1
|
Ayothiraman S, Murugesan N, Sethi G. Critical analysis of analytical techniques developed for statins in biological fluids, environmental and fermentation samples. Crit Rev Biotechnol 2024:1-31. [PMID: 39433471 DOI: 10.1080/07388551.2024.2412128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Statins are the most prescribed drug for regulating the high cholesterol level in the blood, which can lead to severe complications, such as cardiovascular diseases and other health complications. A wide range of analytical techniques have been employed for the quantification of statins from various origins, including fermentation derived (lovastatin, pravastatin, and compactin), semi-synthetic (simvastatin), and synthetic (atorvastatin, rosuvastatin, and fluvastatin) routes. The presence of more than one structural form and structural analogue generated in the biosynthesis pathway, as well as reaction intermediates and macromolecules in the clinical sample, complicates the quantification of statins. Furthermore, significant concentrations of statins in environmental samples pose serious health and ecology hazards, and estimating statins in those diluted samples is extremely difficult. On the other hand, the: cost, accurate estimation of the desired one from other structural forms, sample complexity, time, limits of detection and quantification, were major criteria distinguishing the usability of each technique. As a result, the current manuscript focuses on analytical techniques such as molecular spectroscopy (normal and derivatives UV-Visible spectrophotometer), chromatography (TLC, HP-TLC, HPLC, GC, swing column, micellar, and supercritical fluid), mass spectroscopy (HPLC-MS/MS and GC-MS/MS), sequential flow injection, capillary electrophoresis, and cyclic voltammetry, as well as their: optimal operating conditions, limits of detection and quantification, advancements, and limitations. Furthermore, various online and offline sample preparations (precipitation, solid phase extraction, liquid-liquid extraction, and micellar extraction) have been highlighted as an essential pretreatment technique to avoid the interference caused by structural analogues and other macromolecules. The greener and more sustainable concepts used in analytical approaches for the quantification statins are also highlighted with current advancements.
Collapse
Affiliation(s)
- Seenivasan Ayothiraman
- Biochemical Engineering Research Group, Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India
| | - Nithya Murugesan
- Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Gautam Sethi
- NUS Centre for Cancer Research, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Dang Y, Wang Y, Wei J, Zhang H, Yang Q, Wang B, Li J, Ye C, Chen Y, Han P, Jin X, Wang J, Bao X, Liu H, Ma H, Zhang L, Cheng L, Dong Y, Bai Y, Li Y, Lei Y, Xu Z, Zhang F, Ye W. 25-Hydroxycholesterol inhibits Hantavirus infection by reprogramming cholesterol metabolism. Free Radic Biol Med 2024; 224:S0891-5849(24)00623-3. [PMID: 39209137 DOI: 10.1016/j.freeradbiomed.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Hantavirus causes two types of acute diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. It is a major health concern due to its high mortality and lack of effective treatment. Type I interferon treatment has been suggested to be effective against hantavirus when treated in advance. Interferons induce multiple interferon-stimulated genes (ISGs), whose products are highly effective at resisting and controlling viruses. A product of ISGs, the enzyme cholesterol 25-hydroxylase (CH25H), catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC). 25HC can inhibit multiple enveloped-virus infections, but the mechanism is largely unknown, and whether 25HC plays an important role in regulating hantavirus remains unexplored. In this study, we show that Hantaan virus (HTNV), the prototype hantavirus, induced CH25H gene in infected cells. Overexpression of CH25H and treatment with 25HC, inhibited HTNV infection, possibly by lowering 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase, HMGCR), which inhibits cholesterol biosynthesis. In addition, cholesterol-lowering drugs such as HMGCR-targeting statins have potent hantavirus inhibitory effects. Our results indicate that 25HC and some statins are potential antiviral agents effective against hantavirus infections. This study provides evidence that targeting cholesterol metabolism is promising in developing specific hantavirus antivirals and indicates the possibility of repurposing FDA-approved cholesterol-lowering drug, statins for treating hantavirus infection.
Collapse
Affiliation(s)
- Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Wei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Center for Disease Control and Prevention of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qiqi Yang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bin Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, China
| | - Jia Li
- Department of Neurology, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yang Chen
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Peijun Han
- Department of Aerospace Hygiene, School of Aerospace Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, China
| | - Xiaolei Jin
- Cadet Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an 710032, China
| | - Jia Wang
- Cadet Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohui Bao
- Cadet Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an 710032, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yinlan Bai
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yinghui Li
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
3
|
Dong M, Li M, Guo Y, Xu S, An K. U-shaped association between low-density lipoprotein cholesterol levels and risk of futile reperfusion mediated by stroke-associated pneumonia in acute ischemic stroke after endovascular thrombectomy. Clin Neurol Neurosurg 2024; 243:108399. [PMID: 38901376 DOI: 10.1016/j.clineuro.2024.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Futile reperfusion (FR) is becoming a major challenge in the treatment of patients with acute ischaemic stroke (AIS) undergoing endovascular thrombectomy. This study aims to determine the dose-response relationship between low-density lipoprotein cholesterol (LDL-C) levels and the risk of FR in patients with AIS undergoing endovascular thrombectomy and to investigate potential mediators. METHODS A total of 614 patients with AIS undergoing endovascular thrombectomy were enrolled and divided into five groups according to quintiles of LDL-C levels: Q1(≤2.27 mmol/l), Q2 (2.27-2.5 mmol/l), Q3 (2.5-2.59 mmol/l), Q4 (2.59-2.97 mmol/l) and Q5 (≥2.97 mmol/l). Associations between LDL-C levels and the risk of FR and stroke-associated pneumonia (SAP) were estimated using multivariate logistic regression models. Restricted cubic spline curves were used to describe the dose-response relationship between LDL-C levels and the risk of FR and SAP. Mediation effect analysis was performed in R software with 100 bootstrap samples. RESULTS After adjustment for confounders, both low and high LDL-C levels were significantly associated with a higher risk of FR compared with the reference group (Q3). We observed a U-shaped association between LDL-C levels and the risk of FR (P for nonlinear =0.012). Mediation analysis showed that the association between LDL-C levels and the risk of FR was 29.7 % (95 % CI: 2.96 %-75.0 %, P=0.02) mediated by SAP. CONCLUSIONS We found a U-shaped association between LDL-C levels and the risk of FR that was mediated by SAP. Clinicians should note that in AIS patients undergoing endovascular thrombectomy, lower LDL-C levels are not always better.
Collapse
Affiliation(s)
- Meijuan Dong
- Department of Endocrinology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian 223300, China
| | - Mingchao Li
- Department of Neurology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian 223300, China
| | - Yongtao Guo
- Department of Neurology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian 223300, China
| | - Song Xu
- Department of Neurology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian 223300, China
| | - Kun An
- Department of Neurology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian 223300, China.
| |
Collapse
|
4
|
Muzammil K, Sabah Ghnim Z, Saeed Gataa I, Fawzi Al-Hussainy A, Ali Soud N, Adil M, Ali Shallan M, Yasamineh S. NRF2-mediated regulation of lipid pathways in viral infection. Mol Aspects Med 2024; 97:101279. [PMID: 38772081 DOI: 10.1016/j.mam.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | | | | | | | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
5
|
Cochet M, Piumi F, Gorna K, Berry N, Gonzalez G, Danckaert A, Aulner N, Blanchet O, Zientara S, Donadeu FX, Munier-Lehmann H, Richardson J, Benchoua A, Coulpier M. An equine iPSC-based phenotypic screening platform identifies pro- and anti-viral molecules against West Nile virus. Vet Res 2024; 55:32. [PMID: 38493182 PMCID: PMC10943879 DOI: 10.1186/s13567-024-01290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Outbreaks of West Nile virus (WNV) occur periodically, affecting both human and equine populations. There are no vaccines for humans, and those commercialised for horses do not have sufficient coverage. Specific antiviral treatments do not exist. Many drug discovery studies have been conducted, but since rodent or primate cell lines are normally used, results cannot always be transposed to horses. There is thus a need to develop relevant equine cellular models. Here, we used induced pluripotent stem cells to develop a new in vitro model of WNV-infected equine brain cells suitable for microplate assay, and assessed the cytotoxicity and antiviral activity of forty-one chemical compounds. We found that one nucleoside analog, 2'C-methylcytidine, blocked WNV infection in equine brain cells, whereas other compounds were either toxic or ineffective, despite some displaying anti-viral activity in human cell lines. We also revealed an unexpected proviral effect of statins in WNV-infected equine brain cells. Our results thus identify a potential lead for future drug development and underscore the importance of using a tissue- and species-relevant cellular model for assessing the activity of antiviral compounds.
