1
|
Noel JP, Zhang R, Pitkow X, Angelaki DE. Dorsolateral prefrontal cortex drives strategic aborting by optimizing long-run policy extraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.28.625897. [PMID: 39651243 PMCID: PMC11623693 DOI: 10.1101/2024.11.28.625897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Real world choices often involve balancing decisions that are optimized for the short-vs. long-term. Here, we reason that apparently sub-optimal single trial decisions in macaques may in fact reflect long-term, strategic planning. We demonstrate that macaques freely navigating in VR for sequentially presented targets will strategically abort offers, forgoing more immediate rewards on individual trials to maximize session-long returns. This behavior is highly specific to the individual, demonstrating that macaques reason about their own long-run performance. Reinforcement-learning (RL) models suggest this behavior is algorithmically supported by modular actor-critic networks with a policy module not only optimizing long-term value functions, but also informed of specific state-action values allowing for rapid policy optimization. The behavior of artificial networks suggests that changes in policy for a matched offer ought to be evident as soon as offers are made, even if the aborting behavior occurs much later. We confirm this prediction by demonstrating that single units and population dynamics in macaque dorsolateral prefrontal cortex (dlPFC), but not parietal area 7a or dorsomedial superior temporal area (MSTd), reflect the upcoming reward-maximizing aborting behavior upon offer presentation. These results cast dlPFC as a specialized policy module, and stand in contrast to recent work demonstrating the distributed and recurrent nature of belief-networks.
Collapse
|
2
|
Naffrechoux M, Koun E, Volland F, Farnè A, Roy AC, Pélisson D. Eyes and hand are both reliable at localizing somatosensory targets. Exp Brain Res 2024; 242:2653-2664. [PMID: 39340566 DOI: 10.1007/s00221-024-06922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Body representations (BR) for action are critical to perform accurate movements. Yet, behavioral measures suggest that BR are distorted even in healthy people. However, the upper limb has mostly been used as a probe so far, making difficult to decide whether BR are truly distorted or whether this depends on the effector used as a readout. Here, we aimed to assess in healthy humans the accuracy of the eye and hand effectors in localizing somatosensory targets, to determine whether they may probe BR similarly. Twenty-six participants completed two localization tasks in which they had to localize an unseen target (proprioceptive or tactile) with either their eyes or hand. Linear mixed model revealed in both tasks a larger horizontal (but not vertical) localization error for the ocular than for the manual localization performance. However, despite better hand mean accuracy, manual and ocular localization performance positively correlated to each other in both tasks. Moreover, target position also affected localization performance for both eye and hand responses: accuracy was higher for the more flexed position of the elbow in the proprioceptive task and for the thumb than for the index finger in the tactile task, thus confirming previous results of better performance for the thumb. These findings indicate that the hand seems to beat the eyes along the horizontal axis when localizing somatosensory targets, but the localization patterns revealed by the two effectors seemed to be related and characterized by the same target effect, opening the way to assess BR with the eyes when upper limb motor control is disturbed.
Collapse
Affiliation(s)
- Marion Naffrechoux
- Integrative Multisensory Perception Action and Cognition Team of the Lyon Neuroscience Research Center, INSERM U1028 CNRS U5292 University Lyon 1, 16 avenue du Doyen Lépine, Lyon, 69500, France.
- Laboratoire Dynamique Du Langage CNRS, UMR 5596 University Lyon 2, Lyon, France.
| | - Eric Koun
- Integrative Multisensory Perception Action and Cognition Team of the Lyon Neuroscience Research Center, INSERM U1028 CNRS U5292 University Lyon 1, 16 avenue du Doyen Lépine, Lyon, 69500, France
| | - Frederic Volland
- Integrative Multisensory Perception Action and Cognition Team of the Lyon Neuroscience Research Center, INSERM U1028 CNRS U5292 University Lyon 1, 16 avenue du Doyen Lépine, Lyon, 69500, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action and Cognition Team of the Lyon Neuroscience Research Center, INSERM U1028 CNRS U5292 University Lyon 1, 16 avenue du Doyen Lépine, Lyon, 69500, France
| | - Alice Catherine Roy
- Laboratoire Dynamique Du Langage CNRS, UMR 5596 University Lyon 2, Lyon, France
| | - Denis Pélisson
- Integrative Multisensory Perception Action and Cognition Team of the Lyon Neuroscience Research Center, INSERM U1028 CNRS U5292 University Lyon 1, 16 avenue du Doyen Lépine, Lyon, 69500, France
| |
Collapse
|
3
|
Richer N, Peterson SM, Ferris DP. Vision Is Not Required to Elicit Balance Improvements From Beam Walking Practice. Motor Control 2024; 28:480-492. [PMID: 39159924 DOI: 10.1123/mc.2023-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Beam walking is a highly studied assessment of walking balance. Recent research has demonstrated that brief intermittent visual rotations and occlusions can increase the efficacy of beam walking practice on subsequent beam walking without visual perturbations. We sought to examine the influence of full vision removal during practice walking on a treadmill-mounted balance beam. Although visual disruptions improved performance of this task, we hypothesized that removing visual feedback completely would lead to less balance improvements than with normal vision due to the specificity of practice. METHODS Twenty healthy young adults trained to walk at a fixed speed on a treadmill-mounted balance beam for 30 min, either with, or without, normal vision. We compared their balance pre-, during, and posttraining by calculating their step-offs per minute and the percentage change in step-offs per minute. RESULTS Balance improved in both groups after training, with no significant difference in percentage change in step-offs between the normal vision and the no vision participants. On average, the no vision participants had twice as many step-offs per minute as the normal vision group during training. CONCLUSION Although previous experiments show that intermittent visual perturbations led to large enhancements of the effectiveness of beam walking training, completely removing visual feedback did not alter training effectiveness compared with normal vision training. It is likely a result of sensory reweighting in the absence of vision, where a greater weight was placed on proprioceptive, cutaneous, and vestibular inputs.
Collapse
Affiliation(s)
- Natalie Richer
- Department of Kinesiology and Applied Health, University of Winnipeg, Winnipeg, MB, Canada
| | - Steven M Peterson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel P Ferris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Key B, Brown DJ. Making sense of feelings. Neurosci Conscious 2024; 2024:niae034. [PMID: 39301415 PMCID: PMC11412240 DOI: 10.1093/nc/niae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Internal feeling states such as pain, hunger, and thirst are widely assumed to be drivers of behaviours essential for homeostasis and animal survival. Call this the 'causal assumption'. It is becoming increasingly apparent that the causal assumption is incompatible with the standard view of motor action in neuroscience. While there is a well-known explanatory gap between neural activity and feelings, there is also a disjuncture in the reverse direction-what role, if any, do feelings play in animals if not to cause behaviour? To deny that feelings cause behaviours might thus seem to presage epiphenomenalism-the idea that subjective experiences, including feelings, are inert, emergent and, on some views, non-physical properties of brain processes. Since epiphenomenalism is antagonistic to fundamental commitments of evolutionary biology, the view developed here challenges the standard view about the function of feelings without denying that feelings have a function. Instead, we introduce the 'sense making sense' hypothesis-the idea that the function of subjective experience is not to cause behaviour, but to explain, in a restricted but still useful sense of 'explanation'. A plausible framework is derived that integrates commonly accepted neural computations to blend motor control, feelings, and explanatory processes to make sense of the way feelings are integrated into our sense of how and why we do and what we do.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Deborah J Brown
- School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
Quirmbach F, Limanowski J. Visuomotor prediction during action planning in the human frontoparietal cortex and cerebellum. Cereb Cortex 2024; 34:bhae382. [PMID: 39325000 DOI: 10.1093/cercor/bhae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
The concept of forward models in the brain, classically applied to describing on-line motor control, can in principle be extended to action planning, i.e. assuming forward sensory predictions are issued during the mere preparation of movements. To test this idea, we combined a delayed movement task with a virtual reality based manipulation of visuomotor congruence during functional magnetic resonance imaging. Participants executed simple hand movements after a delay. During the delay, two aspects of the upcoming movement could be cued: the movement type and the visuomotor mapping (i.e. congruence of executed hand movements and visual movement feedback by a glove-controlled virtual hand). Frontoparietal areas showed increased delay period activity when preparing pre-specified movements (cued > uncued). The cerebellum showed increased activity during the preparation for incongruent > congruent visuomotor mappings. The left anterior intraparietal sulcus showed an interaction effect, responding most strongly when a pre-specified (cued) movement was prepared under expected visuomotor incongruence. These results suggest that motor planning entails a forward prediction of visual body movement feedback, which can be adjusted in anticipation of nonstandard visuomotor mappings, and which is likely computed by the cerebellum and integrated with state estimates for (planned) control in the anterior intraparietal sulcus.
