1
|
Barroso IG, Nascimento BB, Ferreira C, Terra WR. Water fluxes and nutrient absorption along the midgut of three hemipterans, Mahanarva fimbriolata, Dysdercus peruvianus, and Rhodnius prolixus. Comp Biochem Physiol A Mol Integr Physiol 2024; 299:111773. [PMID: 39515658 DOI: 10.1016/j.cbpa.2024.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Hemiptera Order comprises insect species adapted to different diets regarding water and nutrient content and availability, thus suggesting different combinations of proteins to ensure their absorption. To find out whether hemipterans use the same or distinct set of proteins and whether these differences are related to the phylogeny or the diet, RNAseq analyses were conducted in gut sections of three hemipterans, M. fimbriolata, D. peruvianus, and R. prolixus, with remarkable distinct diet. Since only a few of the selected proteins were functionally characterized, the coded putative proteins were manually curated by bioinformatics to infer their physiological function. The results suggest a relationship between gene expression patterns and water and nutrient dietary content and availability. In contrast, putative gene expansions and deletions are related to phylogeny, corresponding to evolutionary adaptations of ancestral forms to feed on xylem, cotton seeds, and blood, resulting in more resemblances between D. peruvianus and R. prolixus than M. fimbriolata. M. fimbriolata absorbs water through aquaporins Drip and Prip in the filtration chamber by passive diffusion, with a higher contribution of water-selective Drip. D. peruvianus water absorption involves Drip and Prip, but Prip contribution appears to be higher, and they probably cooperate with water-ion cotransporters in the posterior midgut. R. prolixus absorbs water in the anterior midgut involving a sodium transporter and a putative water-urea Prip. Sugars, amino acids, and lipids might be absorbed along the midgut in the three species, with a higher contribution of the posterior midgut for amino acid and lipid absorption in M. fimbriolata and D. peruvianus and the middle midgut in R. prolixus.
Collapse
Affiliation(s)
- Ignacio G Barroso
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Bárbara B Nascimento
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
2
|
Ozbek L, Abdel-Rahman SM, Unlu S, Guldan M, Copur S, Burlacu A, Covic A, Kanbay M. Exploring Adiposity and Chronic Kidney Disease: Clinical Implications, Management Strategies, Prognostic Considerations. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1668. [PMID: 39459455 PMCID: PMC11509396 DOI: 10.3390/medicina60101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Obesity poses a significant and growing risk factor for chronic kidney disease (CKD), requiring comprehensive evaluation and management strategies. This review explores the intricate relationship between obesity and CKD, emphasizing the diverse phenotypes of obesity, including sarcopenic obesity and metabolically healthy versus unhealthy obesity, and their differential impact on kidney function. We discuss the epidemiological evidence linking elevated body mass index (BMI) with CKD risk while also addressing the paradoxical survival benefits observed in obese CKD patients. Various measures of obesity, such as BMI, waist circumference, and visceral fat assessment, are evaluated in the context of CKD progression and outcomes. Mechanistic insights into how obesity promotes renal dysfunction through lipid metabolism, inflammation, and altered renal hemodynamics are elucidated, underscoring the role of adipokines and the renin-angiotensin-aldosterone system. Furthermore, the review examines current strategies for assessing kidney function in obese individuals, including the strengths and limitations of filtration markers and predictive equations. The management of obesity and associated comorbidities like arterial hypertension, type 2 diabetes mellitus, and non-alcoholic fatty liver disease in CKD patients is discussed. Finally, gaps in the current literature and future research directions aimed at optimizing the management of obesity-related CKD are highlighted, emphasizing the need for personalized therapeutic approaches to mitigate the growing burden of this intertwined epidemic.
Collapse
Affiliation(s)
- Lasin Ozbek
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Sidar Copur
- Department of Internal Medicine, Koç University School of Medicine, Istanbul 34450, Turkey;
| | - Alexandru Burlacu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania;
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Adrian Covic
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania;
- Nephrology Clinic, Dialysis, and Renal Transplant Center “C.I. Parhon” University Hospital, 700503 Iasi, Romania
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koç University School of Medicine, Istanbul 34450, Turkey
| |
Collapse
|
3
|
Liu B, Wang Z, Liang M, Yang L. Rice Protein Reduces Triglyceride Levels through Modulating CD36, MTP, FATP, and FABP Expression in Growing and Adult Rats. Foods 2024; 13:2704. [PMID: 39272469 PMCID: PMC11395578 DOI: 10.3390/foods13172704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
To elucidate the effect of rice protein on the regulation of triglyceride transport to reduce triglyceride levels, growing and adult male Wistar rats were fed with casein and rice protein for 2 weeks. With the intake of rice protein, the gene and protein expressions of cluster determinant 36 (CD36), microsomal triglyceride transfer protein (MTP), fatty acid transport protein-2 (FATP-2), and fatty acid-binding protein-1 (FABP-1) were, respectively, downregulated in growing and adult rats, suggesting rice protein could effectively regulate triglyceride transport. As a result, rice protein significantly reduced plasma levels of triglyceride and fatty acids, while hepatic accumulations of triglyceride and fatty acids were also decreased via rice protein. The present study demonstrates that RP exerts regulatory effects on CD36, MTP, FATP-2, and FABP-1 expression in growing and adult rats, revealing a link to triglyceride-lowering actions and the modulations of triglyceride transport exerted by rice protein. Results suggest that the aging process cannot attenuate the depression of CD36, MTP, FATP, and FABP 19 expression to reduce triglyceride levels induced by rice protein.
Collapse
Affiliation(s)
- Bingxiao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengxuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Mingcai Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Li YX, Yan Q, Liu TW, Wang JX, Zhao XF. Lipases are differentially regulated by hormones to maintain free fatty acid homeostasis for insect brain development. BMC Biol 2024; 22:171. [PMID: 39135168 PMCID: PMC11321213 DOI: 10.1186/s12915-024-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
5
|
Du L, Gao X, Zhao L, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J. Assessment of the risk of imidaclothiz to the dominant aphid parasitoid Binodoxys communis (Hymenoptera: Braconidae). ENVIRONMENTAL RESEARCH 2023; 238:117165. [PMID: 37739156 DOI: 10.1016/j.envres.2023.117165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The neonicotinoid of imidaclothiz insecticide with low resistance and high efficiency, has great potential for application in pest control in specifically cotton field. In this systematically evaluate the effects of sublethal doses of imidaclothiz (LC10: 11.48 mg/L; LC30: 28.03 mg/L) on the biology, transcriptome, and microbiome of Binodoxys communis, the predominant primary parasitic natural enemy of aphids. The findings indicated that imidaclothiz has significant deleterious effects on the survival rate, parasitic rate, and survival time of B. communis. Additionally, there was a marked reduction in the survival rate and survival time of the F1 generation, that is, the negative effect of imidaclothiz on B. communis was continuous and trans-generational. Transcriptome analysis revealed that imidaclothiz treatment elicited alterations in the expression of genes associated with energy and detoxification metabolism. In addition, 16S rRNA analysis revealed a significant increase in the relative abundance of Rhodococcus and Pantoea, which are associated with detoxification metabolism, due to imidaclothiz exposure. These findings provide evidence that B. communis may regulate gene expression in conjunction with symbiotic bacteria to enhance adaptation to imidaclothiz. Finally, this study precise evaluation of imidaclothiz's potential risk to B. communis and provides crucial theoretical support for increasing the assessment of imidaclothiz in integrated pest management.
Collapse
Affiliation(s)
- Lingen Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Likang Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
6
|
Gao Y, Hua R, Peng K, Yin Y, Zeng C, Guo Y, Wang Y, Li L, Li X, Qiu Y, Wang Z. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Göcebe D, Jansakun C, Zhang Y, Staffer S, Tuma-Kellner S, Altamura S, Muckenthaler MU, Merle U, Herrmann T, Chamulitrat W. Myeloid-specific fatty acid transport protein 4 deficiency induces a sex-dimorphic susceptibility for nonalcoholic steatohepatitis in mice fed a high-fat, high-cholesterol diet. Am J Physiol Gastrointest Liver Physiol 2023; 324:G389-G403. [PMID: 36881564 PMCID: PMC10085558 DOI: 10.1152/ajpgi.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
Newborns with FATP4 mutations exhibit ichthyosis prematurity syndrome (IPS), and adult patients show skin hyperkeratosis, allergies, and eosinophilia. We have previously shown that the polarization of macrophages is altered by FATP4 deficiency; however, the role of myeloid FATP4 in the pathogenesis of nonalcoholic steatohepatitis (NASH) is not known. We herein phenotyped myeloid-specific Fatp4-deficient (Fatp4M-/-) mice under chow and high-fat, high-cholesterol (HFHC) diet. Bone-marrow-derived macrophages (BMDMs) from Fatp4M-/- mice showed significant reduction in cellular sphingolipids in males and females, and additionally phospholipids in females. BMDMs and Kupffer cells from Fatp4M-/- mice exhibited increased LPS-dependent activation of proinflammatory cytokines and transcription factors PPARγ, CEBPα, and p-FoxO1. Correspondingly, these mutants under chow diet displayed thrombocytopenia, splenomegaly, and elevated liver enzymes. After HFHC feeding, Fatp4M-/- mice showed increased MCP-1 expression in livers and subcutaneous fat. Plasma MCP-1, IL4, and IL13 levels were elevated in male and female mutants, and female mutants additionally showed elevation of IL5 and IL6. After HFHC feeding, male mutants showed an increase in hepatic steatosis and inflammation, whereas female mutants showed a greater severity in hepatic fibrosis associated with immune cell infiltration. Thus, myeloid-FATP4 deficiency led to steatotic and inflammatory NASH in males and females, respectively. Our work offers some implications for patients with FATP4 mutations and also highlights considerations in the design of sex-targeted therapies for NASH treatment.NEW & NOTEWORTHY FATP4 deficiency in BMDMs and Kupffer cells led to increased proinflammatory response. Fatp4M-/- mice displayed thrombocytopenia, splenomegaly, and elevated liver enzymes. In response to HFHC feeding, male mutants were prone to hepatic steatosis, whereas female mutants showed exaggerated fibrosis. Our study provides insights into a sex-dimorphic susceptibility to NASH by myeloid-FATP4 deficiency.