Collapse
Affiliation(s)
- Marielle Cochet
- UMR VIROLOGIE, Laboratoire de Santé Animale, INRAE, Anses, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - François Piumi
- UMR VIROLOGIE, Laboratoire de Santé Animale, INRAE, Anses, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Kamila Gorna
- UMR VIROLOGIE, Laboratoire de Santé Animale, INRAE, Anses, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Noémie Berry
- UMR VIROLOGIE, Laboratoire de Santé Animale, INRAE, Anses, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Gaëlle Gonzalez
- UMR VIROLOGIE, Laboratoire de Santé Animale, INRAE, Anses, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Anne Danckaert
- UTechS Photonics Bioimaging/C2RT, Institut Pasteur Paris, Université Paris Cité, 75015, Paris, France
| | - Nathalie Aulner
- UTechS Photonics Bioimaging/C2RT, Institut Pasteur Paris, Université Paris Cité, 75015, Paris, France
| | - Odile Blanchet
- Centre de Ressources Biologiques, BB-0033-00038, CHU Angers, 49933, Angers, France
| | - Stéphan Zientara
- UMR VIROLOGIE, Laboratoire de Santé Animale, INRAE, Anses, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Francesc Xavier Donadeu
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Jennifer Richardson
- UMR VIROLOGIE, Laboratoire de Santé Animale, INRAE, Anses, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | | | - Muriel Coulpier
- UMR VIROLOGIE, Laboratoire de Santé Animale, INRAE, Anses, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
| |
Collapse
|
6
|
Zhang J, Zhu Y, Wang X, Wang J. 25-hydroxycholesterol: an integrator of antiviral ability and signaling. Front Immunol 2023; 14:1268104. [PMID: 37781400 PMCID: PMC10533924 DOI: 10.3389/fimmu.2023.1268104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Cholesterol, as an important component in mammalian cells, is efficient for viral entry, replication, and assembly. Oxysterols especially hydroxylated cholesterols are recognized as novel regulators of the innate immune response. The antiviral ability of 25HC (25-Hydroxycholesterol) is uncovered due to its role as a metabolic product of the interferon-stimulated gene CH25H (cholesterol-25-hydroxylase). With the advancement of research, the biological functions of 25HC and its structural functions have been interpreted gradually. Furthermore, the underlying mechanisms of antiviral effect of 25HC are not only limited to interferon regulation. Taken up by the special biosynthetic ways and structure, 25HC contributes to modulate not only the cholesterol metabolism but also autophagy and inflammation by regulating signaling pathways. The outcome of modulation by 25HC seems to be largely dependent on the cell types, viruses and context of cell microenvironments. In this paper, we review the recent proceedings on the regulatory effect of 25HC on interferon-independent signaling pathways related to its antiviral capacity and its putative underlying mechanisms.
Collapse
Affiliation(s)
- Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Xiaojia Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
7
|
Osuna-Ramos JF, Farfan-Morales CN, Cordero-Rivera CD, De Jesús-González LA, Reyes-Ruiz JM, Hurtado-Monzón AM, Palacios-Rápalo SN, Jiménez-Camacho R, Meraz-Ríos MA, Del Ángel RM. Cholesterol-Lowering Drugs as Potential Antivirals: A Repurposing Approach against Flavivirus Infections. Viruses 2023; 15:1465. [PMID: 37515153 PMCID: PMC10383882 DOI: 10.3390/v15071465] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Flaviviruses, including Dengue (DENV), Zika (ZIKV), and Yellow Fever (YFV) viruses, represent a significant global health burden. The development of effective antiviral therapies against these viruses is crucial to mitigate their impact. This study investigated the antiviral potential of the cholesterol-lowering drugs atorvastatin and ezetimibe in monotherapy and combination against DENV, ZIKV, and YFV. In vitro results demonstrated a dose-dependent reduction in the percentage of infected cells for both drugs. The combination of atorvastatin and ezetimibe showed a synergistic effect against DENV 2, an additive effect against DENV 4 and ZIKV, and an antagonistic effect against YFV. In AG129 mice infected with DENV 2, monotherapy with atorvastatin or ezetimibe significantly reduced clinical signs and increased survival. However, the combination of both drugs did not significantly affect survival. This study provides valuable insights into the potential of atorvastatin and ezetimibe as antiviral agents against flaviviruses and highlights the need for further investigations into their combined therapeutic effects.
Collapse
Affiliation(s)
- Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Unidad Cuajimalpa, Mexico City 05348, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), Veracruz Norte, Veracruz 91810, Mexico
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz 91090, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Ricardo Jiménez-Camacho
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Marco Antonio Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
8
|
Wang LK, Kuo YF, Westra J, Raji MA, Albayyaa M, Allencherril J, Baillargeon J. Association of Cardiovascular Medications With Adverse Outcomes in a Matched Analysis of a National Cohort of Patients With COVID-19. AMERICAN JOURNAL OF MEDICINE OPEN 2023; 9:100040. [PMID: 37207280 PMCID: PMC10032048 DOI: 10.1016/j.ajmo.2023.100040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
Background The use of statins, angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin II receptor blockers (ARBs), and anticoagulants may be associated with fewer adverse outcomes in COVID-19 patients. Methods Nested within a cohort of 800,913 patients diagnosed with COVID-19 between April 1, 2020 and June 24, 2021 from the Optum COVID-19 database, three case-control studies were conducted. Cases-defined as persons who: (1) were hospitalized within 30 days of COVID-19 diagnosis (n = 88,405); (2) were admitted to the intensive care unit (ICU)/received mechanical ventilation during COVID-19 hospitalization (n = 22,147); and (3) died during COVID-19 hospitalization (n = 2300)-were matched 1:1 using demographic/clinical factors with controls randomly selected from a pool of patients who did not experience the case definition/event. Medication use was based on prescription ≤90 days before COVID-19 diagnosis. Results Statin use was associated with decreased risk of hospitalization (adjusted odds ratio [aOR], 0.72; 95% confidence interval [95% CI], 0.69, 0.75) and ICU admission/mechanical ventilation (aOR, 0.90; 95% CI, 0.84, 0.97). ACEI/ARB use was associated with decreased risk of hospitalization (aOR, 0.67; 95% CI, 0.65, 0.70), ICU admission/mechanical ventilation (aOR, 0.92; 95% CI, 0.86, 0.99), and death (aOR, 0.60; 95% CI, 0.47, 0.78). Anticoagulant use was associated with decreased risk of hospitalization (aOR, 0.94; 95% CI, 0.89, 0.99) and death (aOR, 0.56; 95% CI, 0.41, 0.77). Interaction effects-in the model predicting hospitalization-were statistically significant for statins and ACEI/ARBs (P < .0001), statins and anticoagulants (P = .003), ACEI/ARBs and anticoagulants (P < .0001). An interaction effect-in the model predicting ventilator use/ICU-was statistically significant for statins and ACEI/ARBs (P = .002). Conclusions Statins, ACEI/ARBs, and anticoagulants were associated with decreased risks of the adverse outcomes under study. These findings may provide clinically relevant information regarding potential treatment for patients with COVID-19.
Collapse
Affiliation(s)
- Leonard K. Wang
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston
| | - Yong-Fang Kuo
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston
- Department of Internal Medicine, University of Texas Medical Branch, Galveston
| | - Jordan Westra
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston
| | - Mukaila A. Raji
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston
- Department of Internal Medicine, University of Texas Medical Branch, Galveston
| | - Mohanad Albayyaa
- Institute for Translational Sciences, University of Texas Medical Branch
| | - Joseph Allencherril
- Texas Heart Institute, Houston
- Section of Cardiology, Baylor College of Medicine, Houston, Texas
| | - Jacques Baillargeon
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston
| |
Collapse
|
9
|
Chen ZM, Gu HQ, Mo JL, Yang KX, Jiang YY, Yang X, Wang CJ, Xu J, Meng X, Jiang Y, Li H, Liu LP, Wang YL, Zhao XQ, Li ZX, Wang YJ. U-shaped association between low-density lipoprotein cholesterol levels and risk of all-cause mortality mediated by post-stroke infection in acute ischemic stroke. Sci Bull (Beijing) 2023:S2095-9273(23)00347-X. [PMID: 37270342 DOI: 10.1016/j.scib.2023.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
During the acute stage of ischemic stroke, it remains unclear how to interpret the low low-density lipoprotein cholesterol (LDL-C) level. We aimed to evaluate the association between LDL-C levels, post-stroke infection, and all-cause mortality. 804,855 ischemic stroke patients were included. Associations between LDL-C levels, infection, and mortality risk were estimated by multivariate logistic regression models and displayed by restricted cubic spline curves. Mediation analysis was performed under counterfactual framework to elucidate the mediation effect of post-stroke infection. The association between LDL-C and mortality risk was U-shaped. The nadir in LDL-C level with the lowest mortality risk was 2.67 mmol/L. Compared with the group with LDL-C = 2.50-2.99 mmol/L, the multivariable-adjusted odds ratio for mortality was 2.22 (95% confidence intervals (CI): 1.77-2.79) for LDL-C <1.0 mmol/L and 1.22 (95% CI: 0.98-1.50) for LDL-C ≥5.0 mmol/L. The association between LDL-C and all-cause mortality was 38.20% (95% CI: 5.96-70.45, P = 0.020) mediated by infection. After stepwise excluding patients with increasing numbers of cardiovascular risk factors, the U-shaped association between LDL-C and all-cause mortality and the mediation effects of infection remained consistent with the primary analysis, but the LDL-C interval with the lowest mortality risk increased progressively. The mediation effects of infection were largely consistent with the primary analysis in subgroups of age ≥65 years, female, body mass index <25 kg/m2, and National Institutes of Health Stroke Scale ≥16. During the acute stage of ischemic stroke, there is a U-shaped association between LDL-C level and all-cause mortality, where post-stroke infection is an important mediating mechanism.
