. [PMID: 33808763 PMCID: PMC8003544 DOI: 10.3390/nu13030996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are essential for fetal development, and intrauterine transfer is the only supply of PUFAs to the fetus. The prevailing theory of gestational nutrient transfer is that certain nutrients (including PUFAs) may have prioritized transport across the placenta. Numerous studies have identified correlations between maternal and infant fatty acid concentrations; however, little is known about what role maternal PUFA status may play in differential intrauterine nutrient transfer. Twenty mother–infant dyads were enrolled at delivery for collection of maternal and umbilical cord blood, and placental tissue samples. Plasma concentrations of PUFAs were assessed using gas chromatography (GC-FID). Intrauterine transfer percentages for each fatty acid were calculated as follows: ((cord blood fatty acid level/maternal blood fatty acid level) × 100). Kruskal–Wallis tests were used to compare transfer percentages between maternal fatty acid tertile groups. A p-value < 0.05 was considered significant. There were statistically significant differences in intrauterine transfer percentages of arachidonic acid (AA) (64% vs. 65% vs. 45%, p = 0.02), eicosapentaenoic acid (EPA) (41% vs. 19% vs. 17%, p = 0.03), and total fatty acids (TFA) (27% vs. 26% vs. 20%, p = 0.05) between maternal plasma fatty acid tertiles. Intrauterine transfer percentages of AA, EPA, and TFA were highest in the lowest tertile of respective maternal fatty acid concentration. These findings may indicate that fatty acid transfer to the fetus is prioritized during gestation even during periods of maternal nutritional inadequacy.
Collapse
Affiliation(s)
- Vanessa Woodard
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| | - Melissa Thoene
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| | - Matthew Van Ormer
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| | - Maranda Thompson
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| | - Corrine Hanson
- Department of Medical Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Correspondence:
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583, USA;
| | - Maheswari Mukherjee
- Department of Medical Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Ana Yuil-Valdes
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| | - Tara M. Nordgren
- Division of Biomedical Sciences, College of Medicine, University of California Riverside, Riverside, CA 92521, USA; (T.M.N.); (A.U.)
| | - Arzu Ulu
- Division of Biomedical Sciences, College of Medicine, University of California Riverside, Riverside, CA 92521, USA; (T.M.N.); (A.U.)
| | - Kristina Harris Jackson
- OmegaQuant Analytics LLC, 5009 W. 12th St., Suite 8, Sioux Falls, SD 57106, USA;
- Department of Internal Medicine, College of Medicine, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Ann Anderson-Berry
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| |
Collapse
|
15
|
Leikin-Frenkel A, Liraz-Zaltsman S, Hollander KS, Atrakchi D, Ravid O, Rand D, Kandel-Kfir M, Israelov H, Cohen H, Kamari Y, Shaish A, Harats D, Schnaider-Beeri M, Cooper I. Dietary alpha linolenic acid in pregnant mice and during weaning increases brain docosahexaenoic acid and improves recognition memory in the offspring. J Nutr Biochem 2021; 91:108597. [PMID: 33545323 DOI: 10.1016/j.jnutbio.2021.108597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022]
Abstract
Docosahexaenoic acid (DHA) is critical for normal brain development and function. DHA is in danger of being significantly reduced in the human food supply, and the question of whether its metabolic precursor, the essential n-3 alpha linolenic acid (ALA) during pregnancy, can support fetal brain DHA levels for optimal neurodevelopment, is fundamental. Female mice were fed either ALA-enriched or Control diet during pregnancy and lactation. The direct effect of maternal dietary ALA on lipids was analyzed in liver, red blood cells, brain and brain vasculature, together with genes of fatty acid metabolism and transport in three-week-old offspring. The long-term effect of maternal dietary ALA on brain fatty acids and memory was studied in 19-week-old offspring. Three-week-old ALA offspring showed higher levels of n-3 fatty acids in liver, red blood cell, blood-brain barrier (BBB) vasculature and brain parenchyma, DHA enrichment in brain phospholipids and higher gene and protein expression of the DHA transporter, major facilitator superfamily domain containing 2a, compared to Controls. 19-week-old ALA offspring showed higher brain DHA levels and better memory performance than Controls. The increased brain DHA levels induced by maternal dietary ALA during pregnancy-lactation, together with the up-regulated levels of major facilitator superfamily domain containing 2a, may indicate a mode for greater DHA uptake with long-term impact on better memory in ALA offspring.