Collapse
Affiliation(s)
- Deniz Göcebe
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Chutima Jansakun
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
- School of Allied Health Sciences, Walailak University, Nakhonsrithammarat, Thailand
| | - Yuling Zhang
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), German Centre for Cardiovascular Research, Partner Site, University of Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Walee Chamulitrat
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Fatty Acyl Coenzyme A Synthetase Fat1p Regulates Vacuolar Structure and Stationary-Phase Lipophagy in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0462522. [PMID: 36598223 PMCID: PMC9927365 DOI: 10.1128/spectrum.04625-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During yeast stationary phase, a single spherical vacuole (lysosome) is created by the fusion of several small ones. Moreover, the vacuolar membrane is reconstructed into two distinct microdomains. Little is known, however, about how cells maintain vacuolar shape or regulate their microdomains. Here, we show that Fat1p, a fatty acyl coenzyme A (acyl-CoA) synthetase and fatty acid transporter, and not the synthetases Faa1p and Faa4p, is essential for vacuolar shape preservation, the development of vacuolar microdomains, and cell survival in stationary phase of the yeast Saccharomyces cerevisiae. Furthermore, Fat1p negatively regulates general autophagy in both log- and stationary-phase cells. In contrast, Fat1p promotes lipophagy, as the absence of FAT1 limits the entry of lipid droplets into the vacuole and reduces the degradation of liquid droplet (LD) surface proteins. Notably, supplementing with unsaturated fatty acids or overexpressing the desaturase Ole1p can reverse all aberrant phenotypes caused by FAT1 deficiency. We propose that Fat1p regulates stationary phase vacuolar morphology, microdomain differentiation, general autophagy, and lipophagy by controlling the degree of fatty acid saturation in membrane lipids. IMPORTANCE The ability to sense environmental changes and adjust the levels of cellular metabolism is critical for cell viability. Autophagy is a recycling process that makes the most of already-existing energy resources, and the vacuole/lysosome is the ultimate autophagic processing site in cells. Lipophagy is an autophagic process to select degrading lipid droplets. In yeast cells in stationary phase, vacuoles fuse and remodel their membranes to create a single spherical vacuole with two distinct membrane microdomains, which are required for yeast lipophagy. In this study, we discovered that Fat1p was capable of rapidly responding to changes in nutritional status and preserving cell survival by regulating membrane lipid saturation to maintain proper vacuolar morphology and the level of lipophagy in the yeast S. cerevisiae. Our findings shed light on how cells maintain vacuolar structure and promote the differentiation of vacuole surface microdomains for stationary-phase lipophagy.
Collapse
|
9
|
Fatty acid transport proteins (FATPs) in cancer. Chem Phys Lipids 2023; 250:105269. [PMID: 36462545 DOI: 10.1016/j.chemphyslip.2022.105269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Lipids play pivotal roles in cancer biology. Lipids have a wide range of biological roles, especially in cell membrane synthesis, serve as energetic molecules in regulating energy-demanding processes; and they play a significant role as signalling molecules and modulators of numerous cellular functions. Lipids may participate in the development of cancer through the fatty acid signalling pathway. Lipids consumed in the diet act as a key source of extracellular pools of fatty acids transported into the cellular system. Increased availability of lipids to cancer cells is due to increased uptake of fatty acids from adipose tissues. Lipids serve as a source of energy for rapidly dividing cancerous cells. Surviving requires the swift synthesis of biomass and membrane matrix to perform exclusive functions such as cell proliferation, growth, invasion, and angiogenesis. FATPs (fatty acid transport proteins) are a group of proteins involved in fatty acid uptake, mainly localized within cells and the cellular membrane, and have a key role in long-chain fatty acid transport. FATPs are composed of six isoforms that are tissue-specific and encoded by a specific gene. Previous studies have reported that FATPs can alter fatty acid metabolism, cell growth, and cell proliferation and are involved in the development of various cancers. They have shown increased expression in most cancers, such as melanoma, breast cancer, prostate cancer, renal cell carcinoma, hepatocellular carcinoma, bladder cancer, and lung cancer. This review introduces a variety of FATP isoforms and summarises their functions and their possible roles in the development of cancer.
Collapse
|
10
|
Chu Q, An J, Liu P, Song Y, Zhai X, Yang R, Niu J, Yang C, Li B. Repurposing a tricyclic antidepressant in tumor and metabolism disease treatment through fatty acid uptake inhibition. J Exp Med 2022; 220:213757. [PMID: 36520461 PMCID: PMC9757841 DOI: 10.1084/jem.20221316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Fatty acid uptake is essential for cell physiological function, but detailed mechanisms remain unclear. Here, we generated an acetyl-CoA carboxylases (ACC1/2) double-knockout cell line, which lacked fatty acid biosynthesis and survived on serum fatty acids and was used to screen for fatty acid uptake inhibitors. We identified a Food and Drug Administration-approved tricyclic antidepressant, nortriptyline, that potently blocked fatty acid uptake both in vitro and in vivo. We also characterized underlying mechanisms whereby nortriptyline provoked lysosomes to release protons and induce cell acidification to suppress macropinocytosis, which accounted for fatty acid endocytosis. Furthermore, nortriptyline alone or in combination with ND-646, a selective ACC1/2 inhibitor, significantly repressed tumor growth, lipogenesis, and hepatic steatosis in mice. Therefore, we show that cells actively take up fatty acids through macropinocytosis, and we provide a potential strategy suppressing tumor growth, lipogenesis, and hepatic steatosis through controlling the cellular level of fatty acids.
Collapse
Affiliation(s)
- Qiaoyun Chu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Jing An
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Ping Liu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Yihan Song
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Xuewei Zhai
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Ronghui Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China,Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jing Niu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Chuanzhen Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Binghui Li
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China,Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China,Department of Cancer Cell Biology and National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Correspondence to Binghui Li:
| |
Collapse
|
11
|
Li H, Herrmann T, Seeßle J, Liebisch G, Merle U, Stremmel W, Chamulitrat W. Role of fatty acid transport protein 4 in metabolic tissues: insights into obesity and fatty liver disease. Biosci Rep 2022; 42:BSR20211854. [PMID: 35583196 PMCID: PMC9160530 DOI: 10.1042/bsr20211854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Fatty acid (FA) metabolism is a series of processes that provide structural substances, signalling molecules and energy. Ample evidence has shown that FA uptake is mediated by plasma membrane transporters including FA transport proteins (FATPs), caveolin-1, fatty-acid translocase (FAT)/CD36, and fatty-acid binding proteins. Unlike other FA transporters, the functions of FATPs have been controversial because they contain both motifs of FA transport and fatty acyl-CoA synthetase (ACS). The widely distributed FATP4 is not a direct FA transporter but plays a predominant function as an ACS. FATP4 deficiency causes ichthyosis premature syndrome in mice and humans associated with suppression of polar lipids but an increase in neutral lipids including triglycerides (TGs). Such a shift has been extensively characterized in enterocyte-, hepatocyte-, and adipocyte-specific Fatp4-deficient mice. The mutants under obese and non-obese fatty livers induced by different diets persistently show an increase in blood non-esterified free fatty acids and glycerol indicating the lipolysis of TGs. This review also focuses on FATP4 role on regulatory networks and factors that modulate FATP4 expression in metabolic tissues including intestine, liver, muscle, and adipose tissues. Metabolic disorders especially regarding blood lipids by FATP4 deficiency in different cell types are herein discussed. Our results may be applicable to not only patients with FATP4 mutations but also represent a model of dysregulated lipid homeostasis, thus providing mechanistic insights into obesity and development of fatty liver disease.