Collapse
Affiliation(s)
- Felix Quirmbach
- Faculty of Psychology, Technical University of Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Jakub Limanowski
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
- Institute of Psychology, University of Greifswald, Franz-Mehring-Straße 47, 17489 Greifswald, Germany
| |
Collapse
|
6
|
Seegelke C, Heed T. It is time to integrate models across disciplines: a commentary on Krüger et al. (2022). PSYCHOLOGICAL RESEARCH 2024; 88:1888-1890. [PMID: 38430251 PMCID: PMC11315699 DOI: 10.1007/s00426-024-01930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Affiliation(s)
- Christian Seegelke
- Department of Psychology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Tobias Heed
- Department of Psychology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
7
|
Kelley CR, Kauffman JL. Parkinsonian Tremor as Unstable Feedback in a Physiologically Consistent Control Framework. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2665-2675. [PMID: 39018214 DOI: 10.1109/tnsre.2024.3430116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Parkinson's disease (PD) is characterized by decreased dopamine in the basal ganglia that causes excessive tonic inhibition of the thalamus. This excessive inhibition seems to explain inhibitory motor symptoms in PD, but the source of tremor remains unclear. This paper investigates how neural inhibition may change the closed-loop characteristics of the human motor control system to determine how this established pathophysiology could produce tremor. The rate-coding model of neural signals suggests increased inhibition decreases signal amplitude, which could create a mismatch between the closed-loop dynamics and the internal models that overcome proprioceptive feedback delays. This paper aims to identify a candidate model structure with decreased-amplitude-induced tremor in PD that also agrees with previously recorded movements of healthy and cerebellar patients. The optimal feedback control theory of human motor control forms the basis of the model. Key additional elements include gating of undesired movements via the basal ganglia-thalamus-motor cortex circuit and the treatment of the efferent copy of the control input as a measurement in the state estimator. Simulations confirm the model's ability to capture tremor in PD and also demonstrate how disease progression could affect tremor and other motor symptoms, providing insight into the existence of tremor and non-tremor phenotypes. Altogether, the physiological underpinnings of the model structure and the agreement of model predictions with clinical observations provides support for the hypothesis that unstable feedback produces parkinsonian tremor. Consequently, these results also support the associated framework for the neuroanatomy of human motor control.
Collapse
|
8
|
Vaccari FE, Diomedi S, De Vitis M, Filippini M, Fattori P. Similar neural states, but dissimilar decoding patterns for motor control in parietal cortex. Netw Neurosci 2024; 8:486-516. [PMID: 38952818 PMCID: PMC11146678 DOI: 10.1162/netn_a_00364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 07/03/2024] Open
Abstract
Discrete neural states are associated with reaching movements across the fronto-parietal network. Here, the Hidden Markov Model (HMM) applied to spiking activity of the somato-motor parietal area PE revealed a sequence of states similar to those of the contiguous visuomotor areas PEc and V6A. Using a coupled clustering and decoding approach, we proved that these neural states carried spatiotemporal information regarding behaviour in all three posterior parietal areas. However, comparing decoding accuracy, PE was less informative than V6A and PEc. In addition, V6A outperformed PEc in target inference, indicating functional differences among the parietal areas. To check the consistency of these differences, we used both a supervised and an unsupervised variant of the HMM, and compared its performance with two more common classifiers, Support Vector Machine and Long-Short Term Memory. The differences in decoding between areas were invariant to the algorithm used, still showing the dissimilarities found with HMM, thus indicating that these dissimilarities are intrinsic in the information encoded by parietal neurons. These results highlight that, when decoding from the parietal cortex, for example, in brain machine interface implementations, attention should be paid in selecting the most suitable source of neural signals, given the great heterogeneity of this cortical sector.
Collapse
Affiliation(s)
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy
| |
Collapse
|
9
|
Fattori P, De Vitis M, Filippini M, Vaccari FE, Diomedi S, Gamberini M, Galletti C. Visual sensitivity at the service of action control in posterior parietal cortex. Front Physiol 2024; 15:1408010. [PMID: 38841208 PMCID: PMC11151461 DOI: 10.3389/fphys.2024.1408010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
The posterior parietal cortex (PPC) serves as a crucial hub for the integration of sensory with motor cues related to voluntary actions. Visual input is used in different ways along the dorsomedial and the dorsolateral visual pathways. Here we focus on the dorsomedial pathway and recognize a visual representation at the service of action control. Employing different experimental paradigms applied to behaving monkeys while single neural activity is recorded from the medial PPC (area V6A), we show how plastic visual representation can be, matching the different contexts in which the same object is proposed. We also present data on the exchange between vision and arm actions and highlight how this rich interplay can be used to weight different sensory inputs in order to monitor and correct arm actions online. Indeed, neural activity during reaching or reach-to-grasp actions can be excited or inhibited by visual information, suggesting that the visual perception of action, rather than object recognition, is the most effective factor for area V6A. Also, three-dimensional object shape is encoded dynamically by the neural population, according to the behavioral context of the monkey. Along this line, mirror neuron discharges in V6A indicate the plasticity of visual representation of the graspable objects, that changes according to the context and peaks when the object is the target of one's own action. In other words, object encoding in V6A is a visual encoding for action.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Padova, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Breveglieri R, Borgomaneri S, Bosco A, Filippini M, De Vitis M, Tessari A, Avenanti A, Galletti C, Fattori P. rTMS over the human medial parietal cortex impairs online reaching corrections. Brain Struct Funct 2024; 229:297-310. [PMID: 38141108 PMCID: PMC10917872 DOI: 10.1007/s00429-023-02735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Indirect correlational evidence suggests that the posteromedial sector of the human parietal cortex (area hV6A) is involved in reaching corrections. We interfered with hV6A functions using repetitive transcranial magnetic stimulation (rTMS) while healthy participants performed reaching movements and in-flight adjustments of the hand trajectory in presence of unexpected target shifts. rTMS over hV6A specifically altered action reprogramming, causing deviations of the shifted trajectories, particularly along the vertical dimension (i.e., distance). This study provides evidence of the functional relevance of hV6A in action reprogramming while a sudden event requires a change in performance and shows that hV6A also plays a role in state estimation during reaching. These findings are in line with neurological data showing impairments in actions performed along the distance dimension when lesions occur in the dorsal posterior parietal cortex.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy.
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena Campus, 47521, Cesena, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
| | - Alessia Tessari
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
- Department of Psychology, University of Bologna, 40127, Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena Campus, 47521, Cesena, Italy
- Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000, Talca, Chile
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Ito S, Gomi H. Modulations of stretch reflex by altering visuomotor contexts. Front Hum Neurosci 2024; 18:1336629. [PMID: 38419960 PMCID: PMC10899434 DOI: 10.3389/fnhum.2024.1336629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Various functional modulations of the stretch reflex help to stabilize actions, but the computational mechanism behind its context-dependent tuning remains unclear. While many studies have demonstrated that motor contexts associated with the task goal cause functional modulation of the stretch reflex of upper limbs, it is not well understood how visual contexts independent of the task requirements affect the stretch reflex. To explore this issue, we conducted two experiments testing 20 healthy human participants (age range 20-45, average 31.3 ± 9.0), in which visual contexts were manipulated in a visually guided reaching task. During wrist flexion movements toward a visual target, a mechanical load was applied to the wrist joint to evoke stretch reflex of wrist flexor muscle (flexor carpi radialis). The first experiment (n = 10) examined the effect of altering the visuomotor transformation on the stretch reflex that was evaluated with surface electromyogram. We found that the amplitude of the stretch reflex decreased (p = 0.024) when a rotational transformation of 90° was introduced between the hand movement and the visual cursor, whereas the amplitude did not significantly change (p = 0.26) when the rotational transformation was accompanied by a head rotation so that the configuration of visual feedback was maintained in visual coordinates. The results suggest that the stretch reflex was regulated depending on whether the visuomotor mapping had already been acquired or not. In the second experiment (n = 10), we examined how uncertainty in the visual target or hand cursor affects the stretch reflex by removing these visual stimuli. We found that the reflex amplitude was reduced by the disappearance of the hand cursor (p = 0.039), but was not affected by removal of the visual target (p = 0.27), suggesting that the visual state of the body and target contribute differently to the reflex tuning. These findings support the idea that visual updating of the body state is crucial for regulation of quick motor control driven by proprioceptive signals.
Collapse
Affiliation(s)
- Sho Ito
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan
- School of Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan
| |
Collapse
|
12
|
Crucianelli L, Reader AT, Ehrsson HH. Subcortical contributions to the sense of body ownership. Brain 2024; 147:390-405. [PMID: 37847057 PMCID: PMC10834261 DOI: 10.1093/brain/awad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
The sense of body ownership (i.e. the feeling that our body or its parts belong to us) plays a key role in bodily self-consciousness and is believed to stem from multisensory integration. Experimental paradigms such as the rubber hand illusion have been developed to allow the controlled manipulation of body ownership in laboratory settings, providing effective tools for investigating malleability in the sense of body ownership and the boundaries that distinguish self from other. Neuroimaging studies of body ownership converge on the involvement of several cortical regions, including the premotor cortex and posterior parietal cortex. However, relatively less attention has been paid to subcortical structures that may also contribute to body ownership perception, such as the cerebellum and putamen. Here, on the basis of neuroimaging and neuropsychological observations, we provide an overview of relevant subcortical regions and consider their potential role in generating and maintaining a sense of ownership over the body. We also suggest novel avenues for future research targeting the role of subcortical regions in making sense of the body as our own.