Collapse
Affiliation(s)
- Alicia Leikin-Frenkel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Daniel Rand
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Michal Kandel-Kfir
- Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hila Israelov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hofit Cohen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yehuda Kamari
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Aviv Shaish
- Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel; Achva Academic College, Israel
| | - Dror Harats
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Michal Schnaider-Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel; School of Psychology, Interdisciplinary Center (IDC) Herzliya, Herzliya, Israel; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel; School of Psychology, Interdisciplinary Center (IDC) Herzliya, Herzliya, Israel; The Nehemia Rubin Excellence in Biomedical Research - The TELEM Program, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
16
|
Lyall K, Windham GC, Snyder NW, Kuskovsky R, Xu P, Bostwick A, Robinson L, Newschaffer CJ. Association Between Midpregnancy Polyunsaturated Fatty Acid Levels and Offspring Autism Spectrum Disorder in a California Population-Based Case-Control Study. Am J Epidemiol 2021; 190:265-276. [PMID: 33524118 DOI: 10.1093/aje/kwaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are critical for brain development and have been linked with neurodevelopmental outcomes. We conducted a population-based case-control study in California to examine the association between PUFAs measured in midpregnancy serum samples and autism spectrum disorder (ASD) in offspring. ASD cases (n = 499) were identified through the California Department of Developmental Services and matched to live-birth population controls (n = 502) on birth month, year (2010 or 2011), and sex. Logistic regression models were used to examine crude and adjusted associations. In secondary analyses, we examined ASD with and without co-occurring intellectual disability (ID; n = 67 and n = 432, respectively) and effect modification by sex and ethnicity. No clear patterns emerged, though there was a modest inverse association with the top quartile of linoleic acid level (highest quartile vs. lowest: adjusted odds ratio = 0.74, 95% confidence interval: 0.49, 1.11; P for trend = 0.10). Lower levels of total and ω-3 PUFAs were associated with ASD with ID (lowest decile of total PUFAs vs. deciles 4-7: adjusted odds ratio = 2.78, 95% confidence interval: 1.13, 6.82) but not ASD without ID. We did not observe evidence of effect modification by the factors examined. These findings do not suggest a strong association between midpregnancy PUFA levels and ASD. In further work, researchers should consider associations with ASD with ID and in other time windows.
Collapse
|
17
|
Bordeleau M, Fernández de Cossío L, Chakravarty MM, Tremblay MÈ. From Maternal Diet to Neurodevelopmental Disorders: A Story of Neuroinflammation. Front Cell Neurosci 2021; 14:612705. [PMID: 33536875 PMCID: PMC7849357 DOI: 10.3389/fncel.2020.612705] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Providing the appropriate quantity and quality of food needed for both the mother's well-being and the healthy development of the offspring is crucial during pregnancy. However, the macro- and micronutrient intake also impacts the body's regulatory supersystems of the mother, such as the immune, endocrine, and nervous systems, which ultimately influence the overall development of the offspring. Of particular importance is the association between unhealthy maternal diet and neurodevelopmental disorders in the offspring. Epidemiological studies have linked neurodevelopmental disorders like autism spectrum disorders, attention-deficit-hyperactivity disorder, and schizophrenia, to maternal immune activation (MIA) during gestation. While the deleterious consequences of diet-induced MIA on offspring neurodevelopment are increasingly revealed, neuroinflammation is emerging as a key underlying mechanism. In this review, we compile the evidence available on how the mother and offspring are both impacted by maternal dietary imbalance. We specifically explore the various inflammatory and anti-inflammatory effects of dietary components and discuss how changes in inflammatory status can prime the offspring brain development toward neurodevelopmental disorders. Lastly, we discuss research evidence on the mechanisms that sustain the relationship between maternal dietary imbalance and offspring brain development, involving altered neuroinflammatory status in the offspring, as well as genetic to cellular programming notably of microglia, and the evidence that the gut microbiome may act as a key mediator.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - M. Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Dearden L, Bouret SG, Ozanne SE. Nutritional and developmental programming effects of insulin. J Neuroendocrinol 2021; 33:e12933. [PMID: 33438814 DOI: 10.1111/jne.12933] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The discovery of insulin in 1921 was a major breakthrough in medicine and for therapy in patients with diabetes. The dramatic rise in the prevalence of overweight and obesity has been tightly linked to an increased prevalence of gestational diabetes mellitus (GDM), which poses major health concerns. Babies born to GDM mothers are more likely to develop obesity, type 2 diabetes and cardiovascular disease later in life. Evidence accumulated during the past two decades has revealed that high levels insulin, such as those observed during GDM, can have a widespread effect on the development and function of a variety of organs. This review summarises our current knowledge on the role of insulin in the placenta, cardiovascular system and brain during critical periods of development, as well as how it can contribute to lifelong metabolic regulation. We also discuss possible intervention strategies to ameliorate and hopefully reverse the developmental defects associated with obesity and GDM.
