1
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
2
|
Dingjan T, Futerman AH. Fine-tuned protein-lipid interactions in biological membranes: exploration and implications of the ORMDL-ceramide negative feedback loop in the endoplasmic reticulum. Front Cell Dev Biol 2024; 12:1457209. [PMID: 39170919 PMCID: PMC11335536 DOI: 10.3389/fcell.2024.1457209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Biological membranes consist of a lipid bilayer in which integral membrane proteins are embedded. Based on the compositional complexity of the lipid species found in membranes, and on their specific and selective interactions with membrane proteins, we recently suggested that membrane bilayers can be best described as "finely-tuned molecular machines." We now discuss one such set of lipid-protein interactions by describing a negative feedback mechanism operating in the de novo sphingolipid biosynthetic pathway, which occurs in the membrane of the endoplasmic reticulum, and describe the atomic interactions between the first enzyme in the pathway, namely serine palmitoyl transferase, and the product of the fourth enzyme in the pathway, ceramide. We explore how hydrogen-bonding and hydrophobic interactions formed between Asn13 and Phe63 in the serine palmitoyl transferase complex and ceramide can influence the ceramide content of the endoplasmic reticulum. This example of finely-tuned biochemical interactions raises intriguing mechanistic questions about how sphingolipids and their biosynthetic enzymes could have evolved, particularly in light of their metabolic co-dependence.
Collapse
Affiliation(s)
- Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
3
|
Rivero P, Ivanova V, Barril X, Casampere M, Casas J, Fabriàs G, Díaz Y, Matheu MI. Targeting dihydroceramide desaturase 1 (Des1): Syntheses of ceramide analogues with a rigid scaffold, inhibitory assays, and AlphaFold2-assisted structural insights reveal cyclopropenone PR280 as a potent inhibitor. Bioorg Chem 2024; 145:107233. [PMID: 38422591 DOI: 10.1016/j.bioorg.2024.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Dihydroceramide desaturase 1 (Des1) catalyzes the formation of a CC double bond in dihydroceramide to furnish ceramide. Inhibition of Des1 is related to cell cycle arrest and programmed cell death. The lack of the Des1 crystalline structure, as well as that of a close homologue, hampers the detailed understanding of its inhibition mechanism and difficults the design of new inhibitors, thus making Des1 a strategic target. Based on previous structure-activity studies, different ceramides containing rigid scaffolds were designed. The synthesis and evaluation of these compounds as Des1 inhibitors allowed the identification of PR280 as a better Des 1 inhibitor in vitro (IC50 = 700 nM) than GT11 and XM462, the current reference inhibitors. This cyclopropenone ceramide was obtained in a 6-step synthesis with a 24 % overall yield. The highly confident 3D structure of Des1, recently predicted by AlphaFold2, served as the basis for conducting docking studies of known Des1 inhibitors and the ceramide derivatives synthesized by us in this study. For this purpose, a complete holoprotein structure was previously constructed. This study has allowed a better knowledge of key ligand-enzyme interactions for Des1 inhibitory activity. Furthermore, it sheds some light on the inhibition mechanism of GT11.
Collapse
Affiliation(s)
- Pablo Rivero
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain
| | - Varbina Ivanova
- Universitat de Barcelona, Department of Physical Chemistry, Faculty of Pharmacy, Av. Joan XXIII s/n, Barcelona 08028, Spain
| | - Xavier Barril
- Universitat de Barcelona, Department of Physical Chemistry, Faculty of Pharmacy, Av. Joan XXIII s/n, Barcelona 08028, Spain
| | - Mireia Casampere
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Josefina Casas
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Gemma Fabriàs
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Yolanda Díaz
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain.
| | - M Isabel Matheu
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain.
| |
Collapse
|
4
|
Morita Y, Sakai E, Isago H, Ono Y, Yatomi Y, Kurano M. Alterations in urinary ceramides, sphingoid bases, and their phosphates among patients with kidney disease. FRONTIERS IN NEPHROLOGY 2024; 4:1343181. [PMID: 38504855 PMCID: PMC10949895 DOI: 10.3389/fneph.2024.1343181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Background To avoid an invasive renal biopsy, noninvasive laboratory testing for the differential diagnosis of kidney diseases is a desirable goal. As sphingolipids are demonstrated to be involved in the pathogenesis of various kidney diseases, we investigated the possible usefulness of the simultaneous measurement of urinary sphingolipids for differentiating kidney diseases. Materials and methods Residual urine specimens were collected from patients who had been clinically diagnosed with chronic glomerulonephritis (CGN), diabetic mellitus (DM), systemic lupus erythematosus (SLE), and arterial hypertension (AH). The urinary sphingolipids-CERs C16:0, C18:0, C18:1, C20:0, C22:0, and C24:0; sphingosine [Sph]; dihydrosphingosine; sphingosine 1-phosphate [S1P]; and dihydroS1P [dhS1P]-were measured by liquid chromatography-tandem mass spectrometry. Based on the results, machine learning models were constructed to differentiate the various kidney diseases. Results The urinary S1P was higher in patients with DM than in other participants (P < 0.05), whereas dhS1P was lower in the CGN and AH groups compared with control participants (P < 0.05). Sph and dhSph were higher in patients with CGN, AH, and SLE than in those with control participants (P < 0.05). The urinary CERs were significantly higher in patients with CGN, AH, and SLE than in those with control participants (P < 0.05). As a results of constructing a machine learning model discriminating kidney diseases, the resulting diagnostic accuracy and precision were improved from 94.03% and 66.96% to 96.10% and 78.26% respectively, when the urinary CERs, Sph, dhSph, S1P, dhS1P, and their ratios were added to the models. Conclusion The urinary CERs, sphingoid bases, and their phosphates show alterations among kidney diseases, suggesting their potential involvement in the development of kidney injury.
Collapse
Affiliation(s)
- Yoshifumi Morita
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ono
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
6
|
Liao R, Babatunde A, Qiu S, Harikumar H, Coon JJ, Overmyer KA, Hannun YA, Luberto C, Bresnick EH. A transcriptional network governing ceramide homeostasis establishes a cytokine-dependent developmental process. Nat Commun 2023; 14:7262. [PMID: 37945603 PMCID: PMC10636182 DOI: 10.1038/s41467-023-42978-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Transcriptional mechanisms controlling developmental processes establish and maintain proteomic networks, which can govern the levels of intracellular small molecules. Although dynamic changes in bioactive small molecules can link transcription factor and genome activity with cell state transitions, many mechanistic questions are unresolved. Using quantitative lipidomics and multiomics, we discover that the hematopoietic transcription factor GATA1 establishes ceramide homeostasis during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Inhibiting a GATA1-induced sphingolipid biosynthetic enzyme, delta(4)-desaturase, or disrupting ceramide homeostasis with cell-permeable dihydroceramide or ceramide is detrimental to erythroid, but not myeloid, progenitor activity. Coupled with genetic editing-based rewiring of the regulatory circuitry, we demonstrate that ceramide homeostasis commissions vital stem cell factor and erythropoietin signaling by opposing an inhibitory protein phosphatase 2A-dependent, dual-component mechanism. Integrating bioactive lipids as essential components of GATA factor mechanisms to control cell state transitions has implications for diverse cell and tissue types.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Abiola Babatunde
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephanie Qiu
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hamsini Harikumar
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Book University, Stony Brook, NY, USA
- Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
7
|
Machy P, Mortier E, Birklé S. Biology of GD2 ganglioside: implications for cancer immunotherapy. Front Pharmacol 2023; 14:1249929. [PMID: 37670947 PMCID: PMC10475612 DOI: 10.3389/fphar.2023.1249929] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Part of the broader glycosphingolipid family, gangliosides are composed of a ceramide bound to a sialic acid-containing glycan chain, and locate at the plasma membrane. Gangliosides are produced through sequential steps of glycosylation and sialylation. This diversity of composition is reflected in differences in expression patterns and functions of the various gangliosides. Ganglioside GD2 designates different subspecies following a basic structure containing three carbohydrate residues and two sialic acids. GD2 expression, usually restrained to limited tissues, is frequently altered in various neuroectoderm-derived cancers. While GD2 is of evident interest, its glycolipid nature has rendered research challenging. Physiological GD2 expression has been linked to developmental processes. Passing this stage, varying levels of GD2, physiologically expressed mainly in the central nervous system, affect composition and formation of membrane microdomains involved in surface receptor signaling. Overexpressed in cancer, GD2 has been shown to enhance cell survival and invasion. Furthermore, binding of antibodies leads to immune-independent cell death mechanisms. In addition, GD2 contributes to T-cell dysfunction, and functions as an immune checkpoint. Given the cancer-associated functions, GD2 has been a source of interest for immunotherapy. As a potential biomarker, methods are being developed to quantify GD2 from patients' samples. In addition, various therapeutic strategies are tested. Based on initial success with antibodies, derivates such as bispecific antibodies and immunocytokines have been developed, engaging patient immune system. Cytotoxic effectors or payloads may be redirected based on anti-GD2 antibodies. Finally, vaccines can be used to mount an immune response in patients. We review here the pertinent biological information on GD2 which may be of use for optimizing current immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - Stéphane Birklé
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, Nantes, France
| |
Collapse
|
8
|
Li Q, Li J, Wang K, Liao L, Li Y, Liang H, Huang C, Gan J, Dong X, Hu Y, Cheng J, Ji H, Liu C, Zeng M, Yu S, Wang B, Qian J, Tang Z, Peng Y, Tang S, Li M, Zhou J, Yan J, Li C. Activation of Sphingomyelin Phosphodiesterase 3 in Liver Regeneration Impedes the Progression of Colorectal Cancer Liver Metastasis Via Exosome-Bound Intercellular Transfer of Ceramides. Cell Mol Gastroenterol Hepatol 2023; 16:385-410. [PMID: 37245564 PMCID: PMC10372907 DOI: 10.1016/j.jcmgh.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND & AIMS The machinery that prevents colorectal cancer liver metastasis (CRLM) in the context of liver regeneration (LR) remains elusive. Ceramide (CER) is a potent anti-cancer lipid involved in intercellular interaction. Here, we investigated the role of CER metabolism in mediating the interaction between hepatocytes and metastatic colorectal cancer (CRC) cells to regulate CRLM in the context of LR. METHODS Mice were intrasplenically injected with CRC cells. LR was induced by 2/3 partial hepatectomy (PH) to mimic the CRLM in the context of LR. The alteration of corresponding CER-metabolizing genes was examined. The biological roles of CER metabolism in vitro and in vivo were examined by performing a series of functional experiments. RESULTS Induction of LR augmented apoptosis but promoted matrix metalloproteinase 2 (MMP2) expression and epithelial-mesenchymal transition (EMT) to increase the invasiveness of metastatic CRC cells, resulting in aggressive CRLM. Up-regulation of sphingomyelin phosphodiesterase 3 (SMPD3) was determined in the regenerating hepatocytes after LR induction and persisted in the CRLM-adjacent hepatocytes after CRLM formation. Hepatic Smpd3 knockdown was found to further promote CRLM in the context of LR by abolishing mitochondrial apoptosis and augmenting the invasiveness in metastatic CRC cells by up-regulating MMP2 and EMT through promoting the nuclear translocation of β-catenin. Mechanistically, we found that hepatic SMPD3 controlled the generation of exosomal CER in the regenerating hepatocytes and the CRLM-adjacent hepatocytes. The SMPD3-produced exosomal CER critically conducted the intercellular transfer of CER from the hepatocytes to metastatic CRC cells and impeded CRLM by inducing mitochondrial apoptosis and restricting the invasiveness in metastatic CRC cells. The administration of nanoliposomal CER was found to suppress CRLM in the context of LR substantially. CONCLUSIONS SMPD3-produced exosomal CER constitutes a critical anti-CRLM mechanism in LR to impede CRLM, offering the promise of using CER as a therapeutic agent to prevent the recurrence of CRLM after PH.