Collapse
Affiliation(s)
- Laura Crucianelli
- Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4DQ, UK
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Arran T Reader
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| |
Collapse
|
13
|
Sulpizio V, Fattori P, Pitzalis S, Galletti C. Functional organization of the caudal part of the human superior parietal lobule. Neurosci Biobehav Rev 2023; 153:105357. [PMID: 37572972 DOI: 10.1016/j.neubiorev.2023.105357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Like in macaque, the caudal portion of the human superior parietal lobule (SPL) plays a key role in a series of perceptive, visuomotor and somatosensory processes. Here, we review the functional properties of three separate portions of the caudal SPL, i.e., the posterior parieto-occipital sulcus (POs), the anterior POs, and the anterior part of the caudal SPL. We propose that the posterior POs is mainly dedicated to the analysis of visual motion cues useful for object motion detection during self-motion and for spatial navigation, while the more anterior parts are implicated in visuomotor control of limb actions. The anterior POs is mainly involved in using the spotlight of attention to guide reach-to-grasp hand movements, especially in dynamic environments. The anterior part of the caudal SPL plays a central role in visually guided locomotion, being implicated in controlling leg-related movements as well as the four limbs interaction with the environment, and in encoding egomotion-compatible optic flow. Together, these functions reveal how the caudal SPL is strongly implicated in skilled visually-guided behaviors.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Pilacinski A, Metzler M, Klaes C. Phantom touch illusion, an unexpected phenomenological effect of tactile gating in the absence of tactile stimulation. Sci Rep 2023; 13:15453. [PMID: 37723256 PMCID: PMC10507094 DOI: 10.1038/s41598-023-42683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
We report the presence of a tingling sensation perceived during self-touch without physical stimulation. We used immersive virtual reality scenarios in which subjects touched their body using a virtual object. This touch resulted in a tingling sensation corresponding to the location touched on the virtual body. We called it "phantom touch illusion" (PTI). Interestingly, the illusion was also reported when subjects touched invisible (inferred) parts of their limb. We reason that this PTI results from tactile gating process during self-touch if there is no tactile input to supress. The reported PTI when touching invisible body parts indicates that tactile gating is not exclusively based on vision, but rather on multi-sensory, top-down input involving body schema. This supplementary finding shows that representations of one's own body are defined top-down, beyond the available sensory information.
Collapse
Affiliation(s)
- Artur Pilacinski
- Chair for Neurotechnology, Ruhr-University Bochum, Bochum, Germany.
| | - Marita Metzler
- Chair for Neurotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Christian Klaes
- Chair for Neurotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Warburton M, Campagnoli C, Mon-Williams M, Mushtaq F, Morehead JR. Kinematic markers of skill in first-person shooter video games. PNAS NEXUS 2023; 2:pgad249. [PMID: 37564360 PMCID: PMC10411933 DOI: 10.1093/pnasnexus/pgad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
Video games present a unique opportunity to study motor skill. First-person shooter (FPS) games have particular utility because they require visually guided hand movements that are similar to widely studied planar reaching tasks. However, there is a need to ensure the tasks are equivalent if FPS games are to yield their potential as a powerful scientific tool for investigating sensorimotor control. Specifically, research is needed to ensure that differences in visual feedback of a movement do not affect motor learning between the two contexts. In traditional tasks, a movement will translate a cursor across a static background, whereas FPS games use movements to pan and tilt the view of the environment. To this end, we designed an online experiment where participants used their mouse or trackpad to shoot targets in both visual contexts. Kinematic analysis showed player movements were nearly identical between contexts, with highly correlated spatial and temporal metrics. This similarity suggests a shared internal model based on comparing predicted and observed displacement vectors rather than primary sensory feedback. A second experiment, modeled on FPS-style aim-trainer games, found movements exhibited classic invariant features described within the sensorimotor literature. We found the spatial metrics tested were significant predictors of overall task performance. More broadly, these results show that FPS games offer a novel, engaging, and compelling environment to study sensorimotor skill, providing the same precise kinematic metrics as traditional planar reaching tasks.
Collapse
Affiliation(s)
- Matthew Warburton
- School of Psychology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Carlo Campagnoli
- School of Psychology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Mark Mon-Williams
- School of Psychology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Bradford Institute for Health Research, Bradford Hospitals National Health Service Trust, Bradford, BD9 6RJ, UK
- National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg 3616, Viken, Norway
| | - Faisal Mushtaq
- School of Psychology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Centre for Immersive Technologies, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - J Ryan Morehead
- School of Psychology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Centre for Immersive Technologies, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
16
|
Klautke J, Foster C, Medendorp WP, Heed T. Dynamic spatial coding in parietal cortex mediates tactile-motor transformation. Nat Commun 2023; 14:4532. [PMID: 37500625 PMCID: PMC10374589 DOI: 10.1038/s41467-023-39959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Movements towards touch on the body require integrating tactile location and body posture information. Tactile processing and movement planning both rely on posterior parietal cortex (PPC) but their interplay is not understood. Here, human participants received tactile stimuli on their crossed and uncrossed feet, dissociating stimulus location relative to anatomy versus external space. Participants pointed to the touch or the equivalent location on the other foot, which dissociates sensory and motor locations. Multi-voxel pattern analysis of concurrently recorded fMRI signals revealed that tactile location was coded anatomically in anterior PPC but spatially in posterior PPC during sensory processing. After movement instructions were specified, PPC exclusively represented the movement goal in space, in regions associated with visuo-motor planning and with regional overlap for sensory, rule-related, and movement coding. Thus, PPC flexibly updates its spatial codes to accommodate rule-based transformation of sensory input to generate movement to environment and own body alike.
Collapse
Affiliation(s)
- Janina Klautke
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Celia Foster
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - W Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany.
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.
- Cognitive Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
17
|
Hong H, Guo C, Liu X, Yang L, Ren W, Zhao H, Li Y, Zhou Z, Lam SM, Mi J, Zuo Z, Liu C, Wang GD, Zhuo Y, Zhang YP, Li Y, Shui G, Zhang YQ, Xiong Y. Differential effects of social isolation on oligodendrocyte development in different brain regions: insights from a canine model. Front Cell Neurosci 2023; 17:1201295. [PMID: 37538851 PMCID: PMC10393781 DOI: 10.3389/fncel.2023.1201295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 08/05/2023] Open
Abstract
Social isolation (SI) exerts diverse adverse effects on brain structure and function in humans. To gain an insight into the mechanisms underlying these effects, we conducted a systematic analysis of multiple brain regions from socially isolated and group-housed dogs, whose brain and behavior are similar to humans. Our transcriptomic analysis revealed reduced expression of myelin-related genes specifically in the white matter of prefrontal cortex (PFC) after SI during the juvenile stage. Despite these gene expression changes, myelin fiber organization in PFC remained unchanged. Surprisingly, we observed more mature oligodendrocytes and thicker myelin bundles in the somatosensory parietal cortex in socially isolated dogs, which may be linked to an increased expression of ADORA2A, a gene known to promote oligodendrocyte maturation. Additionally, we found a reduced expression of blood-brain barrier (BBB) structural components Aquaporin-4, Occludin, and Claudin1 in both PFC and parietal cortices, indicating BBB disruption after SI. In agreement with BBB disruption, myelin-related sphingolipids were increased in cerebrospinal fluid in the socially isolated group. These unexpected findings show that SI induces distinct alterations in oligodendrocyte development and shared disruption in BBB integrity in different cortices, demonstrating the value of dogs as a complementary animal model to uncover molecular mechanisms underlying SI-induced brain dysfunction.
Collapse
Affiliation(s)
- Huilin Hong
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chao Guo
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xueru Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liguang Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Ren
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhao
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Beijing Sinogene Biotechnology Co., Ltd., Beijing, China
| | - Zhongyin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Sin Man Lam
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jidong Mi
- Beijing Sinogene Biotechnology Co., Ltd., Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cirong Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guanghou Shui
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Q. Zhang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Xiong
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Abstract
The frontal lobe is crucial and contributes to controlling truncal motion, postural responses, and maintaining equilibrium and locomotion. The rich repertoire of frontal gait disorders gives some indication of this complexity. For human walking, it is necessary to simultaneously achieve at least two tasks, such as maintaining a bipedal upright posture and locomotion. Particularly, postural control plays an extremely significant role in enabling the subject to maintain stable gait behaviors to adapt to the environment. To achieve these requirements, the frontal cortex (1) uses cognitive information from the parietal, temporal, and occipital cortices, (2) creates plans and programs of gait behaviors, and (3) acts on the brainstem and spinal cord, where the core posture-gait mechanisms exist. Moreover, the frontal cortex enables one to achieve a variety of gait patterns in response to environmental changes by switching gait patterns from automatic routine to intentionally controlled and learning the new paradigms of gait strategy via networks with the basal ganglia, cerebellum, and limbic structures. This chapter discusses the role of each area of the frontal cortex in behavioral control and attempts to explain how frontal lobe controls walking with special reference to postural control.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
19
|
Priorelli M, Stoianov IP. Flexible intentions: An Active Inference theory. Front Comput Neurosci 2023; 17:1128694. [PMID: 37021085 PMCID: PMC10067605 DOI: 10.3389/fncom.2023.1128694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
We present a normative computational theory of how the brain may support visually-guided goal-directed actions in dynamically changing environments. It extends the Active Inference theory of cortical processing according to which the brain maintains beliefs over the environmental state, and motor control signals try to fulfill the corresponding sensory predictions. We propose that the neural circuitry in the Posterior Parietal Cortex (PPC) compute flexible intentions-or motor plans from a belief over targets-to dynamically generate goal-directed actions, and we develop a computational formalization of this process. A proof-of-concept agent embodying visual and proprioceptive sensors and an actuated upper limb was tested on target-reaching tasks. The agent behaved correctly under various conditions, including static and dynamic targets, different sensory feedbacks, sensory precisions, intention gains, and movement policies; limit conditions were individuated, too. Active Inference driven by dynamic and flexible intentions can thus support goal-directed behavior in constantly changing environments, and the PPC might putatively host its core intention mechanism. More broadly, the study provides a normative computational basis for research on goal-directed behavior in end-to-end settings and further advances mechanistic theories of active biological systems.
