1
|
Tanimoto S, Okumura H. Why Is Arginine the Only Amino Acid That Inhibits Polyglutamine Monomers from Taking on Toxic Conformations? ACS Chem Neurosci 2024; 15:2925-2935. [PMID: 39009034 PMCID: PMC11311134 DOI: 10.1021/acschemneuro.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Polyglutamine (polyQ) diseases are devastating neurodegenerative disorders characterized by abnormal expansion of glutamine repeats within specific proteins. The aggregation of polyQ proteins is a critical pathological hallmark of these diseases. Arginine was identified as a promising inhibitory compound because it prevents polyQ-protein monomers from forming intra- and intermolecular β-sheet structures and hinders polyQ proteins from aggregating to form oligomers. Such an aggregation inhibitory effect was not observed in other amino acids. However, the underlying molecular mechanism of the aggregation inhibition and the factors that differentiate arginine from other amino acids, in terms of the inhibition of the polyQ-protein aggregation, remain poorly understood. Here, we performed replica-permutation molecular dynamics simulations to elucidate the molecular mechanism by which arginine inhibits the formation of the intramolecular β-sheet structure of a polyQ monomer. We found that the intramolecular β-sheet structure with more than four β-bridges of the polyQ monomer with arginine is more unstable than without any ligand and with lysine. We also found that arginine has 1.6-2.1 times more contact with polyQ than lysine. In addition, we revealed that arginine forms more hydrogen bonds with the main chain of the polyQ monomer than lysine. More hydrogen bonds formed between arginine and polyQ inhibit polyQ from forming the long intramolecular β-sheet structure. It is known that intramolecular β-sheet structure enhances intermolecular β-sheet structure between proteins. These effects are thought to be the reason for the inhibition of polyQ aggregation. This study provides insights into the molecular events underlying arginine's inhibition of polyQ-protein aggregation.
Collapse
Affiliation(s)
- Shoichi Tanimoto
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
| | - Hisashi Okumura
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- National
Institutes of Natural Sciences, Institute
for Molecular Science, Okazaki 444-8787, Aichi, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Okazaki 444-8787, Aichi, Japan
| |
Collapse
|
2
|
D'Brant L, Rugenstein N, Na SK, Miller MJ, Czajka TF, Trudeau N, Fitz E, Tomaszek L, Fisher ES, Mash E, Joy S, Lotz S, Borden S, Stevens K, Goderie SK, Wang Y, Bertucci T, Karch CM, Temple S, Butler DC. Fully Human Bifunctional Intrabodies Achieve Graded Reduction of Intracellular Tau and Rescue Survival of MAPT Mutation iPSC-derived Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596248. [PMID: 38854137 PMCID: PMC11160687 DOI: 10.1101/2024.05.28.596248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tau protein aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP), spurring development of tau-lowering therapeutic strategies. Here, we report fully human bifunctional anti-tau-PEST intrabodies that bind the mid-domain of tau to block aggregation and degrade tau via the proteasome using the ornithine decarboxylase (ODC) PEST degron. They effectively reduced tau protein in human iPSC-derived cortical neurons in 2D cultures and 3D organoids, including those with the disease-associated tau mutations R5L, N279K, R406W, and V337M. Anti-tau-hPEST intrabodies facilitated efficient ubiquitin-independent proteolysis, in contrast to tau-lowering approaches that rely on the cell's ubiquitination system. Importantly, they counteracted the proteasome impairment observed in V337M patient-derived cortical neurons and significantly improved neuronal survival. By serial mutagenesis, we created variants of the PEST degron that achieved graded levels of tau reduction. Moderate reduction was as effective as high reduction against tau V337M-induced neural cell death.
Collapse
|
3
|
Kunamneni A, Montera MA, Durvasula R, Alles SRA, Goyal S, Westlund KN. Rapid Generation and Molecular Docking Analysis of Single-Chain Fragment Variable (scFv) Antibody Selected by Ribosome Display Targeting Cholecystokinin B Receptor (CCK-BR) for Reduction of Chronic Neuropathic Pain. Int J Mol Sci 2023; 24:11035. [PMID: 37446213 DOI: 10.3390/ijms241311035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
A robust cell-free platform technology, ribosome display in combination with cloning, expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective CCK-B peptide-specific scFvs were generated through ribosomal display technology. Soluble expression and ELISA analysis showed that one antibody, scFv77-2 had the highest binding and could be purified from bacterial cells in large quantities. Octet measurements further revealed that the CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10-8 M. Molecular modeling and docking analyses suggested that the scFv77-2 antibody shaped a proper cavity to embed the whole CCK-B peptide molecule and that a steady-state complex was formed relying on intermolecular forces, including hydrogen bonding, electrostatic force, and hydrophobic interactions. Thus, the scFv antibody can be applied for mechanistic intermolecular interactions and functional in vivo studies of CCK-BR. The high affinity scFv77-2 antibody showed good efficacy with binding to CCK-BR tested in a chronic pain model. In vivo studies validated the efficacy of the CCK-B receptor (CCK-BR) scFv77-2 antibody as a potential therapy for chronic trigeminal nerve injury-induced pain. Mice were given a single dose of the CCK-B receptor (CCK-BR) scFv antibody 3 weeks after induction of a chronic trigeminal neuropathic pain model, during the transition from acute to chronic pain. The long-term effectiveness for the reduction of mechanical hypersensitivity was evident, persisting for months. The anxiety- and depression-related behaviors typically accompanying persisting hypersensitivity subsequently never developed in the mice given CCK-BR scFv. The effectiveness of the antibody is the basis for further development of the lead CCK-BR scFv as a promising non-opioid therapeutic for chronic pain and the long-term reduction of chronic pain- and anxiety-related behaviors.
Collapse
Affiliation(s)
- Adinarayana Kunamneni
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL 32224-1865, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153-3328, USA
| | - Marena A Montera
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Ravi Durvasula
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL 32224-1865, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153-3328, USA
| | - Sascha R A Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Sachin Goyal
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Karin N Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA Health Care System, Albuquerque, NM 87108-5153, USA
| |
Collapse
|
4
|
Single-Dose P2 X4R Single-Chain Fragment Variable Antibody Permanently Reverses Chronic Pain in Male Mice. Int J Mol Sci 2021; 22:ijms222413612. [PMID: 34948407 PMCID: PMC8706307 DOI: 10.3390/ijms222413612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Non-opioid single-chain variable fragment (scFv) small antibodies were generated as pain-reducing block of P2X4R receptor (P2X4R). A panel of scFvs targeting an extracellular peptide sequence of P2X4R was generated followed by cell-free ribosome display for recombinant antibody selection. After three rounds of bio-panning, a panel of recombinant antibodies was isolated and characterized by ELISA, cross-reactivity analysis, and immunoblotting/immunostaining. Generated scFv antibodies feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their ~30% smaller size. Two anti-P2X4R scFv clones (95, 12) with high specificity and affinity binding were selected for in vivo testing in male and female mice with trigeminal nerve chronic neuropathic pain (FRICT-ION model) persisting for several months in untreated BALBc mice. A single dose of P2X4R scFv (4 mg/kg, i.p.) successfully, completely, and permanently reversed chronic neuropathic pain-like measures in male mice only, providing retention of baseline behaviors indefinitely. Untreated mice retained hypersensitivity, and developed anxiety- and depression-like behaviors within 5 weeks. In vitro P2X4R scFv 95 treatment significantly increased the rheobase of larger-diameter (>25 µm) trigeminal ganglia (TG) neurons from FRICT-ION mice compared to controls. The data support use of engineered scFv antibodies as non-opioid biotherapeutic interventions for chronic pain.