Collapse
Affiliation(s)
- Qingping Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyuan Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Can Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Gan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongli Ji
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Minghui Zeng
- Institute of Scientific Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongshun Tang
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonghong Peng
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanhua Tang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengxuan Li
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Pharmacological Elevation of Cellular Dihydrosphingomyelin Provides a Novel Antiviral Strategy against West Nile Virus Infection. Antimicrob Agents Chemother 2023; 67:e0168722. [PMID: 36920206 PMCID: PMC10112131 DOI: 10.1128/aac.01687-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The flavivirus life cycle is strictly dependent on cellular lipid metabolism. Polyphenols like gallic acid and its derivatives are promising lead compounds for new therapeutic agents as they can exert multiple pharmacological activities, including the alteration of lipid metabolism. The evaluation of our collection of polyphenols against West Nile virus (WNV), a representative medically relevant flavivirus, led to the identification of N,N'-(dodecane-1,12-diyl)bis(3,4,5-trihydroxybenzamide) and its 2,3,4-trihydroxybenzamide regioisomer as selective antivirals with low cytotoxicity and high antiviral activity (half-maximal effective concentrations [EC50s] of 2.2 and 0.24 μM, respectively, in Vero cells; EC50s of 2.2 and 1.9 μM, respectively, in SH-SY5Y cells). These polyphenols also inhibited the multiplication of other flaviviruses, namely, Usutu, dengue, and Zika viruses, exhibiting lower antiviral or negligible antiviral activity against other RNA viruses. The mechanism underlying their antiviral activity against WNV involved the alteration of sphingolipid metabolism. These compounds inhibited ceramide desaturase (Des1), promoting the accumulation of dihydrosphingomyelin (dhSM), a minor component of cellular sphingolipids with important roles in membrane properties. The addition of exogenous dhSM or Des1 blockage by using the reference inhibitor GT-11 {N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanamide} confirmed the involvement of this pathway in WNV infection. These results unveil the potential of novel antiviral strategies based on the modulation of the cellular levels of dhSM and Des1 activity for the control of flavivirus infection.
Collapse
|
10
|
Nyonda MA, Kloehn J, Sosnowski P, Krishnan A, Lentini G, Maco B, Marq JB, Hannich JT, Hopfgartner G, Soldati-Favre D. Ceramide biosynthesis is critical for establishment of the intracellular niche of Toxoplasma gondii. Cell Rep 2022; 40:111224. [PMID: 35977499 PMCID: PMC9396527 DOI: 10.1016/j.celrep.2022.111224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 06/06/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Toxoplasma gondii possesses sphingolipid synthesis capabilities and is equipped to salvage lipids from its host. The contribution of these two routes of lipid acquisition during parasite development is unclear. As part of a complete ceramide synthesis pathway, T. gondii expresses two serine palmitoyltransferases (TgSPT1 and TgSPT2) and a dihydroceramide desaturase. After deletion of these genes, we determine their role in parasite development in vitro and in vivo during acute and chronic infection. Detailed phenotyping through lipidomic approaches reveal a perturbed sphingolipidome in these mutants, characterized by a drastic reduction in ceramides and ceramide phosphoethanolamines but not sphingomyelins. Critically, parasites lacking TgSPT1 display decreased fitness, marked by reduced growth rates and a selective defect in rhoptry discharge in the form of secretory vesicles, causing an invasion defect. Disruption of de novo ceramide synthesis modestly affects acute infection in vivo but severely reduces cyst burden in the brain of chronically infected mice.
Collapse
Affiliation(s)
- Mary Akinyi Nyonda
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Piotr Sosnowski
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - J Thomas Hannich
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Quai Ernest-Ansermet 30, Geneva, Switzerland
| | - Gerard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
11
|
Lee MT, Le H, Besler K, Johnson E. Identification and characterization of 3-ketosphinganine reductase activity encoded at the BT_0972 locus in Bacteroides thetaiotaomicron. J Lipid Res 2022; 63:100236. [PMID: 35667415 PMCID: PMC9278070 DOI: 10.1016/j.jlr.2022.100236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial sphingolipid synthesis is important for the fitness of gut commensal bacteria with an implied potential for regulating mammalian host physiology. Multiple steps in bacterial sphingolipid synthesis pathways have been characterized previously, with the first step of de novo sphingolipid synthesis being well conserved between bacteria and eukaryotes. In mammals, the subsequent step of de novo sphingolipid synthesis is catalyzed by 3-ketosphinganine reductase, but the protein responsible for this activity in bacteria has remained elusive. In this study, we analyzed the 3-ketosphinganine reductase activity of several candidate proteins in Bacteroides thetaiotaomicron chosen based on sequence similarity to the yeast 3-ketosphinganine reductase gene. We further developed a metabolomics-based 3-ketosphinganine reductase activity assay, which revealed that a gene at the locus BT_0972 encodes a protein capable of converting 3-ketosphinganine to sphinganine. Taken together, these results provide greater insight into pathways for bacterial sphingolipid synthesis that can aid in future efforts to understand how microbial sphingolipid synthesis modulates host-microbe interactions.
Collapse
Affiliation(s)
- Min-Ting Lee
- Division of Nutritional Sciences, Cornell University, Ithaca NY, 14853
| | - Henry Le
- Division of Nutritional Sciences, Cornell University, Ithaca NY, 14853
| | - Kevin Besler
- Division of Nutritional Sciences, Cornell University, Ithaca NY, 14853
| | - Elizabeth Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca NY, 14853.
| |
Collapse
|
12
|
Shin KO, Mihara H, Ishida K, Uchida Y, Park K. Exogenous Ceramide Serves as a Precursor to Endogenous Ceramide Synthesis and as a Modulator of Keratinocyte Differentiation. Cells 2022; 11:cells11111742. [PMID: 35681438 PMCID: PMC9179460 DOI: 10.3390/cells11111742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
Since ceramide is a key epidermal barrier constituent and its deficiency causes barrier-compromised skin, several molecular types of ceramides are formulated in commercial topical agents to improve barrier function. Topical ceramide localizes on the skin surface and in the stratum corneum, but certain amounts of ceramide penetrate the stratum granulosum, becoming precursors to endogenous ceramide synthesis following molecular modification. Moreover, exogenous ceramide as a lipid mediator could modulate keratinocyte proliferation/differentiation. We here investigated the biological roles of exogenous NP (non-hydroxy ceramide containing 4-hydroxy dihydrosphingosine) and NDS (non-hydroxy ceramide containing dihydrosphingosine), both widely used as topical ceramide agents, in differentiated-cultured human keratinocytes. NDS, but not NP, becomes a precursor for diverse ceramide species that are required for a vital permeability barrier. Loricrin (late differentiation marker) production is increased in keratinocytes treated with both NDS and NP vs. control, while bigger increases in involucrin (an early differentiation marker) synthesis were observed in keratinocytes treated with NDS vs. NP and control. NDS increases levels of a key antimicrobial peptide (an innate immune component), cathelicidin antimicrobial peptide (CAMP/LL-37), that is upregulated by a ceramide metabolite, sphingosine-1-phosphate. Our studies demonstrate that NDS could be a multi-potent ceramide species, forming heterogenous ceramide molecules and a lipid mediator to enhance differentiation and innate immunity.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- Department of Food Science & Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 31151, Korea;
- The Korean Institute of Nutrition, Hallym University, Chuncheon 31151, Korea
- LaSS Lipid Institute (LLI), LaSS Inc., Chuncheon 31151, Korea
| | - Hisashi Mihara
- Takasago International Company, Hiratsuka 259-1207, Japan; (H.M.); (K.I.)
| | - Kenya Ishida
- Takasago International Company, Hiratsuka 259-1207, Japan; (H.M.); (K.I.)
| | - Yoshikazu Uchida
- Department of Food Science & Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 31151, Korea;
- The Korean Institute of Nutrition, Hallym University, Chuncheon 31151, Korea
- Veterans Affairs Medical Center, Department of Dermatology, School of Medicine, Northern California Institute for Research and Education, University of California, San Francisco, CA 94158, USA
- Correspondence: (Y.U.); (K.P.); Tel.: +82-33-248-3146 (Y.U.); +82-33-248-2131 (K.P.)
| | - Kyungho Park
- Department of Food Science & Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 31151, Korea;
- The Korean Institute of Nutrition, Hallym University, Chuncheon 31151, Korea
- Correspondence: (Y.U.); (K.P.); Tel.: +82-33-248-3146 (Y.U.); +82-33-248-2131 (K.P.)
| |
Collapse
|
13
|
Shu H, Peng Y, Hang W, Li N, Zhou N, Wang DW. Emerging Roles of Ceramide in Cardiovascular Diseases. Aging Dis 2022; 13:232-245. [PMID: 35111371 PMCID: PMC8782558 DOI: 10.14336/ad.2021.0710] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/10/2021] [Indexed: 12/15/2022] Open
Abstract
Ceramide is a core molecule of sphingolipid metabolism that causes selective insulin resistance and dyslipidemia. Research on its involvement in cardiovascular diseases has grown rapidly. In resting cells, ceramide levels are extremely low, while they rapidly accumulate upon encountering external stimuli. Recently, the regulation of ceramide levels under pathological conditions, including myocardial infarction, hypertension, and atherosclerosis, has drawn great attention. Increased ceramide levels are strongly associated with adverse cardiovascular risks and events while inhibiting the synthesis of ceramide or accelerating its degradation improves a variety of cardiovascular diseases. In this article, we summarize the role of ceramide in cardiovascular disease, investigate the possible application of ceramide as a new diagnostic biomarker and a therapeutic target for cardiovascular disorders, and highlight the remaining problems.
