1
|
Chen X, Caradeuc C, Bertho G, Lucas-Torres C, Giraud N. Pure Shift NMR with Solvent Suppression: A Robust and General Method for Determining Quantitative Metabolic Profiles in Biofluids. Anal Chem 2025. [PMID: 39905794 DOI: 10.1021/acs.analchem.4c05261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Ultrahigh-resolution pure shift NMR has recently been shown as a promising approach for providing quantitative metabolic profiles that can be used to study the metabolic footprint left by cancer cells in their aqueous growth medium. In this approach, a library of reference 1H pure shift spectra with water suppression was implemented to determine metabolite concentrations from the NOESY-presat-PSYCHE-SAPPHIRE spectrum recorded on the extracellular medium. This achievement clearly called for a generalization of a quantification method relying on ultrahigh-resolution data to other biological samples of interest (urine, plasma, tissue extracts, etc.), which requires evaluating the robustness of the analytical workflow. We have first addressed the influence of sample preparation on the quality of metabolite quantification. The quantification performed on a model mixture of metabolites prepared under different conditions shows good linearity, trueness, and precision, which highlights the high reproducibility of the proposed analytical protocol regardless of the physicochemical conditions in the sample. Second, we have successfully implemented this quantification protocol to determine metabolite levels in real urine and plasma samples, thereby paving the way for the use of the library of pure shift reference spectra for accurate and quantitative metabolic profiling of a broad range of aqueous samples.
Collapse
Affiliation(s)
- Xi Chen
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Cédric Caradeuc
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Gildas Bertho
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Covadonga Lucas-Torres
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Nicolas Giraud
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| |
Collapse
|
2
|
McCarney ER, McGilchrist P, Stewart SM, Dykstra R. Fast non-destructive measurement of intramuscular fat in Australian beef and lamb using nuclear magnetic resonance (NMR) technologies. Meat Sci 2025; 220:109706. [PMID: 39520739 DOI: 10.1016/j.meatsci.2024.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Nuclear magnetic resonance (NMR) is an excellent technique for non-destructive analysis of meat because it has high accuracy, a linear response, and insignificant drift over time, which removes the need for recalibration. Furthermore, single-side NMR devices have open geometries that enable measurements of subsections of larger samples without taking sub-samples. Here we demonstrated long-term reproducibility in a benchtop device and the utility of a single-sided NMR device. We validated long-term reproducibility of NMR measurements of lamb intramuscular fat (IMF%) in a commercial processor boning room years after the original model was created. It was hypothesised that the NMR IMF% model would retain precision and accuracy on independent validation. The root mean squared (RMS) error of prediction of lamb IMF was 0.79 %. The R2 between reference measurements, predicted IMF% was 0.74, the slope of the chemical IMF% vs NMR predictions was 0.989, and the bias was 0.53 % IMF%. In the second example, we showed that IMF% measurements of high value beef striploins could be measured off a commercial processing belt and returned without damaging the product. It was hypothesised that a commercial prototype single-sided NMR system would predict IMF% in beef M. longissimus thoracis et lumborum. Here the RMS error of the correlation was 1.58 % IMF% and R2 was 0.97. The long-term stability, high accuracy, and nondestructive nature make unilateral NMR devices ideal for applications in the red meat industry where IMF% contributes to product value.
Collapse
Affiliation(s)
- Evan R McCarney
- inMR Measure Ltd, 32 Salamanca Rd., Wellington 6012, New Zealand.