Collapse
|
20
|
Walton E, Bernardoni F, Batury VL, Bahnsen K, Larivière S, Abbate-Daga G, Andres-Perpiña S, Bang L, Bischoff-Grethe A, Brooks SJ, Campbell IC, Cascino G, Castro-Fornieles J, Collantoni E, D'Agata F, Dahmen B, Danner UN, Favaro A, Feusner JD, Frank GKW, Friederich HC, Graner JL, Herpertz-Dahlmann B, Hess A, Horndasch S, Kaplan AS, Kaufmann LK, Kaye WH, Khalsa SS, LaBar KS, Lavagnino L, Lazaro L, Manara R, Miles AE, Milos GF, Monteleone AM, Monteleone P, Mwangi B, O'Daly O, Pariente J, Roesch J, Schmidt UH, Seitz J, Shott ME, Simon JJ, Smeets PAM, Tamnes CK, Tenconi E, Thomopoulos SI, van Elburg AA, Voineskos AN, von Polier GG, Wierenga CE, Zucker NL, Jahanshad N, King JA, Thompson PM, Berner LA, Ehrlich S. Brain Structure in Acutely Underweight and Partially Weight-Restored Individuals With Anorexia Nervosa: A Coordinated Analysis by the ENIGMA Eating Disorders Working Group. Biol Psychiatry 2022; 92:730-738. [PMID: 36031441 DOI: 10.1016/j.biopsych.2022.04.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The pattern of structural brain abnormalities in anorexia nervosa (AN) is still not well understood. While several studies report substantial deficits in gray matter volume and cortical thickness in acutely underweight patients, others find no differences, or even increases in patients compared with healthy control subjects. Recent weight regain before scanning may explain some of this heterogeneity. To clarify the extent, magnitude, and dependencies of gray matter changes in AN, we conducted a prospective, coordinated meta-analysis of multicenter neuroimaging data. METHODS We analyzed T1-weighted structural magnetic resonance imaging scans assessed with standardized methods from 685 female patients with AN and 963 female healthy control subjects across 22 sites worldwide. In addition to a case-control comparison, we conducted a 3-group analysis comparing healthy control subjects with acutely underweight AN patients (n = 466) and partially weight-restored patients in treatment (n = 251). RESULTS In AN, reductions in cortical thickness, subcortical volumes, and, to a lesser extent, cortical surface area were sizable (Cohen's d up to 0.95), widespread, and colocalized with hub regions. Highlighting the effects of undernutrition, these deficits were associated with lower body mass index in the AN sample and were less pronounced in partially weight-restored patients. CONCLUSIONS The effect sizes observed for cortical thickness deficits in acute AN are the largest of any psychiatric disorder investigated in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium to date. These results confirm the importance of considering weight loss and renutrition in biomedical research on AN and underscore the importance of treatment engagement to prevent potentially long-lasting structural brain changes in this population.
Collapse
Affiliation(s)
- Esther Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Victoria-Luise Batury
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec
| | - Giovanni Abbate-Daga
- Eating Disorders Center for Treatment and Research, University of Turin, Turin, Italy
| | - Susana Andres-Perpiña
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic Universitari, Centro de Investigación Biomédica en Red de Salud Mental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Lasse Bang
- Norwegian Institute of Public Health, Oslo; Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Amanda Bischoff-Grethe
- Department of Psychiatry, University of California San Diego, La Jolla, California; Eating Disorders Center for Treatment and Research, University of California San Diego, La Jolla, California
| | - Samantha J Brooks
- School of Psychology, Faculty of Health Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Department of Neuroscience, Uppsala University, Sweden
| | - Iain C Campbell
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Eating Disorders Unit, Department of Psychological Medicine, King's College London, London, United Kingdom
| | - Giammarco Cascino
- Section of Neurosciences, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic Universitari, Centro de Investigación Biomédica en Red de Salud Mental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | - Brigitte Dahmen
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Unna N Danner
- Altrecht Eating Disorders Rintveld, Altrecht Mental Health Institute, Zeist, the Netherlands; Faculty of Social Sciences, Utrecht University, Utrecht, the Netherlands
| | - Angela Favaro
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Jamie D Feusner
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California
| | - Guido K W Frank
- Department of Psychiatry, University of California San Diego, La Jolla, California; Eating Disorders Center for Treatment and Research, University of California San Diego, La Jolla, California
| | - Hans-Christoph Friederich
- Centre for Psychosocial Medicine, Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - John L Graner
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Andreas Hess
- Institute for Pharmacology and Toxicology, University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Horndasch
- Department of Child and Adolescent Psychiatry, University Clinic Erlangen, Erlangen, Germany
| | - Allan S Kaplan
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Lisa-Katrin Kaufmann
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich; Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Walter H Kaye
- Department of Psychiatry, University of California San Diego, La Jolla, California; Eating Disorders Center for Treatment and Research, University of California San Diego, La Jolla, California
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, University of Tulsa, Tulsa, Oklahoma; Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma
| | - Kevin S LaBar
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Luca Lavagnino
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston Texas
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic Universitari, Centro de Investigación Biomédica en Red de Salud Mental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Renzo Manara
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Amy E Miles
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Gabriella F Milos
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich
| | | | - Palmiero Monteleone
- Section of Neurosciences, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Benson Mwangi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston Texas
| | - Owen O'Daly
- Centre for Neuroimaging Studies, King's College London, London, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jose Pariente
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Julie Roesch
- Department of Neuroradiology, University Clinic Erlangen, Erlangen, Germany
| | - Ulrike H Schmidt
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Eating Disorders Unit, Department of Psychological Medicine, King's College London, London, United Kingdom
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Megan E Shott
- Department of Psychiatry, University of California San Diego, La Jolla, California; Eating Disorders Center for Treatment and Research, University of California San Diego, La Jolla, California
| | - Joe J Simon
- Centre for Psychosocial Medicine, Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Paul A M Smeets
- UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Elena Tenconi
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Annemarie A van Elburg
- Altrecht Eating Disorders Rintveld, Altrecht Mental Health Institute, Zeist, the Netherlands; Faculty of Social Sciences, Utrecht University, Utrecht, the Netherlands
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Georg G von Polier
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute for Neuroscience and Medicine: Brain and Behaviour, Forschungszentrum Jülich, Jülich, Germany; Department of Child and Adolescent Psychiatry, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christina E Wierenga
- Department of Psychiatry, University of California San Diego, La Jolla, California; Eating Disorders Center for Treatment and Research, University of California San Diego, La Jolla, California
| | - Nancy L Zucker
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Joseph A King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Laura A Berner
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
21
|
Noel JP, Balzani E, Avila E, Lakshminarasimhan KJ, Bruni S, Alefantis P, Savin C, Angelaki DE. Coding of latent variables in sensory, parietal, and frontal cortices during closed-loop virtual navigation. eLife 2022; 11:e80280. [PMID: 36282071 PMCID: PMC9668339 DOI: 10.7554/elife.80280] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
We do not understand how neural nodes operate and coordinate within the recurrent action-perception loops that characterize naturalistic self-environment interactions. Here, we record single-unit spiking activity and local field potentials (LFPs) simultaneously from the dorsomedial superior temporal area (MSTd), parietal area 7a, and dorsolateral prefrontal cortex (dlPFC) as monkeys navigate in virtual reality to 'catch fireflies'. This task requires animals to actively sample from a closed-loop virtual environment while concurrently computing continuous latent variables: (i) the distance and angle travelled (i.e., path integration) and (ii) the distance and angle to a memorized firefly location (i.e., a hidden spatial goal). We observed a patterned mixed selectivity, with the prefrontal cortex most prominently coding for latent variables, parietal cortex coding for sensorimotor variables, and MSTd most often coding for eye movements. However, even the traditionally considered sensory area (i.e., MSTd) tracked latent variables, demonstrating path integration and vector coding of hidden spatial goals. Further, global encoding profiles and unit-to-unit coupling (i.e., noise correlations) suggested a functional subnetwork composed by MSTd and dlPFC, and not between these and 7a, as anatomy would suggest. We show that the greater the unit-to-unit coupling between MSTd and dlPFC, the more the animals' gaze position was indicative of the ongoing location of the hidden spatial goal. We suggest this MSTd-dlPFC subnetwork reflects the monkeys' natural and adaptive task strategy wherein they continuously gaze toward the location of the (invisible) target. Together, these results highlight the distributed nature of neural coding during closed action-perception loops and suggest that fine-grain functional subnetworks may be dynamically established to subserve (embodied) task strategies.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Center for Neural Science, New York UniversityNew York CityUnited States
| | - Edoardo Balzani
- Center for Neural Science, New York UniversityNew York CityUnited States
| | - Eric Avila
- Center for Neural Science, New York UniversityNew York CityUnited States
| | - Kaushik J Lakshminarasimhan
- Center for Neural Science, New York UniversityNew York CityUnited States
- Center for Theoretical Neuroscience, Columbia UniversityNew YorkUnited States
| | - Stefania Bruni
- Center for Neural Science, New York UniversityNew York CityUnited States
| | - Panos Alefantis
- Center for Neural Science, New York UniversityNew York CityUnited States
| | - Cristina Savin
- Center for Neural Science, New York UniversityNew York CityUnited States
| | - Dora E Angelaki
- Center for Neural Science, New York UniversityNew York CityUnited States
| |
Collapse
|
22
|
Vaccari FE, Diomedi S, Filippini M, Hadjidimitrakis K, Fattori P. New insights on single-neuron selectivity in the era of population-level approaches. Front Integr Neurosci 2022; 16:929052. [PMID: 36249900 PMCID: PMC9554653 DOI: 10.3389/fnint.2022.929052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, neuroscience was focused on individual neurons seen as the functional units of the nervous system, but this approach fell short over time to account for new experimental evidence, especially for what concerns associative and motor cortices. For this reason and thanks to great technological advances, a part of modern research has shifted the focus from the responses of single neurons to the activity of neural ensembles, now considered the real functional units of the system. However, on a microscale, individual neurons remain the computational components of these networks, thus the study of population dynamics cannot prescind from studying also individual neurons which represent their natural substrate. In this new framework, ideas such as the capability of single cells to encode a specific stimulus (neural selectivity) may become obsolete and need to be profoundly revised. One step in this direction was made by introducing the concept of “mixed selectivity,” the capacity of single cells to integrate multiple variables in a flexible way, allowing individual neurons to participate in different networks. In this review, we outline the most important features of mixed selectivity and we also present recent works demonstrating its presence in the associative areas of the posterior parietal cortex. Finally, in discussing these findings, we present some open questions that could be addressed by future studies.