Collapse
Affiliation(s)
- Hongyang Shu
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yizhong Peng
- 3Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Weijian Hang
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Na Li
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Zhou
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dao Wen Wang
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
14
|
Mehendale N, Mallik R, Kamat SS. Mapping Sphingolipid Metabolism Pathways during Phagosomal Maturation. ACS Chem Biol 2021; 16:2757-2765. [PMID: 34647453 DOI: 10.1021/acschembio.1c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phagocytosis is an important physiological process, which, in higher organisms, is a means of fighting infections and clearing cellular debris. During phagocytosis, detrimental foreign particles (e.g. pathogens and apoptotic cells) are engulfed by phagocytes (e.g. macrophages), enclosed in membrane-bound vesicles called phagosomes, and transported to the lysosome for eventual detoxification. During this well-choreographed process, the nascent phagosome (also called early phagosome, EP) undergoes a series of spatiotemporally regulated changes in its protein and lipid composition and matures into a late phagosome (LP), which subsequently fuses with the lysosomal membrane to form the phagolysosome. While several elegant proteomic studies have identified the role of unique proteins during phagosomal maturation, the corresponding lipidomic studies are sparse. Recently, we reported a comparative lipidomic analysis between EPs and LPs and showed that ceramides are enriched on the LPs. Further, we found that this ceramide accumulation on LPs was orchestrated by ceramide synthase 2, inhibition of which hampers phagosomal maturation. Following up on this study, here, using biochemical assays, we first show that the increased ceramidase activity on EPs also significantly contributes to the accumulation of ceramides on LPs. Next, leveraging lipidomics, we show that de novo ceramide synthesis does not significantly contribute to the ceramide accumulation on LPs, while concomitant to increased ceramides, glucosylceramides are substantially elevated on LPs. We validate this interesting finding using biochemical assays and show that LPs indeed have heightened glucosylceramide synthase activity. Taken together, our studies provide interesting insights and possible new roles of sphingolipid metabolism during phagosomal maturation.
Collapse
Affiliation(s)
- Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Powai, Mumbai 400076, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
15
|
Lizhong Decoction () Ameliorates Ulcerative Colitis in Mice via Regulation of Plasma and Urine Metabolic Profiling. Chin J Integr Med 2021; 28:1015-1022. [PMID: 34586559 DOI: 10.1007/s11655-021-3299-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To elucidate the mechanism of Lizhong Decoction (LZD, ) in treating dextran sodium sulfate (DSS)-induced colitis in mice based on metabonomics. METHODS Thirty-six mice were randomly divided into 6 groups, including normal, model, low- (1.365 g/kg), medium- (4.095 g/kg) and high dose (12.285 g/kg) LZD and salazosulfadimidine (SASP) groups, 6 mice in each group. Colitis model mice were induced by DSS admistration for 7 days, and treated with low, medium and high dose LZD extract and positive drug SASP. Metabolic comparison of DSS-induced colitis and normal mice was investigated by using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass (UPLC-Q-TOF/MS) combined with Metabolynx™ software. RESULTS The metabolic profiles of plasma and urine in colitis mice were distinctly ameliorated after LZD treatment (P<0.05). Potential biomarkers (9 in serum and 4 in urine) were screened and tentatively identified. The endogenous metabolites were mainly involved in primary bile acid, sphingolipid, linoleic acid, arachidonic acid, amino acids (alanine, aspartate, and glutamate), butanoate and glycerophospholipid metabolism in plasma, and terpenoid backbone biosynthesis, glycerophospholipid and tryptophan metabolism in urine. After LZD treatment, these markers notably restored to normal levels. CONCLUSIONS The study revealed the underlying mechanism of LZD on amelioration of ulcerative colitis based on metabonomics, which laid a foundation for further exploring the pathological and physiological mechanism, early diagnosis, and corresponding drug development of colitis.
Collapse
|
16
|
Frankowska M, Jesus FM, Mühle C, Pacheco JV, Maior RS, Sadakierska‐Chudy A, Smaga I, Piechota M, Kalinichenko LS, Gulbins E, Kornhuber J, Filip M, Müller CP, Barros M. Cocaine attenuates acid sphingomyelinase activity during establishment of addiction-related behavior-A translational study in rats and monkeys. Addict Biol 2021; 26:e12955. [PMID: 32761719 DOI: 10.1111/adb.12955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Cocaine addiction is a severe psychiatric condition for which currently no effective pharmacotherapy is available. Brain mechanisms for the establishment of addiction-related behaviors are still not fully understood, and specific biomarkers for cocaine use are not available. Sphingolipids are major membrane lipids, which shape neuronal membrane composition and dynamics in the brain. Here, we investigated how chronic cocaine exposure during establishment of addiction-related behaviors affects the activity of the sphingolipid rheostat controlling enzymes in the brain of rats. As we detected specific effects on several enzymes in the brain, we tested whether the activity of selected enzymes in the blood may serve as potential biomarker for cocaine exposure in non-human primates (Callithrix penicillata). We found that intravenous cocaine self-administration led to a reduced mRNA expression of Cers1, Degs1 and Degs2, and Smpd1 in the prefrontal cortex of rats, as well as a reduction of Cers4 expression in the striatum. These effects reversed after 10 days of abstinence. Monkeys showed a robust cocaine-induced place preference (CPP). This coincided with a reduction in blood acid sphingomyelinase (ASM) activity after CPP establishment. This effect normalized after 15 days of abstinence. Altogether, these findings suggest that the establishment of cocaine addiction-related behaviors coincides with changes in the activity of sphingolipid controlling enzymes. In particular, blood ASM levels may serve as a translational biomarker for recent cocaine exposure.
Collapse
Affiliation(s)
- Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Fernando M. Jesus
- Department of Pharmacy, School of Health Sciences University of Brasilia Brasilia Brazil
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Jéssica V.N. Pacheco
- Department of Pharmacy, School of Health Sciences University of Brasilia Brasilia Brazil
| | - Rafael S. Maior
- Department of Physiological Sciences University of Brasília Brasilia Brazil
- Primate Center Institute of Biology, University of Brasilia Brasilia Brazil
| | - Anna Sadakierska‐Chudy
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Liubov S. Kalinichenko
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Erich Gulbins
- Department of Molecular Biology University of Duisburg‐Essen Essen Germany
- Department of Surgery University of Cincinnati Cincinnati Ohio USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Christian P. Müller
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences University of Brasilia Brasilia Brazil
- Primate Center Institute of Biology, University of Brasilia Brasilia Brazil
| |
Collapse
|
17
|
Skácel J, Slusher BS, Tsukamoto T. Small Molecule Inhibitors Targeting Biosynthesis of Ceramide, the Central Hub of the Sphingolipid Network. J Med Chem 2021; 64:279-297. [PMID: 33395289 PMCID: PMC8023021 DOI: 10.1021/acs.jmedchem.0c01664] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ceramides are composed of a sphingosine and a single fatty acid connected by an amide linkage. As one of the major classes of biologically active lipids, ceramides and their upstream and downstream metabolites have been implicated in several pathological conditions including cancer, neurodegeneration, diabetes, microbial pathogenesis, obesity, and inflammation. Consequently, tremendous efforts have been devoted to deciphering the dynamics of metabolic pathways involved in ceramide biosynthesis. Given that several distinct enzymes can produce ceramide, different enzyme targets have been pursued depending on the underlying disease mechanism. The main objective of this review is to provide a comprehensive overview of small molecule inhibitors reported to date for each of these ceramide-producing enzymes from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Jan Skácel
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
18
|
Guo W, Zhang C, Feng P, Li M, Wang X, Xia Y, Chen D, Li J. M6A methylation of DEGS2, a key ceramide-synthesizing enzyme, is involved in colorectal cancer progression through ceramide synthesis. Oncogene 2021; 40:5913-5924. [PMID: 34363020 PMCID: PMC8497269 DOI: 10.1038/s41388-021-01987-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent RNA epigenetic regulator in cancer. However, the understanding of m6A modification on lipid metabolism regulation in colorectal cancer (CRC) is very limited. Here, we observed that human CRCs exhibited increased m6A mRNA methylation mediated by dysregulation of m6A erasers and readers. By performing methylated RNA-immunoprecipitation sequencing (MeRIP-seq) and transcriptomic sequencing (RNA-seq), we identified DEGS2 as a downstream target of m6A dysregulation. Overexpression or knockdown of DEGS2 confirmed the role of DEGS2 in proliferation, invasion and metastasis of CRC both in vitro and in vivo. Mechanistic studies identified the specific m6A modification site within DEGS2 mRNA, and mutation of this target site was found to drastically enhance the proliferative and invasive ability of CRC cells in vitro and promote tumorigenicity in vivo. Lipidome analysis showed that lipid metabolism was dysregulated in CRC. Moreover, ceramide synthesis was suppressed due to DEGS2 upregulation mediated by m6A modification in CRC tissues. Our findings highlight that the function of DEGS2 m6A methylation in CRC and extend the understanding of the importance of RNA epigenetics in cancer biology.