Collapse
|
5
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Westlund K, Montera M, Goins A, Alles S, Afaghpour-Becklund M, Bartel R, Durvasula R, Kunamneni A. Single-chain Fragment variable antibody targeting cholecystokinin-B receptor for pain reduction. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100067. [PMID: 34458647 PMCID: PMC8378781 DOI: 10.1016/j.ynpai.2021.100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 05/13/2023]
Abstract
The cholecystokinin B receptor and its neuropeptide ligand are upregulated in chronic neuropathic pain models. Single-chain Fragment variable antibodies were generated as preferred non-opioid targeting therapy blocking the cholecystokinin B receptor to inhibit chronic neuropathic pain models in vivo and in vitro. Engineered antibodies of this type feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their smaller size. More importantly, single-chain Fragment variable antibodies have promising biotherapeutic applications for both nervous and immune systems, now recognized as interactive in chronic pain. A mouse single-chain Fragment variable antibody library recognizing a fifteen amino acid extracellular peptide fragment of the cholecystokinin B receptor was generated from immunized spleens. Ribosome display, a powerful cell-free technology, was applied for recombinant antibody selection. Antibodies with higher affinity, stability, solubility, and binding specificity for cholecystokinin B not A receptor were selected and optimized for in vivo and in vitro efficacy. A single dose of the lead candidate reduced mechanical and cold hypersensitivity in two rodent models of neuropathic pain for at least seven weeks. Continuing efficacy was evident with either intraperitoneal or intranasal dosing. Likewise, the lead single-chain Fragment variable antibody totally prevented development of anxiety- and depression-like behaviors and cognitive deficits typical in the models. Reduction of neuronal firing frequency was evident in trigeminal ganglia primary neuronal cultures treated in vitro with the cholecystokinin B receptor antibody. Immunofluorescent staining intensity in the trigeminal neuron primary cultures was significantly reduced incrementally after overnight binding with increasingly higher dilutions of the single-chain Fragment variable antibody. While it is reported that single-chain Fragment variable antibodies are removed systemically within 2-6 h, Western blot evidence indicates the His-tag marker remained after 7 weeks in the trigeminal ganglia and in the dorsolateral medulla, providing evidence of brain and ganglia penetrance known to be compromised in overactivated states. This project showcases the in vivo efficacy of our lead single-chain Fragment variable antibody indicating its potential for development as a non-opioid, non-addictive therapeutic intervention for chronic pain. Importantly, studies by others have indicated treatments with cholecystokinin B receptor antagonists suppress maintenance and reactivation of morphine dependence in place preference tests while lowering tolerance and dose requirements. Our future studies remain to address these potential benefits that may accompany the cholecystokinin B receptor biological therapy. Both chronic sciatic and orofacial pain can be unrelenting and excruciating, reducing quality of life as well as diminishing physical and mental function. An effective non-opiate, non-addictive therapy with potential to significantly reduce chronic neuropathic pain long term is greatly needed.
Collapse
Key Words
- ANOVA, analysis of variance
- ARM, antibody ribosome mRNA
- Anxiety
- BBB, blood–brain barrier
- CCK-8, cholecystokinin octapeptide
- CCK-BR, cholecystokinin B receptor
- CPP, conditioned place preference
- Chronic pain
- DRG, dorsal root ganglia
- Depression
- Eukaryotic ribosome display
- FRICT-ION, foramen rotundum inflammatory compression trigeminal infraorbital nerve model
- GPCR, G-protein-coupled receptor
- IACUC, Institutional Animal Care and Use Committee
- ION, infraorbital nerve
- MΩ, megaOhms
- PBS, phosphate buffered saline
- SEM, standard error of the mean
- TG, trigeminal ganglia
- ms, milliseconds
- pA, picoAmps
- scFv
- scFv, single-chain Fragment variable antibody
Collapse
Affiliation(s)
- K.N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA
Health Care System, Albuquerque, NM, USA
| | - M.A. Montera
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - A.E. Goins
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - S.R.A. Alles
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - M. Afaghpour-Becklund
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - R. Bartel
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - R. Durvasula
- Division of Infectious Diseases, Department of Internal Medicine, Mayo
Clinic, Jacksonville, FL, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL
60153-3328, USA
| | - A. Kunamneni
- Division of Infectious Diseases, Department of Internal Medicine, Mayo
Clinic, Jacksonville, FL, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL
60153-3328, USA
| |
Collapse
|
7
|
Jiang M, Zhang X, Liu H, LeBron J, Alexandris A, Peng Q, Gu H, Yang F, Li Y, Wang R, Hou Z, Arbez N, Ren Q, Dong JL, Whela E, Wang R, Ratovitski T, Troncoso JC, Mori S, Ross CA, Lim J, Duan W. Nemo-like kinase reduces mutant huntingtin levels and mitigates Huntington's disease. Hum Mol Genet 2020; 29:1340-1352. [PMID: 32242231 PMCID: PMC7254850 DOI: 10.1093/hmg/ddaa061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 11/12/2022] Open
Abstract
Nemo-like kinase (NLK), an evolutionarily conserved serine/threonine kinase, is highly expressed in the brain, but its function in the adult brain remains not well understood. In this study, we identify NLK as an interactor of huntingtin protein (HTT). We report that NLK levels are significantly decreased in HD human brain and HD models. Importantly, overexpression of NLK in the striatum attenuates brain atrophy, preserves striatal DARPP32 levels and reduces mutant HTT (mHTT) aggregation in HD mice. In contrast, genetic reduction of NLK exacerbates brain atrophy and loss of DARPP32 in HD mice. Moreover, we demonstrate that NLK lowers mHTT levels in a kinase activity-dependent manner, while having no significant effect on normal HTT protein levels in mouse striatal cells, human cells and HD mouse models. The NLK-mediated lowering of mHTT is associated with enhanced phosphorylation of mHTT. Phosphorylation defective mutation of serine at amino acid 120 (S120) abolishes the mHTT-lowering effect of NLK, suggesting that S120 phosphorylation is an important step in the NLK-mediated lowering of mHTT. A further mechanistic study suggests that NLK promotes mHTT ubiquitination and degradation via the proteasome pathway. Taken together, our results indicate a protective role of NLK in HD and reveal a new molecular target to reduce mHTT levels.
Collapse
Affiliation(s)
- Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoyan Zhang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jared LeBron
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athanasios Alexandris
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qi Peng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Gu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fanghan Yang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuchen Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruiling Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhipeng Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qianwei Ren
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jen-Li Dong
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma Whela
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janghoo Lim
- Departments of Genetics and of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 2020; 134:104619. [DOI: 10.1016/j.nbd.2019.104619] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
|
9
|
Antibody-based therapies for Huntington’s disease: current status and future directions. Neurobiol Dis 2019; 132:104569. [DOI: 10.1016/j.nbd.2019.104569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
|
10
|
Niewiadomska-Cimicka A, Trottier Y. Molecular Targets and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. Neurotherapeutics 2019; 16:1074-1096. [PMID: 31432449 PMCID: PMC6985300 DOI: 10.1007/s13311-019-00778-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a rare autosomal dominant neurodegenerative disorder characterized by progressive neuronal loss in the cerebellum, brainstem, and retina, leading to cerebellar ataxia and blindness as major symptoms. SCA7 is due to the expansion of a CAG triplet repeat that is translated into a polyglutamine tract in ATXN7. Larger SCA7 expansions are associated with earlier onset of symptoms and more severe and rapid disease progression. Here, we summarize the pathological and genetic aspects of SCA7, compile the current knowledge about ATXN7 functions, and then focus on recent advances in understanding the pathogenesis and in developing biomarkers and therapeutic strategies. ATXN7 is a bona fide subunit of the multiprotein SAGA complex, a transcriptional coactivator harboring chromatin remodeling activities, and plays a role in the differentiation of photoreceptors and Purkinje neurons, two highly vulnerable neuronal cell types in SCA7. Polyglutamine expansion in ATXN7 causes its misfolding and intranuclear accumulation, leading to changes in interactions with native partners and/or partners sequestration in insoluble nuclear inclusions. Studies of cellular and animal models of SCA7 have been crucial to unveil pathomechanistic aspects of the disease, including gene deregulation, mitochondrial and metabolic dysfunctions, cell and non-cell autonomous protein toxicity, loss of neuronal identity, and cell death mechanisms. However, a better understanding of the principal molecular mechanisms by which mutant ATXN7 elicits neurotoxicity, and how interconnected pathogenic cascades lead to neurodegeneration is needed for the development of effective therapies. At present, therapeutic strategies using nucleic acid-based molecules to silence mutant ATXN7 gene expression are under development for SCA7.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France
| | - Yvon Trottier
- Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France.
| |
Collapse
|
11
|
Bélanger K, Iqbal U, Tanha J, MacKenzie R, Moreno M, Stanimirovic D. Single-Domain Antibodies as Therapeutic and Imaging Agents for the Treatment of CNS Diseases. Antibodies (Basel) 2019; 8:antib8020027. [PMID: 31544833 PMCID: PMC6640712 DOI: 10.3390/antib8020027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Antibodies have become one of the most successful therapeutics for a number of oncology and inflammatory diseases. So far, central nervous system (CNS) indications have missed out on the antibody revolution, while they remain 'hidden' behind several hard to breach barriers. Among the various antibody modalities, single-domain antibodies (sdAbs) may hold the 'key' to unlocking the access of antibody therapies to CNS diseases. The unique structural features of sdAbs make them the smallest monomeric antibody fragments suitable for molecular targeting. These features are of particular importance when developing antibodies as modular building blocks for engineering CNS-targeting therapeutics and imaging agents. In this review, we first introduce the characteristic properties of sdAbs compared to traditional antibodies. We then present recent advances in the development of sdAbs as potential therapeutics across brain barriers, including their use for the delivery of biologics across the blood-brain and blood-cerebrospinal fluid (CSF) barriers, treatment of neurodegenerative diseases and molecular imaging of brain targets.
