1
|
Liu H, Zhou Y, Qi J, Liang S, Guo T, Chen J, Tan H, Wang J, Xu H, Chen Z. Intraocular complement activation is independent of systemic complement activation and is related to macular vascular remodelling in retinal vein occlusion. BMC Ophthalmol 2024; 24:509. [PMID: 39587546 PMCID: PMC11587677 DOI: 10.1186/s12886-024-03781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Retinal vein occlusion (RVO) is a major cause of vision loss. The pathogenesis remains poorly defined although inflammation is known to play a critical role. In this study, we investigated the levels of complement proteins in the aqueous humour and plasma of RVO participants and the relationship between complement levels and retinal pathologies. METHODS The plasma and aqueous humour were collected from 20 treatment-naive RVO and 20 cataract patients. Retinal lesions were examined by fundus stereoscopy and optical coherence tomography angiography. The levels of C1q, C2, C4, C4b, C3, C3b/iC3b, C5, C5a, CFB, CFD, CFI, CFH, and MBL in the plasma and aqueous humour were measured using the Luminex® x MAP® multiplex assay. RESULTS RVO patients had significantly higher levels of C4, C4b, C3b/iC3b, CFB, and CFH in the plasma and aqueous humour compared to controls. The aqueous levels of C1q, C2, C5, C5a, and MBL were also significantly higher in RVO patients than in controls. CRVO patients had higher intraocular levels of C1q, C4, C5, CFI, CFH, and MBL than BRVO patients. C5a was below the detectable limit in the plasma in 18 cataracts and 16 RVO participants. The intraocular levels of C5a positively correlated with C1q, C2, C4, C3, C5, CFB, CFH, and MBL. The intraocular levels of CFD, CFI and MBL positively correlated with CRT, and the levels of C2, C3, C5, CFB, and MBL negatively correlated with the size of the foveal avascular zone. The plasma levels of C4b, C3b/iC3b, and CFD positively correlated with their counterparts in the aqueous humour in cataracts but not in RVO patients. The ratios of aqueous humour/plasma of C1q, C4, C4b, C3b/iC3b, C5, CFB, CFD, CFI, and CFH in the RVO patients were significantly higher than those in the cataract patients. DISCUSSION AND CONCLUSIONS The intraocular complement activation in RVO is mediated by the classical and the alternative pathways and is largely independent of systemic complement activation. Intraocular complement activation may be related to retinal oedema and vascular remodeling in RVO patients.
Collapse
Affiliation(s)
- Hengwei Liu
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410083, China
- Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China
| | - Yufan Zhou
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410083, China
- Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China
| | - Jinyan Qi
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410083, China
- Aier Eye Institute, Changsha, Hunan Province, 410015, China
| | - Shengnan Liang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410083, China
- Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China
| | - Tingting Guo
- Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, 510632, China
| | - Juan Chen
- Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China
| | - Huanhuan Tan
- Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China
| | - Jie Wang
- Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China
| | - Heping Xu
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410083, China.
- Aier Eye Institute, Changsha, Hunan Province, 410015, China.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.
| | - Zhongping Chen
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410083, China.
- Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China.
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, 510632, China.
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, 437100, China.
| |
Collapse
|
2
|
A L, Qu L, He J, Ge L, Gao H, Huang X, You T, Gong H, Liang Q, Chen S, Xie J, Xu H. Exosomes derived from IFNγ-stimulated mesenchymal stem cells protect photoreceptors in RCS rats by restoring immune homeostasis through tsRNAs. Cell Commun Signal 2024; 22:543. [PMID: 39538308 PMCID: PMC11562488 DOI: 10.1186/s12964-024-01920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa is a neurodegenerative disease with major pathologies of photoreceptor apoptosis and immune imbalance. Mesenchymal stem cells (MSCs) have been approved for clinical application for treating various immune-related or neurodegenerative diseases. The objective of this research was to investigate the mechanisms underlying the safeguarding effects of MSC-derived exosomes in a retinal degenerative disease model. METHODS Interferon gamma-stimulated exosomes (IFNγ-Exos) secreted from MSCs were isolated, purified, and injected into the vitreous body of RCS rats on postnatal day (P) 21. Morphological and functional changes in the retina were examined at P28, P35, P42, and P49 in Royal College of Surgeons (RCS) rats. The mechanism was explored using high-throughput sequencing technology and confirmed in vitro. RESULTS Treatment with IFNγ-Exo produced better protective effects on photoreceptors and improved visual function in RCS rats. IFNγ-Exo significantly suppressed the activated microglia and inhibited the inflammatory responses in the retina of RCS rats, which was also confirmed in the lipopolysaccharide-activated microglia cell line BV2. Furthermore, through tRNA-derived small RNA (tsRNA) sequencing, we found that IFNγ-Exos from MSCs contained higher levels of Other-1_17-tRNA-Phe-GAA-1-M3, Other-6_23-tRNA-Lys-TTT-3, and TRF-57:75-GLN-CGG-2-m2 than native exosomes, which mainly regulated inflammatory and immune-related pathways, including the mTOR signaling pathway and EGFR tyrosine kinase inhibitor resistance. CONCLUSIONS IFNγ stimulation enhanced the neuroprotective effects of MSC-derived exosomes on photoreceptors of the degenerative retina, which may be mediated by immune regulatory tsRNAs acting on microglia. In conclusion, IFNγ-Exo is a promising nanotherapeutic agent for the treatment of retinitis pigmentosa.