Collapse
Affiliation(s)
- Wei Guo
- grid.27255.370000 0004 1761 1174Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Cuiyu Zhang
- grid.27255.370000 0004 1761 1174Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Panpan Feng
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Mingying Li
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Xia Wang
- grid.27255.370000 0004 1761 1174Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Yuan Xia
- grid.27255.370000 0004 1761 1174Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Dawei Chen
- grid.411374.40000 0000 8607 6858Laboratory of Medical Chemistry, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) Stem Cells, Faculty of Medicine, University of Liège, CHU, Sart-Tilman, Liège, Belgium
| | - Jingxin Li
- grid.27255.370000 0004 1761 1174Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| |
Collapse
|
19
|
Heras AF, Veerappan A, Silver RB, Emala CW, Worgall TS, Perez-Zoghbi J, Worgall S. Increasing Sphingolipid Synthesis Alleviates Airway Hyperreactivity. Am J Respir Cell Mol Biol 2020; 63:690-698. [PMID: 32706610 DOI: 10.1165/rcmb.2020-0194oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Impaired sphingolipid synthesis is linked genetically to childhood asthma and functionally to airway hyperreactivity (AHR). The objective was to investigate whether sphingolipid synthesis could be a target for asthma therapeutics. The effects of GlyH-101 and fenretinide via modulation of de novo sphingolipid synthesis on AHR was evaluated in mice deficient in SPT (serine palmitoyl-CoA transferase), the rate-limiting enzyme of sphingolipid synthesis. The drugs were also used directly in human airway smooth-muscle and epithelial cells to evaluate changes in de novo sphingolipid metabolites and calcium release. GlyH-101 and fenretinide increased sphinganine and dihydroceramides (de novo sphingolipid metabolites) in lung epithelial and airway smooth-muscle cells, decreased the intracellular calcium concentration in airway smooth-muscle cells, and decreased agonist-induced contraction in proximal and peripheral airways. GlyH-101 also decreased AHR in SPT-deficient mice in vivo. This study identifies the manipulation of sphingolipid synthesis as a novel metabolic therapeutic strategy to alleviate AHR.
Collapse
Affiliation(s)
| | | | | | | | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | | | - Stefan Worgall
- Department of Pediatrics.,Department of Genetic Medicine, and.,Drukier Institute for Children's Health, Weill Cornell Medicine, New York, New York; and
| |
Collapse
|
20
|
Fisher-Wellman KH, Hagen JT, Neufer PD, Kassai M, Cabot MC. On the nature of ceramide-mitochondria interactions - Dissection using comprehensive mitochondrial phenotyping. Cell Signal 2020; 78:109838. [PMID: 33212155 DOI: 10.1016/j.cellsig.2020.109838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids are a unique class of lipids owing to their non-glycerol-containing backbone, ceramide, that is constructed from a long-chain aliphatic amino alcohol, sphinganine, to which a fatty acid is attached via an amide bond. Ceramide plays a star role in the initiation of apoptosis by virtue of its interactions with mitochondria, a control point for a downstream array of signaling cascades culminating in apoptosis. Many pathways converge on mitochondria to elicit mitochondrial outer membrane permeabilization (MOMP), a step that corrupts bioenergetic service. Although much is known regarding ceramides interaction with mitochondria and the ensuing cell signal transduction cascades, how ceramide impacts the elements of mitochondrial bioenergetic function is poorly understood. The objective of this review is to introduce the reader to sphingolipid metabolism, present a snapshot of mitochondrial respiration, elaborate on ceramides convergence on mitochondria and the upstream players that collaborate to elicit MOMP, and introduce a mitochondrial phenotyping platform that can be of utility in dissecting the fine-points of ceramide impact on cellular bioenergetics.
Collapse
Affiliation(s)
- Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America.
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America.
| |
Collapse
|
21
|
Muñoz-Guardiola P, Casas J, Megías-Roda E, Solé S, Perez-Montoyo H, Yeste-Velasco M, Erazo T, Diéguez-Martínez N, Espinosa-Gil S, Muñoz-Pinedo C, Yoldi G, Abad JL, Segura MF, Moran T, Romeo M, Bosch-Barrera J, Oaknin A, Alfón J, Domènech C, Fabriàs G, Velasco G, Lizcano JM. The anti-cancer drug ABTL0812 induces ER stress-mediated cytotoxic autophagy by increasing dihydroceramide levels in cancer cells. Autophagy 2020; 17:1349-1366. [PMID: 32397857 DOI: 10.1080/15548627.2020.1761651] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ABTL0812 is a first-in-class small molecule with anti-cancer activity, which is currently in clinical evaluation in a phase 2 trial in patients with advanced endometrial and squamous non-small cell lung carcinoma (NCT03366480). Previously, we showed that ABTL0812 induces TRIB3 pseudokinase expression, resulting in the inhibition of the AKT-MTORC1 axis and macroautophagy/autophagy-mediated cancer cell death. However, the precise molecular determinants involved in the cytotoxic autophagy caused by ABTL0812 remained unclear. Using a wide range of biochemical and lipidomic analyses, we demonstrated that ABTL0812 increases cellular long-chain dihydroceramides by impairing DEGS1 (delta 4-desaturase, sphingolipid 1) activity, which resulted in sustained ER stress and activated unfolded protein response (UPR) via ATF4-DDIT3-TRIB3 that ultimately promotes cytotoxic autophagy in cancer cells. Accordingly, pharmacological manipulation to increase cellular dihydroceramides or incubation with exogenous dihydroceramides resulted in ER stress, UPR and autophagy-mediated cancer cell death. Importantly, we have optimized a method to quantify mRNAs in blood samples from patients enrolled in the ongoing clinical trial, who showed significant increased DDIT3 and TRIB3 mRNAs. This is the first time that UPR markers are reported to change in human blood in response to any drug treatment, supporting their use as pharmacodynamic biomarkers for compounds that activate ER stress in humans. Finally, we found that MTORC1 inhibition and dihydroceramide accumulation synergized to induce autophagy and cytotoxicity, phenocopying the effect of ABTL0812. Given the fact that ABTL0812 is under clinical development, our findings support the hypothesis that manipulation of dihydroceramide levels might represents a new therapeutic strategy to target cancer.Abbreviations: 4-PBA: 4-phenylbutyrate; AKT: AKT serine/threonine kinase; ATG: autophagy related; ATF4: activating transcription factor 4; Cer: ceramide; DDIT3: DNA damage inducible transcript 3; DEGS1: delta 4-desaturase, sphingolipid 1; dhCer: dihydroceramide; EIF2A: eukaryotic translation initiation factor 2 alpha; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; HSPA5: heat shock protein family A (Hsp70) member 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTORC1: mechanistic target of rapamycin kinase complex 1; NSCLC: non-small cell lung cancer; THC: Δ9-tetrahydrocannabinol; TRIB3: tribbles pseudokinase 3; XBP1: X-box binding protein 1; UPR: unfolded protein response.
Collapse
Affiliation(s)
- Pau Muñoz-Guardiola
- Protein Kinases and Signal Transduction Laboratory, Departament De Bioquímica I Biologia Molecular and Institut De Neurociències, Universitat Autònoma De Barcelona (UAB), Barcelona, Spain.,Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona, Barcelona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD) ISCII, Madrid, Spain
| | - Elisabet Megías-Roda
- Protein Kinases and Signal Transduction Laboratory, Departament De Bioquímica I Biologia Molecular and Institut De Neurociències, Universitat Autònoma De Barcelona (UAB), Barcelona, Spain.,Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | - Sònia Solé
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | | | | | - Tatiana Erazo
- Protein Kinases and Signal Transduction Laboratory, Departament De Bioquímica I Biologia Molecular and Institut De Neurociències, Universitat Autònoma De Barcelona (UAB), Barcelona, Spain
| | - Nora Diéguez-Martínez
- Protein Kinases and Signal Transduction Laboratory, Departament De Bioquímica I Biologia Molecular and Institut De Neurociències, Universitat Autònoma De Barcelona (UAB), Barcelona, Spain
| | - Sergio Espinosa-Gil
- Protein Kinases and Signal Transduction Laboratory, Departament De Bioquímica I Biologia Molecular and Institut De Neurociències, Universitat Autònoma De Barcelona (UAB), Barcelona, Spain
| | - Cristina Muñoz-Pinedo
- Cell Death and Metabolism Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Guillermo Yoldi
- Protein Kinases and Signal Transduction Laboratory, Departament De Bioquímica I Biologia Molecular and Institut De Neurociències, Universitat Autònoma De Barcelona (UAB), Barcelona, Spain
| | - Jose L Abad
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona, Barcelona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD) ISCII, Madrid, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma De Barcelona (UAB), Barcelona, Spain
| | - Teresa Moran
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias I Pujol, Universitat Autònoma de Barcelona, Applied Research Group in Oncology (B-ARGO), Badalona, Spain
| | - Margarita Romeo
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias I Pujol, Universitat Autònoma de Barcelona, Applied Research Group in Oncology (B-ARGO), Badalona, Spain
| | - Joaquim Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jose Alfón
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | - Carles Domènech
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona, Barcelona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD) ISCII, Madrid, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Jose M Lizcano
- Protein Kinases and Signal Transduction Laboratory, Departament De Bioquímica I Biologia Molecular and Institut De Neurociències, Universitat Autònoma De Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
22
|
Glucocerebrosidase: Functions in and Beyond the Lysosome. J Clin Med 2020; 9:jcm9030736. [PMID: 32182893 PMCID: PMC7141376 DOI: 10.3390/jcm9030736] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme.
Collapse
|
23
|
The influence of ceramide and its dihydro analog on the physico-chemical properties of sphingomyelin bilayers. Chem Phys Lipids 2020; 226:104835. [DOI: 10.1016/j.chemphyslip.2019.104835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
|
24
|
Raschmanová JŠ, Martinková M, Gonda J, Pilátová MB, Kuchár J, Jáger D. Synthesis and in vitro biological evaluation of 3-amino-3-deoxydihydrosphingosines and their analogues. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:101-135. [PMID: 32894509 DOI: 10.1007/978-3-030-50621-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intensive research in the field of sphingolipids has revealed diverse roles in cell biological responses and human health and disease. This immense molecular family is primarily represented by the bioactive molecules ceramide, sphingosine, and sphingosine 1-phosphate (S1P). The flux of sphingolipid metabolism at both the subcellular and extracellular levels provides multiple opportunities for pharmacological intervention. The caveat is that perturbation of any single node of this highly regulated flux may have effects that propagate throughout the metabolic network in a dramatic and sometimes unexpected manner. Beginning with S1P, the receptors for which have thus far been the most clinically tractable pharmacological targets, this review will describe recent advances in therapeutic modulators targeting sphingolipids, their chaperones, transporters, and metabolic enzymes.