Collapse
Affiliation(s)
- Huili Li
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746 Heide, Germany
| | - Jessica Seeßle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Pressly JD, Gurumani MZ, Varona Santos JT, Fornoni A, Merscher S, Al-Ali H. Adaptive and maladaptive roles of lipid droplets in health and disease. Am J Physiol Cell Physiol 2022; 322:C468-C481. [PMID: 35108119 PMCID: PMC8917915 DOI: 10.1152/ajpcell.00239.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in the understanding of lipid droplet biology have revealed essential roles for these organelles in mediating proper cellular homeostasis and stress response. Lipid droplets were initially thought to play a passive role in energy storage. However, recent studies demonstrate that they have substantially broader functions, including protection from reactive oxygen species, endoplasmic reticulum stress, and lipotoxicity. Dysregulation of lipid droplet homeostasis is associated with various pathologies spanning neurological, metabolic, cardiovascular, oncological, and renal diseases. This review provides an overview of the current understanding of lipid droplet biology in both health and disease.
Collapse
Affiliation(s)
- Jeffrey D. Pressly
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Margaret Z. Gurumani
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Javier T. Varona Santos
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Sandra Merscher
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Hassan Al-Ali
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida,3Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida,4The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida,5Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
13
|
Ceder MM, Fredriksson R. A phylogenetic analysis between humans and D. melanogaster: A repertoire of solute carriers in humans and flies. Gene 2022; 809:146033. [PMID: 34673204 DOI: 10.1016/j.gene.2021.146033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/04/2022]
Abstract
The solute carrier (SLC) superfamily is the largest group of transporters in humans, with the role to transport solutes across plasma membranes. The SLCs are currently divided into 65 families with 430 members. Here, we performed a detailed mining of the SLC superfamily and the recent annotated family of "atypical" SLCs in human and D. melanogaster using Hidden Markov Models and PSI-BLAST. Our analyses identified 381 protein sequences in D. melanogaster and of those, 55 proteins have not been previously identified in flies. In total, 11 of the 65 human SLC families were found to not be conserved in flies, while a few families are highly conserved, which perhaps reflects the families' functions and roles in cellular pathways. This study provides the first collection of all SLC sequences in D. melanogaster and can serve as a SLC database to be used for classification of SLCs in other phyla.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden; Sensory Circuits, Department of Neuroscience, Uppsala University, Uppsala, Sweden, Mikaela.
| | - Robert Fredriksson
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Geng QS, Yang MJ, Li LF, Shen ZB, Wang LH, Zheng YY, Xue WH, Zhao J. Over-Expression and Prognostic Significance of FATP5, as a New Biomarker, in Colorectal Carcinoma. Front Mol Biosci 2022; 8:770624. [PMID: 35155561 PMCID: PMC8829069 DOI: 10.3389/fmolb.2021.770624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Fatty acid transporters (FATPs) family play an important role in the uptake and metabolism regulation of long-chain fatty acids, which influence the occurrence and developing of multiple tumors. Fatty acid transporter 5(FATP5), a member of FATPs family, participates in fatty acid transport and lipid metabolism and is related to tumor development, whose mechanism in colorectal cancer (CRC) remains unclear.Methods: In this study, we comprehensively utilized a range of relevant bioinformatic tools along with multiple databases to analyze the expression of FATPs family and investigate the biological function and prognostic value of FATP5 in CRC. Besides, cell proliferation and cell cycle distribution analysis, western blotting and immunohistochemistry (IHC) further validated the conclusion of bioinformatics analysis.Results: FATP5 is the only member of FATPs family which was overexpressed in CRC. In the survival analysis based on the GSE39582 databases, the low expression of FATP5 predicts poor prognosis in CRC. Similar results were also observed in GSE17536, GSE28814 and TCGA colon cohorts. The potential function of DNA methylation regulated the abnormal expression of FATP5 in CRC. In addition, enrichment analysis indicated that FATP5 also participates in the regulation of cell cycle. Furthermore, Gene Set Enrichment Analysis (GSEA) showed a strong negative correlation between FATP5 and cell growth, implying that it may participate in regulating cancer cell proliferation by the regulation of cell cycle G2/M transition. At last, we identified that FATP5 was overexpressed in colorectal carcinoma tissues through immunohistochemistry staining, and played an important role in cell cycle by cell proliferation and cell cycle distribution analysis.Conclusion: This study suggested that FATP5 was overexpression in colorectal carcinoma and predicted favorable prognosis, indicating it as a novel appealing prognostic marker for CRC.
Collapse
Affiliation(s)
- Qi-Shun Geng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mei-Jia Yang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Feng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Bo Shen
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long-Hao Wang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan-Yuan Zheng
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Hua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jie Zhao,
| |
Collapse
|
15
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
16
|
Li F, Wu X, Liu H, Zhang B, Liu L, Li F. Dietary copper supplementation enhances lipolysis in Rex rabbits. J Trace Elem Med Biol 2021; 68:126851. [PMID: 34464873 DOI: 10.1016/j.jtemb.2021.126851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Copper is an important regulator of lipid metabolism in mammals, as a cofactor of many enzymes and is involved in the lipolysis. Copper deficiency has been considered as a significant factor in human diseases related to abnormal lipid metabolism, while adding copper to the diet seems to be the simplest and most effective way to prevent copper deficiency. AIMS The aim of this study was to investigate the effects of dietary copper level on lipid metabolism in Rex Rabbits. METHODS A total of 120 90-d-old Rex Rabbits were randomly allotted into three treatments, with 40 replicates (20 males, 20 females) in each treatment (1 rabbit per replicate). The diets included 1) control (8.4 mg/kg), normal-copper diet (39.1 mg/kg), 3) high-copper diet (67.5 mg/kg). The trial including a one-week adaptation period and a five-week experimental period. RESULT The results showed that copper (39.1 mg/kg) diet increased average daily feed intake (ADFI) (P<0.05, N = 34), and tended to increase the final body weight (FBW) (P = 0.0556, N = 34). Moreover, dietary copper addition (39.1 and 67.5 mg/kg) significantly increased the foreleg and hindleg weight (P<0.05, N = 8), and decreased the weight of Perirenal fat and the concentration of triglycerides (TG) in the liver (P<0.05, N = 8). The concentration of triglycerides (TG), epinephrine (EPI), and glucagon (GC) in serum were obviously higher than that in control group (P<0.05, N = 8), and the concentration of insulin (INS), and very low-density lipoprotein (VLDL) in serum were significantly decreased (P<0.05, N = 8). The copper group (39.1 mg/kg) showed up-regulated gene expression levels of carnitine palmitoyl transferases (CPT-1 and CPT-2) and peroxisome proliferator-activated receptor (PPAR-α) in liver (P < 0.05, N = 8) and down-regulated gene expression levels of fatty acid synthase (FAS) and Acetyl-CoA carboxylase (ACC) (P < 0.05, N = 8). In skeletal muscle, CPT-1, CPT-2, PPAR-α, fatty acid transport protein (FATP), fatty acid-binding protein (FABP) and lipoprotein lipase (LPL) levels were significantly up-regulated by copper treatment (P < 0.05, N = 8). Rex Rabbits receiving copper addition had higher CPT-1, CPT-2, PPAR-a and hormone-sensitive lipase (HSL) mRNA levels in adipose tissue (P < 0.05, N = 8). CONCLUSION Copper diets promoted skeletal muscle growth and reduced fat accumulation by enhancing fatty acid oxidation, at the same time, dietary copper inhibited De novo lipogenesis in the liver. PPAR-α signaling in liver, skeletal muscle and adipose tissues were involved in the regulation of lipid metabolism by copper.