Collapse
Affiliation(s)
- Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Linghui Qu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Department of Ophthalmology, The 74th Army Group Hospital, Guangzhou, 510318, China
| | - Juncai He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Shigatse Branch of Xinqiao Hospital, 953th Hospital, Army Medical University (Third Military Medical University), Shigatse, 857000, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Tianjing You
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Hong Gong
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Qingle Liang
- Department of Clinical Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
3
|
Wu X, Zhu H, Liu J, Ouyang S, Lyu Z, Jin Y, Chen X, Meng Q. Jagged1-Notch1 Signaling Pathway Induces M1 Microglia to Disrupt the Barrier Function of Retinal Microvascular Endothelial Cells. Curr Eye Res 2024; 49:1098-1106. [PMID: 38783634 DOI: 10.1080/02713683.2024.2357601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Microglia-related inflammation is closely linked to the pathogenesis of retinal diseases. The primary objective of this research was to investigate the impact and mechanism of M1 phenotype microglia on the barrier function of retina microvascular endothelial cells. METHODS Quantitative polymerase chain reactions and western blot techniques were utilized to analysis the mRNA and protein expressions of M1 and M2 markers of human microglial clone 3 cell line (HMC3), as well as the levels of Notch ligands and receptors under the intervention of lipopolysaccharide (LPS) or interleukin (IL)-4. ELISA was utilized to detect the pro-inflammatory and anti-inflammatory cytokines from HMC3 cells. The cellular tight junction and apoptosis of human retinal microvascular endothelial cells (HRMECs) were assessed by western blot and fluorescein isothiocyanate-dextran permeability assay. The inhibitors of Notch1 and RNA interference (RNAi) targeting Jagged1 were used to assess their contribution to the barrier function of vascular endothelial cells. RESULTS Inducible nitric oxide synthase (iNOS) and IL-1β were considerably elevated in LPS-treated HMC3, while CD206 and Arg-1 markedly elevated under IL-4 stimulation. The conditioned medium derived from LPS-treated HMC3 cells promoted permeability, diminished the expression of zonula occludens-1 and Occludin, and elevated the expression of Cleaved caspase-3 in HRMECs. RNAi targeting Jagged1 or Notch1 inhibitor could block M1 HMC3 polarization and maintain barrier function of HRMECs. CONCLUSION Our findings suggest that Jagged1-Notch1 signaling pathway induces M1 microglial cells to disrupt the barrier function of HRMECs, which may lead to retinal diseases.
Collapse
Affiliation(s)
- Xiyu Wu
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haoxian Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junbin Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shuyi Ouyang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zheng Lyu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yeanqi Jin
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinyu Chen
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qianli Meng
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Perez VL, Mousa HM, Miyagishima KJ, Reed AA, Su AJA, Greenwell TN, Washington KM. Retinal transplant immunology and advancements. Stem Cell Reports 2024; 19:817-829. [PMID: 38729155 PMCID: PMC11297553 DOI: 10.1016/j.stemcr.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Several gaps and barriers remain for transplanting stem cells into the eye to treat ocular disease, especially diseases of the retina. While the eye has historically been considered immune privileged, recent thinking has identified the immune system as both a barrier and an opportunity for eye stem cell transplantation. Recent approaches leveraging scaffolds or cloaking have been considered in other tissues beyond immune suppression. This perspective paper outlines approaches for transplantation and proposes opportunities to overcome barriers of the immune system in stem cell transplantation in the eye.