Collapse
Affiliation(s)
- Kasandra Bélanger
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Umar Iqbal
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Maria Moreno
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
12
|
Computational affinity maturation of camelid single-domain intrabodies against the nonamyloid component of alpha-synuclein. Sci Rep 2018; 8:17611. [PMID: 30514850 PMCID: PMC6279780 DOI: 10.1038/s41598-018-35464-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Improving the affinity of protein-protein interactions is a challenging problem that is particularly important in the development of antibodies for diagnostic and clinical use. Here, we used structure-based computational methods to optimize the binding affinity of VHNAC1, a single-domain intracellular antibody (intrabody) from the camelid family that was selected for its specific binding to the nonamyloid component (NAC) of human α-synuclein (α-syn), a natively disordered protein, implicated in the pathogenesis of Parkinson's disease (PD) and related neurological disorders. Specifically, we performed ab initio modeling that revealed several possible modes of VHNAC1 binding to the NAC region of α-syn as well as mutations that potentially enhance the affinity between these interacting proteins. While our initial design strategy did not lead to improved affinity, it ultimately guided us towards a model that aligned more closely with experimental observations, revealing a key residue on the paratope and the participation of H4 loop residues in binding, as well as confirming the importance of electrostatic interactions. The binding activity of the best intrabody mutant, which involved just a single amino acid mutation compared to parental VHNAC1, was significantly enhanced primarily through a large increase in association rate. Our results indicate that structure-based computational design can be used to successfully improve the affinity of antibodies against natively disordered and weakly immunogenic antigens such as α-syn, even in cases such as ours where crystal structures are unavailable.
Collapse
|
13
|
Manoutcharian K, Perez-Garmendia R, Gevorkian G. Recombinant Antibody Fragments for Neurodegenerative Diseases. Curr Neuropharmacol 2018; 15:779-788. [PMID: 27697033 PMCID: PMC5771054 DOI: 10.2174/1570159x01666160930121647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recombinant antibody fragments are promising alternatives to full-length immunoglobulins and offer important advantages compared with conventional monoclonal antibodies: extreme specificity, higher affinity, superior stability and solubility, reduced immunogenicity as well as easy and inexpensive large-scale production. OBJECTIVE In this article we will review and discuss recombinant antibodies that are being evaluated for neurodegenerative diseases in pre-clinical models and in clinical studies and will summarize new strategies that are being developed to optimize their stability, specificity and potency for advancing their use. METHODS Articles describing recombinant antibody fragments used for neurological diseases were selected (PubMed) and evaluated for their significance. RESULTS Different antibody formats such as single-chain fragment variable (scFv), single-domain antibody fragments (VHHs or sdAbs), bispecific antibodies (bsAbs), intrabodies and nanobodies, are currently being studied in pre-clinical models of cancer as well as infectious and autoimmune diseases and many of them are being tested as therapeutics in clinical trials. Immunotherapy approaches have shown therapeutic efficacy in several animal models of Alzheimer´s disease (AD), Parkinson disease (PD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), Huntington disease (HD), transmissible spongiform encephalopathies (TSEs) and multiple sclerosis (MS). It has been demonstrated that recombinant antibody fragments may neutralize toxic extra- and intracellular misfolded proteins involved in the pathogenesis of AD, PD, DLB, FTD, HD or TSEs and may target toxic immune cells participating in the pathogenesis of MS. CONCLUSION Recombinant antibody fragments represent a promising tool for the development of antibody-based immunotherapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF. Mexico
| | - Roxanna Perez-Garmendia
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF. Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico. 0
| |
Collapse
|
14
|
Caterino M, Squillaro T, Montesarchio D, Giordano A, Giancola C, Melone MAB. Huntingtin protein: A new option for fixing the Huntington's disease countdown clock. Neuropharmacology 2018. [PMID: 29526547 DOI: 10.1016/j.neuropharm.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Huntington's disease is a dreadful, incurable disorder. It springs from the autosomal dominant mutation in the first exon of the HTT gene, which encodes for the huntingtin protein (HTT) and results in progressive neurodegeneration. Thus far, all the attempted approaches to tackle the mutant HTT-induced toxicity causing this disease have failed. The mutant protein comes with the aberrantly expanded poly-glutamine tract. It is primarily to blame for the build-up of β-amyloid-like HTT aggregates, deleterious once broadened beyond the critical ∼35-37 repeats threshold. Recent experimental findings have provided valuable information on the molecular basis underlying this HTT-driven neurodegeneration. These findings indicate that the poly-glutamine siding regions and many post-translation modifications either abet or counter the poly-glutamine tract. This review provides an overall, up-to-date insight into HTT biophysics and structural biology, particularly discussing novel pharmacological options to specifically target the mutated protein and thus inhibit its functions and toxicity.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Tiziana Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Daniela Montesarchio
- InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA; Department of Medicine, Surgery and Neuroscience University of Siena, Siena, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Mariarosa A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Barboza LA, Ghisi NC. Evaluating the current state of the art of Huntington disease research: a scientometric analysis. ACTA ACUST UNITED AC 2018; 51:e6299. [PMID: 29340519 PMCID: PMC5769753 DOI: 10.1590/1414-431x20176299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/29/2017] [Indexed: 11/22/2022]
Abstract
Huntington disease (HD) is an incurable neurodegenerative disorder caused by a dominant mutation on the 4th chromosome. We aim to present a scientometric analysis of the extant scientific undertakings devoted to better understanding HD. Therefore, a quantitative study was performed to examine the current state-of-the-art approaches that foster researchers’ understandings of the current knowledge, research trends, and research gaps regarding this disorder. We performed literature searches of articles that were published up to September 2016 in the “ISI Web of Science™” (http://apps.webofknowledge.com/). The keyword used was “Huntington disease”. Of the initial 14,036 articles that were obtained, 7732 were eligible for inclusion in the study according to their relevance. Data were classified according to language, country of publication, year, and area of concentration. The country leader regarding the number of studies published on HD is the United States, accounting for nearly 30% of all publications, followed by England and Germany, who have published 10 and 7% of all publications, respectively. Regarding the language in which the articles were written, 98% of publications were in English. The first publication to be found on HD was published in 1974. A surge of publications on HD can be seen from 1996 onward. In relation to the various knowledge areas that emerged, most publications were in the fields of neuroscience and neurology, likely because HD is a neurodegenerative disorder. Publications written in areas such as psychiatry, genetics, and molecular biology also predominated.
Collapse
Affiliation(s)
- L A Barboza
- Laboratório de Biologia Molecular, Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brasil
| | - N C Ghisi
- Laboratório de Biologia Molecular, Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brasil
| |
Collapse
|
16
|
Rhodes DA, Isenberg DA. TRIM21 and the Function of Antibodies inside Cells. Trends Immunol 2017; 38:916-926. [PMID: 28807517 DOI: 10.1016/j.it.2017.07.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/28/2017] [Accepted: 07/18/2017] [Indexed: 11/26/2022]
Abstract
Therapeutic antibodies targeting disease-associated antigens are key tools in the treatment of cancer and autoimmunity. So far, therapeutic antibodies have targeted antigens that are, or are presumed to be, extracellular. A largely overlooked property of antibodies is their functional activity inside cells. The diverse literature dealing with intracellular antibodies emerged historically from studies of the properties of some autoantibodies. The identification of tripartite motif (TRIM) 21 as an intracellular Fc receptor linking cytosolic antibody recognition to the ubiquitin proteasome system brings this research into sharper focus. We review critically the research related to intracellular antibodies, link this to the TRIM21 effector mechanism, and highlight how this work is exposing the previously restricted intracellular space to the potential of therapeutic antibodies.