Collapse
Affiliation(s)
- Zi-Mo Chen
- Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing 100071, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Hong-Qiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Jing-Lin Mo
- Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing 100071, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Kai-Xuan Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Ying-Yu Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Xin Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Chun-Juan Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Jie Xu
- Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing 100071, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Xia Meng
- Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing 100071, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100071, China; Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing 100071, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Hao Li
- Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing 100071, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100071, China; Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing 100071, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Ping Liu
- Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing 100071, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Yi-Long Wang
- Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing 100071, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Xing-Quan Zhao
- Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing 100071, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Zi-Xiao Li
- Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing 100071, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100071, China; Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing 100071, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yong-Jun Wang
- Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing 100071, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100071, China; Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing 100071, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
10
|
Españo E, Kim JK. Effects of Statin Combinations on Zika Virus Infection in Vero Cells. Pharmaceutics 2022; 15:pharmaceutics15010050. [PMID: 36678679 PMCID: PMC9864436 DOI: 10.3390/pharmaceutics15010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The Zika virus (ZIKV) remains a global health concern. Thus far, no antiviral or vaccine has been approved to prevent or treat ZIKV infection. In a previous study, we found that lipophilic statins can inhibit ZIKV production in Vero cells. These statins appear to have different potencies against ZIKV infection. Here, we determined whether combinations of statins would have synergistic effects to maximize the efficacy of the statins and to reduce potential side effects. Specifically, we used a modified fixed-ratio assay for the combinations of atorvastatin (ATO) or fluvastatin (FLU) with mevastatin (MEV) or simvastatin (SIM). All combinations with MEV tended towards synergy, especially with higher fractions of MEV in the combinations. The ATO + SIM combination tended towards additivity. The FLU + SIM combination also tended towards additivity except for one combination which had the highest fraction of FLU over SIM among the tested combinations. Overall, certain combinations of ATO or FLU with SIM or MEV may be synergistic. More exhaustive combinatorial assays in vitro and in vivo could help define whether combining lipophilic statins would be beneficial and safe for treating ZIKV infections.
Collapse
|
11
|
Zhao H, Yu Y, Wang Y, Zhao L, Yang A, Hu Y, Pan Z, Wang Z, Yang J, Han Q, Tian Z, Zhang J. Cholesterol accumulation on dendritic cells reverses chronic hepatitis B virus infection-induced dysfunction. Cell Mol Immunol 2022; 19:1347-1360. [PMID: 36369367 PMCID: PMC9708651 DOI: 10.1038/s41423-022-00939-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/11/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic hepatitis B (CHB) infection remains a serious public health problem worldwide; however, the relationship between cholesterol levels and CHB remains unclear. We isolated peripheral blood mononuclear cells from healthy blood donors and CHB patients to analyze free cholesterol levels, lipid raft formation, and cholesterol metabolism-related pathways. Hepatitis B virus (HBV)-carrier mice were generated and used to confirm changes in cholesterol metabolism and cell-surface lipid raft formation in dendritic cells (DCs) in the context of CHB. Additionally, HBV-carrier mice were immunized with a recombinant HBV vaccine (rHBVvac) combined with lipophilic statins and evaluated for vaccine efficacy against HBV. Serum samples were analyzed for HBsAg, anti-HBs, and alanine aminotransferase levels, and liver samples were evaluated for HBV DNA and RNA and HBcAg. CHB reduced free cholesterol levels and suppressed lipid raft formation on DCs in patients with CHB and HBV-carrier mice, whereas administration of lipophilic statins promoted free cholesterol accumulation and restored lipid rafts on DCs accompanied by an enhanced antigen-presentation ability in vitro and in vivo. Cholesterol accumulation on DCs improved the rHBVvac-mediated elimination of serum HBV DNA and intrahepatic HBV DNA, HBV RNA, and HBcAg and promoted the rHBVvac-mediated generation and polyfunctionality of HBV-specific CD11ahi CD8αlo cells, induction of the development of memory responses against HBV reinfection, and seroconversion from HBsAg to anti-HBs. The results demonstrated the important role of cholesterol levels in DC dysfunction during CHB, suggesting that strategies to increase cholesterol accumulation on DCs might enhance therapeutic vaccine efficacy against HBV and support development toward clinical CHB treatment.
Collapse
Affiliation(s)
- Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yating Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yucan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lianhui Zhao
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ailu Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yifei Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoyi Pan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zixuan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jiarui Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zhigang Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, 230000, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
12
|
Jiménez-Munguía I, Beaven AH, Blank PS, Sodt AJ, Zimmerberg J. Interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. Curr Opin Struct Biol 2022; 77:102467. [PMID: 36306674 DOI: 10.1016/j.sbi.2022.102467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 01/30/2023]
Abstract
Infections caused by enveloped viruses require fusion with cellular membranes for viral genome entry. Viral entry occurs following an interaction of viral and cellular membranes allowing the formation of fusion pores, by which the virus accesses the cytoplasm. Here, we focus on interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. IFITM3 is predicted to block or stall viral fusion at an intermediate state, causing viral propagation to fail. After introducing IFITM3, we describe the generalized lipid membrane fusion pathway and how it can be stalled, particularly with respect to IFITM3, and current questions regarding IFITM3's topology, with specific emphasis on IFITM3's amphipathic α-helix (AAH) 59V-68M, which is necessary for the antiviral activity. We report new hydrophobicity and hydrophobic moment calculations for this peptide and a variety of active site peptides from known membrane-remodeling proteins. Finally, we discuss the effects of posttranslational modifications and localization, how IFITM3's AAH may block viral fusion, and possible ramifications of membrane composition.
Collapse
Affiliation(s)
- I Jiménez-Munguía
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA
| | - A H Beaven
- Unit on Membrane Chemical Physics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) MD, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - P S Blank
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA
| | - A J Sodt
- Unit on Membrane Chemical Physics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) MD, USA.
| | - J Zimmerberg
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA.
| |
Collapse
|
13
|
Di Simone M, Corsale AM, Lo Presti E, Scichilone N, Picone C, Giannitrapani L, Dieli F, Meraviglia S. Phenotypical and Functional Alteration of γδ T Lymphocytes in COVID-19 Patients: Reversal by Statins. Cells 2022; 11:3449. [PMID: 36359845 PMCID: PMC9656060 DOI: 10.3390/cells11213449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
(1) Background: statins have been considered an attractive class of drugs in the pharmacological setting of COVID-19 due to their pleiotropic properties and their use correlates with decreased mortality in hospitalized COVID-19 patients. Furthermore, it is well known that statins, which block the mevalonate pathway, affect γδ T lymphocyte activation. As γδ T cells participate in the inflammatory process of COVID-19, we have investigated the therapeutical potential of statins as a tool to inhibit γδ T cell pro-inflammatory activities; (2) Methods: we harvested peripheral blood mononuclear cells (PBMCs) from COVID-19 patients with mild clinical manifestations, COVID-19 recovered patients, and healthy controls. We performed ex vivo flow cytometry analysis to study γδ T cell frequency, phenotype, and exhaustion status. PBMCs were treated with Atorvastatin followed by non-specific and specific stimulation, to evaluate the expression of pro-inflammatory cytokines; (3) Results: COVID-19 patients had a lower frequency of circulating Vδ2+ T lymphocytes but showed a pronounced pro-inflammatory profile, which was inhibited by in vitro treatment with statins; (4) Conclusions: the in vitro capacity of statins to inhibit Vδ2+ T lymphocytes in COVID-19 patients highlights a new potential biological function of these drugs and supports their therapeutical use in these patients.
Collapse
Affiliation(s)
- Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AUOP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AUOP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Elena Lo Presti
- National Research Council (CNR), Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy
| | - Nicola Scichilone
- Division of Respiratory Medicine, AUOP Paolo Giaccone, 90127 Palermo, Italy
- Internal Medicine Department Unit, Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialities Department (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Carmela Picone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AUOP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Lydia Giannitrapani
- National Research Council (CNR), Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy
- Internal Medicine Department Unit, Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialities Department (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AUOP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AUOP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
14
|
Statin Therapy and the Risk of Viral Infection: A Retrospective Population-Based Cohort Study. J Clin Med 2022; 11:jcm11195626. [PMID: 36233493 PMCID: PMC9571401 DOI: 10.3390/jcm11195626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Statins exert cholesterol-independent beneficial effects, including immunomodulatory effects. In this study, we attempted to investigate the association between statin therapy and the risk of viral infection. We conducted a retrospective cohort study using data from Taiwan’s National Health Insurance Research Database. We identified patients with hyperlipidemia and divided them into two cohorts: statin users and statin nonusers. A 1:1 propensity score matching was conducted between the two cohorts, and a Cox proportional hazards model was used to evaluate the risk of viral infection. Overall, a total of 20,202 patients were included in each cohort. The median follow-up durations were 4.41 and 6.90 years for statin nonusers and users, respectively. The risk of viral infection was 0.40-fold (95% confidence interval = 0.38–0.41) in statin users than in statin nonusers after adjustment for potential confounders. Statin treatment was associated with a significantly lower risk of viral infection in all age groups older than 18 years in both men and women. Moreover, the risk of viral infection substantially reduced as the duration of statin treatment increased. Our findings suggest that statin therapy is associated with a significantly lower risk of viral infection in patients with hyperlipidemia.