Collapse
Affiliation(s)
- Victor L Perez
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA; Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Hazem M Mousa
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | | - Amberlynn A Reed
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - An-Jey A Su
- Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas N Greenwell
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kia M Washington
- Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Conedera FM, Kokona D, Zinkernagel MS, Stein JV, Lin CP, Alt C, Enzmann V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J Neuroinflammation 2024; 21:68. [PMID: 38500151 PMCID: PMC10949579 DOI: 10.1186/s12974-024-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland.
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Sen S, Kasikci M. Low-dose rosmarinic acid and thymoquinone accelerate wound healing in retinal pigment epithelial cells. Int Ophthalmol 2023; 43:3811-3821. [PMID: 37407754 DOI: 10.1007/s10792-023-02799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Thymoquinone (TQ) and rosmarinic acid (RA) are two biologically active compounds found in plants and that possess remarkable anti-oxidant and anti-inflammatory properties. The present study aimed to investigate the potential protective effects of RA and TQ, which have known anti-inflammatory and anti-oxidant effects, on retinal damage by establishing a wound healing model for retinal pigment epithelial cells (ARPE-19). METHOD To this end, IC50 doses of RA and TQ in ARPE-19 cells were calculated by MTT assay. Both agents were administered at IC50, IC50/2 and IC50/4 doses for wound healing assay, and wound closure percentages were analyzed. Since the best wound healing was found at IC50/4 dose (low dose) for both agents, other biochemical and molecular analyses were planned to be performed using these doses. Following low dose RA and TQ treatments, the cells were lysed and TGF-β1 and MMP-9 levels were analyzed by ELISA technique from the cell lysates obtained. In addition, the mRNA expression levels of TLR3, IFN-γ and VEGF were calculated by RT-PCR technique. RESULTS Low dose of RA and TQ dramatically increased wound healing. RA may have achieved this by increasing levels of MMP-9 and TLR-3. In contrast, the mRNA expression level of VEGF remained unchanged. TQ accelerated wound healing by increasing both the protein levels of TGF-β1 and MMP-9. Furthermore, low dose of TQ decreased both TLR3 and IFN-γ mRNA expression levels. CONCLUSION Low doses of RA and TQ were clearly demonstrated to have protective properties against possible damage to retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Serkan Sen
- Department of Medical Laboratory Techniques, Ataturk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
- Department of Ophthalmology, Mugla Education and Research Hospital, Mugla, Turkey
| | - Murat Kasikci
- Department of Medical Laboratory Techniques, Ataturk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
- Department of Ophthalmology, Mugla Education and Research Hospital, Mugla, Turkey.
| |
Collapse
|
7
|
Augustine J, Pavlou S, Harkin K, Stitt AW, Xu H, Chen M. IL-33 regulates Müller cell-mediated retinal inflammation and neurodegeneration in diabetic retinopathy. Dis Model Mech 2023; 16:dmm050174. [PMID: 37671525 PMCID: PMC10499035 DOI: 10.1242/dmm.050174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Diabetic retinopathy (DR) is characterised by dysfunction of the retinal neurovascular unit, leading to visual impairment and blindness. Müller cells are key components of the retinal neurovascular unit and diabetes has a detrimental impact on these glial cells, triggering progressive neurovascular pathology of DR. Amongst many factors expressed by Müller cells, interleukin-33 (IL-33) has an established immunomodulatory role, and we investigated the role of endogenous IL-33 in DR. The expression of IL-33 in Müller cells increased during diabetes. Wild-type and Il33-/- mice developed equivalent levels of hyperglycaemia and weight loss following streptozotocin-induced diabetes. Electroretinogram a- and b-wave amplitudes, neuroretina thickness, and the numbers of cone photoreceptors and ganglion cells were significantly reduced in Il33-/- diabetic mice compared with those in wild-type counterparts. The Il33-/- diabetic retina also exhibited microglial activation, sustained gliosis, and upregulation of pro-inflammatory cytokines and neurotrophins. Primary Müller cells from Il33-/- mice expressed significantly lower levels of neurotransmitter-related genes (Glul and Slc1a3) and neurotrophin genes (Cntf, Lif, Igf1 and Ngf) under high-glucose conditions. Our results suggest that deletion of IL-33 promotes inflammation and neurodegeneration in DR, and that this cytokine is critical for regulation of glutamate metabolism, neurotransmitter recycling and neurotrophin secretion by Müller cells.