Collapse
|
26
|
Aerts JMFG, Artola M, van Eijk M, Ferraz MJ, Boot RG. Glycosphingolipids and Infection. Potential New Therapeutic Avenues. Front Cell Dev Biol 2019; 7:324. [PMID: 31867330 PMCID: PMC6908816 DOI: 10.3389/fcell.2019.00324] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Glycosphingolipids (GSLs), the main topic of this review, are a subclass of sphingolipids. With their glycans exposed to the extracellular space, glycosphingolipids are ubiquitous components of the plasma membrane of cells. GSLs are implicated in a variety of biological processes including specific infections. Several pathogens use GSLs at the surface of host cells as binding receptors. In addition, lipid-rafts in the plasma membrane of host cells may act as platform for signaling the presence of pathogens. Relatively common in man are inherited deficiencies in lysosomal glycosidases involved in the turnover of GSLs. The associated storage disorders (glycosphingolipidoses) show lysosomal accumulation of substrate(s) of the deficient enzyme. In recent years compounds have been identified that allow modulation of GSLs levels in cells. Some of these agents are well tolerated and already used to treat lysosomal glycosphingolipidoses. This review summarizes present knowledge on the role of GSLs in infection and subsequent immune response. It concludes with the thought to apply glycosphingolipid-lowering agents to prevent and/or combat infections.
Collapse
Affiliation(s)
| | - M Artola
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - M van Eijk
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - M J Ferraz
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - R G Boot
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
27
|
Dolgin V, Straussberg R, Xu R, Mileva I, Yogev Y, Khoury R, Konen O, Barhum Y, Zvulunov A, Mao C, Birk OS. DEGS1 variant causes neurological disorder. Eur J Hum Genet 2019; 27:1668-1676. [PMID: 31186544 DOI: 10.1038/s41431-019-0444-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Sphingolipidoses are monogenic lipid storage diseases caused by variants in enzymes of lipid synthesis and metabolism. We describe an autosomal recessive complex neurological disorder affecting consanguineous kindred. All four affected individuals, born at term following normal pregnancies, had mild to severe intellectual disability, spastic quadriplegia, scoliosis and epilepsy in most, with no dysmorphic features. Brain MRI findings were suggestive of leukodystrophy, with abnormal hyperintense signal in the periventricular perioccipital region and thinning of the body of corpus callosum. Notably, all affected individuals were asymptomatic at early infancy and developed normally until the age of 8-18 months, when deterioration ensued. Homozygosity mapping identified a single 8.7 Mb disease-associated locus on chromosome 1q41-1q42.13 between rs1511695 and rs537250 (two-point LOD score 2.1). Whole exome sequencing, validated through Sanger sequencing, identified within this locus a single disease-associated homozygous variant in DEGS1, encoding C4-dihydroceramide desaturase, an enzyme of the ceramide synthesis pathway. The missense variant, segregating within the family as expected for recessive heredity, affects an evolutionary-conserved amino acid of all isoforms of DEGS1 (c.656A>G, c.764A>G; p.(N219S), p.(N255S)) and was not found in a homozygous state in ExAC and gnomAD databases or in 300 ethnically matched individuals. Lipidomcs analysis of whole blood of affected individuals demonstrated augmented levels of dihydroceramides, dihydrosphingosine, dihydrosphingosine-1-phosphate and dihydrosphingomyelins with reduced levels of ceramide, sphingosine, sphingosine-1-phosphate and monohexosylceramides, as expected in malfunction of C4-dihydroceramide desaturase. Thus, we describe a sphingolipidosis causing a severe regressive neurological disease.
Collapse
Affiliation(s)
- Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Rachel Straussberg
- Neurogenetics Clinic, Neurology Unit, Schneider Children Medical Center, Petah Tikvah, Israel
| | - Ruijuan Xu
- Department of Medicine and Stony Brook Cancer Center, The State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Izolda Mileva
- Department of Medicine and Stony Brook Cancer Center, The State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Raed Khoury
- Department of Dermatology, Soroka University Medical Center, Beer-Sheva, 84101, Israel
| | - Osnat Konen
- Radiology Department, Schneider Children Medical Center, Petah Tikvah, Israel
| | - Yael Barhum
- Transplantation Immunology Laboratory, Rabin Medical Center, Petah Tikvah, Israel
| | - Alex Zvulunov
- Department of Dermatology, Soroka University Medical Center, Beer-Sheva, 84101, Israel
| | - Cungui Mao
- Department of Medicine and Stony Brook Cancer Center, The State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. .,Genetics Institute, Soroka University Medical Center, Beer-Sheva, 84101, Israel.
| |
Collapse
|
28
|
Snider JM, Trayssac M, Clarke CJ, Schwartz N, Snider AJ, Obeid LM, Luberto C, Hannun YA. Multiple actions of doxorubicin on the sphingolipid network revealed by flux analysis. J Lipid Res 2019; 60:819-831. [PMID: 30573560 PMCID: PMC6446699 DOI: 10.1194/jlr.m089714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids (SLs) have been implicated in numerous important cellular biologies; however, their study has been hindered by the complexities of SL metabolism. Furthermore, enzymes of SL metabolism represent a dynamic and interconnected network in which one metabolite can be transformed into other bioactive SLs through further metabolism, resulting in diverse cellular responses. Here we explore the effects of both lethal and sublethal doses of doxorubicin (Dox) in MCF-7 cells. The two concentrations of Dox resulted in the regulation of SLs, including accumulations in sphingosine, sphingosine-1-phosphate, dihydroceramide, and ceramide, as well as reduced levels of hexosylceramide. To further define the effects of Dox on SLs, metabolic flux experiments utilizing a d17 dihydrosphingosine probe were conducted. Results indicated the regulation of ceramidases and sphingomyelin synthase components specifically in response to the cytostatic dose. The results also unexpectedly demonstrated dose-dependent inhibition of dihydroceramide desaturase and glucosylceramide synthase in response to Dox. Taken together, this study uncovers novel targets in the SL network for the action of Dox, and the results reveal the significant complexity of SL response to even a single agent. This approach helps to define the role of specific SL enzymes, their metabolic products, and the resulting biologies in response to chemotherapeutics and other stimuli.
Collapse
Affiliation(s)
- Justin M Snider
- Molecular and Cellular Biology and Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY; Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Magali Trayssac
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Christopher J Clarke
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Nicholas Schwartz
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Ashley J Snider
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Lina M Obeid
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Departments of Physiology and Biophysics, Stony Brook University, Stony Brook, NY.
| | - Yusuf A Hannun
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Departments of Biochemistry, Stony Brook University, Stony Brook, NY; Departments of Pharmacology, Stony Brook University, Stony Brook, NY; Departments of Pathology, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
29
|
Casasampere M, Bielsa N, Riba D, Bassas L, Xu R, Mao C, Fabriàs G, Abad JL, Delgado A, Casas J. New fluorogenic probes for neutral and alkaline ceramidases. J Lipid Res 2019; 60:1174-1181. [PMID: 30926626 DOI: 10.1194/jlr.d092759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
New fluorogenic ceramidase substrates derived from the N-acyl modification of our previously reported probes (RBM14) are reported. While none of the new probes were superior to the known RBM14C12 as acid ceramidase substrates, the corresponding nervonic acid amide (RBM14C24:1) is an efficient and selective substrate for the recombinant human neutral ceramidase, both in cell lysates and in intact cells. A second generation of substrates, incorporating the natural 2-(N-acylamino)-1,3-diol-4-ene framework (compounds RBM15) is also reported. Among them, the corresponding fatty acyl amides with an unsaturated N-acyl chain can be used as substrates to determine alkaline ceramidase (ACER)1 and ACER2 activities. In particular, compound RBM15C18:1 has emerged as the best fluorogenic probe reported so far to measure ACER1 and ACER2 activities in a 96-well plate format.
Collapse
Affiliation(s)
- Mireia Casasampere
- Spanish National Research Council (CSIC), Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, Research Unit on Bioactive Molecules (RUBAM), 08034 Barcelona, Spain.,Faculty of Pharmacy and Food Sciences Department of Pharmacology, Toxicology, and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), University of Barcelona, 08028 Barcelona, Spain
| | - Núria Bielsa
- Spanish National Research Council (CSIC), Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, Research Unit on Bioactive Molecules (RUBAM), 08034 Barcelona, Spain.,Faculty of Pharmacy and Food Sciences Department of Pharmacology, Toxicology, and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), University of Barcelona, 08028 Barcelona, Spain
| | - Daniel Riba
- Spanish National Research Council (CSIC), Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, Research Unit on Bioactive Molecules (RUBAM), 08034 Barcelona, Spain
| | - Laura Bassas
- Spanish National Research Council (CSIC), Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, Research Unit on Bioactive Molecules (RUBAM), 08034 Barcelona, Spain
| | - Ruijuan Xu
- Department of Medicine State University of New York at Stony Brook, Stony Brook, NY 11794-8155
| | - Cungui Mao
- Department of Medicine State University of New York at Stony Brook, Stony Brook, NY 11794-8155
| | - Gemma Fabriàs
- Spanish National Research Council (CSIC), Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, Research Unit on Bioactive Molecules (RUBAM), 08034 Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBEREHD), 28029 Madrid, Spain
| | - José-Luis Abad
- Spanish National Research Council (CSIC), Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, Research Unit on Bioactive Molecules (RUBAM), 08034 Barcelona, Spain
| | - Antonio Delgado
- Spanish National Research Council (CSIC), Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, Research Unit on Bioactive Molecules (RUBAM), 08034 Barcelona, Spain .,Faculty of Pharmacy and Food Sciences Department of Pharmacology, Toxicology, and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), University of Barcelona, 08028 Barcelona, Spain
| | - Josefina Casas
- Spanish National Research Council (CSIC), Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, Research Unit on Bioactive Molecules (RUBAM), 08034 Barcelona, Spain .,Centro de Investigación Biomédica en Red (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
30
|
Boulter E, Estrach S, Tissot FS, Hennrich ML, Tosello L, Cailleteau L, de la Ballina LR, Pisano S, Gavin AC, Féral CC. Cell metabolism regulates integrin mechanosensing via an SLC3A2-dependent sphingolipid biosynthesis pathway. Nat Commun 2018; 9:4862. [PMID: 30451822 PMCID: PMC6242995 DOI: 10.1038/s41467-018-07268-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Mechanical and metabolic cues independently contribute to the regulation of cell and tissue homeostasis. However, how they cross-regulate each other during this process remains largely unknown. Here, we show that cellular metabolism can regulate integrin rigidity-sensing via the sphingolipid metabolic pathway controlled by the amino acid transporter and integrin coreceptor CD98hc (SLC3A2). Genetic invalidation of CD98hc in dermal cells and tissue impairs rigidity sensing and mechanical signaling downstream of integrins, including RhoA activation, resulting in aberrant tissue mechanical homeostasis. Unexpectedly, we found that this regulation does not occur directly through regulation of integrins by CD98hc but indirectly, via the regulation of sphingolipid synthesis and the delta-4-desaturase DES2. Loss of CD98hc decreases sphingolipid availability preventing proper membrane recruitment, shuttling and activation of upstream regulators of RhoA including Src kinases and GEF-H1. Altogether, our results unravel a novel cross-talk regulation between integrin mechanosensing and cellular metabolism which may constitute an important new regulatory framework contributing to mechanical homeostasis.