Collapse
Affiliation(s)
- Laura Dearden
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Sebastien G Bouret
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition Research Center, Lille, France
- University of Lille, Lille, France
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| |
Collapse
|
19
|
Martínez-Razo LD, Martínez-Ibarra A, Vázquez-Martínez ER, Cerbón M. The impact of Di-(2-ethylhexyl) Phthalate and Mono(2-ethylhexyl) Phthalate in placental development, function, and pathophysiology. ENVIRONMENT INTERNATIONAL 2021; 146:106228. [PMID: 33157377 DOI: 10.1016/j.envint.2020.106228] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 05/21/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a chemical widely distributed in the environment as is extensively used in the plastic industry. DEHP is considered an endocrine disruptor chemical (EDC) and humans are inevitably and unintentionally exposed to this EDC through several sources including food, beverages, cosmetics, medical devices, among others. DEHP exposure has been associated and may be involved in the development of various pathologies; importantly, pregnant women are a particular risk group considering that endocrine alterations during gestation may impact fetal programming leading to the development of several chronic diseases in adulthood. Recent studies have indicated that exposure to DEHP and its metabolite Mono(2-ethylhexyl) phthalate (MEHP) may impair placental development and function, which in turn would have a negative impact on fetal growth. Studies performed in several trophoblastic and placental models have shown the negative impact of DEHP and MEHP in key processes related to placental development such as implantation, differentiation, invasion and angiogenesis. In addition, many alterations in placental functions like hormone signaling, metabolism, transfer of nutrients, immunomodulation and oxidative stress response have been reported. Moreover, clinical-epidemiological evidence supports the association between DEHP exposure and adverse pregnancy outcomes and pathologies. In this review, we aim to summarize for the first time current knowledge about the impact of DEHP and MEHP exposure on placental development and pathophysiology, as well as the mechanisms involved. We also remark the importance of exploring DEHP and MEHP effects in different trophoblast cell populations and discuss new perspectives regarding this topic.
Collapse
Affiliation(s)
- Luis Daniel Martínez-Razo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - Alejandra Martínez-Ibarra
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico; Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico.
| |
Collapse
|
20
|
Bowman CE, Arany Z, Wolfgang MJ. Regulation of maternal-fetal metabolic communication. Cell Mol Life Sci 2020; 78:1455-1486. [PMID: 33084944 DOI: 10.1007/s00018-020-03674-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Pregnancy may be the most nutritionally sensitive stage in the life cycle, and improved metabolic health during gestation and early postnatal life can reduce the risk of chronic disease in adulthood. Successful pregnancy requires coordinated metabolic, hormonal, and immunological communication. In this review, maternal-fetal metabolic communication is defined as the bidirectional communication of nutritional status and metabolic demand by various modes including circulating metabolites, endocrine molecules, and other secreted factors. Emphasis is placed on metabolites as a means of maternal-fetal communication by synthesizing findings from studies in humans, non-human primates, domestic animals, rabbits, and rodents. In this review, fetal, placental, and maternal metabolic adaptations are discussed in turn. (1) Fetal macronutrient needs are summarized in terms of the physiological adaptations in place to ensure their proper allocation. (2) Placental metabolite transport and maternal physiological adaptations during gestation, including changes in energy budget, are also discussed. (3) Maternal nutrient limitation and metabolic disorders of pregnancy serve as case studies of the dynamic nature of maternal-fetal metabolic communication. The review concludes with a summary of recent research efforts to identify metabolites, endocrine molecules, and other secreted factors that mediate this communication, with particular emphasis on serum/plasma metabolomics in humans, non-human primates, and rodents. A better understanding of maternal-fetal metabolic communication in health and disease may reveal novel biomarkers and therapeutic targets for metabolic disorders of pregnancy.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Arany
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Associations of Plasma Fatty Acid Patterns during Pregnancy with Respiratory and Allergy Outcomes at School Age. Nutrients 2020; 12:nu12103057. [PMID: 33036333 PMCID: PMC7601105 DOI: 10.3390/nu12103057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Fatty acids might play a role in asthma and allergy development as they can modulate immune responses. We examined among 4260 mother-child pairs participating in a population-based cohort the associations of maternal plasma fatty acid patterns during pregnancy with a child's respiratory and allergy outcomes at school-age. In mid-pregnancy, 22 individual fatty acids were measured from maternal blood. Three patterns were previously identified by principal component analysis: A 'high n-6 polyunsaturated fatty acid (PUFA)', a 'monounsaturated and saturated fatty acid', and a 'high n-3 PUFA' pattern. At the age of 10 years, a child's lung function was assessed by spirometry, current asthma and physician-diagnosed inhalant allergy by questionnaire, and inhalant allergic sensitization by skin prick tests. A higher 'high n-6 PUFA' pattern was associated with a higher forced expiratory volume in 1 s/forced vital capacity and forced expiratory flow after exhaling 75% of forced vital capacity (Z-score difference (95% CI) 0.04 (0, 0.07) and 0.04 (0.01, 0.07), respectively, per SD increase in the fatty acid pattern). We observed no associations of maternal fatty acid patterns with a child's asthma or allergy outcomes. Our results showed limited associations of maternal patterns of high n-6 PUFA concentrations in pregnancy with a better lung function in school-aged children.