Collapse
Affiliation(s)
- Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Sofia Pavlou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Kevin Harkin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Alan W. Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
8
|
Zeng L, Li X, Pan W, Tang Y, Lin D, Wang M, Cai W, Zhu R, Wan J, Huang L, Xu H, Yang Z. Intraocular complement activation is related to retinal vascular and neuronal degeneration in myopic retinopathy. Front Cell Neurosci 2023; 17:1187400. [PMID: 37448698 PMCID: PMC10336352 DOI: 10.3389/fncel.2023.1187400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose To investigate the relationship between the intraocular levels of complement proteins and myopia-related retinal neuronal and vascular degeneration. Methods Aqueous humour from 147 myopic patients, including 60 low-myopia and 87 high-myopia were collected during Implantable Collamer Lens implantation surgery. All participants received comprehensive ophthalmic examinations, including logMAR best corrected visual acuity, axial length measurement, fundus photography and ocular B-scan ultrasonography. The myopic eyes were further classified into simple myopia (SM, n = 78), myopic posterior staphyloma (PS, n = 39) and PS with myopic chorioretinal atrophy (PS + CA, n = 30). Retinal thickness and vascular density in the macula (6 mm × 6 mm) and optic nerve head (4.5 mm × 4.5 mm) were measured using Optical Coherence Tomography (OCT) and OCT angiography (OCTA). The levels of complement proteins including C1q, C3, C3b/iC3b, C4, CFB, CFH, C2, C4b, C5, C5a, CFD, MBL and CFI in the aqueous humour were measured using the Luminex Multiplexing system. The real-time RT-PCR was conducted to examine the expression of complement genes (C1q, C2, C3, C4, CFI and CFD) in the guinea pig model of long-term form deprivation-induced myopic retinal degeneration. Results OCTA showed that retinal neuronal thickness and vascular density in superficial and deep layers of the macular zone as well as vascular density in the optic nerve head were progressively decreased from SM to PS and PS + CA (p < 0.05). The aqueous humour levels of C1q, C3, C3b/iC3b, C4, CFB, CFH, C2, C4b, C5 and CFI were significantly higher in high-myopic eyes compared to those in low-myopic eyes. Further subgroup analysis revealed the highest levels of complement components/fragments in the PS + CA group. The intraocular levels of complement factors particularly C3b/iC3b and C4 were negatively correlated with macular zone deep layer retinal thickness and vascular density and optic nerve head vascular density. The expression of C2, C3 and C4 genes was significantly higher in guinea pig eyes with myopic retinal degeneration compared to control eyes. Conclusions The intraocular classical pathway and alternative pathway of the complement system are partially activated in pathological myopia. Their activation is related to the degeneration of retinal neurons and the vasculature in the macula and the vasculature in the optic nerve head.
Collapse
Affiliation(s)
- Ling Zeng
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| | - Xiaoning Li
- Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier School of Optometry and Vision Science, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wei Pan
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| | - Yao Tang
- Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| | - Ding Lin
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Min Wang
- Shanghai Aier Eye Hospital, Shanghai, China
| | - Wang Cai
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Ruiling Zhu
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Jianbo Wan
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | | | - Heping Xu
- Aier School of Ophthalmology, Central South University, Changsha, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Zhikuan Yang
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| |
Collapse
|
9
|
Qi J, Pan W, Peng T, Zeng L, Li X, Chen Z, Yang Z, Xu H. Higher Circulating Levels of Neutrophils and Basophils Are Linked to Myopic Retinopathy. Int J Mol Sci 2022; 24:ijms24010080. [PMID: 36613520 PMCID: PMC9820571 DOI: 10.3390/ijms24010080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
This retrospective study investigated circulating immune cell alteration in patients with myopic retinopathy. Blood test results and demographic and ocular information of 392 myopic patients and 129 emmetropia controls who attended Changsha Aier Eye Hospital from May 2017 to April 2022 were used in this study. Compared with emmetropia, the percentages of neutrophils and basophils and neutrophil/lymphocyte ratio were significantly higher in myopic patients, whereas the percentages of monocytes and lymphocytes and the counts of lymphocytes and eosinophils were significantly lower in myopic patients. After adjusting for age and hypertension/diabetes, the difference remained. Interestingly, the platelet counts were significantly lower in myopic patients after the adjustments. Further subgroup analysis using multivariable linear regression showed that higher levels of neutrophils, neutrophil/lymphocyte ratio, and platelet/lymphocyte ratio, lower levels of monocytes, eosinophils, lymphocytes, and platelets, were related to myopic peripheral retinal degeneration (mPRD) and posterior staphyloma (PS). A higher level of basophils was linked to myopic choroidal neovascularization (mCNV). Our results suggest that higher levels of circulating neutrophils and neutrophil/lymphocyte ratio, lower monocytes, eosinophils, lymphocytes, and platelets are related to mild myopic retinopathy. A higher level of circulating basophils is related to the severe form of myopic retinopathy, such as mCNV.