Collapse
Affiliation(s)
- David A Rhodes
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge, UK.
| | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| |
Collapse
|
17
|
Escalona-Rayo O, Fuentes-Vázquez P, Leyva-Gómez G, Cisneros B, Villalobos R, Magaña JJ, Quintanar-Guerrero D. Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process. Drug Dev Ind Pharm 2017; 43:871-888. [PMID: 28142290 DOI: 10.1080/03639045.2017.1281949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of neurodegenerative disorders that cause cellular dysfunction and, eventually, neuronal death in specific regions of the brain. Neurodegeneration is linked to the misfolding and aggregation of expanded polyQ-containing proteins, and their inhibition is one of major therapeutic strategies used commonly. However, successful treatment has been limited to date because of the intrinsic properties of therapeutic agents (poor water solubility, low bioavailability, poor pharmacokinetic properties), and difficulty in crossing physiological barriers, including the blood-brain barrier (BBB). In order to solve these problems, nanoparticulate systems with dimensions of 1-1000 nm able to incorporate small and macromolecules with therapeutic value, to protect and deliver them directly to the brain, have recently been developed, but their use for targeting polyQ disease-mediated protein misfolding and aggregation remains scarce. This review provides an update of the polyQ protein aggregation process and the development of therapeutic strategies for halting it. The main features that a nanoparticulate system should possess in order to enhance brain delivery are discussed, as well as the different types of materials utilized to produce them. The final part of this review focuses on the potential application of nanoparticulate system strategies to improve the specific and efficient delivery of therapeutic agents to the brain for the treatment of polyQ diseases.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Paulina Fuentes-Vázquez
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Gerardo Leyva-Gómez
- b Laboratory of Connective Tissue , CENIAQ, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - Bulmaro Cisneros
- c Department of Genetics and Molecular Biology , CINVESTAV-IPN , Mexico City , Mexico
| | - Rafael Villalobos
- d División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Jonathan J Magaña
- e Laboratory of Genomic Medicine, Department of Genetics , Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - David Quintanar-Guerrero
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| |
Collapse
|
18
|
Antibodies inside of a cell can change its outside: Can intrabodies provide a new therapeutic paradigm? Comput Struct Biotechnol J 2016; 14:304-8. [PMID: 27570612 PMCID: PMC4990636 DOI: 10.1016/j.csbj.2016.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/21/2022] Open
Abstract
Challenges posed by complex diseases such as cancer, chronic viral infections, neurodegenerative disorders and many others have forced researchers to think beyond classic small molecule drugs, exploring new therapeutic strategies such as therapy with RNAi, CRISPR/Cas9 or antibody therapies as single or as combination therapies with existing drugs. While classic antibody therapies based on parenteral application can only reach extracellular targets, intracellular application of antibodies could provide specific advantages but is so far little recognized in translational research. Intrabodies allow high specificity and targeting of splice variants or post translational modifications. At the same time off target effects can be minimized by thorough biochemical characterization. Knockdown of cellular proteins by intrabodies has been reported for a significant number of disease-relevant targets, including ErbB-2, EGFR, VEGFR-2, Metalloproteinase MMP2 and MMP9, β-amyloid protein, α-synuclein, HIV gp120, HCV core and many others. This review outlines the recent advances in ER intrabody technology and their potential use in therapy.
Collapse
|
19
|
Gγ recruitment systems specifically select PPI and affinity-enhanced candidate proteins that interact with membrane protein targets. Sci Rep 2015; 5:16723. [PMID: 26581329 PMCID: PMC4652169 DOI: 10.1038/srep16723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022] Open
Abstract
Protein-protein interactions (PPIs) are crucial for the vast majority of biological processes. We previously constructed a Gγ recruitment system to screen PPI candidate proteins and desirable affinity-altered (affinity-enhanced and affinity-attenuated) protein variants. The methods utilized a target protein fused to a mutated G-protein γ subunit (Gγcyto) lacking the ability to localize to the inner leaflet of the plasma membrane. However, the previous systems were adapted to use only soluble cytosolic proteins as targets. Recently, membrane proteins have been found to form the principal nodes of signaling involved in diseases and have attracted a great deal of interest as primary drug targets. Here, we describe new protocols for the Gγ recruitment systems that are specifically designed to use membrane proteins as targets to overcome previous limitations. These systems represent an attractive approach to exploring novel interacting candidates and affinity-altered protein variants and their interactions with proteins on the inner side of the plasma membrane, with high specificity and selectivity.
Collapse
|
20
|
Ramsingh AI, Manley K, Rong Y, Reilly A, Messer A. Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington's disease. Hum Mol Genet 2015; 24:6186-97. [PMID: 26307082 PMCID: PMC4599676 DOI: 10.1093/hmg/ddv335] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy, both active and passive, is increasingly recognized as a powerful approach to a wide range of diseases, including Alzheimer's and Parkinson's. Huntington's disease (HD), an autosomal dominant disorder triggered by misfolding of huntingtin (HTT) protein with an expanded polyglutamine tract, could also benefit from this approach. Individuals can be identified genetically at the earliest stages of disease, and there may be particular benefits to a therapy that can target peripheral tissues in addition to brain. In this active vaccination study, we first examined safety and immunogenicity for a broad series of peptide, protein and DNA plasmid immunization protocols, using fragment (R6/1), and knock-in (zQ175) models. No safety issues were found. The strongest and most uniform immune response was to a combination of three non-overlapping HTT Exon1 coded peptides, conjugated to KLH, delivered with alum adjuvant. An N586-82Q plasmid, delivered via gene gun, also showed ELISA responses, mainly in the zQ175 strain, but with more variability, and less robust responses in HD compared with wild-type controls. Transcriptome profiling of spleens from the triple peptide-immunized cohort showed substantial HD-specific differences including differential activation of genes associated with innate immune responses, absence of negative feedback control of gene expression by regulators, a temporal dysregulation of innate immune responses and transcriptional repression of genes associated with memory T cell responses. These studies highlight critical issues for immunotherapy and HD disease management in general.
Collapse
Affiliation(s)
- Arlene I Ramsingh
- New York State Department of Health, Wadsworth Center, Albany, NY, USA and
| | - Kevin Manley
- New York State Department of Health, Wadsworth Center, Albany, NY, USA and
| | - Yinghui Rong
- New York State Department of Health, Wadsworth Center, Albany, NY, USA and
| | - Andrew Reilly
- New York State Department of Health, Wadsworth Center, Albany, NY, USA and
| | - Anne Messer
- New York State Department of Health, Wadsworth Center, Albany, NY, USA and Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY, USA
| |
Collapse
|
21
|
Opportunities for Conformation-Selective Antibodies in Amyloid-Related Diseases. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
22
|
Deal CE, Balazs AB. Engineering humoral immunity as prophylaxis or therapy. Curr Opin Immunol 2015; 35:113-22. [PMID: 26183209 DOI: 10.1016/j.coi.2015.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE OF THE REVIEW In this review, we will discuss the field of engineered humoral immunity with an emphasis on recent work using viral vectors to produce antibodies in vivo. As an alternative to passive transfer of monoclonal antibody protein, a transgene encoding an antibody is delivered to cells via vector transduction, resulting in expression and secretion by the host cell. This review will summarize the evidence in support of this strategy as an alternative to traditional vaccines against infection and as novel therapeutics for a variety of diseases. RECENT FINDINGS Historically, humoral immunity has been engineered through vaccination and passive transfer of monoclonal antibodies. However, recent work suggests that vectors can be used to deliver transgenes encoding broadly neutralizing antibodies to non-hematopoietic tissues and can mediate long-term expression that is capable of preventing or treating infectious diseases. The production of engineered monoclonal antibodies allows for precise targeting and elimination of aberrant self-proteins that are characteristic of certain neurodegenerative disease. This approach has also been successfully used to combat cancer and addiction in several animal models. Despite the wide array of expression platforms that have been described, adeno-associated virus vectors have emerged as the frontrunner for rapid clinical translation. SUMMARY Recent advances in vector-mediated antibody expression have demonstrated the potential for such interventions to prevent infection and treat disease. As such, it offers an alternative to immunogen-based vaccine design and a novel therapeutic intervention by enabling precise manipulation of humoral immunity. Success translating these approaches to patients may enable the development of effective prevention against previously intractable pathogens that evade immunity such as HIV, influenza, malaria or HCV and may also enable new treatment options for neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Cailin E Deal
- Ragon Institute of MGH, MIT & Harvard, 400 Technology Sq., Cambridge, MA 02139, United States
| | - Alejandro B Balazs
- Ragon Institute of MGH, MIT & Harvard, 400 Technology Sq., Cambridge, MA 02139, United States.