Collapse
Affiliation(s)
- Etienne Boulter
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107, France.
| | - Soline Estrach
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107, France
| | - Floriane S Tissot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107, France
| | - Marco L Hennrich
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, D69117, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Meyerhofstraße 1, D69117, Heidelberg, Germany
| | - Lionel Tosello
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107, France
| | - Laurence Cailleteau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107, France
| | - Laura R de la Ballina
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107, France
| | - Sabrina Pisano
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107, France
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, D69117, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Meyerhofstraße 1, D69117, Heidelberg, Germany
| | - Chloé C Féral
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107, France.
| |
Collapse
|
31
|
Kühn G, Pallauf K, Schulz C, Rimbach G. Flavonoids as putative modulators of Δ4-, Δ5-, and Δ6-desaturases: Studies in cultured hepatocytes, myocytes, and adipocytes. Biofactors 2018; 44:485-495. [PMID: 30365230 DOI: 10.1002/biof.1443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
This study was conducted to screen flavonoids for affecting expression of desaturases involved in omega-3 fatty acid synthesis and ceramide (CER) metabolism. To this end, cultured HepG2 hepatocytes, C2C12 myocytes, and 3T3-L1 adipocytes were treated with nontoxic concentrations of 12 selected flavonoids and expression of Δ4-, Δ5-, and Δ6-desaturases (DEGS1, FADS1, and FADS2, respectively) was determined. The flavonoids tested were more cytotoxic to HepG2 and 3T3-L1 than to C2C12 cells. In HepG2 cells, FADS1 was induced by quercetin and FADS2 expression was increased by daidzein, genistein, and pratensein treatment. DEGS1 was increased by apigenin, luteolin, orobol, and quercetin administration. In differentiated C2C12 cells, substances had no inducing effect or even lowered target gene expression. Pratensein induced both FADS1 and FADS2 in differentiated 3T3-L1 cells and DEGS1 was increased by treatment with apigenin, genistein, luteolin, orobol, and quercetin. In conclusion, pratensein may be an interesting test compound for further studies in vitro and in vivo on omega-3 synthesis since it induces its rate-limiting enzyme FADS2. Apigenin, luteolin, orobol, and quercetin induced DEGS1 and thereby possibly synthesis of proapoptotic CER in malignant HepG2 cells and 3T3-L1. In contrast, in benign C2C12 cells, they did not elevate mRNA steady state levels of DEGS1. That may partly explain the higher resistance of C2C12 cells against flavonoids compared to the other cell lines. By affecting tumor cells and nontumor cells differently, these flavonoids may be promising substances for further research regarding anticancer properties. © 2018 BioFactors, 44(5):485-495, 2018.
Collapse
Affiliation(s)
- Gianna Kühn
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kathrin Pallauf
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Carsten Schulz
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel, Germany
- GMA-Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
32
|
Voelkel-Johnson C, Norris JS, White-Gilbertson S. Interdiction of Sphingolipid Metabolism Revisited: Focus on Prostate Cancer. Adv Cancer Res 2018; 140:265-293. [PMID: 30060812 PMCID: PMC6460930 DOI: 10.1016/bs.acr.2018.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipid metabolism is known to play a role in cell death, survival, and therapy resistance in cancer. Sphingolipids, particularly dihydroceramide and ceramide, are associated with antiproliferative or cell death responses, respectively, and are central to effective cancer therapy. Within the last decade, strides have been made in elucidating many intricacies of sphingolipid metabolism. New information has emerged on the mechanisms by which sphingolipid metabolism is dysregulated during malignancy and how cancer cells survive and/or escape therapeutic interventions. This chapter focuses on three main themes: (1) sphingolipid enzymes that are dysregulated in cancer, particularly in prostate cancer; (2) inhibitors of sphingolipid metabolism that antagonize prosurvival responses; and (3) sphingolipid-driven escape mechanisms that allow cancer cells to evade therapies. We explore clinical and preclinical approaches to interdict sphingolipid metabolism and provide a rationale for combining strategies to drive the generation of antiproliferative ceramides with prevention of ceramide clearance.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - James S. Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
33
|
Abstract
Ceramides are sphingolipids containing a sphingosine or a related base, to which a fatty acid is linked through an amide bond. When incorporated into a lipid bilayer, ceramides exhibit a number of properties not shared by almost any other membrane lipid: Ceramides ( a) are extremely hydrophobic and thus cannot exist in suspension in aqueous media; ( b) increase the molecular order (rigidity) of phospholipids in membranes; ( c) give rise to lateral phase separation and domain formation in phospholipid bilayers; ( d) possess a marked intrinsic negative curvature that facilitates formation of inverted hexagonal phases; ( e) make bilayers and cell membranes permeable to small and large (i.e., protein-size) solutes; and ( f) promote transmembrane (flip-flop) lipid motion. Unfortunately, there is hardly any link between the physical studies reviewed here and the mass of biological and clinical studies on the effects of ceramides in health and disease.
Collapse
Affiliation(s)
- Alicia Alonso
- Instituto Biofisika [University of the Basque Country and Spanish National Research Council (CSIC)], 48940 Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain;,
| | - Félix M. Goñi
- Instituto Biofisika [University of the Basque Country and Spanish National Research Council (CSIC)], 48940 Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain;,
| |
Collapse
|
34
|
Pou A, Abad JL, Ordóñez YF, Garrido M, Casas J, Fabriàs G, Delgado A. From the configurational preference of dihydroceramide desaturase-1 towards Δ 6-unsaturated substrates to the discovery of a new inhibitor. Chem Commun (Camb) 2018; 53:4394-4397. [PMID: 28379228 DOI: 10.1039/c6cc08268h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dihydroceramide desaturase 1 (Des1) catalyzes the last step of ceramide synthesis de novo, thus regulating the physiologically relevant balance between dihydrosphingolipids and sphingolipids. Here we report on the configurational preference of Des1 towards isomeric Δ6-unsaturated dihydroceramide analogs and the discovery of a potent Des1 inhibitor.
Collapse
Affiliation(s)
- Ana Pou
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034-Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
35
|
Caretti A, Vasso M, Bonezzi FT, Gallina A, Trinchera M, Rossi A, Adami R, Casas J, Falleni M, Tosi D, Bragonzi A, Ghidoni R, Gelfi C, Signorelli P. Myriocin treatment of CF lung infection and inflammation: complex analyses for enigmatic lipids. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:775-790. [PMID: 28439630 DOI: 10.1007/s00210-017-1373-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022]
Abstract
Our aim was to use quantitative and qualitative analyses to gain further insight into the role of ceramide in cystic fibrosis (CF). Sphingolipid ceramide is a known inflammatory mediator, and its accumulation in inflamed lung has been reported in different types of emphysema, chronic obstructive pulmonary disease and CF. CF is caused by a mutation of the chloride channel and associated with hyperinflammation of the respiratory airways and high susceptibility to ongoing infections. We have previously demonstrated that de novo ceramide synthesis is enhanced in lung inflammation and sustains Pseudomonas aeruginosa pulmonary infection in a CF murine model. We used liquid chromatography and matrix-assisted laser desorption/ionization (MALDI) imaging coupled with mass spectrometry, confocal laser scan microscopy and histology analyses to reveal otherwise undecipherable information. We demonstrated that (i) upregulated ceramide synthesis in the alveoli is strictly related to alveolar infection and inflammation, (ii) alveolar ceramide (C16) can be specifically targeted by nanocarrier delivery of the ceramide synthesis inhibitor myriocin (Myr) and (iii) Myr is able to downmodulate pro-inflammatory lyso-PC, favouring an increase in anti-inflammatory PCs. We concluded that Myr modulates alveolar lipids milieu, reducing hyperinflammation and favouring anti-microbial effective response in CF mouse model.
Collapse
Affiliation(s)
- Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Michele Vasso
- Lita Institute, Segrate, University of Milan, Milan, Italy
| | - Fabiola Tecla Bonezzi
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Andrea Gallina
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Marco Trinchera
- Department of Medicine Clinical and Experimental, University of Insubria Medical School, Varese, Italy
| | - Alice Rossi
- Infections and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Adami
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Josefina Casas
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Catalan Institute of Advanced Chemistry (IQAC/CSIC), Barcelona, Spain
| | - Monica Falleni
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Delfina Tosi
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Cecilia Gelfi
- Lita Institute, Segrate, University of Milan, Milan, Italy
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy.