Collapse
|
15
|
Al Sulaiman K, Aljuhani O, Korayem GB, Altebainawi AF, Al Harbi S, Al Shaya A, Badreldin HA, Kensara R, Alharthi AF, Alghamdi J, Alawad A, Alotaibi R, Kharbosh A, Al Muqati H, Alhuwahmel A, Almusallam M, Albarrak G, Al Sulaihim I, Alanazi B, Al-Dosari BS, Vishwakarma R, Alsaeedi AS, Al Ghamdi G, Alkofide H, Al-Dorzi HM. The impact of HMG-CoA reductase inhibitors use on the clinical outcomes in critically ill patients with COVID-19: A multicenter, cohort study. Front Public Health 2022; 10:877944. [PMID: 36033795 PMCID: PMC9403132 DOI: 10.3389/fpubh.2022.877944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023] Open
Abstract
Background The cardiovascular complications of Coronavirus Disease 2019 (COVID-19) may be attributed to the hyperinflammatory state leading to increased mortality in patients with COVID-19. HMG-CoA Reductase Inhibitors (statins) are known to have pleiotropic and anti-inflammatory effects and may have antiviral activity along with their cholesterol-lowering activity. Thus, statin therapy is potentially a potent adjuvant therapy in COVID-19 infection. This study investigated the impact of statin use on the clinical outcome of critically ill patients with COVID-19. Methods A multicenter, retrospective cohort study of all adult critically ill patients with confirmed COVID-19 who were admitted to Intensive Care Units (ICUs) between March 1, 2020, and March 31, 2021. Eligible patients were classified into two groups based on the statin use during ICU stay and were matched with a propensity score based on patient's age and admission APACHE II and SOFA scores. The primary endpoint was in-hospital mortality, while 30 day mortality, ventilator-free days (VFDs) at 30 days, and ICU complications were secondary endpoints. Results A total of 1,049 patients were eligible; 502 patients were included after propensity score matching (1:1 ratio). The in-hospital mortality [hazard ratio 0.69 (95% CI 0.54, 0.89), P = 0.004] and 30-day mortality [hazard ratio 0.75 (95% CI 0.58, 0.98), P = 0.03] were significantly lower in patients who received statin therapy on multivariable cox proportional hazards regression analysis. Moreover, patients who received statin therapy had lower odds of hospital-acquired pneumonia [OR 0.48 (95% CI 0.32, 0.69), P < 0.001], lower levels of inflammatory markers on follow-up, and no increased risk of liver injury. Conclusion The use of statin therapy during ICU stay in critically ill patients with COVID-19 may have a beneficial role and survival benefit with a good safety profile.
Collapse
Affiliation(s)
- Khalid Al Sulaiman
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia,College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,King Abdullah International Medical Research Center-King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh, Saudi Arabia,Saudi Critical Care Pharmacy Research (SCAPE) Platform, Riyadh, Saudi Arabia,*Correspondence: Khalid Al Sulaiman
| | - Ohoud Aljuhani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghazwa B. Korayem
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ali F. Altebainawi
- Pharmaceutical Care Services, King Salman Specialist Hospital, Hail Health Cluster, Hail, Saudi Arabia
| | - Shmeylan Al Harbi
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia,College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,King Abdullah International Medical Research Center-King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh, Saudi Arabia
| | - Abdulrahman Al Shaya
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia,College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,King Abdullah International Medical Research Center-King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh, Saudi Arabia
| | - Hisham A. Badreldin
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia,College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,King Abdullah International Medical Research Center-King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh, Saudi Arabia
| | - Raed Kensara
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia,King Abdullah International Medical Research Center-King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh, Saudi Arabia
| | - Abdullah F. Alharthi
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia,King Abdullah International Medical Research Center-King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh, Saudi Arabia
| | - Jahad Alghamdi
- King Abdullah International Medical Research Center-King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh, Saudi Arabia
| | - Ahad Alawad
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rand Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah Kharbosh
- Clinical Pharmacy Department, Pharmacy College, Taif University, Taif, Saudi Arabia
| | - Hessa Al Muqati
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdulmohsen Alhuwahmel
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammed Almusallam
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ghada Albarrak
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ibrahim Al Sulaihim
- Pharmaceutical Care Department, Presidency of State Security, Central Security Hospitals, Riyadh, Saudi Arabia
| | - Bader Alanazi
- Pharmaceutical Care Department, Presidency of State Security, Central Security Hospitals, Riyadh, Saudi Arabia
| | - Bodoor S. Al-Dosari
- Pharmaceutical Care Department, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ramesh Vishwakarma
- Statistics Department, European Organization for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Alawi S. Alsaeedi
- King Abdullah International Medical Research Center-King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh, Saudi Arabia,Intensive Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ghassan Al Ghamdi
- King Abdullah International Medical Research Center-King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh, Saudi Arabia,Intensive Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hadeel Alkofide
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hasan M. Al-Dorzi
- King Abdullah International Medical Research Center-King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh, Saudi Arabia,Intensive Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
17
|
Simvastatin Inhibits Brucella abortus Invasion into RAW 264.7 Cells through Suppression of the Mevalonate Pathway and Promotes Host Immunity during Infection in a Mouse Model. Int J Mol Sci 2022; 23:ijms23158337. [PMID: 35955474 PMCID: PMC9368445 DOI: 10.3390/ijms23158337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase and has been found to have protective effects against several bacterial infections. In this study, we investigate the effects of simvastatin treatment on RAW 264.7 macrophage cells and ICR mice against Brucella (B.) abortus infections. The invasion assay revealed that simvastatin inhibited the Brucella invasion into macrophage cells by blocking the mevalonic pathway. The treatment of simvastatin enhanced the trafficking of Toll-like receptor 4 in membrane lipid raft microdomains, accompanied by the increased phosphorylation of its downstream signaling pathways, including JAK2 and MAPKs, upon =Brucella infection. Notably, the suppressive effect of simvastatin treatment on Brucella invasion was not dependent on the reduction of cholesterol synthesis but probably on the decline of farnesyl pyrophosphate and geranylgeranyl pyrophosphate synthesis. In addition to a direct brucellacidal ability, simvastatin administration showed increased cytokine TNF-α and differentiation of CD8+ T cells, accompanied by reduced bacterial survival in spleens of ICR mice. These data suggested the involvement of the mevalonate pathway in the phagocytosis of B. abortus into RAW 264.7 macrophage cells and the regulation of simvastatin on the host immune system against Brucella infections. Therefore, simvastatin is a potential candidate for studying alternative therapy against animal brucellosis.
Collapse
|
18
|
Liu C, Yan W, Shi J, Wang S, Peng A, Chen Y, Huang K. Biological Actions, Implications, and Cautions of Statins Therapy in COVID-19. Front Nutr 2022; 9:927092. [PMID: 35811982 PMCID: PMC9257176 DOI: 10.3389/fnut.2022.927092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) showed worse prognosis and higher mortality in individuals with obesity. Dyslipidemia is a major link between obesity and COVID-19 severity. Statins as the most common lipid regulating drugs have shown favorable effects in various pathophysiological states. Importantly, accumulating observational studies have suggested that statin use is associated with reduced risk of progressing to severe illness and in-hospital death in COVID-19 patients. Possible explanations underlie these protective impacts include their abilities of reducing cholesterol, suppressing viral entry and replication, anti-inflammation and immunomodulatory effects, as well as anti-thrombosis and anti-oxidative properties. Despite these benefits, statin therapies have side effects that should be considered, such as elevated creatinine kinase, liver enzyme and serum glucose levels, which are already elevated in severe COVID-19. Concerns are also raised whether statins interfere with the efficacy of COVID-19 vaccines. Randomized controlled trials are being conducted worldwide to confirm the values of statin use for COVID-19 treatment. Generally, the results suggest no necessity to discontinue statin use, and no evidence suggesting interference between statins and COVID-19 vaccines. However, concomitant administration of statins and COVID-19 antiviral drug Paxlovid may increase statin exposure and the risk of adverse effects, because most statins are metabolized mainly through CYP3A4 which is potently inhibited by ritonavir, a major component of Paxlovid. Therefore, more clinical/preclinical studies are still warranted to understand the benefits, harms and mechanisms of statin use in the context of COVID-19.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyao Yan
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Wang
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anlin Peng
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Ghosh D, Ghosh Dastidar D, Roy K, Ghosh A, Mukhopadhyay D, Sikdar N, Biswas NK, Chakrabarti G, Das A. Computational prediction of the molecular mechanism of statin group of drugs against SARS-CoV-2 pathogenesis. Sci Rep 2022; 12:6241. [PMID: 35422113 PMCID: PMC9009757 DOI: 10.1038/s41598-022-09845-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
Recently published clinical data from COVID-19 patients indicated that statin therapy is associated with a better clinical outcome and a significant reduction in the risk of mortality. In this study by computational analysis, we have aimed to predict the possible mechanism of the statin group of drugs by which they can inhibit SARS-CoV-2 pathogenesis. Blind docking of the critical structural and functional proteins of SARS-CoV-2 like RNA-dependent RNA polymerase, M-protease of 3-CL-Pro, Helicase, and the Spike proteins ( wild type and mutants from different VOCs) were performed using the Schrodinger docking tool. We observed that fluvastatin and pitavastatin showed fair, binding affinities to RNA polymerase and 3-CL-Pro, whereas fluvastatin showed the strongest binding affinity to the helicase. Fluvastatin also showed the highest affinity for the SpikeDelta and a fair docking score for other spike variants. Additionally, molecular dynamics simulation confirmed the formation of a stable drug-protein complex between Fluvastatin and target proteins. Thus our study shows that of all the statins, fluvastatin can bind to multiple target proteins of SARS-CoV-2, including the spike-mutant proteins. This property might contribute to the potent antiviral efficacy of this drug.
Collapse
Affiliation(s)
- Dipanjan Ghosh
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata, West Bengal, 700114, India
| | - Kamalesh Roy
- Department of Genetics, Institute of Genetic Engineering, 30, Thakurhat Road, Badu, Madhyamgram, West Bengal, 700128, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India
| | - Debanjan Mukhopadhyay
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India
| | - Nilabja Sikdar
- Human Genetics Unit, Kolmogorov Bhaban, Biological Sciences Division, Indian Statistical Institute, 203, BT road, Kolkata, West Bengal, 700108, India.