Collapse
|
22
|
Hellström A, Hellström W, Hellgren G, E. H. Smith L, Puttonen H, Fyhr IM, Sävman K, Nilsson AK, Klevebro S. Docosahexaenoic Acid and Arachidonic Acid Levels Are Associated with Early Systemic Inflammation in Extremely Preterm Infants. Nutrients 2020; 12:nu12071996. [PMID: 32635612 PMCID: PMC7400618 DOI: 10.3390/nu12071996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Fetal and early postnatal inflammation have been associated with increased morbidity in extremely preterm infants. This study aimed to demonstrate if postpartum levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) were associated with early inflammation. In a cohort of 90 extremely preterm infants, DHA and AA in cord blood, on the first postnatal day and on postnatal day 7 were examined in relation to early systemic inflammation, defined as elevated C-reactive protein (CRP) and/or interleukin-6 (IL-6) within 72 h from birth, with or without positive blood culture. Median serum level of DHA was 0.5 mol% (95% CI (confidence interval) 0.2–0.9, P = 0.006) lower than the first postnatal day in infants with early systemic inflammation, compared to infants without signs of inflammation, whereas levels of AA were not statistically different between infants with and without signs of inflammation. In cord blood, lower serum levels of both DHA (correlation coefficient −0.40; P = 0.010) and AA (correlation coefficient −0.54; p < 0.001) correlated with higher levels of IL-6. Levels of DHA or AA did not differ between infants with and without histological signs of chorioamnionitis or fetal inflammation. In conclusion, serum levels of DHA at birth were associated with the inflammatory response during the early postnatal period in extremely preterm infants.
Collapse
Affiliation(s)
- Ann Hellström
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (A.H.); (G.H.); (A.K.N.)
| | - William Hellström
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41686 Gothenburg, Sweden; (W.H.); (H.P.); (K.S.)
| | - Gunnel Hellgren
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (A.H.); (G.H.); (A.K.N.)
- Institute of Bioscience, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Henri Puttonen
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41686 Gothenburg, Sweden; (W.H.); (H.P.); (K.S.)
- Department of Pathology, Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden;
| | - Ing-Marie Fyhr
- Department of Pathology, Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden;
| | - Karin Sävman
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41686 Gothenburg, Sweden; (W.H.); (H.P.); (K.S.)
- Department of Neonatology, Region Västra Götaland, the Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Anders K. Nilsson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (A.H.); (G.H.); (A.K.N.)
| | - Susanna Klevebro
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (A.H.); (G.H.); (A.K.N.)
- Department of Clinical Science and Education, Stockholm South General Hospital, Karolinska Institutet, 11883 Solna, Sweden
- Correspondence:
| |
Collapse
|
23
|
Glatz JFC, Lagarde M. Spotlight on fatty acids in cell signaling: The 13th FACS meeting. Prostaglandins Leukot Essent Fatty Acids 2020; 156:102025. [PMID: 31679809 DOI: 10.1016/j.plefa.2019.102025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine & Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | - Michel Lagarde
- National Institute of Applied Sciences (INSA)-Lyon, University of Lyon, Inserm UMR 1060, Inra UMR 1397, 69100 Villeurbanne, France.