| |
Collapse
|
36
|
Boppana NB, Kraveka JM, Rahmaniyan M, Li LI, Bielawska A, Bielawski J, Pierce JS, Delor JS, Zhang K, Korbelik M, Separovic D. Fumonisin B1 Inhibits Endoplasmic Reticulum Stress Associated-apoptosis After FoscanPDT Combined with C6-Pyridinium Ceramide or Fenretinide. Anticancer Res 2017; 37:455-463. [PMID: 28179290 DOI: 10.21873/anticanres.11337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Combining an anticancer agent fenretinide (HPR) or C6-pyridinium ceramide (LCL29) with Foscan-mediated photodynamic therapy (FoscanPDT) is expected to augment anticancer benefits of each substance. We showed that treatment with FoscanPDT+HPR enhanced accumulation of C16-dihydroceramide, and that fumonisin B1 (FB), an inhibitor of ceramide synthase, counteracted caspase-3 activation and colony-forming ability of head and neck squamous cell carcinoma (HNSCC) cells. Because cancer cells appear to be more susceptible to increased levels of the endoplasmic reticulum (ER) stress than normal cells, herein we tested the hypothesis that FoscanPDT combined with HPR or LCL29 induces FB-sensitive ER stress-associated apoptosis that affects cell survival. MATERIALS AND METHODS Using an HNSCC cell line, we determined: cell survival by clonogenic assay, caspase-3 activity by spectrofluorometry, the expression of the ER markers BiP and CHOP by quantitative real-time polymerase chain reaction and western immunoblotting, and sphingolipid levels by mass spectrometry. RESULTS Similar to HPR+FoscanPDT, LCL29+FoscanPDT induced enhanced loss of clonogenicity and caspase-3 activation, that were both inhibited by FB. Our additional pharmacological evidence showed that the enhanced loss of clonogenicity after the combined treatments was singlet oxygen-, ER stress- and apoptosis-dependent. The combined treatments induced enhanced, FB-sensitive, up-regulation of BiP and CHOP, as well as enhanced accumulation of sphingolipids. CONCLUSION Our data suggest that enhanced clonogenic cell killing after the combined treatments is dependent on oxidative- and ER-stress, apoptosis, and FB-sensitive sphingolipid production, and should help develop more effective mechanism-based therapeutic strategies.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, U.S.A
| | - Jacqueline M Kraveka
- Department of Pediatrics Division of Hematology-Oncology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Mehrdad Rahmaniyan
- Department of Pediatrics Division of Hematology-Oncology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, U.S.A
| | - L I Li
- Department of Pediatrics Division of Hematology-Oncology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Jeremy S Delor
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, U.S.A
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics and Department of Immunology and Microbiology, Wayne State University School of Medicine, Wayne State University, Detroit, MI, U.S.A
| | | | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, U.S.A. .,Karmanos Cancer Institute, Wayne State University, Detroit, MI, U.S.A
| |
Collapse
|
37
|
Školová B, Kováčik A, Tesař O, Opálka L, Vávrová K. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:824-834. [PMID: 28109750 DOI: 10.1016/j.bbamem.2017.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 12/19/2022]
Abstract
Ceramides based on phytosphingosine, sphingosine and dihydrosphingosine are essential constituents of the skin lipid barrier that protects the body from excessive water loss. The roles of the individual ceramide subclasses in regulating skin permeability and the reasons for C4-hydroxylation of these sphingolipids are not completely understood. We investigated the chain length-dependent effects of dihydroceramides, sphingosine ceramides (with C4-unsaturation) and phytoceramides (with C4-hydroxyl) on the permeability, lipid organization and thermotropic behavior of model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesteryl sulfate. Phytoceramides with very long C24 acyl chains increased the permeability of the model lipid membranes compared to dihydroceramides or sphingosine ceramides with the same chain lengths. Either unsaturation or C4-hydroxylation of dihydroceramides induced chain length-dependent increases in membrane permeability. Infrared spectroscopy showed that C4-hydroxylation of the sphingoid base decreased the relative ratio of orthorhombic chain packing in the membrane and lowered the miscibility of C24 phytoceramide with lignoceric acid. The phase separation in phytoceramide membranes was confirmed by X-ray diffraction. In contrast, phytoceramides formed strong hydrogen bonds and highly thermostable domains. Thus, the large heterogeneity in ceramide structures and in their aggregation mechanisms may confer resistance towards the heterogeneous external stressors that are constantly faced by the skin barrier.
Collapse
Affiliation(s)
- Barbora Školová
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Ondřej Tesař
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Lukáš Opálka
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| |
Collapse
|
38
|
Xie LM, Yau LF, Jiang ZH, Zhang LY, Xia Y, Wang JR. Sphingolipidomic study of davidiin-treated HepG2 human hepatocellular carcinoma cells using UHPLC-MS. RSC Adv 2017. [DOI: 10.1039/c7ra11266a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An improved sphingolipidomic approach demonstrated elevated dihydroceramide and sphinganine, which may be due to the inhibition effect of davidiin on DES.
Collapse
Affiliation(s)
- Li-Min Xie
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Li-Yan Zhang
- College of Pharmacy
- Guiyang University of Chinese Medicine
- Guiyang 550025
- China
| | - Yun Xia
- Baoshan Hospital of Integrated Chinese and Western Medicine
- Shanghai 201999
- China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| |
Collapse
|
39
|
Fucho R, Casals N, Serra D, Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J 2016; 31:1263-1272. [PMID: 28003342 DOI: 10.1096/fj.201601156r] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022]
Abstract
Obesity is an epidemic, complex disease that is characterized by increased glucose, lipids, and low-grade inflammation in the circulation, among other factors. It creates the perfect scenario for the production of ceramide, the building block of the sphingolipid family of lipids, which is involved in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, obesity causes a decrease in fatty acid oxidation (FAO), which contributes to lipid accumulation within the cells, conferring more susceptibility to cell dysfunction. C16:0 ceramide, a specific ceramide species, has been identified recently as the principal mediator of obesity-derived insulin resistance, impaired fatty acid oxidation, and hepatic steatosis. In this review, we have sought to cover the importance of the ceramide species and their metabolism, the main ceramide signaling pathways in obesity, and the link between C16:0 ceramide, FAO, and obesity.-Fucho, R., Casals, N., Serra, D., Herrero, L. Ceramides and mitochondrial fatty acid oxidation in obesity.
Collapse
Affiliation(s)
- Raquel Fucho
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain; and.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain; .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain; .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Casasampere M, Ordóñez YF, Casas J, Fabrias G. Dihydroceramide desaturase inhibitors induce autophagy via dihydroceramide-dependent and independent mechanisms. Biochim Biophys Acta Gen Subj 2016; 1861:264-275. [PMID: 27894925 DOI: 10.1016/j.bbagen.2016.11.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autophagy consists on the delivery of cytoplasmic material and organelles to lysosomes for degradation. Research on autophagy is a growing field because deciphering the basic mechanisms of autophagy is key to understanding its role in health and disease, and to paving the way to discovering novel therapeutic strategies. Studies with chemotherapeutic drugs and pharmacological tools support a role for dihydroceramides as mediators of autophagy. However, their effect on the autophagy outcome (cell survival or death) is more controversial. METHODS We have examined the capacity of structurally varied Des1 inhibitors to stimulate autophagy (LC3-II analysis), to increase dihydroceramides (mass spectrometry) and to reduce cell viability (SRB) in T98G and U87MG glioblastoma cells under different experimental conditions. RESULTS The compounds activity on autophagy induction took place concomitantly with accumulation of dihydroceramides, which occurred by both stimulation of ceramide synthesis de novo and reduction of Des1 activity. However, autophagy was also induced by the test compounds after preincubation with myriocin and in cells with a reduced capacity to produce dihydroceramides (U87DND). Autophagy inhibition with 3-methyladenine in the de novo dihydroceramide synthesis competent U87MG cells increased cytotoxicity, while genetic inhibition of autophagy in U87DND cells, poorly efficient at synthesizing dihydroceramides, augmented resistance to the test compounds. CONCLUSION Dihydroceramide desaturase 1 inhibitors activate autophagy via both dihydroceramide-dependent and independent pathways and the balance between the two pathways influences the final cell fate. GENERAL SIGNIFICANCE The cells capacity to biosynthesize dihydroceramides must be taken into account in proautophagic Des1 inhibitors-including therapies.
Collapse
Affiliation(s)
- Mireia Casasampere
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Departament de Química Biomèdica, Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Yadira F Ordóñez
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Departament de Química Biomèdica, Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Josefina Casas
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Departament de Química Biomèdica, Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Gemma Fabrias
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Departament de Química Biomèdica, Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain..
| |
Collapse
|
41
|
Al Sazzad MA, Slotte JP. Effect of Phosphatidylcholine Unsaturation on the Lateral Segregation of Palmitoyl Ceramide and Palmitoyl Dihydroceramide in Bilayer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5973-5980. [PMID: 27218704 DOI: 10.1021/acs.langmuir.6b00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To better understand the interactions of saturated ceramides with unsaturated glycerophospholipids in bilayer membranes, we measured how palmitoyl ceramide (PCer) and dihydroceramide (dihydro-PCer, lacking the trans 4 double bond of the sphingoid base of ceramide) can interact with phosphatidylcholines (PCs) with palmitic acid in the sn-1 position and increasingly unsaturated acyl chains in the sn-2 position. The PCs were 16:0/18:1 (POPC), 16:0/18:2 (PLPC), 16:0/20:4 (PAPC), and 16:0(22:6 (PDPC). We also included di-18:1-PC (DOPC) to compare it with POPC. Because the ceramides were expected to segregate laterally to an ordered ceramide-rich phase, we determined the formation of the ordered phase using lifetime analysis of trans-parinaric acid (tPA) fluorescence. The presence of ordered domains, as indicated by tPA lifetime analysis, was verified by an analysis of tPA anisotropy as a function of temperature. The interaction between PCer and POPC was clearly more favored than interactions with DOPC, as seen from a more thermostable gel phase in POPC than in DOPC at equal ceramide content. The concentration needed for PCer gel phase formation was also lower in POPC than in the DOPC bilayers, suggesting that POPC had better miscibility in the ordered phase. The increased unsaturation of the sn-2 acyl chains of the PCs had more clear effects of dihydro-PCer segregation than on PCer segregation, and the dihydro-PCer gel phase became more thermostable as the unsaturation in the PC increased. We conclude that the interactions between ceramides and PCs were complex and affected both by the trans 4 double bond of PCer by the palmitoyl acyl in the sn-1 position and by the overall degree of unsaturation of the sn-2 acyl chain of the PCs.