| | - Peter McGilchrist
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia
| | - Sarah M Stewart
- Advanced Livestock Measurement Technologies (ALMTech) Project, School of Agriculture, Murdoch University, Western Australia 6150, Australia
| | - Robin Dykstra
- inMR Measure Ltd, 32 Salamanca Rd., Wellington 6012, New Zealand
| |
Collapse
|
3
|
Rebollar-Ramos D, Chen SN, Lankin DC, Ray GJ, Kleps RA, Korhonen SP, Lehtivarjo J, Niemitz M, Pauli GF. Identification by HSQC and quantification by qHNMR innovate pharmaceutical amino acid analysis. J Pharm Biomed Anal 2024; 251:116390. [PMID: 39190935 DOI: 10.1016/j.jpba.2024.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
This study introduces a new NMR-based methodology for identification (ID) and quantification (purity, strength) assays of widely used amino acids. A detailed analysis of four amino acids and their available salts was performed with both a high-field (600 MHz) and a benchtop (60 MHz) NMR instrument. To assess sensitivity constraints, samples for 1H NMR analysis were initially prepared using only 10 mg of analyte and 1 mg of maleic acid (MA) as an internal calibrant (IC) and secondary chemical shift reference. The characteristic dispersion of the peak patterns indicating the presence or absence of a counterion (mostly chloride) was conserved at both high and low-field strength instruments, showing that the underlying NMR spectroscopic parameters, i.e., chemical shifts and coupling constants, are independent of the magnetic field strength. However, as the verbal descriptions of 1H NMR spectra are challenging in the context of reference materials and pharmaceutical monographs, an alternative method for the identification (ID) of amino acids is proposed that uses 13C NMR patterns from multiplicity-edited HSQC (ed-HSQC), which are both compound-specific and straightforward to document. For ed-HSQC measurements, the sample amount was increased to 30 mg of the analyte and several acquisition parameters were tested, including t1 increments used in the pulse program, number of scans, and repetition time. Excellent congruence with deviations <0.1 ppm was achieved for the 13C chemical shifts from 1D 13C NMR spectra (150 MHz) vs. those extracted from ed-HSQC (15 MHz traces). Finally, all samples of amino acid candidate reference materials were quantified by 1H qNMR (abs-qHNMR) at both 600 and 60 MHz. At high field, both IC and relative quantitations were performed, however, with the low-field instrument, only the IC method was used. The results showed that the analyzed reference material candidates were generally highly pure compounds. To achieve adequately low levels of uncertainty for such high-purity materials, the sample amounts were increased to 100 mg of analytes and 10 mg of the IC and replicates were analyzed for selected amino acids.
Collapse
Affiliation(s)
- Daniela Rebollar-Ramos
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States
| | - Shao-Nong Chen
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States
| | - David C Lankin
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States
| | - G Joseph Ray
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States
| | - Robert A Kleps
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States
| | | | | | | | - Guido F Pauli
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States.
| |
Collapse
|
4
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
5
|
Xu M, Wang H, Vojvodin C, Yarava JR, Wang T, Xie W. Polymorphism of Pb 5(PO 4) 3OH δ within the LK-99 mixture. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:S2052520624010023. [PMID: 39621852 PMCID: PMC11789162 DOI: 10.1107/s2052520624010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/14/2024] [Indexed: 02/05/2025]
Abstract
During the synthetic exploration targeting the polycrystalline compound LK-99, an unexpected phase, Pb5(PO4)3OHδ, was identified as a byproduct. We elucidated the composition of this compound through single-crystal X-ray diffraction analysis. Subsequent synthesis of the target compounds was achieved via high-temperature solid-state pellet reactions. The newly identified Pb5(PO4)3OHδ has an orthorhombic crystal structure with space group Pnma, representing a unique structure differing from the hexagonal apatite phases of Pb10(PO4)6O and Pb5(PO4)3OH. Comprehensive temperature- and magnetic-field-dependent magnetization studies unveiled a temperature-independent magnetic characteristic of Pb5(PO4)3OHδ. Solid-state nuclear magnetic resonance spectroscopy was employed to decipher the origins of the phase stability and confirm the presence of hydrogen atoms in Pb5(PO4)3OHδ. These investigations revealed the presence of protonated oxygen sites, in addition to the interstitial water molecules within the structure, which may play critical roles in stabilizing the orthorhombic phase.
Collapse
Affiliation(s)
- Mingyu Xu
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
| | - Haozhe Wang
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
| | - Cameron Vojvodin
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
| | | | - Tuo Wang
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
| | - Weiwei Xie
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
6
|
Jokinen N, Eronen E, Vepsäläinen J, Jänis J, Lappalainen R, Tomppo L, Tynkkynen T. 17O NMR spectroscopy protocol for the determination of water content in liquids produced by pyrolysis and hydrothermal liquefaction. Anal Chim Acta 2024; 1329:343188. [PMID: 39396278 DOI: 10.1016/j.aca.2024.343188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND There is an urgent need to replace fossil-based fuels and chemicals with bio-based, renewable alternatives. Water content is a critical parameter in these liquid products since water affects their quality and properties. However, currently existing methods for bio-oil water content determination have limitations and thus, there is a need to find methods that are versatile, work for a wide water content and sample consistency range repeatably and reliably and are safe for the user and the environment. RESULTS In this research, a17O NMR spectroscopy protocol for water content determination of pyrolysis and hydrothermal liquefaction (HTL) liquids was developed and compared with the standard method Karl Fischer (KF) titration. The approach showed linearity over a wide concentration range, and the changes to the measurement parameters caused only minor effects to the results (≤0.8 percentage points) indicating robustness. The method is also accurate since the absolute differences between experimental and theoretical water contents varied from 0.08 % to 2.09 %. Additionally, the precision of the method, based on the relative standard deviations (RSD) of the three replicate measurements of pyrolysis and HTL samples, was good (RSD <1.82 %). The method was applied to samples containing 1-98 wt% water. Overall, the 17O NMR spectroscopy and KF titration results were well aligned with each other suggesting that the 17O NMR spectroscopy is a potential alternative for the conventional KF titration. SIGNIFICANCE This is the first study on the use of 17O NMR spectroscopy protocol for water content quantification. The results indicate that the protocol is an accurate, linear, and precise technique for water content determination of a wide range of samples. Furthermore, the method does not require hazardous chemicals or calibration standards, and the sample preparation is straightforward. The non-destructiveness of the method also enables further studies on the sample, e.g. by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Noora Jokinen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70211, Finland.
| | - Eemeli Eronen
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland.