Collapse
Affiliation(s)
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
- *Correspondence: Patrizia Fattori
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
- Matteo Filippini
| |
Collapse
|
23
|
Egomotion-related visual areas respond to goal-directed movements. Brain Struct Funct 2022; 227:2313-2328. [PMID: 35763171 DOI: 10.1007/s00429-022-02523-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Integration of proprioceptive signals from the various effectors with visual feedback of self-motion from the retina is necessary for whole-body movement and locomotion. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by goal-directed movements (as saccades or pointing) performed with different effectors (eye, hand, and foot), suggesting a role in visually guiding movements through the external environment. To achieve this aim, we used a combined approach of task-evoked activity and effective connectivity (PsychoPhysiological Interaction, PPI) by fMRI. We localized a set of six egomotion-responsive visual areas through the flow field stimulus and distinguished them into visual (pIPS/V3A, V6+ , IPSmot/VIP) and visuomotor (pCi, CSv, PIC) areas according to recent literature. We tested their response to a visuomotor task implying spatially directed delayed eye, hand, and foot movements. We observed a posterior-to-anterior gradient of preference for eye-to-foot movements, with posterior (visual) regions showing a preference for saccades, and anterior (visuomotor) regions showing a preference for foot pointing. No region showed a clear preference for hand pointing. Effective connectivity analysis showed that visual areas were more connected to each other with respect to the visuomotor areas, particularly during saccades. We suggest that visual and visuomotor egomotion regions can play different roles within a network that integrates sensory-motor signals with the aim of guiding movements in the external environment.
Collapse
|
24
|
Rauchman SH, Albert J, Pinkhasov A, Reiss AB. Mild-to-Moderate Traumatic Brain Injury: A Review with Focus on the Visual System. Neurol Int 2022; 14:453-470. [PMID: 35736619 PMCID: PMC9227114 DOI: 10.3390/neurolint14020038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a major global public health problem. Neurological damage from TBI may be mild, moderate, or severe and occurs both immediately at the time of impact (primary injury) and continues to evolve afterwards (secondary injury). In mild (m)TBI, common symptoms are headaches, dizziness and fatigue. Visual impairment is especially prevalent. Insomnia, attentional deficits and memory problems often occur. Neuroimaging methods for the management of TBI include computed tomography and magnetic resonance imaging. The location and the extent of injuries determine the motor and/or sensory deficits that result. Parietal lobe damage can lead to deficits in sensorimotor function, memory, and attention span. The processing of visual information may be disrupted, with consequences such as poor hand-eye coordination and balance. TBI may cause lesions in the occipital or parietal lobe that leave the TBI patient with incomplete homonymous hemianopia. Overall, TBI can interfere with everyday life by compromising the ability to work, sleep, drive, read, communicate and perform numerous activities previously taken for granted. Treatment and rehabilitation options available to TBI sufferers are inadequate and there is a pressing need for new ways to help these patients to optimize their functioning and maintain productivity and participation in life activities, family and community.
Collapse
Affiliation(s)
- Steven H. Rauchman
- The Fresno Institute of Neuroscience, Fresno, CA 93730, USA
- Correspondence:
| | - Jacqueline Albert
- Department of Medicine, Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (J.A.); (A.B.R.)
| | - Aaron Pinkhasov
- Department of Psychiatry, NYU Long Island School of Medicine, Mineola, NY 11501, USA;
| | - Allison B. Reiss
- Department of Medicine, Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (J.A.); (A.B.R.)
| |
Collapse
|
25
|
Filippini M, Borra D, Ursino M, Magosso E, Fattori P. Decoding sensorimotor information from superior parietal lobule of macaque via Convolutional Neural Networks. Neural Netw 2022; 151:276-294. [PMID: 35452895 DOI: 10.1016/j.neunet.2022.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Despite the well-recognized role of the posterior parietal cortex (PPC) in processing sensory information to guide action, the differential encoding properties of this dynamic processing, as operated by different PPC brain areas, are scarcely known. Within the monkey's PPC, the superior parietal lobule hosts areas V6A, PEc, and PE included in the dorso-medial visual stream that is specialized in planning and guiding reaching movements. Here, a Convolutional Neural Network (CNN) approach is used to investigate how the information is processed in these areas. We trained two macaque monkeys to perform a delayed reaching task towards 9 positions (distributed on 3 different depth and direction levels) in the 3D peripersonal space. The activity of single cells was recorded from V6A, PEc, PE and fed to convolutional neural networks that were designed and trained to exploit the temporal structure of neuronal activation patterns, to decode the target positions reached by the monkey. Bayesian Optimization was used to define the main CNN hyper-parameters. In addition to discrete positions in space, we used the same network architecture to decode plausible reaching trajectories. We found that data from the most caudal V6A and PEc areas outperformed PE area in the spatial position decoding. In all areas, decoding accuracies started to increase at the time the target to reach was instructed to the monkey, and reached a plateau at movement onset. The results support a dynamic encoding of the different phases and properties of the reaching movement differentially distributed over a network of interconnected areas. This study highlights the usefulness of neurons' firing rate decoding via CNNs to improve our understanding of how sensorimotor information is encoded in PPC to perform reaching movements. The obtained results may have implications in the perspective of novel neuroprosthetic devices based on the decoding of these rich signals for faithfully carrying out patient's intentions.
Collapse
Affiliation(s)
- Matteo Filippini
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy.
| | - Davide Borra
- University of Bologna, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", Cesena Campus, Cesena, Italy
| | - Mauro Ursino
- University of Bologna, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", Cesena Campus, Cesena, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, Bologna, Italy
| | - Elisa Magosso
- University of Bologna, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", Cesena Campus, Cesena, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, Bologna, Italy
| | - Patrizia Fattori
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, Bologna, Italy.
| |
Collapse
|
26
|
Isaacs MW, Buxbaum LJ, Wong AL. Proprioception-based movement goals support imitation and are disrupted in apraxia. Cortex 2022; 147:140-156. [PMID: 35033899 PMCID: PMC8852218 DOI: 10.1016/j.cortex.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/17/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
The ability to imitate observed actions serves as an efficient method for learning novel movements and is specifically impaired (without concomitant gross motor impairments) in the neurological disorder of limb apraxia, a disorder common after left hemisphere stroke. Research with apraxic patients has advanced our understanding of how people imitate. However, the role of proprioception in imitation has been rarely assessed directly. Prior work has proposed that proprioceptively sensed body position is transformed into a visual format, supporting the attainment of a desired imitation goal represented visually (i.e., how the movement should look when performed). In contrast, we hypothesized a more direct role for proprioception: we suggest that movement goals are also represented proprioceptively (i.e., how a desired movement should feel when performed), and the ability to represent or access such proprioceptive goals is deficient in apraxia. Using a novel imitation task in which a robot cued meaningless trajectories proprioceptively or visually, we probed the role of each sensory modality. We found that patients with left hemisphere stroke were disproportionately worse than controls at imitating when cued proprioceptively versus visually. This proprioceptive versus visual disparity was associated with apraxia severity as assessed by a traditional imitation task, but could not be explained by general proprioceptive impairment or speed-accuracy trade-offs. These data suggest that successful imitation depends in part on the ability to represent movement goals in terms of how those movements should feel, and that deficits in this ability contribute to imitation impairments in patients with apraxia.
Collapse
Affiliation(s)
| | | | - Aaron L Wong
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.
| |
Collapse
|
27
|
Using EEG to study sensorimotor adaptation. Neurosci Biobehav Rev 2022; 134:104520. [PMID: 35016897 DOI: 10.1016/j.neubiorev.2021.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
Abstract
Sensorimotor adaptation, or the capacity to flexibly adapt movements to changes in the body or the environment, is crucial to our ability to move efficiently in a dynamic world. The field of sensorimotor adaptation is replete with rigorous behavioural and computational methods, which support strong conceptual frameworks. An increasing number of studies have combined these methods with electroencephalography (EEG) to unveil insights into the neural mechanisms of adaptation. We review these studies: discussing EEG markers of adaptation in the frequency and the temporal domain, EEG predictors for successful adaptation and how EEG can be used to unmask latent processes resulting from adaptation, such as the modulation of spatial attention. With its high temporal resolution, EEG can be further exploited to deepen our understanding of sensorimotor adaptation.