Collapse
Affiliation(s)
- Fan Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xiaojing Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Hongli Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Bin Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Lei Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Fuchang Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
17
|
Girard V, Jollivet F, Knittelfelder O, Celle M, Arsac JN, Chatelain G, Van den Brink DM, Baron T, Shevchenko A, Kühnlein RP, Davoust N, Mollereau B. Abnormal accumulation of lipid droplets in neurons induces the conversion of alpha-Synuclein to proteolytic resistant forms in a Drosophila model of Parkinson's disease. PLoS Genet 2021; 17:e1009921. [PMID: 34788284 PMCID: PMC8635402 DOI: 10.1371/journal.pgen.1009921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/01/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein (αSyn) aggregation and associated with abnormalities in lipid metabolism. The accumulation of lipids in cytoplasmic organelles called lipid droplets (LDs) was observed in cellular models of PD. To investigate the pathophysiological consequences of interactions between αSyn and proteins that regulate the homeostasis of LDs, we used a transgenic Drosophila model of PD, in which human αSyn is specifically expressed in photoreceptor neurons. We first found that overexpression of the LD-coating proteins Perilipin 1 or 2 (dPlin1/2), which limit the access of lipases to LDs, markedly increased triacylglyclerol (TG) loaded LDs in neurons. However, dPlin-induced-LDs in neurons are independent of lipid anabolic (diacylglycerol acyltransferase 1/midway, fatty acid transport protein/dFatp) and catabolic (brummer TG lipase) enzymes, indicating that alternative mechanisms regulate neuronal LD homeostasis. Interestingly, the accumulation of LDs induced by various LD proteins (dPlin1, dPlin2, CG7900 or KlarsichtLD-BD) was synergistically amplified by the co-expression of αSyn, which localized to LDs in both Drosophila photoreceptor neurons and in human neuroblastoma cells. Finally, the accumulation of LDs increased the resistance of αSyn to proteolytic digestion, a characteristic of αSyn aggregation in human neurons. We propose that αSyn cooperates with LD proteins to inhibit lipolysis and that binding of αSyn to LDs contributes to the pathogenic misfolding and aggregation of αSyn in neurons. Parkinson’s disease (PD) is a neurodegenerative disease characterized by the neurotoxic aggregation of the alpha-synuclein (αSyn) protein. Cellular models of the disease are also associated with an abnormal fat storage in the form of lipid droplets (LDs). However, in which cells, neuron or glial cells, LDs accumulate in the organism remains unknown. To understand the relationship between αSyn and the accumulation of LDs, we used a Drosophila (fruit fly) model of PD. We found that, in the presence of a protein that coats LDs, perilipin, LDs accumulate in photoreceptor neurons of the fly. Interestingly, the accumulation of LDs induced by perilipin or other LD-coating proteins was enhanced in the presence of αSyn. Using human neuronal cell lines and the fly, we could show that LD-coating and αSyn proteins localize at the surface of LDs. Finally, we observed that the process of αSyn aggregation was enhanced in the presence of LDs by using a biochemical approach. We thus propose that the association of αSyn with LDs could contribute to αSyn aggregation and progression of the pathology.
Collapse
Affiliation(s)
- Victor Girard
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Florence Jollivet
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Oskar Knittelfelder
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marion Celle
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Jean-Noel Arsac
- Neurodegenerative Disease Unit; French Agency for Food, Environmental and Occupational Health & Safety Laboratory (Anses) of Lyon, University of Lyon, Lyon, France
| | - Gilles Chatelain
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Daan M. Van den Brink
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
- Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Thierry Baron
- Neurodegenerative Disease Unit; French Agency for Food, Environmental and Occupational Health & Safety Laboratory (Anses) of Lyon, University of Lyon, Lyon, France
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ronald P. Kühnlein
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Nathalie Davoust
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
- * E-mail: (ND); (BM)
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
- * E-mail: (ND); (BM)
| |
Collapse
|
18
|
Tetraspanin TM4SF5 in hepatocytes negatively modulates SLC27A transporters during acute fatty acid supply. Arch Biochem Biophys 2021; 710:109004. [PMID: 34364885 DOI: 10.1016/j.abb.2021.109004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Transmembrane 4 L six family member 5 (TM4SF5) is involved in nonalcoholic steatosis and further aggravation of liver disease. However, its mechanism for regulating FA accumulation is unknown. We investigated how TM4SF5 in hepatocytes affected FA accumulation during acute FA supply. TM4SF5-expressing hepatocytes and mouse livers accumulated less FAs, compared with those of TM4SF5 deficiency or inactivation. Binding of TM4SF5 to SLC27A2 increased gradually upon acute FA treatment, whereas TM4SF5 constitutively bound SLC27A5. Suppression of either SLC27A2 or SLC27A5 in hepatocytes expressing TM4SF5 differentially modulated initial and maximal FA uptake levels for a fast turnover of fatty acid. Altogether, TM4SF5 negatively modulates FA accumulation into hepatocytes via association with the transporters for an energy homeostasis, when FA are supplied acutely.
Collapse
|
19
|
First insights into the honey bee (Apis mellifera) brain lipidome and its neonicotinoid-induced alterations associated with reduced self-grooming behavior. J Adv Res 2021; 37:75-89. [PMID: 35499051 PMCID: PMC9039751 DOI: 10.1016/j.jare.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
First bee brain characterization shows distinctive low plasmalogens and high alkyl-ether levels. PC 20:3e/15:0, PC 16:0/18:3, PA 18:0/24:1 increased by the highest dose of clothianidin. Levels of CL 18:3/18:1/14:0/22:6, TG 6:0/11:2/18:1 and eLPE 18:0e were linked to intense grooming. Membrane lipids, like PC 18:1e/20:3, ePC 8:1e/20:3, and pPE 16:1p/24:1 were up-regulated by clothianidin. Clothianidin exposure up-regulated genes linked to GPI-anchor biosynthesis pathway. Lipids can be used as biomarkers to assess the effect of neurotoxins on behaviors.
Introduction Honey bees (Apis mellifera) play key roles in food production performing complex behaviors, like self-grooming to remove parasites. However, the lipids of their central nervous system have not been examined, even though they likely play a crucial role in the performance of cognitive process to perform intricate behaviors. Lipidomics has greatly advanced our understanding of neuropathologies in mammals and could provide the same for honey bees. Objectives The objectives of this study were to characterize the brain lipidome of adult honey bees and to assess the effect of clothianidin (a neurotoxic insecticide) on the brain lipid composition, gene expression, and performance of self-grooming behavior under controlled conditions (cage experiments). Methods After seven days of exposure to oral sublethal doses of clothianidin, the bees were assessed for self-grooming behavior; their brains were dissected to analyze the lipidome using an untargeted lipidomics approach and to perform a high throughput RNAseq analysis. Results Compared to all other organisms, healthy bee brain lipidomes contain unusually high levels of alkyl-ether linked (plasmanyl) phospholipids (51.42%) and low levels of plasmalogens (plasmenyl phospholipids; 3.46%). This could make it more susceptible to the effects of toxins in the environment. A positive correlation between CL 18:3/18:1/14:0/22:6, TG 6:0/11:2/18:1, LPE 18:0e and intense self-grooming was found. Sublethal doses of a neonicotinoid altered PC 20:3e/15:0, PC 16:0/18:3, PA 18:0/24:1, and TG 18:1/18:1/18/1 levels, and affected gene expression linked to GPI-anchor biosynthesis pathway and energy metabolism that may be partially responsible for the altered lipid composition. Conclusion This study showed that lipidomics can reveal honey bee neuropathologies associated with reduced grooming behavior due to sublethal neonicotinoid exposure. The ease of use, unusual brain lipidome as well as characterized behaviors that are affected by the environment make honey bees a promising model organism for studying the neurolipidome and associations with neurobehavioral disorders.
Collapse
|
20
|
Barroso IG, Cardoso C, Ferreira C, Terra WR. Transcriptomic and proteomic analysis of the underlying mechanisms of digestion of triacylglycerols and phosphatides and absorption and fate of fatty acids along the midgut of Musca domestica. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100826. [PMID: 33839527 DOI: 10.1016/j.cbd.2021.100826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022]
Abstract
Most dietary lipids are triacylglycerols (TAGs) and phosphatides that are digested by TAG lipases and phospholipases (PLIPs), respectively, originating fatty acids (FA). The genome of Musca domestica has genes coding for phospholipases A1 (1PLIP), A2 (2PLIP), B (BPLIP), and acid lipases (ALIP), as for proteins involved in activation, binding, and metabolism of FA, which expression in the larval midgut was evaluated by RNA-seq. Some of the codified proteins were identified in midgut microvillar-enriched membrane by proteomics. 1PLIPs are the most expressed PLIPs, mainly in anterior midgut whereas 2PLIPs, and BPLIP in middle and posterior midgut, and ALIPs between middle and posterior regions. Absorption of FAs is putatively accomplished by proteins involved in FA activation (acyl-CoA synthetases) found in microvillar-enriched membrane preparations. Furthermore, FA uptake could be enhanced by proteins that bind FAs (FA-binding proteins) and its activated form (acyl-CoA binding proteins) mainly expressed in posterior midgut. Activated FAs could have different fates: synthesis of diacylglycerol (DAG) and TAG through monoacylglycerol and glycerol-3-phosphate pathways; synthesis of phosphatides; energy source by β-oxidation. Most genes coding for enzymes of those routes is expressed mainly at the end of posterior midgut. Data suggest that phosphatides are digested in anterior midgut by Md1PLIPs, releasing lysophosphatides that emulsify fats to be digested by MdALIPs in the middle and posterior midgut. Most resulting FAs is absorbed in the posterior midgut, where they follow the synthesis of DAG, TAG, and phosphatides or are oxidized along the midgut, mainly in highly metabolic middle and posterior midgut regions.