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70211, Finland.
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland.
| | - Reijo Lappalainen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70211, Finland.
| | - Laura Tomppo
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70211, Finland.
| | - Tuulia Tynkkynen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70211, Finland.
| |
Collapse
|
7
|
Khurshid A, Anwar Z, Khurshid A, Ahmed S, Sheraz MA, Ahmad I. Cyclodextrins and their applications in pharmaceutical and related fields. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2024; 50:183-227. [PMID: 39855776 DOI: 10.1016/bs.podrm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
This chapter presents an overall account of cyclodextrins (CDs) with a brief description of the history, classification, and properties of these macromolecules. CDs act as complexing agents for drugs to form CD-drug inclusion complexes by various techniques. These complexes lead to the modification of the physicochemical properties of drugs to make them more soluble, chemically, and photochemically stable, and less toxic. It focuses in detail on various pharmaceutical uses of CDs and their derived forms in drug solubility, bioavailability, drug stability, drug delivery, and drug safety which have been specifically highlighted. The role of CDs and derivatives as excipients in the drug formulation of solid dosage forms, parenteral dosage forms, and anticancer drugs has been emphasized. Some other applications of CDs in cosmetics, environmental protection, food technology, and analytical methods have been described.
Collapse
Affiliation(s)
- Adeela Khurshid
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan.
| | - Aqeela Khurshid
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Iqbal Ahmad
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
8
|
Downey K, Costa PM, Ronda K, Kock FVC, Lysak DH, Wolff WW, Steiner K, Pellizzari J, Haber A, Elliott C, Busse V, Busse F, Goerling B, Moraes TB, Colnago LA, Simpson AJ. Steady-State Free Precession (SSFP) NMR Spectroscopy for Sensitivity Enhancement in Complex Environmental and Biological Samples Using Both High-Field and Low-Field NMR. Anal Chem 2024; 96:16260-16268. [PMID: 39352706 DOI: 10.1021/acs.analchem.4c03200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a valuable and complementary tool in environmental research, but it is underutilized due to the cost, size, and maintenance requirements of standard "high-field" NMR spectrometers. "Low-field" NMR spectrometers are a financially and physically accessible alternative, but their lower sensitivity and increased spectral overlap limit the analysis of heterogeneous environmental/biological media, especially with fast-relaxing samples that produce broad, low-intensity spectra. This study therefore investigates the potential of the steady-state free precession (SSFP) experiment to enhance signal-to-noise ratios (SNRs) of fast-relaxing, complex samples at both high- and low-field. SSFP works by obtaining steady-state transverse signal using a train of equally spaced radiofrequency pulses with the same flip angle and a time between pulses less than the transverse relaxation time, allowing for thousands of scans to be summed in a short time period. Here, 13C-SSFP is applied to samples of varying complexity (egg white, dissolved organic matter, and crude oil) at low-field and at high-field for testing and comparison. The potential of in vivo SSFP NMR is additionally investigated by applying 31P-SSFP to live Eisenia fetida at high-field. In some samples, SSFP increased 13C SNR by over 2000% at both high-field and low-field compared to standard 13C NMR and enabled detection of peaks that were not observable by standard 13C NMR. Ultimately, SSFP holds great potential for improving analysis of fast-relaxing, complex samples, which could in turn make low-field NMR spectroscopy a more effective tool not only in environmental/biological research but also in numerous other disciplines.