Collapse
Affiliation(s)
- Md Abdullah Al Sazzad
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Turku, Finland
| |
Collapse
|
42
|
Adada M, Luberto C, Canals D. Inhibitors of the sphingomyelin cycle: Sphingomyelin synthases and sphingomyelinases. Chem Phys Lipids 2016. [DOI: 10.1016/j.chemphyslip.2015.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Ďuriš A, Daïch A, Santos C, Fleury L, Ausseil F, Rodriguez F, Ballereau S, Génisson Y, Berkeš D. Asymmetric Synthesis and Binding Study of New Long-Chain HPA-12 Analogues as Potent Ligands of the Ceramide Transfer Protein CERT. Chemistry 2016; 22:6676-86. [DOI: 10.1002/chem.201505121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Andrej Ďuriš
- Department of Organic Chemistry; Slovak University of Technology; Radlinského 9 81237 Bratislava Slovak Republic), Fax
| | - Adam Daïch
- Normandie Univ; UNIHAVRE, CNRS, URCOM; 76600 Le Havre (France), CNRS INC3M, FR 3038, EA 3221, UFR des Sciences et Techniques 25 rue Philippe Lebon, B.P. 1123 76063 Le Havre Cedex France), Fax
| | - Cécile Santos
- SPCMIB, UMR5068; CNRS-Université Paul Sabatier-Toulouse III; 118 route de Narbonne Toulouse 31062 France), Fax
| | - Laurence Fleury
- Unité de Service et de Recherche CNRS-Pierre Fabre n° 3388 ETaC, CRDPF; 3 avenue H. Curien 31035 Toulouse cedex 01 France
| | - Frédéric Ausseil
- Unité de Service et de Recherche CNRS-Pierre Fabre n° 3388 ETaC, CRDPF; 3 avenue H. Curien 31035 Toulouse cedex 01 France
| | - Frédéric Rodriguez
- SPCMIB, UMR5068; CNRS-Université Paul Sabatier-Toulouse III; 118 route de Narbonne Toulouse 31062 France), Fax
| | - Stéphanie Ballereau
- SPCMIB, UMR5068; CNRS-Université Paul Sabatier-Toulouse III; 118 route de Narbonne Toulouse 31062 France), Fax
| | - Yves Génisson
- SPCMIB, UMR5068; CNRS-Université Paul Sabatier-Toulouse III; 118 route de Narbonne Toulouse 31062 France), Fax
| | - Dušan Berkeš
- Department of Organic Chemistry; Slovak University of Technology; Radlinského 9 81237 Bratislava Slovak Republic), Fax
| |
Collapse
|
44
|
Ordóñez YF, González J, Bedia C, Casas J, Abad JL, Delgado A, Fabrias G. 3-Ketosphinganine provokes the accumulation of dihydroshingolipids and induces autophagy in cancer cells. MOLECULAR BIOSYSTEMS 2016; 12:1166-73. [PMID: 26928714 DOI: 10.1039/c5mb00852b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although several reports describe the metabolic fate of sphingoid bases and their analogs, as well as their action and that of their phosphates as regulators of sphingolipid metabolizing-enzymes, similar studies for 3-ketosphinganine (KSa), the product of the first committed step in de novo sphingolipid biosynthesis, have not been reported. In this article we show that 3-ketosphinganine (KSa) and its dideuterated analog at C4 (d2KSa) are metabolized to produce high levels of dihydrosphingolipids in HGC27, T98G and U87MG cancer cells. In contrast, either direct C1 O-phosphorylation or N-acylation of d2KSa to produce dideuterated ketodihydrosphingolipids does not occur. We also show that cells respond to d2KSa treatment with induction of autophagy. Time-course experiments agree with sphinganine, sphinganine 1-phosphate and dihydroceramides being the mediators of autophagy stimulated by d2KSa. Enzyme inhibition studies support that inhibition of Des1 by 3-ketobases is caused by their dihydroceramide metabolites. However, this effect contributes to increasing dihydrosphingolipid levels only at short incubation times, since cells respond to long time exposure to 3-ketobases with Des1 overexpression. The translation of these overall effects into cell fate is discussed.
Collapse
Affiliation(s)
- Yadira F Ordóñez
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
45
|
Aurelio L, Scullino CV, Pitman MR, Sexton A, Oliver V, Davies L, Rebello RJ, Furic L, Creek DJ, Pitson SM, Flynn BL. From Sphingosine Kinase to Dihydroceramide Desaturase: A Structure-Activity Relationship (SAR) Study of the Enzyme Inhibitory and Anticancer Activity of 4-((4-(4-Chlorophenyl)thiazol-2-yl)amino)phenol (SKI-II). J Med Chem 2016; 59:965-84. [PMID: 26780304 DOI: 10.1021/acs.jmedchem.5b01439] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sphingosine kinase (SK) inhibitor, SKI-II, has been employed extensively in biological investigations of the role of SK1 and SK2 in disease and has demonstrated impressive anticancer activity in vitro and in vivo. However, interpretations of results using this pharmacological agent are complicated by several factors: poor SK1/2 selectivity, additional activity as an inducer of SK1-degradation, and off-target effects, including its recently identified capacity to inhibit dihydroceramide desaturase-1 (Des1). In this study, we have delineated the structure-activity relationship (SAR) for these different targets and correlated them to that required for anticancer activity and determined that Des1 inhibition is primarily responsible for the antiproliferative effects of SKI-II and its analogues. In the course of these efforts, a series of novel SK1, SK2, and Des1 inhibitors have been generated, including compounds with significantly greater anticancer activity.
Collapse
Affiliation(s)
- Luigi Aurelio
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Carmen V Scullino
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology , Frome Road, Adelaide South Australia 5000, Australia
| | - Anna Sexton
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Victoria Oliver
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lorena Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology , Frome Road, Adelaide South Australia 5000, Australia
| | - Richard J Rebello
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Clayton, Victoria 3800, Australia
| | - Luc Furic
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Clayton, Victoria 3800, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology , Frome Road, Adelaide South Australia 5000, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
46
|
Fabrias G, Epand RM. Introduction to the special issue: Inhibitors of enzymes involved in lipid metabolism. Chem Phys Lipids 2015; 197:1-2. [PMID: 26291494 DOI: 10.1016/j.chemphyslip.2015.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/07/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Gemma Fabrias
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| |
Collapse
|
47
|
Casasampere M, Ordoñez YF, Pou A, Casas J. Inhibitors of dihydroceramide desaturase 1: Therapeutic agents and pharmacological tools to decipher the role of dihydroceramides in cell biology. Chem Phys Lipids 2015; 197:33-44. [PMID: 26248324 DOI: 10.1016/j.chemphyslip.2015.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Dihydroceramide desaturase (Des1) is the last enzyme in the de novo synthesis of ceramides (Cer). It catalyzes the insertion of a double bond into dihydroceramides (dhCer) to convert them to Cer, both of which are further metabolized to more complex (dihydro) sphingolipids. For many years dhCer have received poor attention, mainly due to their supposed lack of biological activity. It was not until about ten years ago that the concept that dhCer might have regulatory roles in biology emerged for the first time. Since then, multiple publications have established that dhCer are implicated in a wide spectrum of biological processes. Physiological and pathophysiological functions of dhCer have been recently reviewed. In this review we will focus on the biochemical features of Des1 and on its inhibition by different compounds with presumably different modes of action.
Collapse
Affiliation(s)
- Mireia Casasampere
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Yadira F Ordoñez
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ana Pou
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
48
|
Cingolani F, Futerman AH, Casas J. Ceramide synthases in biomedical research. Chem Phys Lipids 2015; 197:25-32. [PMID: 26248326 DOI: 10.1016/j.chemphyslip.2015.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 01/05/2023]
Abstract
Sphingolipid metabolism consists of multiple metabolic pathways that converge upon ceramide, one of the key molecules among sphingolipids (SLs). In mammals, ceramide synthesis occurs via N-acylation of sphingoid backbones, dihydrosphingosine (dhSo) or sphingosine (So). The reaction is catalyzed by ceramide synthases (CerS), a family of enzymes with six different isoforms, with each one showing specificity towards a restricted group of acyl-CoAs, thus producing ceramides (Cer) and dihydroceramides (dhCer) with different fatty acid chain lengths. A large body of evidence documents the role of both So and dhSo as bioactive molecules, as well as the involvement of dhCer and Cer in physiological and pathological processes. In particular, the fatty acid composition of Cer has different effects in cell biology and in the onset and progression of different diseases. Therefore, modulation of CerS activity represents an attractive target in biomedical research and in finding new treatment modalities. In this review, we discuss functional, structural and biochemical features of CerS and examine CerS inhibitors that are currently available.
Collapse
Affiliation(s)
- Francesca Cingolani
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
49
|
Hypoxia remodels the composition of the constituent ceramide species of HexCer and Hex2Cer with phytosphingosine and hydroxy fatty acids in human colon cancer LS174T cells. Glycoconj J 2015; 32:615-23. [PMID: 26194060 DOI: 10.1007/s10719-015-9607-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/09/2015] [Accepted: 06/25/2015] [Indexed: 12/14/2022]
Abstract
Oxygen-requiring enzymes, such as Δ4-desaturase (dihydroceramide desaturase), sphingolipid Δ4-desaturase/C-4-hydroxylase, and fatty acid 2-hydroxylase are involved in ceramide synthesis. We prepared free ceramides, sphingomyelins and glycosphingolipids (GSLs) from cancer cells cultivated under conditions of normoxia and hypoxia, and analyzed these compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Human colon cancer LS174T cells were employed because these cells highly express hydroxyl fatty acids and phytosphingosine (t18:0) which are expected to be greatly influenced by changes in oxygen levels. As expected, the populations of dihydro-species of free ceramide and sphingomyelin with C16:0 non-hydroxy fatty acid were elevated, and the populations of HexCers and Hex2Cers, composed of C16:0 or C16:0 hydroxy fatty acid (C16:0h), and sphingosine (d18:1) or t18:0, were decreased under hypoxia. However, appreciable populations of HexCer and Hex2Cer species of C24:0 or C24:0h and t18:0 remained. These results suggest that the individual species of GSLs with fatty acids possessing different alkyl chain lengths, either non-hydroxy fatty acids or hydroxyl fatty acids, may be metabolized individually.
Collapse
|
50
|
Sanllehí P, Abad JL, Casas J, Delgado A. Inhibitors of sphingosine-1-phosphate metabolism (sphingosine kinases and sphingosine-1-phosphate lyase). Chem Phys Lipids 2015. [PMID: 26200919 DOI: 10.1016/j.chemphyslip.2015.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sphingolipids (SLs) are essential structural and signaling molecules of eukaryotic cells. Among them, sphingosine 1 phosphate (S1P) is a recognized promoter of cell survival, also involved, inter alia, in inflammation and tumorigenesis processes. The knowledge and modulation of the enzymes implicated in the biosynthesis and degradation of S1P are capital to control the intracellular levels of this lipid and, ultimately, to determine the cell fate. Starting with a general overview of the main metabolic pathways involved in SL metabolism, this review is mainly focused on the description of the most relevant findings concerning the development of modulators of S1P, namely inhibitors of the enzymes regulating S1P synthesis (sphingosine kinases) and degradation (sphingosine 1 phosphate phosphatase and lyase). In addition, a brief overview of the most significant agonists and antagonists at the S1P receptors is also addressed.
Collapse
Affiliation(s)
- Pol Sanllehí
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; University of Barcelona (UB), Faculty of Pharmacy, Department of Pharmacology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), Avga. Joan XXIII s/n, E-08028 Barcelona, Spain
| | - José-Luis Abad
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josefina Casas
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Antonio Delgado
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; University of Barcelona (UB), Faculty of Pharmacy, Department of Pharmacology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), Avga. Joan XXIII s/n, E-08028 Barcelona, Spain.
| |
Collapse
|