Collapse
Affiliation(s)
- Ignacio G Barroso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Christiane Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
21
|
Wang X, Chen S, He J, Chen W, Ding Y, Huang J, Huang J. Histone methyltransferases G9a mediated lipid-induced M1 macrophage polarization through negatively regulating CD36. Metabolism 2021; 114:154404. [PMID: 33069810 DOI: 10.1016/j.metabol.2020.154404] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recent studies have considered the obesity-related lipid environment as the potential cause for M1 macrophage polarization in type 2 diabetes. However, the specific regulatory mechanism is still unclear. Here, we investigated the role and molecular mechanism of histone methyltransferases G9a in lipids-induced M1 macrophage polarization in type 2 diabetes. METHODS We used saturated fatty acid palmitate to induce macrophage polarization, and performed real-time PCR, western blot, flow cytometry and CHIP assay to study the function and molecular mechanism of G9a. Additionally, we isolated the peripheral blood mononuclear cells (PBMCs) from 187 patients with type 2 diabetes and 68 healthy individuals, and analyzed the expression level of G9a. RESULTS The palmitate treatment induced the macrophage M1 polarization, and decreased the expression of G9a. The deficiency of G9a could promote the palmitate-induced M1 macrophage polarization, whereas, over-expressing G9a notably suppressed this process. Meanwhile, we observed the regulatory role of G9a on the ER stress which could contribute to M1 macrophage. Furthermore, we identified the fatty acid transport protein CD36 as the potential target of G9a. Dependent on the methyltransferase activity, G9a could negatively regulate the expression of CD36 induced by palmitate. The CD36 inhibitor SSO could significantly attenuate the regulatory effect of G9a on M1 macrophage polarization and ER stress. Importantly, G9a was decreased, and suppressed CD36 and M1 macrophage genes in the PBMCs from individuals with type 2 diabetes. CONCLUSIONS Our studies demonstrate that G9a plays critical roles in lipid-induced M1 macrophage polarization via negatively regulating CD36.
Collapse
Affiliation(s)
- Xiuling Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqun Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Huang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jin Huang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
23
|
Rani A, Chavan-Gautam P, Mehendale S, Wagh G, Mani NS, Joshi S. Region-specific changes in the mRNA and protein expression of LCPUFA biosynthesis enzymes and transporters in the placentae of women with preeclampsia. Placenta 2020; 95:33-43. [PMID: 32452400 DOI: 10.1016/j.placenta.2020.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
The biosynthesis and transport of long chain polyunsaturated fatty acids (LCPUFA) require the activity of fatty acid desaturase (FADS) enzymes, fatty acid transport proteins (FATP) and fatty acid binding proteins (FABP). In a previous study we have demonstrated region-specific changes in the LCPUFA levels in preeclampsia (PE) as compared to the normotensive control (NC) placentae. AIM To understand the region-specific changes in the mRNA levels and protein expression of biosynthesis enzymes and transporters of LCPUFA in PE and NC placentae. METHODS In this cross-sectional study, 20 NC women and 44 women with PE (23 term (TPE) and 21 preterm PE (PTPE)) were recruited. The samples were collected from four regions of the placentae considering cord insertion as the center (CM, central maternal/basal; CF, central fetal/chorionic; PM, peripheral maternal/basal and PF, peripheral fetal/chorionic). The mRNA levels were estimated using qRT-PCR. Statistical analysis was done using both post hoc least significant difference (LSD) test and Benjamini Hochberg correction in the analysis of covariance. Preliminarily, localization and expression of proteins were studied by immunohistochemistry (n = 3/group). RESULTS The mRNA levels of FADS1, FADS2 and FATP1 were lower in the central regions (CM and CF) of the PE placentae (both TPE and PTPE) as compared to NC. These differences in the mRNA levels were observed by the LSD test and were not significant after the Benjamini Hochberg correction. Preliminary findings of IHC indicate that the protein expression of FADS1 and FATP4 was higher in the basal regions (CM and PM) of the PE placentae as compared to NC. FADS1, FADS2 and FATP4 proteins were localized in the syncytiotrophoblasts, cytotrophoblasts, mesenchymal cells, endothelial cells of the fetal capillaries and extravillous trophoblasts of the placenta. CONCLUSION FADS enzymes are detected in the placentae of Indian women. In PE placentae, there are region-specific alterations in the mRNA and protein levels of LCPUFA biosynthesis enzymes (FADS1 and FADS2) and transporters (FATP1, FATP4 and FABP3) as compared to term NC. These changes were more pronounced toward the basal side and region around the cord insertion.
Collapse
Affiliation(s)
- Alka Rani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Preeti Chavan-Gautam
- Interdisciplinary School of Health Science, Savitribai Phule Pune University, Pune, India
| | - Savita Mehendale
- Department of Obstetrics and Gynaecology, Bharati Vidyapeeth (Deemed to be University) Medical College and Bharati Hospital, Pune, India
| | - Girija Wagh
- Department of Obstetrics and Gynaecology, Bharati Vidyapeeth (Deemed to be University) Medical College and Bharati Hospital, Pune, India
| | | | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
24
|
Tamura I, Takagi H, Doi-Tanaka Y, Shirafuta Y, Mihara Y, Shinagawa M, Maekawa R, Taketani T, Sato S, Tamura H, Sugino N. Wilms tumor 1 regulates lipid accumulation in human endometrial stromal cells during decidualization. J Biol Chem 2020; 295:4673-4683. [PMID: 32098869 DOI: 10.1074/jbc.ra120.012841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/22/2020] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the transcription factor Wilms tumor 1 (WT1) regulates the expression of insulin-like growth factor-binding protein-1 (IGFBP-1) and prolactin (PRL) during decidualization of human endometrial stromal cells (ESCs). However, other roles of WT1 in decidualization remain to be fully clarified. Here, we investigated how WT1 regulates the physiological functions of human ESCs during decidualization. We incubated ESCs isolated from proliferative-phase endometrium with cAMP to induce decidualization, knocked down WT1 with siRNA, and generated three types of treatments (nontreated cells, cAMP-treated cells, and cAMP-treated + WT1-knockdown cells). To identify WT1-regulated genes, we used gene microarrays and compared the transcriptome data obtained among these three treatments. We observed that WT1 up-regulates 121 genes during decidualization, including several genes involved in lipid transport. The WT1 knockdown inhibited lipid accumulation (LA) in the cAMP-induced ESCs. To examine the mechanisms by which WT1 regulates LA, we focused on very low-density lipoprotein receptor (VLDLR), which is involved in lipoprotein uptake. We found that cAMP up-regulates VLDLR and that the WT1 knockdown inhibits it. Results of ChIP assays revealed that cAMP increases the recruitment of WT1 to the promoter region of the VLDLR gene, indicating that WT1 regulates VLDLR expression. Moreover, VLDLR knockdown inhibited cAMP-induced LA, and VLDLR overexpression reverted the suppression of LA caused by the WT1 knockdown. Taken together, our results indicate that WT1 enhances lipid storage by up-regulating VLDLR expression in human ESCs during decidualization.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| |
Collapse
|
25
|
Fu Z, Sun Y, Cakir B, Tomita Y, Huang S, Wang Z, Liu CH, S. Cho S, Britton W, S. Kern T, Antonetti DA, Hellström A, E.H. Smith L. Targeting Neurovascular Interaction in Retinal Disorders. Int J Mol Sci 2020; 21:E1503. [PMID: 32098361 PMCID: PMC7073081 DOI: 10.3390/ijms21041503] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
The tightly structured neural retina has a unique vascular network comprised of three interconnected plexuses in the inner retina (and choroid for outer retina), which provide oxygen and nutrients to neurons to maintain normal function. Clinical and experimental evidence suggests that neuronal metabolic needs control both normal retinal vascular development and pathological aberrant vascular growth. Particularly, photoreceptors, with the highest density of mitochondria in the body, regulate retinal vascular development by modulating angiogenic and inflammatory factors. Photoreceptor metabolic dysfunction, oxidative stress, and inflammation may cause adaptive but ultimately pathological retinal vascular responses, leading to blindness. Here we focus on the factors involved in neurovascular interactions, which are potential therapeutic targets to decrease energy demand and/or to increase energy production for neovascular retinal disorders.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Steve S. Cho
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - William Britton
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Timothy S. Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA 92697, USA;
| | - David A. Antonetti
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Göteborg, Sweden;
| | - Lois E.H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| |
Collapse
|
26
|
The Drosophila melanogaster as Genetic Model System to Dissect the Mechanisms of Disease that Lead to Neurodegeneration in Adrenoleukodystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:145-159. [PMID: 33417213 DOI: 10.1007/978-3-030-60204-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drosophila melanogaster is the most successful genetic model organism to study different human disease with a recent increased popularity to study neurological disorders. Drosophila melanogaster has a complex yet well-defined brain with defined anatomical regions with specific functions. The neuronal network in the adult brain has a structural organization highly similar to human neurons, but in a brain that is much more amenable for complex analyses. The availability of sophisticated genetic tools to study neurons permits to examine neuronal functions at the single cell level in the whole brain by confocal imaging, which does not require sections. Thus, Drosophila has been used to successfully study many neurological disorders such as Parkinson's disease and has been recently adopted to understand the complex networks leading to neurological disorders with metabolic origins such as Leigh disease and X-linked adrenoleukodystrophy (X-ALD).In this review, we will describe the genetic tools available to study neuronal structures and functions and also illustrate some limitations of the system. Finally, we will report the experimental efforts that in the past 10 years have established Drosophila melanogaster as an excellent model organism to study neurodegenerative disorders focusing on X-ALD.