| |
Collapse
|
23
|
Butler DC, Snyder-Keller A, De Genst E, Messer A. Differential nuclear localization of complexes may underlie in vivo intrabody efficacy in Huntington's disease. Protein Eng Des Sel 2015; 27:359-63. [PMID: 25301961 PMCID: PMC4191446 DOI: 10.1093/protein/gzu041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Intrabodies offer attractive options for manipulating the protein misfolding that triggers neurodegenerative diseases. In Huntington's disease, where the expanded polyglutamine tract in the extreme N-terminal region of huntingtin exon1 misfolds, two lead intrabodies have been selected against an adjacent peptide, using slightly different approaches. Both are effective at preventing aggregation of a reporter fragment in transient co-transfection assays. However, after intracranial delivery to mutant mouse brains, VL12.3, which is mainly localized to the nucleus, appears to accelerate the mutant phenotype, while C4 scFv, which is largely cytoplasmic, shows partial phenotypic correction. This comparison highlights parameters that could inform intrabody therapeutics for multiple proteostatic diseases.
Collapse
Affiliation(s)
- D C Butler
- Wadsworth Center, New York State Department of Health, Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - A Snyder-Keller
- Wadsworth Center, New York State Department of Health, Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - E De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - A Messer
- Wadsworth Center, New York State Department of Health, Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| |
Collapse
|
24
|
De Genst E, Chirgadze DY, Klein FAC, Butler DC, Matak-Vinković D, Trottier Y, Huston JS, Messer A, Dobson CM. Structure of a single-chain Fv bound to the 17 N-terminal residues of huntingtin provides insights into pathogenic amyloid formation and suppression. J Mol Biol 2015; 427:2166-78. [PMID: 25861763 PMCID: PMC4451460 DOI: 10.1016/j.jmb.2015.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 10/25/2022]
Abstract
Huntington's disease is triggered by misfolding of fragments of mutant forms of the huntingtin protein (mHTT) with aberrant polyglutamine expansions. The C4 single-chain Fv antibody (scFv) binds to the first 17 residues of huntingtin [HTT(1-17)] and generates substantial protection against multiple phenotypic pathologies in situ and in vivo. We show in this paper that C4 scFv inhibits amyloid formation by exon1 fragments of huntingtin in vitro and elucidate the structural basis for this inhibition and protection by determining the crystal structure of the complex of C4 scFv and HTT(1-17). The peptide binds with residues 3-11 forming an amphipathic helix that makes contact with the antibody fragment in such a way that the hydrophobic face of this helix is shielded from the solvent. Residues 12-17 of the peptide are in an extended conformation and interact with the same region of another C4 scFv:HTT(1-17) complex in the asymmetric unit, resulting in a β-sheet interface within a dimeric C4 scFv:HTT(1-17) complex. The nature of this scFv-peptide complex was further explored in solution by high-resolution NMR and physicochemical analysis of species in solution. The results provide insights into the manner in which C4 scFv inhibits the aggregation of HTT, and hence into its therapeutic potential, and suggests a structural basis for the initial interactions that underlie the formation of disease-associated amyloid fibrils by HTT.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Fabrice A C Klein
- Translational Medicine and Neurogenetics Programme, Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch Cédex, France
| | - David C Butler
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Dijana Matak-Vinković
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Yvon Trottier
- Translational Medicine and Neurogenetics Programme, Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch Cédex, France
| | - James S Huston
- James S. Huston, The Antibody Society, Newton, MA 02462, USA
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
25
|
Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 2015; 23:441-58. [PMID: 24816443 DOI: 10.3727/096368914x678454] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The polyglutamine (polyQ) diseases are a group of neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding a long polyQ tract in the respective proteins. To date, a total of nine polyQ disorders have been described: six spinocerebellar ataxias (SCA) types 1, 2, 6, 7, 17; Machado-Joseph disease (MJD/SCA3); Huntington's disease (HD); dentatorubral pallidoluysian atrophy (DRPLA); and spinal and bulbar muscular atrophy, X-linked 1 (SMAX1/SBMA). PolyQ diseases are characterized by the pathological expansion of CAG trinucleotide repeat in the translated region of unrelated genes. The translated polyQ is aggregated in the degenerated neurons leading to the dysfunction and degeneration of specific neuronal subpopulations. Although animal models of polyQ disease for understanding human pathology and accessing disease-modifying therapies in neurodegenerative diseases are available, there is neither a cure nor prevention for these diseases, and only symptomatic treatments for polyQ diseases currently exist. Long-term pharmacological treatment is so far disappointing, probably due to unwanted complications and decreasing drug efficacy. Cellular transplantation of stem cells may provide promising therapeutic avenues for restoration of the functions of degenerative and/or damaged neurons in polyQ diseases.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
De Genst E, Messer A, Dobson CM. Antibodies and protein misfolding: From structural research tools to therapeutic strategies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1907-1919. [PMID: 25194824 DOI: 10.1016/j.bbapap.2014.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Protein misfolding disorders, including the neurodegenerative conditions Alzheimer's disease (AD) and Parkinson's disease (PD) represent one of the major medical challenges or our time. The underlying molecular mechanisms that govern protein misfolding and its links with disease are very complex processes, involving the formation of transiently populated but highly toxic molecular species within the crowded environment of the cell and tissue. Nevertheless, much progress has been made in understanding these events in recent years through innovative experiments and therapeutic strategies, and in this review we present an overview of the key roles of antibodies and antibody fragments in these endeavors. We discuss in particular how these species are being used in combination with a variety of powerful biochemical and biophysical methodologies, including a range of spectroscopic and microscopic techniques applied not just in vitro but also in situ and in vivo, both to gain a better understanding of the mechanistic nature of protein misfolding and aggregation and also to design novel therapeutic strategies to combat the family of diseases with which they are associated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
27
|
Arribat Y, Talmat-Amar Y, Paucard A, Lesport P, Bonneaud N, Bauer C, Bec N, Parmentier ML, Benigno L, Larroque C, Maurel P, Maschat F. Systemic delivery of P42 peptide: a new weapon to fight Huntington's disease. Acta Neuropathol Commun 2014; 2:86. [PMID: 25091984 PMCID: PMC4149238 DOI: 10.1186/s40478-014-0086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/21/2022] Open
Abstract
Background In Huntington’s disease (HD), the ratio between normal and mutant Huntingtin (polyQ-hHtt) is crucial in the onset and progression of the disease. As a result, addition of normal Htt was shown to improve polyQ-hHtt-induced defects. Therefore, we recently identified, within human Htt, a 23aa peptide (P42) that prevents aggregation and polyQ-hHtt-induced phenotypes in HD Drosophila model. In this report, we evaluated the therapeutic potential of P42 in a mammalian model of the disease, R6/2 mice. Results To this end, we developed an original strategy for P42 delivery, combining the properties of the cell penetrating peptide TAT from HIV with a nanostructure-based drug delivery system (Aonys® technology), to form a water-in-oil microemulsion (referred to as NP42T) allowing non-invasive per mucosal buccal/rectal administration of P42. Using MALDI Imaging Mass Spectrometry, we verified the correct targeting of NP42T into the brain, after per mucosal administration. We then evaluated the effects of NP42T in R6/2 mice. We found that P42 (and/or derivatives) are delivered into the brain and target most of the cells, including the neurons of the striatum. Buccal/rectal daily administrations of NP42T microemulsion allowed a clear improvement of behavioural HD-associated defects (foot-clasping, rotarod and body weights), and of several histological markers (aggregation, astrogliosis or ventricular areas) recorded on brain sections. Conclusions These data demonstrate that NP42T presents an unprecedented protective effect, and highlight a new therapeutic strategy for HD, associating an efficient peptide with a powerful delivery technology. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0086-x) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Shahi B, Mousavi Gargari S, Rasooli I, Rajabi Bazl M, Hoseinpoor R. Random mutagenesis of BoNT/E Hc nanobody to construct a secondary phage-display library. J Appl Microbiol 2014; 117:528-36. [DOI: 10.1111/jam.12526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/23/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
Affiliation(s)
- B. Shahi
- Department of Biology; Basic Science Faculty; Shahed University; Tehran Iran
| | | | - I. Rasooli
- Department of Biology; Basic Science Faculty; Shahed University; Tehran Iran
- Molecular Microbiology Research Center; Shahed University; Tehran Iran
| | - M. Rajabi Bazl
- Department of Clinical Biochemistry; Faculaty of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - R. Hoseinpoor
- Department of Biology; Basic Science Faculty; Shahed University; Tehran Iran