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India
| | - Gopal Chakrabarti
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| | - Amlan Das
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India.
| |
Collapse
|
20
|
Kow CS, Hasan SS. The Association Between the Use of Statins and Clinical Outcomes in Patients with COVID-19: A Systematic Review and Meta-analysis. Am J Cardiovasc Drugs 2022; 22:167-181. [PMID: 34341972 PMCID: PMC8328743 DOI: 10.1007/s40256-021-00490-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
Purpose Previously, we have reported potential clinical benefits with the use of statins in patients with coronavirus disease 2019 (COVID-19) in a meta-analysis, where there was a significantly reduced hazard for a fatal or severe course of illness with the use of statins, but the meta-analysis was limited by the small number of studies included, with small heterogeneity among studies, due to the unavailability of more studies at the point of literature search. We aimed to perform an updated systematic review and meta-analysis to summarize the existing evidence on the effect of statins on the clinical outcomes of patients with COVID-19. Methods Electronic databases, including PubMed, Google Scholar, and Scopus, and preprint servers were searched (last updated June 3, 2021) to identify studies investigating the association between the use of statins in patients with COVID-19 and the development of severe disease and/or mortality. Random-effects model meta-analyses were performed to estimate the pooled odds ratio (OR) or hazard ratio (HR) with 95% confidence intervals (CIs). The outcomes of interest were (1) all-cause mortality and (2) a composite endpoint of severe illness of COVID-19. Results Upon systematic literature search, we identified 35 studies, of which 32 studies reported the outcome of all-cause mortality and 15 studies reported the composite endpoint of severe COVID-19 illness between statin users versus non-statin users with COVID-19. Our meta-analysis revealed that the use of statins was associated with a significantly lower risks of all-cause mortality (HR = 0.70, 95% CI 0.58–0.84, n = 21,127, and OR = 0.63, 95% CI 0.51–0.79, n = 115,097) and the composite endpoint of severe illness (OR = 0.80, 95% CI 0.73–0.88, n = 10,081) in patients with COVID-19, compared to non-use of statins, at the current sample size. Conclusion Statin use is associated with a better prognosis in patients with COVID-19. Our findings provide a rationale to investigate the use of statins among patients with COVID-19 in large scale clinical trials.
Collapse
Affiliation(s)
- Chia Siang Kow
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Petaling Jaya, Selangor, Malaysia.
| | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| |
Collapse
|
21
|
Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020151. [PMID: 35215263 PMCID: PMC8877351 DOI: 10.3390/ph15020151] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are administered as first-line therapy for hypercholesterolemia, both as primary and secondary prevention. Besides the lipid-lowering effect, statins have been suggested to inhibit the development of cardiovascular disease through anti-inflammatory, antioxidant, vascular endothelial function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects. The preventive effect of statins on atherothrombotic stroke has been well established, but statins can influence other cerebrovascular diseases. This suggests that statins have many neuroprotective effects in addition to lowering cholesterol. Furthermore, research suggests that statins cause pro-apoptotic, growth-inhibitory, and pro-differentiation effects in various malignancies. Preclinical and clinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. The pleiotropic effects of statins on cardiovascular and cerebrovascular diseases have been well established; however, the effects of statins on cancer patients have not been fully elucidated and are still controversial. This review discusses the recent evidence on the effects of statins on cardiovascular and cerebrovascular diseases and cancer. Additionally, this study describes the pharmacological action of statins, focusing on the aspect of ‘beyond lipid-lowering’.
Collapse
|
22
|
Kulkarni R, Wiemer EAC, Chang W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini Review. Front Immunol 2022; 12:815020. [PMID: 35126371 PMCID: PMC8810822 DOI: 10.3389/fimmu.2021.815020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid rafts, also known as microdomains, are important components of cell membranes and are enriched in cholesterol, glycophospholipids and receptors. They are involved in various essential cellular processes, including endocytosis, exocytosis and cellular signaling. Receptors are concentrated at lipid rafts, through which cellular signaling can be transmitted. Pathogens exploit these signaling mechanisms to enter cells, proliferate and egress. However, lipid rafts also play an important role in initiating antimicrobial responses by sensing pathogens via clustered pathogen-sensing receptors and triggering downstream signaling events such as programmed cell death or cytokine production for pathogen clearance. In this review, we discuss how both host and pathogens use lipid rafts and associated proteins in an arms race to survive. Special attention is given to the involvement of the major vault protein, the main constituent of a ribonucleoprotein complex, which is enriched in lipid rafts upon infection with vaccinia virus.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| | - Erik A. C. Wiemer
- Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| |
Collapse
|
23
|
Zahedipour F, Guest PC, Majeed M, Al-Rasadi K, Jamialahmadi T, Sahebkar A. Multiplex Testing of the Effect of Statins on Disease Severity Risk in COVID-19 Cases. Methods Mol Biol 2022; 2511:273-284. [PMID: 35838967 DOI: 10.1007/978-1-0716-2395-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Statins have pleiotropic effects on inflammatory responses in addition to their lipid-lowering action, which contributes to their favorable effect on cardiovascular disorders. Statins affect adhesion, migration, antigen presentation, and cytokine generation of immune cells. Pre-clinical and clinical studies suggest that statin intervention targeted early in the infection might help COVID-19 patients to reduce the effects of acute respiratory distress syndrome (ARDS), the cytokine storm, and vascular collapse by modulating harmful pathogenic mechanisms. This chapter presents a protocol for measuring blood-based biomarkers predictive of these responses in COVID-19 patients using two specific multiplex immunoassays that target proteins that differ widely in concentration.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Palacios-Rápalo SN, De Jesús-González LA, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, Martínez-Mier G, Quistián-Galván J, Muñoz-Pérez A, Bernal-Dolores V, del Ángel RM, Reyes-Ruiz JM. Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Front Immunol 2021; 12:796855. [PMID: 34975904 PMCID: PMC8719300 DOI: 10.3389/fimmu.2021.796855] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts are functional membrane microdomains with highly and tightly packed lipid molecules. These regions enriched in sphingolipids and cholesterol recruit and concentrate several receptors and molecules involved in pathogen recognition and cellular signaling. Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans (HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS), CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction with the viral spike protein. FDA-approved drugs such as statins, metformin, hydroxychloroquine, and cyclodextrins (methyl-β-cyclodextrin) can disrupt cholesterol-rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Gustavo Martínez-Mier
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Judith Quistián-Galván
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Armando Muñoz-Pérez
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Víctor Bernal-Dolores
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| |
Collapse
|
25
|
Glitscher M, Hildt E. Endosomal Cholesterol in Viral Infections - A Common Denominator? Front Physiol 2021; 12:750544. [PMID: 34858206 PMCID: PMC8632007 DOI: 10.3389/fphys.2021.750544] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cholesterol has gained tremendous attention as an essential lipid in the life cycle of virtually all viruses. These seem to have developed manifold strategies to modulate the cholesterol metabolism to the side of lipid uptake and de novo synthesis. In turn, affecting the cholesterol homeostasis has emerged as novel broad-spectrum antiviral strategy. On the other hand, the innate immune system is similarly regulated by the lipid and stimulated by its derivatives. This certainly requires attention in the design of antiviral strategies aiming to decrease cellular cholesterol, as evidence accumulates that withdrawal of cholesterol hampers innate immunity. Secondly, there are exceptions to the rule of the abovementioned virus-induced metabolic shift toward cholesterol anabolism. It therefore is of interest to dissect underlying regulatory mechanisms, which we aimed for in this minireview. We further collected evidence for intracellular cholesterol concentrations being less important in viral life cycles as compared to the spatial distribution of the lipid. Various routes of cholesterol trafficking were found to be hijacked in viral infections with respect to organelle-endosome contact sites mediating cholesterol shuttling. Thus, re-distribution of cellular cholesterol in the context of viral infections requires more attention in ongoing research. As a final aim, a pan-antiviral treatment could be found just within the transport and re-adjustment of local cholesterol concentrations. Thus, we aimed to emphasize the importance of the regulatory roles the endosomal system fulfils herein and hope to stimulate research in this field.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
26
|
Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF, González-González AM, De Jesús-González LA, Palacios-Rápalo SN, Del Ángel RM. Anti-flavivirus Properties of Lipid-Lowering Drugs. Front Physiol 2021; 12:749770. [PMID: 34690817 PMCID: PMC8529048 DOI: 10.3389/fphys.2021.749770] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
Collapse
Affiliation(s)
- Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines," Instituto Mexicano del Seguro Social, Heroica Veracruz, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arely M González-González
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
27
|
A systematic review and meta-analysis on the effects of statins on pregnancy outcomes. Atherosclerosis 2021; 336:1-11. [PMID: 34601188 DOI: 10.1016/j.atherosclerosis.2021.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Statins are contraindicated in pregnancy, due to their potential teratogenicity. However, data are still inconsistent and some even suggest a potential benefit of statin use against pregnancy complications. We aimed to investigate the effects of statins on pregnancy outcomes, including stillbirth, fetal abortion, and preterm delivery, through a systematic review of the literature and a meta-analysis of the available clinical studies. METHODS A literature search was performed through PubMed, Scopus, and Web of Science up to 16 May 2020. Data were extracted from 18 clinical studies (7 cohort studies, 2 clinical trials, 3 case reports, and 6 case series). Random effect meta-analyses were conducted using the restricted maximum likelihood method. The common effect sizes were calculated as odds ratios (ORs) and their 95% confidence interval (CI) for each main outcome. RESULTS Finally, nine studies were included in the meta-analysis. There was no significant association between statin therapy and stillbirth [OR (95% CI) = 1.30 (0.56, 3.02), p=0.54; I2 = 0%]. While statin exposure was significantly associated with increased rates of spontaneous abortion [OR (95% CI) = 1.36 (1.10-1.68), p=0.004, I2 = 0%], it was non-significantly associated with increased rates of induced abortion [OR (95% CI) = 2.08 (0.81, 5.36), p=0.129, I2 = 17.33%] and elective abortion [OR (95% CI) = 1.37 (0.68, 2.76), p=0.378, I2 = 62.46%]. A non-significant numerically reduced rate of preterm delivery was observed in statin users [OR (95% CI) = 0.47 (0.06, 3.70), p=0.47, I2 = 76.35%]. CONCLUSIONS Statin therapy seems to be safe as it was not associated with stillbirth or induced and elective abortion rates. Significant increase after statin therapy was, however, observed for spontaneous abortion. These results need to be confirmed and validated in future studies.