Collapse
|
27
|
Yakah W, Singh P, Perides G, Brown J, Freedman SD, Martin CR. Developmental Accretion of Docosahexaenoic Acid Is Independent of Fatty Acid Transporter Expression in Brain and Lung Tissues of C57BL/6 and Fat1 Mice. J Nutr 2019; 149:1724-1731. [PMID: 31179494 PMCID: PMC6768804 DOI: 10.1093/jn/nxz074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/21/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Developmental expression of fatty acid transporters and their role in polyunsaturated fatty acid concentrations in the postnatal period have not been evaluated. OBJECTIVE We hypothesized that transporter expression is developmentally regulated, tissue-specific, and that expression can modulate fatty acid accretion independently of diet. METHODS Brain and lung transporter expression were quantified in C57BL/6 wild-type (WT) and Fat1 mice. Pups were dam-fed until day 21. Dams were fed AIN-76A 10% corn oil to represent a typical North American/European diet. After weaning, mice were fed the same diet as dams. Gene expression of Fatp1, Fatp4, Fabp5, and Fat/cd36 was quantified by quantitative reverse transcriptase-polymerase chain reaction. Fatty acid concentrations were measured by GC-MS. RESULTS Brain docosahexaenoic acid (DHA) concentrations increased from day 3 to day 28 in both genotypes, with higher concentrations at days 3 and 14 in Fat1 than in WT mice [median (IQR)]: 10.7 (10.6-11.2) mol% compared with 6.6 (6.4-7.2) mol% and 12.5 (12.4-12.9) mol% compared with 8.9 (8.7-9.1) mol%, respectively; P < 0.05). During DHA accrual, transporter expression decreased. Fold changes in brain Fatp4, Fabp5, and Fat/cd36 were inversely correlated with fold changes in brain DHA concentrations in Fat1 relative to WT mice (ρ = -0.85, -0.75, and -0.78, respectively; P ≤ 0.001). Lung DHA concentrations were unchanged across the 3 time points for both genotypes. Despite unchanging DHA concentrations, there was increased expression of Fatp1 at days 14 and 28 (5-fold), Fatp4 at day 14 (2.3-fold), and Fabp5 at day 14 (3.8-fold) relative to day 3 in Fat1 mice. In WT mice, Fatp1 increased almost 5-fold at day 28 relative to day 3. There was no correlation between lung transporters and DHA concentrations in Fat1 relative to WT mice. CONCLUSIONS Development of fatty acid transporter expression in C57BL/6 WT and Fat1 mice is genotype and tissue specific. Further, postnatal accretion of brain DHA appears independent of transporter status, with tissue concentrations representing dietary contributions.
Collapse
Affiliation(s)
- William Yakah
- Department of Neuroscience, Michigan State University, East Lansing, MI
| | | | | | | | - Steven D Freedman
- Division of Gastroenterology, Boston, MA,Division of Translational Research, Boston, MA
| | - Camilia R Martin
- Division of Translational Research, Boston, MA,Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA,Address correspondence to CRM (e-mail: )
| |
Collapse
|
28
|
McKillop IH, Girardi CA, Thompson KJ. Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell Signal 2019; 62:109336. [PMID: 31170472 DOI: 10.1016/j.cellsig.2019.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023]
Abstract
Fatty acid binding proteins (FABPs) are small, water soluble proteins that bind long chain fatty acids and other biologically active ligands to facilitate intracellular localization. Twelve FABP family members have been identified to date, with 10 isoforms expressed in humans. Functionally, FABPs are important in fatty acid metabolism and transport, with distinct family members having the capacity to influence gene transcription. Expression of FABPs is usually cell/tissue specific to one predominant FABP family member. Dysregulation of FABP expression can occur through genetic mutation and/or environmental-lifestyle influences. In addition to intracellular function, exogenous, circulating FABP expression can occur and is associated with specific disease states such as insulin resistance. A role for FABPs is increasingly being reported in tumor biology with elevated exogenous FABP expression being associated with tumor progression and invasiveness. However, a less clear role has been appreciated for dysregulated FABP expression during cell transformation and early expansion.
Collapse
Affiliation(s)
- Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Cara A Girardi
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA.
| |
Collapse
|
29
|
Lipid Accumulation and Chronic Kidney Disease. Nutrients 2019; 11:nu11040722. [PMID: 30925738 PMCID: PMC6520701 DOI: 10.3390/nu11040722] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and hyperlipidemia are the most prevalent independent risk factors of chronic kidney disease (CKD), suggesting that lipid accumulation in the renal parenchyma is detrimental to renal function. Non-esterified fatty acids (also known as free fatty acids, FFA) are especially harmful to the kidneys. A concerted, increased FFA uptake due to high fat diets, overexpression of fatty acid uptake systems such as the CD36 scavenger receptor and the fatty acid transport proteins, and a reduced β-oxidation rate underlie the intracellular lipid accumulation in non-adipose tissues. FFAs in excess can damage podocytes, proximal tubular epithelial cells and the tubulointerstitial tissue through various mechanisms, in particular by boosting the production of reactive oxygen species (ROS) and lipid peroxidation, promoting mitochondrial damage and tissue inflammation, which result in glomerular and tubular lesions. Not all lipids are bad for the kidneys: polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to help lag the progression of chronic kidney disease (CKD). Lifestyle interventions, especially dietary adjustments, and lipid-lowering drugs can contribute to improve the clinical outcome of patients with CKD.
Collapse
|
30
|
Döring S, Seeßle J, Gan-Schreier H, Javaheri B, Jiao L, Cheng Y, Tuma-Kellner S, Liebisch G, Herrmann T, Stremmel W, Chamulitrat W. Elevation of blood lipids in hepatocyte-specific fatty acid transport 4-deficient mice fed with high glucose diets. Mol Genet Metab 2019; 126:30-38. [PMID: 30497809 DOI: 10.1016/j.ymgme.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 11/20/2022]
Abstract
Fatty acid transport protein4 (FATP4) is upregulated in acquired and central obesity and its polymorphisms are associated with blood lipids and insulin resistance. Patients with FATP4 mutations and mice with global FATP4 deletion exhibit skin abnormalities characterized as ischthyosis prematurity syndrome (IPS). Cumulating data have shown that an absence of FATP4 increases the levels of cellular triglycerides (TG). However, FATP4 role and consequent lipid and TG metabolism in the hepatocyte is still elusive. Here, hepatocyte-specific FATP4 deficient (Fatp4L-/-) mice were generated. When fed with chow, these mutant mice displayed no phenotypes regarding blood lipids. However when fed low-fat/high-sugar (HS) or high-fat/high-sugar (HFS) for 12 weeks, Fatp4L-/- mice showed a significant increase of plasma TG, free fatty acids and glycerol when compared with diet-fed control mice. Interestingly, Fatp4L-/- mice under HS diet had lower body and liver weights and they were not protected from HFS-induced body weight gain and hepatic steatosis. Male mutant mice were more sensitive to HFS diet than female mutant mice. Glucose intolerance was observed only in female Fatp4L-/- mice fed with HS diet. Lipidomics analyses revealed that hepatic phospholipids were not disturbed in mutant mice under both diets. Thus, hepatic FATP4 deletion rendered an increase of blood lipids including glycerol indicating a preferential fatty-acid channeling to TG pools that are specifically available for lipolysis. Our results imply a possible risk of hyperlipidemia as a result of abnormal metabolism in liver in IPS patients with FATP4 mutations who consume high-sugar diets.