Collapse
|
28
|
Martel M, Boulenger V, Koun E, Finos L, Farnè A, Roy AC. Body schema plasticity is altered in Developmental Coordination Disorder. Neuropsychologia 2021; 166:108136. [PMID: 34953795 DOI: 10.1016/j.neuropsychologia.2021.108136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Developmental Coordination Disorder (DCD) is a pathological condition characterized by impaired motor skills. Current theories advance that a deficit of the internal models is mainly responsible for DCD children's altered behavior. Yet, accurate movement execution requires not only correct movement planning, but also integration of sensory feedback into body representation for action (Body Schema) to update the state of the body. Here we advance and test the hypothesis that the plasticity of this body representation is altered in DCD. To probe Body Schema (BS) plasticity, we submitted a well-established tool-use paradigm to seventeen DCD children, required to reach for an object with their hand before and after tool use, and compared their movement kinematics to that of a control group of Typically Developing (TD) peers. We also asked both groups to provide explicit estimates of their arm length to probe plasticity of their Body Image (BI). Results revealed that DCD children explicitly judged their arm shorter after tool use, showing changes in their BI comparable to their TD peers. Unlike them, though, DCD did not update their implicit BS estimate: kinematics showed that tool use affected their peak amplitudes, but not their latencies. Remarkably, the kinematics of tool use showed that the motor control of the tool was comparable between groups, both improving with practice, confirming that motor learning abilities are preserved in DCD. This study thus brings evidence in favor of an alternative theoretical account of the DCD etiology. Our findings point to a deficit in the plasticity of the body representation used to plan and execute movements. Though not mutually exclusive, this widens the theoretical perspective under which DCD should be considered: DCD may not be limited to a problem affecting the internal models and their motor functions, but may concern the state of the effector they have to use.
Collapse
Affiliation(s)
- Marie Martel
- Laboratoire Dynamique Du Langage, UMR5596, CNRS/University Lyon 2, Lyon, France; Integrative Multisensory Perception Action & Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, University Lyon 1, Lyon, France.
| | - Véronique Boulenger
- Laboratoire Dynamique Du Langage, UMR5596, CNRS/University Lyon 2, Lyon, France
| | - Eric Koun
- Integrative Multisensory Perception Action & Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, University Lyon 1, Lyon, France
| | - Livio Finos
- Department of Statistical Sciences, University of Padua, Italy
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, University Lyon 1, Lyon, France; Hospices Civils de Lyon, Mouvement et Handicap, Neuro-immersion, Lyon, France; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Alice Catherine Roy
- Laboratoire Dynamique Du Langage, UMR5596, CNRS/University Lyon 2, Lyon, France; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| |
Collapse
|
29
|
Seegelke C, Schonard C, Heed T. Repetition effects in action planning reflect effector- but not hemisphere-specific coding. J Neurophysiol 2021; 126:2001-2013. [PMID: 34788180 PMCID: PMC9007629 DOI: 10.1152/jn.00326.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action choices are influenced by future and recent past action states. For example, when performing two actions in succession, response times (RTs) to initiate the second action are reduced when the same hand is used. These findings suggest the existence of effector-specific processing for action planning. However, given that each hand is primarily controlled by the contralateral hemisphere, the RT benefit might actually reflect effector-independent, hemisphere-specific rather than effector-specific repetition effects. Here, participants performed two consecutive movements, each with a hand or a foot, in one of two directions. Direction was specified in an egocentric reference frame (inward, outward) or in an allocentric reference frame (left, right). Successive actions were initiated faster when the same limb (e.g., left hand-left hand), but not the other limb of the same body side (e.g., left foot-left hand), executed the second action. The same-limb advantage was evident even when the two movements involved different directions, whether specified egocentrically or allocentrically. Corroborating evidence from computational modeling lends support to the claim that repetition effects in action planning reflect persistent changes in baseline activity within neural populations that encode effector-specific action plans. NEW & NOTEWORTHY Repeated hand use facilitates the initiation of successive actions (repetition effect). This finding has been interpreted as evidence for effector-specific action plans. However, given that each hand is primarily controlled by the contralateral hemisphere, any differences might reflect effector-independent, hemisphere-specific rather than effector-specific processing. We dissociated these alternatives by asking participants to perform successive actions with hands and feet and provide novel evidence that repetition effects in limb use truly reflect effector-specific coding.
Collapse
Affiliation(s)
- Christian Seegelke
- Biopsychology and Cognitive Neuroscience, Faculty of Psychology and Sport Sciences, Bielefeld University, Bielefeld, Germany.,Center for Cognitive Interaction Technology (CITEC), Bielefeld, Germany.,Department of Psychology, University of Salzburg, Salzburg, Austria.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Carolin Schonard
- Biopsychology and Cognitive Neuroscience, Faculty of Psychology and Sport Sciences, Bielefeld University, Bielefeld, Germany
| | - Tobias Heed
- Biopsychology and Cognitive Neuroscience, Faculty of Psychology and Sport Sciences, Bielefeld University, Bielefeld, Germany.,Center for Cognitive Interaction Technology (CITEC), Bielefeld, Germany.,Department of Psychology, University of Salzburg, Salzburg, Austria.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
30
|
van Helvert MJL, Oostwoud Wijdenes L, Geerligs L, Medendorp WP. Cortical beta-band power modulates with uncertainty in effector selection during motor planning. J Neurophysiol 2021; 126:1891-1902. [PMID: 34731060 DOI: 10.1152/jn.00198.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although beta-band activity during motor planning is known to be modulated by uncertainty about where to act, less is known about its modulations to uncertainty about how to act. To investigate this issue, we recorded oscillatory brain activity with EEG while human participants (n = 17) performed a hand choice reaching task. The reaching hand was either predetermined or of participants' choice, and the target was close to one of the two hands or at about equal distance from both. To measure neural activity in a motion artifact-free time window, the location of the upcoming target was cued 1,000-1,500 ms before the presentation of the target, whereby the cue was valid in 50% of trials. As evidence for motor planning during the cuing phase, behavioral observations showed that the cue affected later hand choice. Furthermore, reaction times were longer in the choice trials than in the predetermined trials, supporting the notion of a competitive process for hand selection. Modulations of beta-band power over central cortical regions, but not alpha-band or theta-band power, were in line with these observations. During the cuing period, reaches in predetermined trials were preceded by larger decreases in beta-band power than reaches in choice trials. Cue direction did not affect reaction times or beta-band power, which may be due to the cue being invalid in 50% of trials, retaining effector uncertainty during motor planning. Our findings suggest that effector uncertainty modulates beta-band power during motor planning.NEW & NOTEWORTHY Although reach-related beta-band power in central cortical areas is known to modulate with the number of potential targets, here we show, using a cuing paradigm, that the power in this frequency band, but not in the alpha or theta band, is also modulated by the uncertainty of which hand to use. This finding supports the notion that multiple possible effector-specific actions can be specified in parallel up to the level of motor preparation.
Collapse
Affiliation(s)
- Milou J L van Helvert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Leonie Oostwoud Wijdenes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Linda Geerligs
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Foster C, Sheng WA, Heed T, Ben Hamed S. The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Prog Neurobiol 2021; 209:102185. [PMID: 34775040 DOI: 10.1016/j.pneurobio.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.
Collapse
Affiliation(s)
- Celia Foster
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wei-An Sheng
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany; Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France.
| |
Collapse
|
32
|
Zhang Y, Huang B, Chen Q, Wang L, Zhang L, Nie K, Huang Q, Huang R. Altered microstructural properties of superficial white matter in patients with Parkinson's disease. Brain Imaging Behav 2021; 16:476-491. [PMID: 34410610 DOI: 10.1007/s11682-021-00522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD), a chronic neurodegenerative disease, is characterized by sensorimotor and cognitive deficits. Previous diffusion tensor imaging (DTI) studies found abnormal DTI metrics in white matter bundles, such as the corpus callosum, cingulate, and frontal-parietal bundles, in PD patients. These studies mainly focused on alterations in microstructural features of long-range bundles within the deep white matter (DWM) that connects pairs of distant cortical regions. However, less is known about the DTI metrics of the superficial white matter (SWM) that connects local cortical regions in PD patients. To determine whether the DTI metrics of the SWM were different between the PD patients and the healthy controls, we recruited DTI data from 34 PD patients and 29 gender- and age-matched healthy controls. Using a probabilistic tractographic approach, we first defined a population-based SWM mask across all the subjects. Using a tract-based spatial statistical (TBSS) analytic approach, we then identified the SWM bundles showing abnormal DTI metrics in the PD patients. We found that the PD patients showed significantly lower DTI metrics in the SWM bundles connecting the sensorimotor cortex, cingulate cortex, posterior parietal cortex (PPC), and parieto-occipital cortex than the healthy controls. We also found that the clinical measures in the PD patients was significantly negatively correlated with the fractional anisotropy in the SWM (FASWM) that connects core regions in the default mode network (DMN). The FASWM in the bundles that connected the PPC was significantly positively correlated with cognitive performance in the PD patients. Our findings suggest that SWM may serve as the brain structural basis underlying the sensorimotor deficits and cognitive degeneration in PD patients.