| |
Collapse
|
29
|
Kaiser PD, Maier J, Traenkle B, Emele F, Rothbauer U. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1933-1942. [PMID: 24792387 DOI: 10.1016/j.bbapap.2014.04.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 02/04/2023]
Abstract
In biomedical research there is an ongoing demand for new technologies, which help to elucidate disease mechanisms and provide the basis to develop novel therapeutics. In this context a comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, posttranslational modifications and dynamic interactions of cellular components is indispensable. Besides their significant impact as therapeutic molecules, antibodies are arguably the most powerful research tools to study endogenous proteins and other cellular components. However, for cellular diagnostics their use is restricted to endpoint assays using fixed and permeabilized cells. Alternatively, live cell imaging using fluorescent protein-tagged reporters is widely used to study protein localization and dynamics in living cells. However, only artificially introduced chimeric proteins are visualized, whereas the endogenous proteins, their posttranslational modifications as well as non-protein components of the cell remain invisible and cannot be analyzed. To overcome these limitations, traceable intracellular binding molecules provide new opportunities to perform cellular diagnostics in real time. In this review we summarize recent progress in the generation of intracellular and cell penetrating antibodies and their application to target and trace cellular components in living cells. We highlight recent advances in the structural formulation of recombinant antibody formats, reliable screening protocols and sophisticated cellular targeting technologies and propose that such intrabodies will become versatile research tools for real time cell-based diagnostics including target validation and live cell imaging. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Philipp D Kaiser
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany; Department of Pharmaceutical Biotechnology, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Julia Maier
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany; Department of Pharmaceutical Biotechnology, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Bjoern Traenkle
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany; Department of Pharmaceutical Biotechnology, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Felix Emele
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany; Department of Pharmaceutical Biotechnology, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany; Department of Pharmaceutical Biotechnology, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
30
|
Use of Genetically Altered Stem Cells for the Treatment of Huntington's Disease. Brain Sci 2014; 4:202-19. [PMID: 24961705 PMCID: PMC4066244 DOI: 10.3390/brainsci4010202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 12/14/2022] Open
Abstract
Transplantation of stem cells for the treatment of Huntington’s disease (HD) garnered much attention prior to the turn of the century. Several studies using mesenchymal stem cells (MSCs) have indicated that these cells have enormous therapeutic potential in HD and other disorders. Advantages of using MSCs for cell therapies include their ease of isolation, rapid propagation in culture, and favorable immunomodulatory profiles. However, the lack of consistent neuronal differentiation of transplanted MSCs has limited their therapeutic efficacy to slowing the progression of HD-like symptoms in animal models of HD. The use of MSCs which have been genetically altered to overexpress brain derived neurotrophic factor to enhance support of surviving cells in a rodent model of HD provides proof-of-principle that these cells may provide such prophylactic benefits. New techniques that may prove useful for cell replacement therapies in HD include the use of genetically altering fate-restricted cells to produce induced pluripotent stem cells (iPSCs). These iPSCs appear to have certain advantages over the use of embryonic stem cells, including being readily available, easy to obtain, less evidence of tumor formation, and a reduced immune response following their transplantation. Recently, transplants of iPSCs have shown to differentiate into region-specific neurons in an animal model of HD. The overall successes of using genetically altered stem cells for reducing neuropathological and behavioral deficits in rodent models of HD suggest that these approaches have considerable potential for clinical use. However, the choice of what type of genetically altered stem cell to use for transplantation is dependent on the stage of HD and whether the end-goal is preserving endogenous neurons in early-stage HD, or replacing the lost neurons in late-stage HD. This review will discuss the current state of stem cell technology for treating the different stages of HD and possible future directions for stem-cell therapy in HD.
Collapse
|
31
|
Evidence for prion-like mechanisms in several neurodegenerative diseases: potential implications for immunotherapy. Clin Dev Immunol 2013; 2013:473706. [PMID: 24228054 PMCID: PMC3817797 DOI: 10.1155/2013/473706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 07/02/2013] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal, untreatable neurodegenerative diseases. While the impact of TSEs on human health is relatively minor, these diseases are having a major influence on how we view, and potentially treat, other more common neurodegenerative disorders. Until recently, TSEs encapsulated a distinct category of neurodegenerative disorder, exclusive in their defining characteristic of infectivity. It now appears that similar mechanisms of self-propagation may underlie other proteinopathies such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and Huntington's disease. This link is of scientific interest and potential therapeutic importance as this route of self-propagation offers conceptual support and guidance for vaccine development efforts. Specifically, the existence of a pathological, self-promoting isoform offers a rational vaccine target. Here, we review the evidence of prion-like mechanisms within a number of common neurodegenerative disorders and speculate on potential implications and opportunities for vaccine development.
Collapse
|
32
|
Single-chain fragment variable passive immunotherapies for neurodegenerative diseases. Int J Mol Sci 2013; 14:19109-27. [PMID: 24048248 PMCID: PMC3794823 DOI: 10.3390/ijms140919109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 01/26/2023] Open
Abstract
Accumulation of misfolded proteins has been implicated in a variety of neurodegenerative diseases including prion diseases, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). In the past decade, single-chain fragment variable (scFv) -based immunotherapies have been developed to target abnormal proteins or various forms of protein aggregates including Aβ, SNCA, Htt, and PrP proteins. The scFvs are produced by fusing the variable regions of the antibody heavy and light chains, creating a much smaller protein with unaltered specificity. Because of its small size and relative ease of production, scFvs are promising diagnostic and therapeutic reagents for protein misfolded diseases. Studies have demonstrated the efficacy and safety of scFvs in preventing amyloid protein aggregation in preclinical models. Herein, we discuss recent developments of these immunotherapeutics. We review efforts of our group and others using scFv in neurodegenerative disease models. We illustrate the advantages of scFvs, including engineering to enhance misfolded conformer specificity and subcellular targeting to optimize therapeutic action.
Collapse
|
33
|
Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis 2013; 4:e752. [PMID: 23907466 PMCID: PMC3763438 DOI: 10.1038/cddis.2013.276] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 01/27/2023]
Abstract
Several inherited neurodegenerative disorders are caused by CAG trinucleotide repeat expansions, which can be located either in the coding region or in the untranslated region (UTR) of the respective genes. Polyglutamine diseases (polyQ diseases) are caused by an expansion of a stretch of CAG repeats within the coding region, translating into a polyQ tract. The polyQ tract expansions result in conformational changes, eventually leading to aggregate formation. It is widely believed that the aggregation of polyQ proteins is linked with disease development. In addition, in the last couple of years, it has been shown that RNA-mediated mechanisms also have a profound role in neurotoxicity in both polyQ diseases and diseases caused by elongated CAG repeat motifs in their UTRs. Here, we review the different molecular mechanisms assigned to mRNAs with expanded CAG repeats. One aspect is the mRNA folding of CAG repeats. Furthermore, pathogenic mechanisms assigned to CAG repeat mRNAs are discussed. First, we discuss mechanisms that involve the sequestration of the diverse proteins to the expanded CAG repeat mRNA molecules. As a result of this, several cellular mechanisms are aberrantly regulated. These include the sequestration of MBNL1, leading to misregulated splicing; sequestration of nucleolin, leading to reduced cellular rRNA; and sequestration of proteins of the siRNA machinery, resulting in the production of short silencing RNAs that affect gene expression. Second, we discuss the effect of expanded CAG repeats on the subcellular localization, transcription and translation of the CAG repeat mRNA itself. Here we focus on the MID1 protein complex that triggers an increased translation of expanded CAG repeat mRNAs and a mechanism called repeat-associated non-ATG translation, which leads to proteins aberrantly translated from CAG repeat mRNAs. In addition, therapeutic approaches for CAG repeat disorders are discussed. Together, all the findings summarized here show that mutant mRNA has a fundamental role in the pathogenesis of CAG repeat diseases.