Collapse
Affiliation(s)
- Stephan Döring
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Jessica Seeßle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Bahador Javaheri
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Li Jiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Yuting Cheng
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746 Heide, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Van Den Brink DM, Cubizolle A, Chatelain G, Davoust N, Girard V, Johansen S, Napoletano F, Dourlen P, Guillou L, Angebault-Prouteau C, Bernoud-Hubac N, Guichardant M, Brabet P, Mollereau B. Physiological and pathological roles of FATP-mediated lipid droplets in Drosophila and mice retina. PLoS Genet 2018; 14:e1007627. [PMID: 30199545 PMCID: PMC6147681 DOI: 10.1371/journal.pgen.1007627] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/20/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence suggests that dysregulation of lipid metabolism is associated with neurodegeneration in retinal diseases such as age-related macular degeneration and in brain disorders such as Alzheimer’s and Parkinson’s diseases. Lipid storage organelles (lipid droplets, LDs), accumulate in many cell types in response to stress, and it is now clear that LDs function not only as lipid stores but also as dynamic regulators of the stress response. However, whether these LDs are always protective or can also be deleterious to the cell is unknown. Here, we investigated the consequences of LD accumulation on retinal cell homeostasis under physiological and stress conditions in Drosophila and in mice. In wild-type Drosophila, we show that dFatp is required and sufficient for expansion of LD size in retinal pigment cells (RPCs) and that LDs in RPCs are required for photoreceptor survival during aging. Similarly, in mice, LD accumulation induced by RPC-specific expression of human FATP1 was non-toxic and promoted mitochondrial energy metabolism in RPCs and non-autonomously in photoreceptor cells. In contrast, the inhibition of LD accumulation by dFatp knockdown suppressed neurodegeneration in Aats-metFBDrosophila mutants, which carry elevated levels of reactive oxygen species (ROS). This suggests that abnormal turnover of LD may be toxic for photoreceptors cells of the retina under oxidative stress. Collectively, these findings indicate that FATP-mediated LD formation in RPCs promotes RPC and neuronal homeostasis under physiological conditions but could be deleterious for the photoreceptors under pathological conditions. Lipids are major cell constituents and are present in the membranes, as free lipids in the cytoplasm, or stored in vesicles called lipid droplets (LDs). Under conditions of stress, lipids stored in LDs can be released to serve as substrates for energy metabolism by mitochondria. However, lipid storage is dysregulated in many degenerative disorders such as age-related macular degeneration, Parkinson’s and Alzheimer’s diseases. Thus, it is unclear whether accumulation of LDs is protective or toxic for neuronal cells. To address this question, we examined the consequences of removal or enforced LD accumulation on the health of retinal cells in flies and mice. Like humans, fly and mouse retinas contain retinal pigment cells (RPC) that support the functions of neighboring photoreceptor cells. We found that overexpression of the fatty acid transport protein (FATP) in RPCs induced accumulation of LDs in both transgenic flies and mice. Moreover, LD accumulation in RPCs was not harmful for juxtaposed photoreceptors during aging, but was toxic under stress conditions. We propose that lipid storage promotes cellular communication that affects photoreceptor health.
Collapse
Affiliation(s)
- Daan M. Van Den Brink
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Aurélie Cubizolle
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Gilles Chatelain
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Nathalie Davoust
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Victor Girard
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Simone Johansen
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Francesco Napoletano
- Molecular Oncology Unit, Department of Life Sciences, University of Trieste c/o Laboratorio Nazionale CIB, Area Science Park, Trieste, Italy
| | - Pierre Dourlen
- Institut Pasteur de Lille; Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases; University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Laurent Guillou
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Claire Angebault-Prouteau
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- INSERM U1046, UMR CNRS 9214, Université de Montpellier, CHRU de Montpellier, Montpellier, France
| | - Nathalie Bernoud-Hubac
- Univ Lyon, CarMeN laboratory, INSA Lyon, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69621, Villeurbanne, France
| | - Michel Guichardant
- Univ Lyon, CarMeN laboratory, INSA Lyon, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69621, Villeurbanne, France
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Bertrand Mollereau
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
- * E-mail:
| |
Collapse
|
32
|
Adrain C, Henis-Korenblit S, Domingos PM. Meeting Report - proteostasis in Ericeira. J Cell Sci 2018; 131:131/5/jcs216150. [PMID: 29496898 DOI: 10.1242/jcs.216150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was a sunny Ericeira, in Portugal, that received the participants of the EMBO Workshop on Proteostasis, from 17 to 21 November 2017. Most participants gave talks or presented posters concerning their most recent research results, and lively scientific discussions occurred against the backdrop of the beautiful Atlantic Ocean.Proteostasis is the portmanteau of the words protein and homeostasis, and it refers to the biological mechanisms controlling the biogenesis, folding, trafficking and degradation of proteins in cells. An imbalance in proteostasis can lead to the accumulation of misfolded proteins or excessive protein degradation, and is associated with many human diseases. A wide variety of research approaches are used to identify the mechanisms that regulate proteostasis, typically involving different model organisms (yeast, invertebrates or mammalian systems) and different methodologies (genetics, biochemistry, biophysics, structural biology, cell biology and organismal biology). Around 140 researchers in the proteostasis field met in the Hotel Vila Galé, Ericeira, Portugal for the EMBO Workshop in Proteostasis, organized by Pedro Domingos (ITQB-NOVA, Oeiras, Portugal) and Colin Adrain (IGC, Oeiras, Portugal). In this report, we attempt to review and integrate the ideas that emerged at the workshop. Owing to space restrictions, we could not cover all talks or posters and we apologize to the colleagues whose presentations could not be discussed.
Collapse
Affiliation(s)
- Colin Adrain
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
33
|
Lopes-Coelho F, André S, Félix A, Serpa J. Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol 2018; 462:93-106. [PMID: 28119133 DOI: 10.1016/j.mce.2017.01.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
The cellular components of microenvironment are partners of cancer cells, sharing soluble factors and organic molecules to accomplish tumor energy and biomass demands. We tested the role of fibroblasts in fatty acids metabolism in breast cancer, addressing fatty acid synthase (FASN) expression and activity, the expression of lipids chaperons (FABPs) and transporters (FATPs) and lipids cellular content. We showed that the amount of lipids increased in cancer cells exposed to fibroblasts conditioned media, showing that lipids transfer is crucial in this metabolic cross-talk. Accordingly, it was seen in those cancer cells a concomitant decrease in the expression of FABP2 and FABP3 and an increase in FATP1 expression, whose function is independent of FABPs. The in vivo experiment corroborates the role of CAFs in tumor growth. Our study is one more step toward the understanding of metabolic dynamics between cancer cells and CAFs, disclosing FATP1 as a putative target to disturb the transfer of lipids between CAFs and breast cancer cells.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Saudade André
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Ana Félix
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal.
| |
Collapse
|
34
|
Gellrich L, Merk D. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor Modulation in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
Liu L, MacKenzie KR, Putluri N, Maletić-Savatić M, Bellen HJ. The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D. Cell Metab 2017; 26:719-737.e6. [PMID: 28965825 PMCID: PMC5677551 DOI: 10.1016/j.cmet.2017.08.024] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/21/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023]
Abstract
Elevated reactive oxygen species (ROS) induce the formation of lipids in neurons that are transferred to glia, where they form lipid droplets (LDs). We show that glial and neuronal monocarboxylate transporters (MCTs), fatty acid transport proteins (FATPs), and apolipoproteins are critical for glial LD formation. MCTs enable glia to secrete and neurons to absorb lactate, which is converted to pyruvate and acetyl-CoA in neurons. Lactate metabolites provide a substrate for synthesis of fatty acids, which are processed and transferred to glia by FATP and apolipoproteins. In the presence of high ROS, inhibiting lactate transfer or lowering FATP or apolipoprotein levels decreases glial LD accumulation in flies and in primary mouse glial-neuronal cultures. We show that human APOE can substitute for a fly glial apolipoprotein and that APOE4, an Alzheimer's disease susceptibility allele, is impaired in lipid transport and promotes neurodegeneration, providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Lucy Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin R MacKenzie
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology and Advanced Technology Cor, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletić-Savatić
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Cubizolle A, Guillou L, Mollereau B, Hamel CP, Brabet P. Fatty acid transport protein 1 regulates retinoid metabolism and photoreceptor development in mouse retina. PLoS One 2017; 12:e0180148. [PMID: 28672005 PMCID: PMC5495297 DOI: 10.1371/journal.pone.0180148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/09/2017] [Indexed: 01/22/2023] Open
Abstract
In retinal pigment epithelium (RPE), RPE65 catalyzes the isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol in the visual cycle and controls the rhodopsin regeneration rate. However, the mechanisms by which these processes are regulated are still unclear. Fatty Acid Transport Protein 1 (FATP1) is involved in fatty acid uptake and lipid metabolism in a variety of cell types. FATP1 co-localizes with RPE65 in RPE and inhibits its isomerase activity in vitro. Here, we further investigated the role of FATP1 in the visual cycle using transgenic mice that overexpress human FATP1 specifically in the RPE (hFATP1TG mice). The mice displayed no delay in the kinetics of regeneration of the visual chromophore 11-cis-retinal after photobleaching and had no defects in light sensitivity. However, the total retinoid content was higher in the hFATP1TG mice than in wild type mice, and the transgenic mice also displayed an age-related accumulation (up to 40%) of all-trans-retinal and retinyl esters that was not observed in control mice. Consistent with these results, hFATP1TG mice were more susceptible to light-induced photoreceptor degeneration. hFATP1 overexpression also induced an ~3.5-fold increase in retinosome autofluorescence, as measured by two-photon microscopy. Interestingly, hFATP1TG retina contained ~25% more photoreceptor cells and ~35% longer outer segments than wild type mice, revealing a non-cell-autonomous effect of hFATP1 expressed in the RPE. These data are the first to show that FATP1-mediated fatty acid uptake in the RPE controls both retinoid metabolism in the outer retina and photoreceptor development.