Collapse
Affiliation(s)
- Yichen Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Biao Huang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, 510080 , China.
| | - Qinyuan Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Lu Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Kun Nie
- Department of Neurology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Qinda Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ruiwang Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
33
|
Diomedi S, Vaccari FE, Galletti C, Hadjidimitrakis K, Fattori P. Motor-like neural dynamics in two parietal areas during arm reaching. Prog Neurobiol 2021; 205:102116. [PMID: 34217822 DOI: 10.1016/j.pneurobio.2021.102116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
The classical view on motor control makes a clear distinction between the role of motor cortex in controlling muscles and parietal cortex in processing movement plans and goals. However, the strong parieto-frontal connections argue against such clear-cut separation of function. Modern dynamical approaches revealed that population activity in motor cortex can be captured by a limited number of patterns, called neural states that are preserved across diverse motor behaviors. Whether such dynamics are also present in parietal cortex is unclear. Here, we studied neural dynamics in the primate parietal cortex during arm movements and found three main states temporally coupled to the planning, execution and target holding epochs. Strikingly, as reported recently in motor cortex, execution was subdivided into distinct, arm acceleration- and deceleration-related, states. These results suggest that dynamics across parieto-frontal areas are highly consistent and hint that parietal population activity largely reflects timing constraints while motor actions unfold.
Collapse
Affiliation(s)
- S Diomedi
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - F E Vaccari
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - C Galletti
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - K Hadjidimitrakis
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy.
| | - P Fattori
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy.
| |
Collapse
|
34
|
Patients with lesions to the intraparietal cortex show greater proprioceptive realignment after prism adaptation: Evidence from open-loop pointing and manual straight ahead. Neuropsychologia 2021; 158:107913. [PMID: 34139246 DOI: 10.1016/j.neuropsychologia.2021.107913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/27/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022]
Abstract
Reaching toward a target viewed through laterally refracting prisms results in adaptation of both visual and (limb) proprioceptive spatial representations. Common ways to measure adaptation after-effect are to ask a person to point straight ahead with their eyes closed ("manual straight ahead", MSA), or to a seen target using their unseen hand ("open-loop pointing", OLP). MSA measures changes in proprioception only, whereas OLP measures the combined visual and proprioceptive shift. The behavioural and neurological mechanisms of prism adaptation have come under scrutiny following reports of reduced hemispatial neglect in patients following this procedure. We present evidence suggesting that shifts in proprioceptive spatial representations induced by prism adaptation are larger following lesions to the intraparietal cortex - a brain region that integrates retinotopic visual signals with signals of eye position in the orbit and that is activated during prism adaptation. Six healthy participants and six patients with unilateral intraparietal cortex lesions underwent prism adaptation. After-effects were measured with OLP and MSA. After-effects of control participants were larger when measured with OLP than with MSA, consistent with previous research and with the additional contribution of visual shift to OLP after-effects. However, patients' OLP shifts were not significantly different to their MSA shifts. We conclude that, for the patients, correction of pointing errors during prism adaptation involved proportionally more changes to arm proprioception than for controls. Since lesions to intraparietal cortex led to enhanced realignment of arm proprioceptive representations, our results indirectly suggest that the intraparietal cortex could be key for visual realignment.
Collapse
|
35
|
Neural Substrates of Muscle Co-contraction during Dynamic Motor Adaptation. J Neurosci 2021; 41:5667-5676. [PMID: 34088798 DOI: 10.1523/jneurosci.2924-19.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
As we learn to perform a motor task with novel dynamics, the central nervous system must adapt motor commands and modify sensorimotor transformations. The objective of the current research is to identify the neural mechanisms underlying the adaptive process. It has been shown previously that an increase in muscle co-contraction is frequently associated with the initial phase of adaptation and that co-contraction is gradually reduced as performance improves. Our investigation focused on the neural substrates of muscle co-contraction during the course of motor adaptation using a resting-state fMRI approach in healthy human subjects of both genders. We analyzed the functional connectivity in resting-state networks during three phases of adaptation, corresponding to different muscle co-contraction levels and found that change in the strength of functional connectivity in one brain network was correlated with a metric of co-contraction, and in another with a metric of motor learning. We identified the cerebellum as the key component for regulating muscle co-contraction, especially its connection to the inferior parietal lobule, which was particularly prominent in early stage adaptation. A neural link between cerebellum, superior frontal gyrus and motor cortical regions was associated with reduction of co-contraction during later stages of adaptation. We also found reliable changes in the functional connectivity of a network involving primary motor cortex, superior parietal lobule and cerebellum that were specifically related to the motor learning.SIGNIFICANCE STATEMENT It is well known that co-contracting muscles is an effective strategy for providing postural stability by modulating mechanical impedance and thereby allowing the central nervous system to compensate for unfamiliar or unexpected physical conditions until motor commands can be appropriately adapted. The present study elucidates the neural substrates underlying the ability to modulate the mechanical impedance of a limb as we learn during motor adaptation. Using resting-state fMRI analysis we demonstrate that a distributed cerebellar-parietal-frontal network functions to regulate muscle co-contraction with the cerebellum as its key component.
Collapse
|
36
|
Martel M, Finos L, Koun E, Farnè A, Roy AC. The long developmental trajectory of body representation plasticity following tool use. Sci Rep 2021; 11:559. [PMID: 33436755 PMCID: PMC7804961 DOI: 10.1038/s41598-020-79476-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
Humans evolution is distinctly characterized by their exquisite mastery of tools, allowing them to shape their environment in more elaborate ways compared to other species. This ability is present ever since infancy and most theories indicate that children become proficient with tool use very early. In adults, tool use has been shown to plastically modify metric aspects of the arm representation, as indexed by changes in movement kinematics. To date, whether and when the plastic capability of updating the body representation develops during childhood remains unknown. This question is particularly important since body representation plasticity could be impacted by the fact that the human body takes years to achieve a stable metric configuration. Here we assessed the kinematics of 90 young participants (8-21 years old) required to reach for an object before and after tool use, as a function of their pubertal development. Results revealed that tool incorporation, as indexed by the adult typical kinematic pattern, develops very slowly and displays a u-shaped developmental trajectory. From early to mid puberty, the changes in kinematics following tool use seem to reflect a shortened arm representation, opposite to what was previously reported in adults. This pattern starts reversing after mid puberty, which is characterized by the lack of any kinematics change following tool use. The typical adult-like pattern emerges only at late puberty, when body size is stable. These findings reveal the complex dynamics of tool incorporation across development, possibly indexing the transition from a vision-based to a proprioception-based body representation plasticity.
Collapse
Affiliation(s)
- Marie Martel
- Laboratoire Dynamique Du Langage, CNRS UMR5596, Lyon, France.
- University of Lyon II, Lyon, France.
- Integrative Multisensory Perception Action and Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, Lyon, France.
- University UCBL Lyon 1, University of Lyon, Villeurbanne, France.
- Department of Psychology, Royal Holloway University of London, Egham Hill, Surrey, Egham, TW20 0EX, UK.
| | - Livio Finos
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Eric Koun
- Integrative Multisensory Perception Action and Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, Lyon, France
- University UCBL Lyon 1, University of Lyon, Villeurbanne, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action and Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, Lyon, France
- University UCBL Lyon 1, University of Lyon, Villeurbanne, France
- Hospices Civils de Lyon, Mouvement Et Handicap and Neuro-Immersion, Lyon, France
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Alice Catherine Roy
- Laboratoire Dynamique Du Langage, CNRS UMR5596, Lyon, France
- University of Lyon II, Lyon, France
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
37
|
Breveglieri R, Bosco A, Borgomaneri S, Tessari A, Galletti C, Avenanti A, Fattori P. Transcranial Magnetic Stimulation Over the Human Medial Posterior Parietal Cortex Disrupts Depth Encoding During Reach Planning. Cereb Cortex 2021; 31:267-280. [PMID: 32995831 DOI: 10.1093/cercor/bhaa224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 11/12/2022] Open
Abstract
Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A-hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,IRCCS, Santa Lucia Foundation, 00179 Rome, Italy
| | - Alessia Tessari
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000 Talca, Chile
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
38
|
Bahmad S, Miller LE, Pham MT, Moreau R, Salemme R, Koun E, Farnè A, Roy AC. Online proprioception feeds plasticity of arm representation following tool-use in healthy aging. Sci Rep 2020; 10:17275. [PMID: 33057121 PMCID: PMC7560613 DOI: 10.1038/s41598-020-74455-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
Following tool-use, the kinematics of free-hand movements are altered. This modified kinematic pattern has been taken as a behavioral hallmark of the modification induced by tool-use on the effector representation. Proprioceptive inputs appear central in updating the estimated effector state. Here we questioned whether online proprioceptive modality that is accessed in real time, or offline, memory-based, proprioception is responsible for this update. Since normal aging affects offline proprioception only, we examined a group of 60 year-old adults for proprioceptive acuity and movement's kinematics when grasping an object before and after tool-use. As a control, participants performed the same movements with a weight-equivalent to the tool-weight-attached to their wrist. Despite hampered offline proprioceptive acuity, 60 year-old participants exhibited the typical kinematic signature of tool incorporation: Namely, the latency of transport components peaks was longer and their amplitude reduced after tool-use. Instead, we observed no kinematic modifications in the control condition. In addition, online proprioception acuity correlated with tool incorporation, as indexed by the amount of kinematics changes observed after tool-use. Altogether, these findings point to the prominent role played by online proprioception in updating the body estimate for the motor control of tools.