| |
Collapse
|
24
|
Omega-3 Fatty Acids in Pregnancy-The Case for a Target Omega-3 Index. Nutrients 2020; 12:nu12040898. [PMID: 32224878 PMCID: PMC7230742 DOI: 10.3390/nu12040898] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Scientific societies recommend increasing intake of docosahexaenoic acid (DHA) by 200 mg/day during pregnancy. However, individually, clinical events correlate quite strongly with levels of eicosapentaenoic acid (EPA) and DHA in blood, but these levels poorly correlate with amounts ingested. EPA and DHA in erythrocytes (Omega-3 Index) have a low biologic variability. If analyzed with a standardized analytical procedure (HS-Omega-3 Index®), analytical variability is low. Thus, the largest database of any fatty acid analytical method was provided. Pregnant women in Germany had a mean Omega-3 Index below the target range suggested for cardiovascular disease of 8–11%, with large interindividual variation, and quite independent of supplementation with EPA and DHA. In Germany, premature birth is a major health issue. Premature birth and other health issues of pregnant women and their offspring correlate with levels of EPA and DHA in blood and can be reduced by increasing intake of EPA and DHA, according to individual trials and pertinent meta-analyses. Very high intake or levels of EPA and DHA may also produce health issues, like bleeding, prolonged gestation, or even premature birth. While direct evidence remains to be generated, evidence from various scientific approaches supports that the target range for the Omega-3 Index of 8–11% might also pertain to pregnancy and lactation.
Collapse
|
25
|
Lewis RM, Cleal JK, Sengers BG. Placental perfusion and mathematical modelling. Placenta 2020; 93:43-48. [PMID: 32250738 DOI: 10.1016/j.placenta.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 01/31/2023]
Abstract
The isolated perfused placental cotyledon technique has led to numerous advances in placental biology. Combining placental perfusion with mathematical modelling provides an additional level of insight into placental function. Mathematical modelling of perfusion data provides a quantitative framework to test the understanding of the underlying biology and to explore how different processes work together within the placenta as part of an integrated system. The perfusion technique provides a high degree of control over the experimental conditions as well as regular measurements of functional parameters such as pressure, solute concentrations and pH over time. This level of control is ideal for modelling as it allows placental function to be studied across a wide range of different conditions which permits robust testing of mathematical models. By placing quantitative values on different processes (e.g. transport, metabolism, blood flow), their relative contribution to the system can be estimated and those most likely to become rate-limiting identified. Using a combined placental perfusion and modelling approach, placental metabolism was shown to be a more important determinant of amino acid and fatty acid transfer. In contrast, metabolism was a less important determinant of placental cortisol transfer than initially thought. Identifying the rate-limiting factors in the system allows future work to be focused on the factors that are most likely to underlie placental dysfunction. A combined experimental and modelling approach using placental perfusions promotes an integrated view of placental physiology that can more effectively identify the processes leading to placental pathologies.
Collapse
Affiliation(s)
- Rohan M Lewis
- University of Southampton, Faulty of Medicine, UK; University of Southampton, Institute for Life Sciences, UK.
| | - Jane K Cleal
- University of Southampton, Faulty of Medicine, UK; University of Southampton, Institute for Life Sciences, UK
| | - Bram G Sengers
- University of Southampton, Institute for Life Sciences, UK; University of Southampton, Faculty of Engineering and Physical Sciences, UK
| |
Collapse
|
26
|
Jaramillo AM, Garmendia ML, Muñoz P, Corbari A, Valenzuela R, Casanello P. Evaluation of the Stability of Fatty Acids in Erythrocytes from Human Umbilical Cord. Lipids 2020; 55:53-62. [PMID: 31943229 DOI: 10.1002/lipd.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/10/2022]
Abstract
The interest in the amount of polyunsaturated fatty acids (PUFA) in the umbilical cord blood (UCB) is increasing, but the stability of erythrocyte PUFA in these samples during storage and washing of the erythrocytes has not been directly evaluated. The purpose of this study was to analyze the effect of the lapse of time on the fatty acid (FA) content from UCB sample collection and maintained at 4 °C (0-12 h) until erythrocyte separation and washing. Palmitic acid (16:0), stearic acid (18:0), 18:1n-7/n-9, linoleic acid (18:2n-6), arachidonic acid (20:4n-6), 22:4n-6, eicosapentaenoic acid (20:5n-3), docosapentaenoic acid (22:5n-3), and docosahexaenoic acid (22:6n-3) together accounted for 87% of the FA profile in the umbilical vein erythrocytes. No difference was observed in the concentration of any of the FA studied, nor in the sum of saturated fatty acids (SFA), PUFA, or LC-PUFA in umbilical erythrocytes obtained at delivery and stored up to 12 h before the separation of erythrocytes. However, if a washing step was included in the processing of the erythrocytes, a decrease in the concentration of 16:0, 18:0, 18:3n-3, 20:4n-6, 22:4n-6, total SFA, PUFA, LC-PUFA, and n-6 LC-PUFA was evidenced, compared to unwashed erythrocytes. The FA concentration in umbilical cord erythrocytes did not change between samples stored from 0 to 12 h until erythrocyte separation. Erythrocyte washing before storage decreased the concentration of significant individual and total SFA, PUFA, and LC-PUFA. These results should be considered when planning the collection of UCB samples for the study of fatty acid concentration due to the nonscheduled timing of deliveries.