Collapse
|
34
|
Arribat Y, Bonneaud N, Talmat-Amar Y, Layalle S, Parmentier ML, Maschat F. A huntingtin peptide inhibits polyQ-huntingtin associated defects. PLoS One 2013; 8:e68775. [PMID: 23861941 PMCID: PMC3701666 DOI: 10.1371/journal.pone.0068775] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/06/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is caused by the abnormal expansion of the polyglutamine tract in the human Huntingtin protein (polyQ-hHtt). Although this mutation behaves dominantly, huntingtin loss of function also contributes to HD pathogenesis. Indeed, wild-type Huntingtin plays a protective role with respect to polyQ-hHtt induced defects. METHODOLOGY/PRINCIPAL FINDINGS The question that we addressed here is what part of the wild-type Huntingtin is responsible for these protective properties. We first screened peptides from the Huntingtin protein in HeLa cells and identified a 23 aa peptide (P42) that inhibits polyQ-hHtt aggregation. P42 is part of the endogenous Huntingtin protein and lies within a region rich in proteolytic sites that plays a critical role in the pathogenesis process. Using a Drosophila model of HD, we tested the protective properties of this peptide on aggregation, as well as on different polyQ-hHtt induced neuronal phenotypes: eye degeneration (an indicator of cell death), impairment of vesicular axonal trafficking, and physiological behaviors such as larval locomotion and adult survival. Together, our results demonstrate high protective properties for P42 in vivo, in whole animals. These data also demonstrate a specific role of P42 on Huntington's disease model, since it has no effect on other models of polyQ-induced diseases, such as spinocerebellar ataxias. CONCLUSIONS/SIGNIFICANCE Altogether our data show that P42, a 23 aa-long hHtt peptide, plays a protective role with respect to polyQ-hHtt aggregation as well as cellular and behavioral dysfunctions induced by polyQ-hHtt in vivo. Our study also confirms the correlation between polyQ-hHtt aggregation and neuronal defects. Finally, these results strongly suggest a therapeutic potential for P42, specific of Huntington's disease.
Collapse
Affiliation(s)
- Yoan Arribat
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Nathalie Bonneaud
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Yasmina Talmat-Amar
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Sophie Layalle
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Marie-Laure Parmentier
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
- * E-mail: (FM); (MLP)
| | - Florence Maschat
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
- * E-mail: (FM); (MLP)
| |
Collapse
|
35
|
Abstract
The process of misfolding of proteins that can trigger a pathogenic cascade leading to neurodegenerative diseases largely originates intracellularly. It is possible to harness the specificity and affinity of antibodies to counteract either protein misfolding itself, or the aberrant interactions and excess stressors immediately downstream of the primary insult. This review covers the emerging field of engineering intracellular antibody fragments, intrabodies and nanobodies, in neurodegeneration. Huntington's disease has provided the clearest proof of concept for this approach. The model systems and readouts for this disorder power the studies, and the potential to intervene therapeutically at early stages in known carriers with projected ages of onset increases the chances of meaningful clinical trials. Both single-chain Fv and single-domain nanobodies have been identified against specific targets; data have allowed feedback for rational design of bifunctional constructs, as well as target validation. Intrabodies that can modulate the primary accumulating protein in Parkinson's disease, alpha-synuclein, are also reviewed, covering a range of domains and conformers. Recombinant antibody technology has become a major player in the therapeutic pipeline for cancer, infectious diseases, and autoimmunity. There is also tremendous potential for applying this powerful biotechnology to neurological diseases.
Collapse
Affiliation(s)
- Anne Messer
- New York State Dept of Health, Wadsworth Center, Albany, NY 12208, USA.
| | | |
Collapse
|
36
|
Calamini B, Lo DC, Kaltenbach LS. Experimental models for identifying modifiers of polyglutamine-induced aggregation and neurodegeneration. Neurotherapeutics 2013; 10:400-15. [PMID: 23700210 PMCID: PMC3701774 DOI: 10.1007/s13311-013-0195-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Huntington's disease (HD) typifies a class of inherited neurodegenerative disorders in which a CAG expansion in a single gene leads to an extended polyglutamine tract and misfolding of the expressed protein, driving cumulative neural dysfunction and degeneration. HD is invariably fatal with symptoms that include progressive neuropsychiatric and cognitive impairments, and eventual motor disability. No curative therapies yet exist for HD and related polyglutamine diseases; therefore, substantial efforts have been made in the drug discovery field to identify potential drug and drug target candidates for disease-modifying treatment. In this context, we review here a range of early-stage screening approaches based in in vitro, cellular, and invertebrate models to identify pharmacological and genetic modifiers of polyglutamine aggregation and induced neurodegeneration. In addition, emerging technologies, including high-content analysis, three-dimensional culture models, and induced pluripotent stem cells are increasingly being incorporated into drug discovery screening pipelines for protein misfolding disorders. Together, these diverse screening strategies are generating novel and exciting new probes for understanding the disease process and for furthering development of therapeutic candidates for eventual testing in the clinical setting.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| | - Donald C. Lo
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| | - Linda S. Kaltenbach
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| |
Collapse
|
37
|
Wright J, Wang X, Haataja L, Kellogg AP, Lee J, Liu M, Arvan P. Dominant protein interactions that influence the pathogenesis of conformational diseases. J Clin Invest 2013; 123:3124-34. [PMID: 23722904 DOI: 10.1172/jci67260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/28/2013] [Indexed: 02/06/2023] Open
Abstract
Misfolding of exportable proteins can trigger endocrinopathies. For example, misfolding of insulin can result in autosomal dominant mutant INS gene-induced diabetes of youth, and misfolding of thyroglobulin can result in autosomal recessive congenital hypothyroidism with deficient thyroglobulin. Both proinsulin and thyroglobulin normally form homodimers; the mutant versions of both proteins misfold in the ER, triggering ER stress, and, in both cases, heterozygosity creates potential for cross-dimerization between mutant and WT gene products. Here, we investigated these two ER-retained mutant secretory proteins and the selectivity of their interactions with their respective WT counterparts. In both cases and in animal models of these diseases, we found that conditions favoring an increased stoichiometry of mutant gene product dominantly inhibited export of the WT partner, while increased relative level of the WT gene product helped to rescue secretion of the mutant partner. Surprisingly, the bidirectional consequences of secretory blockade and rescue occur simultaneously in the same cells. Thus, in the context of heterozygosity, expression level and stability of WT subunits may be a critical factor influencing the effect of protein misfolding on clinical phenotype. These results offer new insight into dominant as well as recessive inheritance of conformational diseases and offer opportunities for the development of new therapies.
Collapse
Affiliation(s)
- Jordan Wright
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ghadge GD, Pavlovic JD, Koduvayur SP, Kay BK, Roos RP. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1. Neurobiol Dis 2013; 56:74-8. [PMID: 23607939 DOI: 10.1016/j.nbd.2013.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 11/17/2022] Open
Abstract
Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity.
Collapse
Affiliation(s)
- Ghanashyam D Ghadge
- Department of Neurology, University of Chicago Medical Center, 5841 S. Maryland Avenue, MC2030, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Burgunder JM. Translational research in Huntington's disease: opening up for disease modifying treatment. Transl Neurodegener 2013; 2:2. [PMID: 23347646 PMCID: PMC3610231 DOI: 10.1186/2047-9158-2-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/16/2013] [Indexed: 12/16/2022] Open
Abstract
Research on the molecular mechanisms involved in Huntington's disease, a monogenic disorder with a complex phenotype including motor, behaviour, and cognitive impairments, is advancing at a rapid path. Knowledge on several of the multimodal pathways has now lead to the establishment of rational strategies to prepare trials of several compounds in affected people. Furthermore, improved understanding of the phenotype and on ways of assessing it, as well as the process of developing biomarkers, allows setting the frame for such studies. In this brief review, the present status of some of these aspects is examined.