Collapse
Affiliation(s)
- Jinyan Qi
- Aier School of Ophthalmology, Central South University, Changsha 410000, China
- Aier Institute of Optometry and Vision Science, Changsha 410000, China
- Hunan Province Optometry Engineering and Technology Research Center, Changsha 410000, China
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha 410000, China
| | - Wei Pan
- Aier Institute of Optometry and Vision Science, Changsha 410000, China
- Hunan Province Optometry Engineering and Technology Research Center, Changsha 410000, China
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha 410000, China
| | - Ting Peng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Ling Zeng
- Aier Institute of Optometry and Vision Science, Changsha 410000, China
- Changsha Aier Eye Hospital, Changsha 410000, China
| | - Xiaoning Li
- Aier Institute of Optometry and Vision Science, Changsha 410000, China
- Hunan Province Optometry Engineering and Technology Research Center, Changsha 410000, China
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha 410000, China
- Changsha Aier Eye Hospital, Changsha 410000, China
| | - Zhongping Chen
- Aier School of Ophthalmology, Central South University, Changsha 410000, China
- Changsha Aier Eye Hospital, Changsha 410000, China
| | - Zhikuan Yang
- Aier School of Ophthalmology, Central South University, Changsha 410000, China
- Aier Institute of Optometry and Vision Science, Changsha 410000, China
- Hunan Province Optometry Engineering and Technology Research Center, Changsha 410000, China
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha 410000, China
- Aier School of Optometry and Vision Science, Hubei University of Science and Technology, Xianning 437100, China
| | - Heping Xu
- Aier School of Ophthalmology, Central South University, Changsha 410000, China
- Aier Institute of Optometry and Vision Science, Changsha 410000, China
- Hunan Province Optometry Engineering and Technology Research Center, Changsha 410000, China
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha 410000, China
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
- Correspondence: ; Tel.: +44-289097-6463
| |
Collapse
|
10
|
Du X, Byrne EM, Chen M, Xu H. Minocycline Inhibits Microglial Activation and Improves Visual Function in a Chronic Model of Age-Related Retinal Degeneration. Biomedicines 2022; 10:biomedicines10123222. [PMID: 36551980 PMCID: PMC9775078 DOI: 10.3390/biomedicines10123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is a chronic disease, which progresses slowly from early to late stages over many years. Inflammation critically contributes to the pathogenesis of AMD. Here, we investigated the therapeutic potential of minocycline in a chronic model of AMD (i.e., the LysMCre-Socs3fl/flCx3cr1gfp/gfp double knockout [DKO] mice). Five-month-old DKO and wild type (WT) (Socs3fl/fl) mice were gavage fed with minocycline (25 mg/kg daily) or vehicle (distilled water) for 3 months. At the end of the treatment, visual function and retinal changes were examined clinically (using electroretinography, fundus photograph and optic coherence tomography) and immunohistologically. Three months of minocycline treatment did not affect the body weight, behaviour and general health of WT and DKO mice. Minocycline treatment enhanced the a-/b-wave aptitudes and increased retinal thickness in both WT and DKO. DKO mouse retina expressed higher levels of Il1b, CD68 and CD86 and had mild microglial activation, and decreased numbers of arrestin+ photoreceptors, PKCα+ and secretagogin+ bipolar cells compared to WT mouse retina. Minocycline treatment reduced microglial activation and rescued retinal neuronal loss in DKO mice. Our results suggest that long-term minocycline treatment is safe and effective in controlling microglial activation and preserving visual function in chronic models of AMD.
Collapse
|