Collapse
|
28
|
Elkoshi Z. The Binary Model of Chronic Diseases Applied to COVID-19. Front Immunol 2021; 12:716084. [PMID: 34539649 PMCID: PMC8446604 DOI: 10.3389/fimmu.2021.716084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
A binary model for the classification of chronic diseases has formerly been proposed. The model classifies chronic diseases as “high Treg” or “low Treg” diseases according to the extent of regulatory T cells (Treg) activity (frequency or function) observed. The present paper applies this model to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The model correctly predicts the efficacy or inefficacy of several immune-modulating drugs in the treatment of severe coronavirus disease 2019 (COVID-19) disease. It also correctly predicts the class of pathogens mostly associated with SARS-CoV-2 infection. The clinical implications are the following: (a) any search for new immune-modulating drugs for the treatment of COVID-19 should exclude candidates that do not induce “high Treg” immune reaction or those that do not spare CD8+ T cells; (b) immune-modulating drugs, which are effective against SARS-CoV-2, may not be effective against any variant of the virus that does not induce “low Treg” reaction; (c) any immune-modulating drug, which is effective in treating COVID-19, will also alleviate most coinfections; and (d) severe COVID-19 patients should avoid contact with carriers of “low Treg” pathogens.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
29
|
A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res 2021; 84:101127. [PMID: 34509516 DOI: 10.1016/j.plipres.2021.101127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are administered as first line therapy for hypercholesterolemia, both in primary and secondary prevention. There is a growing body of evidence showing that beyond their lipid-lowering effect, statins have a number of additional beneficial properties. Pitavastatin is a unique lipophilic statin with a strong effect on lowering plasma total cholesterol and triacylglycerol. It has been reported to have pleiotropic effects such as decreasing inflammation and oxidative stress, regulating angiogenesis and osteogenesis, improving endothelial function and arterial stiffness, and reducing tumor progression. Based on the available studies considering the risk of statin-associated muscle symptoms it seems to be also the safest statin. The unique lipid and non-lipid effects of pitavastatin make this molecule a particularly interesting option for the management of different human diseases. In this review, we first summarized the lipid effects of pitavastatin and then strive to unravel the diverse pleiotropic effects of this molecule.
Collapse
|
30
|
Implications on the Therapeutic Potential of Statins via Modulation of Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9599608. [PMID: 34373771 PMCID: PMC8349293 DOI: 10.1155/2021/9599608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/20/2021] [Indexed: 01/05/2023]
Abstract
Statins, which are functionally known as 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) inhibitors, are lipid-lowering compounds widely prescribed in patients with cardiovascular diseases (CVD). Several biological and therapeutic functions have been attributed to statins, including neuroprotection, antioxidation, anti-inflammation, and anticancer effects. Pharmacological characteristics of statins have been attributed to their involvement in the modulation of several cellular signaling pathways. Over the past few years, the therapeutic role of statins has partially been attributed to the induction of autophagy, which is critical in maintaining cellular homeostasis and accounts for the removal of unfavorable cells or specific organelles within cells. Dysregulated mechanisms of the autophagy pathway have been attributed to the etiopathogenesis of various disorders, including neurodegenerative disorders, malignancies, infections, and even aging. Autophagy functions as a double-edged sword during tumor metastasis. On the one hand, it plays a role in inhibiting metastasis through restricting necrosis of tumor cells, suppressing the infiltration of the inflammatory cell to the tumor niche, and generating the release of mediators that induce potent immune responses against tumor cells. On the other hand, autophagy has also been associated with promoting tumor metastasis. Several anticancer medications which are aimed at inducing autophagy in the tumor cells are related to statins. This review article discusses the implications of statins in the induction of autophagy and, hence, the treatment of various disorders.
Collapse
|
31
|
Effects of Statins on Renin-Angiotensin System. J Cardiovasc Dev Dis 2021; 8:jcdd8070080. [PMID: 34357323 PMCID: PMC8305238 DOI: 10.3390/jcdd8070080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Statins, a class of drugs for lowering serum LDL-cholesterol, have attracted attention because of their wide range of pleiotropic effects. An important but often neglected effect of statins is their role in the renin–angiotensin system (RAS) pathway. This pathway plays an integral role in the progression of several diseases including hypertension, heart failure, and renal disease. In this paper, the role of statins in the blockade of different components of this pathway and the underlying mechanisms are reviewed and new therapeutic possibilities of statins are suggested.
Collapse
|
32
|
Orlowski S, Mourad JJ, Gallo A, Bruckert E. Coronaviruses, cholesterol and statins: Involvement and application for Covid-19. Biochimie 2021; 189:51-64. [PMID: 34153377 PMCID: PMC8213520 DOI: 10.1016/j.biochi.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.
Collapse
Affiliation(s)
- Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR 9198, and CEA / DRF / Institut des Sciences du Vivant Frédéric-Joliot / SB2SM, and Université Paris-Saclay, 91191, Gif-sur-Yvette, Cedex, France.
| | - Jean-Jacques Mourad
- Department of Internal Medicine and ESH Excellence Centre, Groupe Hospitalier Paris Saint-Joseph, Paris, France.
| | - Antonio Gallo
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Eric Bruckert
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| |
Collapse
|
33
|
Olszewska-Parasiewicz J, Szarpak Ł, Rogula S, Gąsecka A, Szymańska U, Kwiatkowska M, Jaguszewski MJ, Sierpiński R, Zaczyński A, Wierzba W, Kosior DA. Statins in COVID-19 Therapy. Life (Basel) 2021; 11:life11060565. [PMID: 34208435 PMCID: PMC8234902 DOI: 10.3390/life11060565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
Inhibitors of 3-hydroxy-3methylgultaryl-coenzyme A reductase (statins) are one of the main groups of drugs used in preventing and treating cardiovascular diseases worldwide. They are widely available, cheap, and well-tolerated. Based on statins’ pleiotropic properties, including improvement of endothelial dysfunction, antioxidant properties, atherosclerotic plaque stabilization, and inhibition of inflammatory responses, it can be hypothesized that the use of statins, at least as an adjuvant in antiviral therapy, may be justified. All these effects might be especially beneficial in patients with COVID-19, suffering from endothelial dysfunction, microvascular and macrovascular thrombosis, and cytokine storm. Here, we review the recent data regarding the pathophysiology of SARS-CoV-2 activity in host cells, proposed COVID-19 therapy, the pleiotropic activity of statins, and statins in clinical trials in respiratory infections. According to the guidelines of the European and American Cardiac Societies, in patients with cardiovascular disease or high cardiovascular risk with concomitant COVID-19 it is recommended to continue statin treatment. However, the initiation of statin therapy de novo in COVID-19 treatment should only be done as part of a clinical trial.
Collapse
Affiliation(s)
- Justyna Olszewska-Parasiewicz
- Central Clinical Hospital the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (J.O.-P.); (U.S.); (M.K.); (A.Z.); (W.W.); (D.A.K.)
| | - Łukasz Szarpak
- Maria Sklodowska-Curie Białystok Oncology Centre, Ogrodowa 12, 15-027 Białystok, Poland
- Maria Sklodowska-Curie Medical Academy in Warsaw, Solidarnosci 12, 03-411 Warsaw, Poland
- Correspondence:
| | - Sylwester Rogula
- Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (A.G.)
| | - Aleksandra Gąsecka
- Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (A.G.)
| | - Urszula Szymańska
- Central Clinical Hospital the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (J.O.-P.); (U.S.); (M.K.); (A.Z.); (W.W.); (D.A.K.)
| | - Maria Kwiatkowska
- Central Clinical Hospital the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (J.O.-P.); (U.S.); (M.K.); (A.Z.); (W.W.); (D.A.K.)
| | - Milosz J. Jaguszewski
- Department of Cardiology, Medical University of Gdańsk, Dębinki 7, 80-952 Gdańsk, Poland;
| | - Radosław Sierpiński
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University, 01-815 Warsaw, Poland;
| | - Artur Zaczyński
- Central Clinical Hospital the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (J.O.-P.); (U.S.); (M.K.); (A.Z.); (W.W.); (D.A.K.)
| | - Waldemar Wierzba
- Central Clinical Hospital the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (J.O.-P.); (U.S.); (M.K.); (A.Z.); (W.W.); (D.A.K.)
- UHE Satellite Campus in Warsaw, University of Humanities and Economics in Łódź, Felińskego 15, 01-513 Warsaw, Poland
| | - Dariusz A. Kosior
- Central Clinical Hospital the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland; (J.O.-P.); (U.S.); (M.K.); (A.Z.); (W.W.); (D.A.K.)
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
34
|
Shin CH, Kim KH, Jeeva S, Kang SM. Towards Goals to Refine Prophylactic and Therapeutic Strategies Against COVID-19 Linked to Aging and Metabolic Syndrome. Cells 2021; 10:1412. [PMID: 34204163 PMCID: PMC8227274 DOI: 10.3390/cells10061412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to the coronavirus disease 2019 (COVID-19) pandemic. A strong correlation has been demonstrated between worse COVID-19 outcomes, aging, and metabolic syndrome (MetS), which is primarily derived from obesity-induced systemic chronic low-grade inflammation with numerous complications, including type 2 diabetes mellitus (T2DM). The majority of COVID-19 deaths occurs in people over the age of 65. Individuals with MetS are inclined to manifest adverse disease consequences and mortality from COVID-19. In this review, we examine the prevalence and molecular mechanisms underlying enhanced risk of COVID-19 in elderly people and individuals with MetS. Subsequently, we discuss current progresses in treating COVID-19, including the development of new COVID-19 vaccines and antivirals, towards goals to elaborate prophylactic and therapeutic treatment options in this vulnerable population.