Collapse
Affiliation(s)
- Aurélie Cubizolle
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Laurent Guillou
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Bertrand Mollereau
- Laboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Philippe Brabet
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| |
Collapse
|
37
|
Daniele JR, Baqri RM, Kunes S. Analysis of axonal trafficking via a novel live-imaging technique reveals distinct hedgehog transport kinetics. Biol Open 2017; 6:714-721. [PMID: 28298319 PMCID: PMC5450320 DOI: 10.1242/bio.024075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Drosophila melanogaster (Dmel) eye is an ideal model to study development, intracellular signaling, behavior, and neurodegenerative disease. Interestingly, dynamic data are not commonly employed to investigate eye-specific disease models. Using axonal transport of the morphogen Hedgehog (Hh), which is integral to Dmel eye-brain development and implicated in stem cell maintenance and neoplastic disease, we demonstrate the ability to comprehensively quantify and characterize its trafficking in various neuron types and a neurodegeneration model in live early third-instar larval Drosophila. We find that neuronal Hh, whose kinetics have not been reported previously, favors fast anterograde transport and varies in speed and flux with respect to axonal position. This suggests distinct trafficking pathways along the axon. Lastly, we report abnormal transport of Hh in an accepted model of photoreceptor neurodegeneration. As a technical complement to existing eye-specific disease models, we demonstrate the ability to directly visualize transport in real time in intact and live animals and track secreted cargoes from the axon to their release points. Particle dynamics can now be precisely calculated and we posit that this method could be conveniently applied to characterizing disease pathogenesis and genetic screening in other established models of neurodegeneration. Summary: A novel method to directly visualize Hedgehog transport in the photoreceptor neurons of living animals offers unprecedented positional and temporal detail of complex phenotypes in real time.
Collapse
Affiliation(s)
- Joseph R Daniele
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Rehan M Baqri
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sam Kunes
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
38
|
Weiler A, Volkenhoff A, Hertenstein H, Schirmeier S. Metabolite transport across the mammalian and insect brain diffusion barriers. Neurobiol Dis 2017; 107:15-31. [PMID: 28237316 DOI: 10.1016/j.nbd.2017.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/02/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
The nervous system in higher vertebrates is separated from the circulation by a layer of specialized endothelial cells. It protects the sensitive neurons from harmful blood-derived substances, high and fluctuating ion concentrations, xenobiotics or even pathogens. To this end, the brain endothelial cells and their interlinking tight junctions build an efficient diffusion barrier. A structurally analogous diffusion barrier exists in insects, where glial cell layers separate the hemolymph from the neural cells. Both types of diffusion barriers, of course, also prevent influx of metabolites from the circulation. Because neuronal function consumes vast amounts of energy and necessitates influx of diverse substrates and metabolites, tightly regulated transport systems must ensure a constant metabolite supply. Here, we review the current knowledge about transport systems that carry key metabolites, amino acids, lipids and carbohydrates into the vertebrate and Drosophila brain and how this transport is regulated. Blood-brain and hemolymph-brain transport functions are conserved and we can thus use a simple, genetically accessible model system to learn more about features and dynamics of metabolite transport into the brain.
Collapse
Affiliation(s)
- Astrid Weiler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Anne Volkenhoff
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Helen Hertenstein
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany.
| |
Collapse
|
39
|
Hazegh KE, Reis T. A Buoyancy-based Method of Determining Fat Levels in Drosophila. J Vis Exp 2016. [PMID: 27842367 DOI: 10.3791/54744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Drosophila melanogaster is a key experimental system in the study of fat regulation. Numerous techniques currently exist to measure levels of stored fat in Drosophila, but most are expensive and/or laborious and have clear limitations. Here, we present a method to quickly and cheaply determine organismal fat levels in L3 Drosophila larvae. The technique relies on the differences in density between fat and lean tissues and allows for rapid detection of fat and lean phenotypes. We have verified the accuracy of this method by comparison to body fat percentage as determined by neutral lipid extraction and gas chromatography coupled with mass spectrometry (GCMS). We furthermore outline detailed protocols for the collection and synchronization of larvae as well as relevant experimental recipes. The technique presented below overcomes the major shortcomings in the most widely used lipid quantitation methods and provides a powerful way to quickly and sensitively screen L3 larvae for fat regulation phenotypes while maintaining the integrity of the larvae. This assay has wide applications for the study of metabolism and fat regulation using Drosophila.
Collapse
Affiliation(s)
- Kelsey E Hazegh
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| | - Tânia Reis
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus;
| |
Collapse
|
40
|
Black PN, Ahowesso C, Montefusco D, Saini N, DiRusso CC. Fatty Acid Transport Proteins: Targeting FATP2 as a Gatekeeper Involved in the Transport of Exogenous Fatty Acids. MEDCHEMCOMM 2016; 7:612-622. [PMID: 27446528 DOI: 10.1039/c6md00043f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fatty acid transport proteins (FATP) are classified as members of the Solute Carrier 27 (Slc27) family of proteins based on their ability to function in the transport of exogenous fatty acids. These proteins, when localized to the plasma membrane or at intracellular membrane junctions with the endoplasmic reticulum, function as a gate in the regulated transport of fatty acids and thus represent a therapeutic target to delimit the acquisition of fatty acids that contribute to disease as in the case of fatty acid overload. To date, FATP1, FATP2, and FATP4 have been used as targets in the selection of small molecule inhibitors with the goal of treating insulin resistance and attenuating dietary absorption of fatty acids. Several studies targeting FATP1 and FATP4 were based on the intrinsic acyl CoA synthetase activity of these proteins and not on transport directly. While several classes of compounds were identified as potential inhibitors of fatty acid transport, in vivo studies using a mouse model failed to provide evidence these compounds were effective in blocking or attenuating fatty acid transport. Studies targeting FATP2 employed a naturally occurring splice variant, FATP2b, which lacks intrinsic acyl CoA synthetase due to the deletion of exon 3, yet is fully functional in fatty acid transport. These studies identified two compounds, 5'-bromo-5-phenyl-spiro[3H-1,3,4-thiadiazole-2,3'-indoline]-2'-one), now referred to as Lipofermata, and 2-benzyl-3-(4-chlorophenyl)-5-(4-nitrophenyl)pyrazolo[1,5-a]pyrimidin-7(4H)-one, now called Grassofermata, that are effective fatty acid transport inhibitors both in vitro using a series of model cell lines and in vivo using a mouse model.
Collapse
Affiliation(s)
- Paul N Black
- Department of Biochemistry, University of Nebraska, Lincoln, NE
| | | | | | - Nipun Saini
- Department of Biochemistry, University of Nebraska, Lincoln, NE
| | | |
Collapse
|
41
|
Sivachenko A, Gordon HB, Kimball SS, Gavin EJ, Bonkowsky JL, Letsou A. Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases. Dis Model Mech 2016; 9:377-87. [PMID: 26893370 PMCID: PMC4852500 DOI: 10.1242/dmm.022244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS) double mutant. We show that the Drosophila bubblegum(bgm) and double bubble(dbb) genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD), a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivois causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6(encoding a very-long-chain ACS), a human homolog of bgm and dbb.
Collapse
Affiliation(s)
- Anna Sivachenko
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hannah B Gordon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Suzanne S Kimball
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin J Gavin
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
42
|
Hudson SL, Doke DA, Gohlke JM. The effect of a low iron diet and early life methylmercury exposure in Daphnia pulex. Food Chem Toxicol 2016; 89:112-9. [PMID: 26806633 DOI: 10.1016/j.fct.2016.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/04/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022]
Abstract
Iron (Fe) deficiency increases risk for adverse health outcomes in humans; however little is known about the potential interaction with methylmercury (MeHg) exposure. Studies testing multiple stressor hypotheses are expensive and time consuming in mammalian model systems; therefore, determining relevance of alternative models is important. Daphnia pulex were fed standard or low-Fe diets of freshwater algae, Ankistrodesmus falcatus. MeHgCl (1600 ng/L) or vehicle was added to culture media for 24 h during early life, and the combinatorial effects of a low-Fe diet and MeHg exposure on lifespan, maturation time, and reproduction were evaluated. Lipid storage effects were measured using image analysis of Oil Red O staining and triacylglyceride quantification. Our results show a dose-dependent reduction in lifespan in D. pulex fed low Fe diets. Lipid analysis suggests an interactive effect of diet and MeHg exposure, with MeHg exposure increasing lipid storage in D. pulex fed a low-Fe diet. These findings suggest the effects of dietary iron intake and early life MeHg exposure in D. pulex may be mediated by changes in energetics that result in differential lipid storage. Therefore, lipid storage in D. pulex may be a useful screen for detecting long-term effects of multiple stressors early in life.
Collapse
Affiliation(s)
- Sherri L Hudson
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dzigbodi A Doke
- Department of Environment and Resource Studies, University for Development Studies, Wa, Ghana
| | - Julia M Gohlke
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|