Collapse
Affiliation(s)
- Angela M Jaramillo
- PhD Program in Nutrition and Foods, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - María L Garmendia
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Patricio Muñoz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alicia Corbari
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Casanello
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Connor KL, Kibschull M, Matysiak-Zablocki E, Nguyen TTTN, Matthews SG, Lye SJ, Bloise E. Maternal malnutrition impacts placental morphology and transporter expression: an origin for poor offspring growth. J Nutr Biochem 2020; 78:108329. [PMID: 32004932 DOI: 10.1016/j.jnutbio.2019.108329] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
The placenta promotes fetal growth through nutrient transfer and selective barrier systems. An optimally developed placenta can adapt to changes in the pregnancy environment, buffering the fetus from adverse exposures. We hypothesized that the placenta adapts differently to suboptimal maternal diets, evidenced by changes in placental morphology, developmental markers and key transport systems. Mice were fed a control diet (CON) during pregnancy, undernourished (UN) by 30% of control intake from gestational day (GD) 5.5-18.5 or fed 60% high-fat diet (HF) 8 weeks before and during pregnancy. At GD18.5, placental morphometry, development and transport were assessed. Junctional and labyrinthine areas of UN and HF placentae were smaller than CON by >10%. Fetal blood space area and fetal blood space:fetal weight ratios were reduced in HF vs. CON and UN. Trophoblast giant cell marker Ctsq mRNA expression was lower in UN vs. HF, and expression of glycogen cell markers Cx31.1 and Pcdh12 was lower in HF vs. UN. Efflux transporter Abcb1a mRNA expression was lower in HF vs. UN, and Abcg2 expression was lower in UN vs. HF. mRNA expression of fatty acid binding protein Fabppm was higher in UN vs. CON and HF. mRNA and protein levels of the lipid transporter FAT/CD36 were lower in UN, and FATP4 protein levels were lower in HF vs. UN. UN placentae appear less mature with aberrant transport, whereas HF placentae adapt to excessive nutrient supply. Understanding placental adaptations to common nutritional adversities may reveal mechanisms underlying the developmental origins of later disease.
Collapse
Affiliation(s)
- Kristin L Connor
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| | - Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | - Stephen G Matthews
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
28
|
Abstract
α-Linolenic acid (ALA) is an n-3 fatty acid found in plant-derived foods such as linseeds and linseed oil. Mammals can convert this essential fatty acid into longer-chain fatty acids including EPA, docosapentaenoic acid (DPA) and DHA. Women demonstrate greater increases in the EPA status after ALA supplementation than men, and a growing body of animal model research identifies mechanisms by which sex hormones such as oestrogen and progesterone interact with the synthesis of EPA and DHA. Alternatively, EPA, DPA and DHA can be consumed directly, with oily fish being a rich dietary source of these nutrients. However, current National Diet and Nutrition Data reveals a median oily fish intake of 0 g daily across all age ranges and in both sexes. As longer-chain n-3 fatty acids have a crucial role in fetal and neonatal brain development, advice to consume dietary ALA could prove to be a pragmatic and acceptable alternative to advice to consume fish during pregnancy, if benefits upon tissue composition and functional outcomes can be demonstrated. Further research is required to understand the effects of increasing dietary ALA during pregnancy, and will need to simultaneously address conflicts with current dietary advice to only eat 'small amounts' of vegetable oils during pregnancy. Improving our understanding of sex-specific differences in fatty acid metabolism and interactions with pregnancy has the potential to inform both personalised nutrition advice and public health policy.
Collapse
|