Collapse
Affiliation(s)
- Chong-Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (K.-H.K.); (S.J.)
| | | | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (K.-H.K.); (S.J.)
| |
Collapse
|
35
|
Wujak M, Kozakiewicz A, Ciarkowska A, Loch JI, Barwiolek M, Sokolowska Z, Budny M, Wojtczak A. Assessing the Interactions of Statins with Human Adenylate Kinase Isoenzyme 1: Fluorescence and Enzyme Kinetic Studies. Int J Mol Sci 2021; 22:ijms22115541. [PMID: 34073952 PMCID: PMC8197361 DOI: 10.3390/ijms22115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Statins are the most effective cholesterol-lowering drugs. They also exert many pleiotropic effects, including anti-cancer and cardio- and neuro-protective. Numerous nano-sized drug delivery systems were developed to enhance the therapeutic potential of statins. Studies on possible interactions between statins and human proteins could provide a deeper insight into the pleiotropic and adverse effects of these drugs. Adenylate kinase (AK) was found to regulate HDL endocytosis, cellular metabolism, cardiovascular function and neurodegeneration. In this work, we investigated interactions between human adenylate kinase isoenzyme 1 (hAK1) and atorvastatin (AVS), fluvastatin (FVS), pravastatin (PVS), rosuvastatin (RVS) and simvastatin (SVS) with fluorescence spectroscopy. The tested statins quenched the intrinsic fluorescence of hAK1 by creating stable hAK1-statin complexes with the binding constants of the order of 104 M−1. The enzyme kinetic studies revealed that statins inhibited hAK1 with significantly different efficiencies, in a noncompetitive manner. Simvastatin inhibited hAK1 with the highest yield comparable to that reported for diadenosine pentaphosphate, the only known hAK1 inhibitor. The determined AK sensitivity to statins differed markedly between short and long type AKs, suggesting an essential role of the LID domain in the AK inhibition. Our studies might open new horizons for the development of new modulators of short type AKs.
Collapse
Affiliation(s)
- Magdalena Wujak
- Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Jurasza 2, 85-089 Bydgoszcz, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Anna Kozakiewicz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
- Correspondence: ; Tel.: +48-56-611-4511
| | - Anna Ciarkowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Joanna I. Loch
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Magdalena Barwiolek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| | - Zuzanna Sokolowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| | - Marcin Budny
- Synthex Technologies Sp. z o.o., Gagarina 7/134B, 87-100 Toruń, Poland;
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| |
Collapse
|
36
|
Prior Treatment with Statins is Associated with Improved Outcomes of Patients with COVID-19: Data from the SEMI-COVID-19 Registry. Drugs 2021; 81:685-695. [PMID: 33782908 PMCID: PMC8006631 DOI: 10.1007/s40265-021-01498-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 01/12/2023]
Abstract
Background The impact of statins on COVID-19 outcomes is important given the high prevalence of their use among individuals at risk for severe COVID-19. Our aim is to assess whether patients receiving chronic statin treatment who are hospitalized with COVID-19 have reduced in-hospital mortality if statin therapy is maintained during hospitalization. Methods This work is a cross-sectional, observational, retrospective multicenter study that analyzed 2921 patients who required hospital admission at 150 Spanish centers included in the nationwide SEMI-COVID-19 Network. We compared the clinical characteristics and COVID-19 disease outcomes between patients receiving chronic statin therapy who maintained this therapy during hospitalization versus those who did not. Propensity score matching was used to match each statin user whose therapy was maintained during hospitalization to a statin user whose therapy was withdrawn during hospitalization. Results After propensity score matching, continuation of statin therapy was associated with lower all-cause mortality (OR 0.67, 0.54–0.83, p < 0.001); lower incidence of acute kidney injury (AKI) (OR 0.76,0.6–0.97, p = 0.025), acute respiratory distress syndrome (ARDS) (OR 0.78, 0.69- 0.89, p < 0.001), and sepsis (4.82% vs 9.85%, p = 0.008); and less need for invasive mechanical ventilation (IMV) (5.35% vs 8.57, p < 0.001) compared to patients whose statin therapy was withdrawn during hospitalization. Conclusions Patients previously treated with statins who are hospitalized for COVID-19 and maintain statin therapy during hospitalization have a lower mortality rate than those in whom therapy is withdrawn. In addition, statin therapy was associated with a decreased probability that patients with COVID-19 will develop AKI, ARDS, or sepsis and decreases the need for IMV.
Collapse
|
37
|
Sahranavard T, Carbone F, Montecucco F, Xu S, Al-Rasadi K, Jamialahmadi T, Sahebkar A. The role of potassium in atherosclerosis. Eur J Clin Invest 2021; 51:e13454. [PMID: 33216974 DOI: 10.1111/eci.13454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic progressive inflammatory condition with a leading prevalence worldwide. Endothelial dysfunction leads to low-density lipoprotein trafficking into subendothelial space and the subsequent form of oxidized LDL (ox-LDL) within intimal layer, perpetuating the vicious cycle of endothelial dysfunction. K+ exerts beneficial effects in vascular wall by reducing LDL oxidization, vascular smooth muscle cells (VSMCs) proliferation, and free radical generation. K+ also modulates vascular tone through a regulatory effect on cell membrane potential. MATERIALS AND METHODS The most relevant papers on the association between 'potassium channels' and 'atherosclerosis' were selected among those deposited on PubMed from 1990 to 2020. RESULTS Here, we provide a short narrative review that elaborates on the role of K+ in atherosclerosis. This review also update the current knowledge about potential pharmacological agents targeting K+ channels with a special focus on pleiotropic activities of agents such as statins, sulfonylureas and dihydropyridines. CONCLUSION In this review, the mechanism of different K+ channels on vascular endothelium will be summarized, mainly focusing on their pathophysiological role in atherosclerosis and potential therapeutic application.
Collapse
Affiliation(s)
- Toktam Sahranavard
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
38
|
Nomani H, Mohammadpour AH, Reiner Ž, Jamialahmadi T, Sahebkar A. Statin Therapy in Post-Operative Atrial Fibrillation: Focus on the Anti-Inflammatory Effects. J Cardiovasc Dev Dis 2021; 8:24. [PMID: 33652637 PMCID: PMC7996747 DOI: 10.3390/jcdd8030024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) occurring after cardiac surgery, post-operative AF (POAF), is a serious and common complication of this treatment. POAF may be life-threatening and the available preventive strategies are insufficient or are associated with significantly increased risk of adverse effects, especially in long-term use. Therefore, more appropriate treatment strategies are needed. METHODS In this paper, the efficacy, safety, and other aspects of using statins in the prevention of POAF focusing on their anti-inflammatory effects are reviewed. RESULTS Recent studies have suggested that inflammation has a significant role in POAF, from the first AF episode to its serious complications including stroke and peripheral embolism. On the other hand, statins, the most widely used medications in cardiovascular patients, have pleiotropic effects, including anti-inflammatory properties. Therefore, they may potentially be effective in POAF prevention. Statins, especially atorvastatin, appear to be an effective option for primary prevention of POAF, especially in patients who had coronary artery bypass grafting (CABG), a cardiac surgery treatment associated with inflammation in the heart muscle. However, several large studies, particularly with rosuvastatin, did not confirm the beneficial effect of statins on POAF. One large clinical trial reported higher risk of acute kidney injury (AKI) following high-dose rosuvastatin in Chinese population. In this study, rosuvastatin reduced the level of C-reactive protein (CRP) but did not reduce the rate of POAF. CONCLUSION Further studies are required to find the most effective statin regimen for POAF prevention with the least safety concern and the highest health benefits.