Collapse
Affiliation(s)
- Jean-Marc Burgunder
- Swiss Huntington's Disease Centre, Department of Neurology, University of Bern, Neurobu Clinics, Steinerstrasse 45, CH 3006, Bern, Switzerland.
| |
Collapse
|
41
|
Abstract
The deposition of peptides and proteins as amyloid fibrils is a common feature of nearly 50 medical -disorders affecting the brain or a variety of other organs and tissues. These disorders, which include Alzheimer's disease, Parkinson's disease, the prion diseases, and type II diabetes, have an enormous impact on the public health and economy of the modern world. Extensive research is therefore taking place to determine the underlying molecular mechanisms and determinants of the pathological conversion of amyloidogenic proteins from their soluble forms into fibrillar structures. The use of molecular probes and biophysical techniques, such as X-ray crystallography and particularly NMR spectroscopy, are allowing detailed analysis of the mechanism of fibril formation and of the underlying structural and chemical features of the associated pathogenicity. Nanobodies, the antigen-binding domains derived from camelid heavy-chain antibodies, are excellent tools to probe protein aggregation as a result of their exquisite specificity and high affinity and stability, along with their ease of expression and small size; the latter in particular allows them to be used very efficiently in combination with NMR spectroscopy and X-ray crystallography. In this chapter we present an overview of how nanobodies are being used to obtain detailed information on the mechanisms of amyloid formation and on the nature and origin of their links with human diseases.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
42
|
Refolding Technology for scFv Using a New Detergent, N-Lauroyl-L-glutamate and Arginine. Antibodies (Basel) 2012. [DOI: 10.3390/antib1020215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Joshi SN, Butler DC, Messer A. Fusion to a highly charged proteasomal retargeting sequence increases soluble cytoplasmic expression and efficacy of diverse anti-synuclein intrabodies. MAbs 2012; 4:686-93. [PMID: 22929188 DOI: 10.4161/mabs.21696] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrabodies can be powerful reagents to effect modulation of aberrant intracellular proteins that underlie a range of diseases. However, their cytoplasmic solubility can be limiting. We previously reported that overall charge and hydrophilicity can be combined to provide initial estimates of intracellular solubility, and that charge engineering via fusion can alter solubility properties experimentally. Additional studies showed that fusion of a proteasome-targeting PEST motif to the anti-huntingtin intrabody scFv-C4 can degrade mutant huntingtin proteins by directing them to the proteasome, while also increasing the negative charge. We now validate the generality of this approach with intrabodies against α-synuclein (α-syn), an important target in Parkinson disease. In this study, fusion of the PEST sequence to a set of four diverse, poorly soluble anti-α-syn intrabodies (D5E, 10H, D10 scFv, VH14 nanobody) significantly increased steady-state soluble intrabody protein levels in all cases, despite fusion with the PEST proteasomal-targeting signal. Furthermore, adding this PEST motif to the least soluble construct, VH14, significantly enhanced degradation of the target protein, α-syn~GFP. The intrabody-PEST fusion approach thus has dual advantages of potentially solubilizing intrabodies and enhancing their functionality in parallel. Empirical testing of intrabody-PEST fusions is recommended for enhancement of intrabody solubility from diverse sources.
Collapse
Affiliation(s)
- Shubhada N Joshi
- Department of Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | | | | |
Collapse
|
44
|
Targeting mutant huntingtin for the development of disease-modifying therapy. Drug Discov Today 2012; 17:1217-23. [PMID: 22772050 DOI: 10.1016/j.drudis.2012.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/09/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a progressive and fatal neurodegenerative disease, and the most common inherited CAG repeat disorder. A polyglutamine expansion in the N-terminus of the huntingtin protein (HTT) leads to protein misfolding and downstream pathogenic processes culminating in widespread functional impairment and neurodegeneration in the striatum, cortex and other brain areas. To date, only symptomatic treatments are available that address motor, psychiatric and cognitive deficits. Here we review recent strategies for developing disease-modifying therapies designed to limit or abolish the pathogenic activities of the primary molecular target in HD, the mutant HTT protein itself.
Collapse
|
45
|
Nilvebrant J, Dunlop DC, Sircar A, Wurch T, Falkowska E, Reichert JM, Helguera G, Piccione EC, Brack S, Berger S. IBC's 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics International Conferences and the 2011 Annual Meeting of The Antibody Society, December 5-8, 2011, San Diego, CA. MAbs 2012; 4:153-81. [PMID: 22453091 DOI: 10.4161/mabs.4.2.19495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics international conferences, and the 2011 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 5-8, 2011 in San Diego, CA. The meeting drew ~800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a preview to the main events, a pre-conference workshop held on December 4, 2011 focused on antibodies as probes of structure. The Antibody Engineering Conference comprised eight sessions: (1) structure and dynamics of antibodies and their membrane receptor targets; (2) model-guided generation of binding sites; (3) novel selection strategies; (4) antibodies in a complex environment: targeting intracellular and misfolded proteins; (5) rational vaccine design; (6) viral retargeting with engineered binding molecules; (7) the biology behind potential blockbuster antibodies and (8) antibodies as signaling modifiers: where did we go right, and can we learn from success? The Antibody Therapeutics session comprised five sessions: (1)Twenty-five years of therapeutic antibodies: lessons learned and future challenges; (2) preclinical and early stage development of antibody therapeutics; (3) next generation anti-angiogenics; (4) updates of clinical stage antibody therapeutics and (5) antibody drug conjugates and bispecific antibodies.
Collapse
Affiliation(s)
- Johan Nilvebrant
- School of Biotechnology; Department of Proteomics; Royal Institute of Technology (KTH); AlbaNova University Center; Stockholm, Sweden
| | | | - Aroop Sircar
- EMD Serono Research Institute; Billlerica, MA USA
| | - Thierry Wurch
- Oncology Research Division, Institut de Recherche SERVIER; Croissy sur Seine, France
| | | | | | - Gustavo Helguera
- Farmacotecnia I, Facultad de Farmacia y Bioquímica; University of Buenos Aires; Ciudad Autónoma de Buenos Aires, Argentina
| | - Emily C Piccione
- Standford Cancer Institute; Stanford University School of Medicine; Stanford, CA USA
| | | | - Sven Berger
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre; St Julien en Genevois, France
| |
Collapse
|
46
|
Butler DC, Messer A. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments. PLoS One 2011; 6:e29199. [PMID: 22216210 PMCID: PMC3245261 DOI: 10.1371/journal.pone.0029199] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/22/2011] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by a trinucleotide (CAG)(n) repeat expansion in the coding sequence of the huntingtin gene, and an expanded polyglutamine (>37Q) tract in the protein. This results in misfolding and accumulation of huntingtin protein (htt), formation of neuronal intranuclear and cytoplasmic inclusions, and neuronal dysfunction/degeneration. Single-chain Fv antibodies (scFvs), expressed as intrabodies that bind htt and prevent aggregation, show promise as immunotherapeutics for HD. Intrastriatal delivery of anti-N-terminal htt scFv-C4 using an adeno-associated virus vector (AAV2/1) significantly reduces the size and number of aggregates in HDR6/1 transgenic mice; however, this protective effect diminishes with age and time after injection. We therefore explored enhancing intrabody efficacy via fusions to heterologous functional domains. Proteins containing a PEST motif are often targeted for proteasomal degradation and generally have a short half life. In ST14A cells, fusion of the C-terminal PEST region of mouse ornithine decarboxylase (mODC) to scFv-C4 reduces htt exon 1 protein fragments with 72 glutamine repeats (httex1-72Q) by ~80-90% when compared to scFv-C4 alone. Proteasomal targeting was verified by either scrambling the mODC-PEST motif, or via proteasomal inhibition with epoxomicin. For these constructs, the proteasomal degradation of the scFv intrabody proteins themselves was reduced<25% by the addition of the mODC-PEST motif, with or without antigens. The remaining intrabody levels were amply sufficient to target N-terminal httex1-72Q protein fragment turnover. Critically, scFv-C4-PEST prevents aggregation and toxicity of httex1-72Q fragments at significantly lower doses than scFv-C4. Fusion of the mODC-PEST motif to intrabodies is a valuable general approach to specifically target toxic antigens to the proteasome for degradation.
Collapse
Affiliation(s)
- David C. Butler
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America
| | - Anne Messer
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|