Collapse
Affiliation(s)
- Salam Bahmad
- Laboratoire Dynamique du Langage, CNRS UMR 5596, University Lyon 2, Lyon, France. .,Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France. .,University of Lyon, Lyon, France. .,, 16 Avenue du Doyen Jean Lépine, 69500, Bron, France.
| | - Luke E Miller
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France.,University of Lyon, Lyon, France
| | - Minh Tu Pham
- Laboratoire Ampère, CNRS UMR5005, INSA Lyon, Univ Lyon, 69621, Villeurbanne, France
| | - Richard Moreau
- Laboratoire Ampère, CNRS UMR5005, INSA Lyon, Univ Lyon, 69621, Villeurbanne, France
| | - Romeo Salemme
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France.,University of Lyon, Lyon, France.,Hospices Civils de Lyon, Mouvement et Handicap & Neuro-immersion, Lyon, France
| | - Eric Koun
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France.,University of Lyon, Lyon, France.,Hospices Civils de Lyon, Mouvement et Handicap & Neuro-immersion, Lyon, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France.,University of Lyon, Lyon, France.,Hospices Civils de Lyon, Mouvement et Handicap & Neuro-immersion, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Alice C Roy
- Laboratoire Dynamique du Langage, CNRS UMR 5596, University Lyon 2, Lyon, France.,Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
39
|
Kurtzer IL, Muraoka T, Singh T, Prasad M, Chauhan R, Adhami E. Reaching movements are automatically redirected to nearby options during target split. J Neurophysiol 2020; 124:1013-1028. [PMID: 32783570 DOI: 10.1152/jn.00336.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor behavior often occurs in environments with multiple goal options that can vary during the ongoing action. We explored this situation by requiring subjects to select between different target options during an ongoing reach. During split trials the original target was replaced with a left and a right flanking target, and participants had to select between them. This contrasted with the standard jump trials, where the original target would be replaced with a single flanking target, left or right. When participants were instructed to follow their natural tendency, they all tended to select the split target nearest the original. The near-target preference was more prominent with increased spatial disparity between the options and when participants could preview the potential options. Moreover, explicit instruction to obtain the "far" target during split trials resulted many errors compared with a "near" instruction, ~50% vs. ~15%. Online reaction times to target change were delayed in split trials compared with jump trials, ~200 ms vs. ~150 ms, but also highly automatic. Trials in which the instructed far target was correctly obtained were delayed by a further ~50 ms, unlike those in which the near target was incorrectly obtained. We also observed nonspecific responses from arm muscles at the jump trial latency during split trials. Taken together, our results indicate that online selection of reach targets is automatically linked to the spatial distribution of the options, though at greater delays than redirecting to a single target.NEW & NOTEWORTHY This work demonstrates that target selection during an ongoing reach is automatically linked to the option nearest a voided target. Online reaction times for two options are longer than redirection to a single option. Attempts to override the near-target tendency result in a high number of errors at the normal delay and further delays when the attempt is successful.
Collapse
Affiliation(s)
- Isaac L Kurtzer
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Tetsuro Muraoka
- College of Economics, Nihon University, Chiyoda City, Tokyo, Japan
| | - Tarkeshwar Singh
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Mark Prasad
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Riddhi Chauhan
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Elan Adhami
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
40
|
Diomedi S, Vaccari FE, Filippini M, Fattori P, Galletti C. Mixed Selectivity in Macaque Medial Parietal Cortex during Eye-Hand Reaching. iScience 2020; 23:101616. [PMID: 33089104 PMCID: PMC7559278 DOI: 10.1016/j.isci.2020.101616] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/18/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023] Open
Abstract
The activity of neurons of the medial posterior parietal area V6A in macaque monkeys is modulated by many aspects of reach task. In the past, research was mostly focused on modulating the effect of single parameters upon the activity of V6A cells. Here, we used Generalized Linear Models (GLMs) to simultaneously test the contribution of several factors upon V6A cells during a fix-to-reach task. This approach resulted in the definition of a representative “functional fingerprint” for each neuron. We first studied how the features are distributed in the population. Our analysis highlighted the virtual absence of units strictly selective for only one factor and revealed that most cells are characterized by “mixed selectivity.” Then, exploiting our GLM framework, we investigated the dynamics of spatial parameters encoded within V6A. We found that the tuning is not static, but changed along the trial, indicating the sequential occurrence of visuospatial transformations helpful to guide arm movement. The parietal cortex integrates a variety of sensorimotor inputs to guide reaching GLM disentangled the effect of various reaching parameters upon cell activity V6A neurons were not functionally clustered, but characterized by mixed selectivity Spatial selectivity was dynamic and reached its peak during the movement phase
Collapse
Affiliation(s)
- Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesco E. Vaccari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Corresponding author
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Corresponding author
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Abstract
We discuss a new framework for understanding the structure of motor control. Our approach integrates existing models of motor control with the reality of hierarchical cortical processing and the parallel segregated loops that characterize cortical-subcortical connections. We also incorporate the recent claim that cortex functions via predictive representation and optimal information utilization. Our framework assumes that each cortical area engaged in motor control generates a predictive model of a different aspect of motor behavior. In maintaining these predictive models, each area interacts with a different part of the cerebellum and BG. These subcortical areas are thus engaged in domain-appropriate system identification and optimization. This refocuses the question of division of function among different cortical areas. What are the different aspects of motor behavior that are predictively modeled? We suggest that one fundamental division is between modeling of task and body whereas another is the model of state and action. Thus, we propose that the posterior parietal cortex, somatosensory cortex, premotor cortex, and motor cortex represent task state, body state, task action, and body action, respectively. In the second part of this review, we demonstrate how this division of labor can better account for many recent findings of movement encoding, especially in the premotor and posterior parietal cortices.
Collapse
|
42
|
Karimpur H, Kurz J, Fiehler K. The role of perception and action on the use of allocentric information in a large-scale virtual environment. Exp Brain Res 2020; 238:1813-1826. [PMID: 32500297 PMCID: PMC7438369 DOI: 10.1007/s00221-020-05839-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/23/2020] [Indexed: 01/10/2023]
Abstract
In everyday life, our brain constantly builds spatial representations of the objects surrounding us. Many studies have investigated the nature of these spatial representations. It is well established that we use allocentric information in real-time and memory-guided movements. Most studies relied on small-scale and static experiments, leaving it unclear whether similar paradigms yield the same results on a larger scale using dynamic objects. We created a virtual reality task that required participants to encode the landing position of a virtual ball thrown by an avatar. Encoding differed in the nature of the task in that it was either purely perceptual (“view where the ball landed while standing still”—Experiment 1) or involved an action (“intercept the ball with the foot just before it lands”—Experiment 2). After encoding, participants were asked to place a real ball at the remembered landing position in the virtual scene. In some trials, we subtly shifted either the thrower or the midfield line on a soccer field to manipulate allocentric coding of the ball’s landing position. In both experiments, we were able to replicate classic findings from small-scale experiments and to generalize these results to different encoding tasks (perception vs. action) and response modes (reaching vs. walking-and-placing). Moreover, we found that participants preferably encoded the ball relative to the thrower when they had to intercept the ball, suggesting that the use of allocentric information is determined by the encoding task by enhancing task-relevant allocentric information. Our findings indicate that results previously obtained from memory-guided reaching are not restricted to small-scale movements, but generalize to whole-body movements in large-scale dynamic scenes.
Collapse
Affiliation(s)
- Harun Karimpur
- Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany.
| | - Johannes Kurz
- NemoLab-Neuromotor Behavior Laboratory, Justus Liebig University Giessen, Giessen, Germany
| | - Katja Fiehler
- Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
43
|
Principles of temporal association cortex organisation as revealed by connectivity gradients. Brain Struct Funct 2020; 225:1245-1260. [PMID: 32157450 PMCID: PMC7270054 DOI: 10.1007/s00429-020-02047-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023]
Abstract
To establish the link between structure and function of any large area of the neocortex, it is helpful to identify its principles of organisation. One way to establish such principles is to investigate how differences in whole-brain connectivity are structured across the area. Here, we use Laplacian eigenmaps on diffusion MRI tractography data to investigate the organisational principles of the human temporal association cortex. We identify three overlapping gradients of connectivity that are, for the most part, consistent across hemispheres. The first gradient reveals an inferior–superior organisation of predominantly longitudinal tracts and separates visual and auditory unimodal and multimodal cortices. The second gradient radiates outward from the posterior middle temporal cortex with the arcuate fascicle as a distinguishing feature; the third gradient is concentrated in the anterior temporal lobe and emanates towards its posterior end. We describe the functional relevance of each of these gradients through the meta-analysis of data from the neuroimaging literature. Together, these results unravel the overlapping dimensions of structural organization of the human temporal cortex and provide a framework underlying its functional multiplicity.
Collapse
|
44
|
Abstract
Humans localize touch on hand-held tools by interpreting the unique vibratory patterns elicited by impact to different parts of the tool. This perceptual strategy differs markedly from localizing touch on the skin. A new study shows that, nonetheless, touch location is probably processed similarly for skin and tool already early in somatosensory cortex.
Collapse
Affiliation(s)
- Tobias Heed
- Faculty of Psychology and Sports Science and Cluster of Excellence "Cognitive Interaction Technology", Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|