Collapse
Affiliation(s)
- Homa Nomani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9179156314, Iran;
| | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9179156314, Iran;
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9179156314, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Ceter Zagreb, School of Medicine University of Zagreb, 10000 Zagreb, Croatia;
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
- Department of Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
| |
Collapse
|
39
|
Parsamanesh N, Karami-Zarandi M, Banach M, Penson PE, Sahebkar A. Effects of statins on myocarditis: A review of underlying molecular mechanisms. Prog Cardiovasc Dis 2021; 67:53-64. [PMID: 33621589 DOI: 10.1016/j.pcad.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
Myocarditis refers to the clinical and histological characteristics of a diverse range of inflammatory cellular pathophysiological conditions which result in cardiac dysfunction. Myocarditis is a major cause of mortality in individuals less than 40 years of age and accounts for approximately 20% of cardiovascular disease (CVD) events. Myocarditis contributes to dilated cardiomyopathy in 30% of patients and can progress to cardiac arrest, which has a poor prognosis of <40% survival over 10 years. Myocarditis has also been documented after infection with SARS-CoV-2. The most commonly used lipid-lowering therapies, HMG-CoA reductase inhibitors (statins), decrease CVD-related morbidity and mortality. In addition to their lipid-lowering effects, increasing evidence supports the existence of several additional beneficial, 'pleiotropic' effects of statins. Recently, several studies have indicated that statins may attenuate myocarditis. Statins modify the lipid oxidation, inflammation, immunomodulation, and endothelial activity of the pathophysiology and have been recommended as adjuvant treatment. In this review, we focus on the mechanisms of action of statins and their effects on myocarditis, SARS-CoV-2 and CVD.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Department of Molecular Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
40
|
Vahedian-Azimi A, Mohammadi SM, Heidari Beni F, Banach M, Guest PC, Jamialahmadi T, Sahebkar A. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: a systematic review and meta-analysis. Arch Med Sci 2021; 17:579-595. [PMID: 34025827 PMCID: PMC8130467 DOI: 10.5114/aoms/132950] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Approximately 1% of the world population has now been infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). With cases still rising and vaccines just beginning to rollout, we are still several months away from seeing reductions in daily case numbers, hospitalisations, and mortality. Therefore, there is a still an urgent need to control the disease spread by repurposing existing therapeutics. Owing to antiviral, anti-inflammatory, immunomodulatory, and cardioprotective actions, statin therapy has been considered as a plausible approach to improve COVID-19 outcomes. MATERIAL AND METHODS We carried out a meta-analysis to investigate the effect of statins on 3 COVID-19 outcomes: intensive care unit (ICU) admission, tracheal intubation, and death. We systematically searched the PubMed, Web of Science, Scopus, and ProQuest databases using keywords related to our aims up to November 2, 2020. All published observational studies and randomised clinical trials on COVID-19 and statins were retrieved. Statistical analysis with random effects modelling was performed using STATA16 software. RESULTS The final selected studies (n = 24 studies; 32,715 patients) showed significant reductions in ICU admission (OR = 0.78, 95% CI: 0.58-1.06; n = 10; I 2 = 58.5%) and death (OR = 0.70, 95% CI: 0.55-0.88; n = 21; I 2 = 82.5%) outcomes, with no significant effect on tracheal intubation (OR = 0.79; 95% CI: 0.57-1.11; n = 7; I 2= 89.0%). Furthermore, subgroup analysis suggested that death was reduced further by in-hospital application of stains (OR = 0.40, 95% CI: 0.22-0.73, n = 3; I 2 = 82.5%), compared with pre-hospital use (OR = 0.77, 95% CI: 0.60-0.98, n = 18; I 2 = 81.8%). CONCLUSIONS These findings call attention to the need for systematic clinical studies to assess both pre- and in-hospital use of statins as a potential means of reducing COVID-19 disease severity, particularly in terms of reduction of ICU admission and total mortality reduction.
Collapse
Affiliation(s)
- Amir Vahedian-Azimi
- Trauma Research Centre, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyede Momeneh Mohammadi
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farshad Heidari Beni
- Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Paul C. Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Españo E, Kim D, Kim J, Park SK, Kim JK. COVID-19 Antiviral and Treatment Candidates: Current Status. Immune Netw 2021; 21:e7. [PMID: 33728100 PMCID: PMC7937511 DOI: 10.4110/in.2021.21.e7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 has severely impacted global health and economy. There is currently no effective approved treatment for COVID-19; although vaccines have been granted emergency use authorization in several countries, they are currently only administered to high-risk individuals, thereby leaving a gap in virus control measures. The scientific and clinical communities and drug manufacturers have collaborated to speed up the discovery of potential therapies for COVID-19 by taking advantage of currently approved drugs as well as investigatory agents in clinical trials. In this review, we stratified some of these candidates based on their potential targets in the progression of COVID-19 and discuss some of the results of ongoing clinical evaluations.
Collapse
Affiliation(s)
- Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Dajung Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Jiyeon Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Song-Kyu Park
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| |
Collapse
|
42
|
Bhatnagar D. The COVID-19 pandemic: lifestyle and cardiovascular risk factors. Curr Opin Lipidol 2021; 32:71-73. [PMID: 33315619 DOI: 10.1097/mol.0000000000000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Deepak Bhatnagar
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Repurposing Cardio-Metabolic Drugs to Fight Covid19. High Blood Press Cardiovasc Prev 2021; 28:419-423. [PMID: 34524680 PMCID: PMC8441229 DOI: 10.1007/s40292-021-00475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
|
44
|
Yuvanc E, Tuglu D, Ozan T, Kisa U, Balci M, Batislam E, Yilmaz E. Evaluation of pheniramine maleate and zofenopril in reducing renal damage induced by unilateral ureter obstruction. An experimental study. Arch Med Sci 2021; 17:812-817. [PMID: 34025852 PMCID: PMC8130462 DOI: 10.5114/aoms.2019.88320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/14/2018] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Obstruction of the ureter may occur due to congenital, iatrogenic or other reasons. This can cause hydronephrosis in the early stage and can lead to cellular inflammation, necrosis and atrophy in the kidney tissue. The aim of this paper is to evaluate the protective effect of pheniramine maleate (PM) and zofenopril on renal damage caused by hydronephrosis due to unilateral partial ureter obstruction. MATERIAL AND METHODS Twenty-four female Sprague Dawley rats were divided into 4 groups. Group 1: sham group, group 2: partial unilateral ureteral obstruction (PUUO) group, group 3: PUUO + PM group, group 4: PUUO + zofenopril group. Paraoxonase (PON), total antioxidant status (TAS) and total oxidant status (TOS) of tissue and blood samples were measured and calculated. Tissue samples were evaluated histopathologically. RESULTS An increase in tissue TAS and a decrease in tissue TOS and OSI levels were detected in groups 3 and 4 compared to group 2 (both: p < 0.01). Tissue PON levels showed an increase in groups 3 and 4 compared to groups 1 and 2 (both: p < 0.01). Histopathological evaluation showed a decrease in interstitial inflammation and congestion in groups 3 and 4 compared to the control group (p < 0.001). The decrease was observed to be more significant in group 4 compared to group 3 (p < 0.01). CONCLUSIONS In our experimental study, we observed that PM and zofenopril reduce the oxidation and tissue damage caused by unilateral partial obstruction.
Collapse
Affiliation(s)
- Ercan Yuvanc
- Department of Urology, Kirikkale University School of Medicine, Kirikkale, Turkey
| | - Devrim Tuglu
- Department of Urology, Kirikkale University School of Medicine, Kirikkale, Turkey
| | - Tunc Ozan
- Department of Urology, Firat University School of Medicine, Elazig, Turkey
| | - Ucler Kisa
- Department of Biochemistry, Kirikkale University School of Medicine, Kirikkale, Turkey
| | - Mahi Balci
- Department of Pathology, Kirikkale University School of Medicine, Kirikkale, Turkey
| | - Ertan Batislam
- Department of Urology, Kirikkale University School of Medicine, Kirikkale, Turkey
| | - Erdal Yilmaz
- Department of Urology, Kirikkale University School of Medicine, Kirikkale, Turkey
| |
Collapse
|
45
|
Scheen AJ. Statins and clinical outcomes with COVID-19: Meta-analyses of observational studies. DIABETES & METABOLISM 2020; 47:101220. [PMID: 33359486 PMCID: PMC7757378 DOI: 10.1016/j.diabet.2020.101220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Aims People with cardiovascular disease or risk factors are at increased risk when exposed to SARS-CoV-2. Most are treated with statins, but the impact of these drugs on clinical outcomes of COVID-19 remains unclear. This report is therefore based on meta-analyses of retrospective observational studies aimed at investigating the impact of previous statin therapy in patients hospitalized for COVID-19. Methods In studies reporting on the clinical outcomes of COVID-19 in statin users vs non-users, two endpoints have been used—in-hospital death rates, and disease severity as assessed by admission to intensive care units (ICUs)—with a special focus on patients with diabetes. Results Regarding mortality, 13 studies were included in the meta-analysis for a total of 10,829 statin users (2517 deaths) and 31,893 non-users (7516 deaths): univariate analysis showed no statistically significant reduction in deaths (OR: 0.97, 95% CI: 0.92–1.03), although between-study heterogeneity was high (I² = 97%). As for disease severity, 11 studies were selected for a total of 3462 statin users (724 endpoints) and 10,560 non-users (1763 endpoints): here again, univariate analysis showed no reduction in severity (OR: 1.09, 95% CI: 0.99–1.22; I² = 93%). Collectively, in 10 studies using multivariable analysis adjusted for the more prevalent baseline risk factors among statin users, lower OR values were reported than with univariate analyses (0.73 ± 0.31 vs 1.44 ± 0.84, respectively; P = 0.0028; adjusted OR: P = 0.0237 vs non-users). Limited but conflicting findings were observed for diabetes patients. Conclusion Although no significant reductions in either in-hospital mortality or COVID-19 severity were reported among statin users compared with non-users after univariate comparisons, such reductions were observed after adjusting for confounding factors. These highly heterogeneous observational findings now require confirmation by ongoing randomized clinical trials.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège University, Liège, Belgium; Clinical Pharmacology Unit, CHU Liège, Center for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium.
| |
Collapse
|
46
|
Ganjali S, Bianconi V, Penson PE, Pirro M, Banach M, Watts GF, Sahebkar A. Commentary: Statins, COVID-19, and coronary artery disease: killing two birds with one stone. Metabolism 2020; 113:154375. [PMID: 32976855 PMCID: PMC7511211 DOI: 10.1016/j.metabol.2020.154375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Key Words
- ace2, angiotensin-converting enzyme 2
- ards, acute respiratory distress syndrome
- covid-19, coronavirus disease 2019
- cvd, cardiovascular disease
- ldl, low-density lipoprotein
- mers-cov, middle east respiratory syndrome coronavirus
- myd88, myeloid differentiation primary response 88
- nf-kb, nuclear factor kappa-light-chain-enhancer of activated b cells
- sars-cov, severe acute respiratory syndrome coronavirus
- tlr, toll-like receptor
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Gerald F Watts
- Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|