Collapse
Affiliation(s)
- Katelyn Downey
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Peter M Costa
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Kiera Ronda
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Flavio V C Kock
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - William W Wolff
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Katrina Steiner
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Jacob Pellizzari
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Agnes Haber
- Bruker Biospin GmbH, Ettlingen 76275, Germany
| | | | - Venita Busse
- Bruker Switzerland AG, Fällanden 8117, Switzerland
| | - Falko Busse
- Bruker Switzerland AG, Fällanden 8117, Switzerland
| | | | - Tiago B Moraes
- Departamento Engenharia de Biossistemas, Universidade de São Paulo, São Paulo 13560-970, Brazil
| | - Luiz A Colnago
- Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos 13560-970, Brazil
| | - Andre J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
9
|
Lian X, Li Y, Zuo L, Zhao X, Liu H, Gu Y, Jia Q, Yao J, Shan G. Comparison and Determination of the Content of Mosapride Citrate by Different qNMR Methods. Int J Mol Sci 2024; 25:10442. [PMID: 39408772 PMCID: PMC11476420 DOI: 10.3390/ijms251910442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
As a salt-type compound, mosapride citrate's metabolism and side effects are correlated with its salt-forming ratio. Several techniques were developed in this work to compare various quantitative nuclear magnetic resonance (qNMR) methodologies and to quantitatively examine the content of raw materials. Among the qNMR techniques, methods for 1H NMR and 19F NMR were developed. Appropriate solvents were chosen, and temperature, number of scans, acquisition time, and relaxation delay parameter settings were optimized. Maleic acid was chosen as the internal standard in 1H NMR, and the respective characteristic signals of mosapride and citrate were selected as quantitative peaks. The internal standard in 19F NMR analysis was 4,4'-difluoro diphenylmethanone, and the distinctive signal peak at -116.15 ppm was utilized to quantify mosapride citrate. The precision, repeatability, linearity, stability, accuracy, and robustness of the qNMR methods were all validated according to the ICH guidelines. By contrasting the outcomes with those from high-performance liquid chromatography (HPLC), the accuracy of qNMR was assessed. As a result, we created a quicker and easier qNMR approach to measure the amount of mosapride citrate and evaluated several qNMR techniques to establish a foundation for choosing quantitative peaks for the qNMR method. Concurrently, it is anticipated that various selections of distinct quantitative objects will yield the mosapride citrate salt-forming ratio.
Collapse
Affiliation(s)
- Xiaofang Lian
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.L.); (Y.L.); (L.Z.); (X.Z.); (H.L.); (Y.G.); (Q.J.)
| | - Yiran Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.L.); (Y.L.); (L.Z.); (X.Z.); (H.L.); (Y.G.); (Q.J.)
| | - Limin Zuo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.L.); (Y.L.); (L.Z.); (X.Z.); (H.L.); (Y.G.); (Q.J.)
| | - Xuejia Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.L.); (Y.L.); (L.Z.); (X.Z.); (H.L.); (Y.G.); (Q.J.)
| | - Huiyi Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.L.); (Y.L.); (L.Z.); (X.Z.); (H.L.); (Y.G.); (Q.J.)
| | - Yongsheng Gu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.L.); (Y.L.); (L.Z.); (X.Z.); (H.L.); (Y.G.); (Q.J.)
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Qingying Jia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.L.); (Y.L.); (L.Z.); (X.Z.); (H.L.); (Y.G.); (Q.J.)
| | - Jing Yao
- Institute for the Control of Chemical Drugs, National Institutes for Food and Drug Control, Beijing 100001, China
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (X.L.); (Y.L.); (L.Z.); (X.Z.); (H.L.); (Y.G.); (Q.J.)
| |
Collapse
|
10
|
Liu XY, Jia W, Liu CM, Hua ZD. An NMR study on the keto-enol tautomerism of 1,3-dicarbonyl drug precursors. Drug Test Anal 2024. [PMID: 39152891 DOI: 10.1002/dta.3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
The effective implementation of drug precursor legislation has driven the innovation and design of new alternative substances. The application of 1,3-dicarbonyl precursors as alternative precursors for the synthesis of 1-phenyl-2-propanone (P2P) and 3,4-methylenedioxyphenyl-2-propanone (MDP2P) has created new challenges to legal control. Their 1,3-dicarbonyl structure allows the precursors to exist as an equilibrium mixture of the tautomeric diketo and keto-enolic forms during the nuclear magnetic resonance (NMR) analysis. In this study, the keto-enol tautomerism of four 1,3-dicarbonyl drug pre-precursors, α-phenylacetoacetamide (APAA), methyl α-phenylacetoacetate (MAPA), ethyl α-phenylacetoacetate (EAPA), and methyl 2-(benzo[d][1,3]dioxol-5-yl)-3-oxobutanoate (MAMDPA) were investigated through NMR. One-dimensional (1D) and 2D NMR were combined to assign signals for the diketo and keto-enolic tautomers. Results showed that the keto-enol tautomerism was solvent-dependent but was also influenced by the substituent present in the molecule. Further, the analysis results indicated that majority of substances existed mainly in the diketo form. The enol-keto equilibrium constant (Keq) was stable in dimethyl sulfoxide-d6 and chloroform-d, while unstable for some compounds in acetone-d6 and deuterated methanol. The presence of impurities in the seized sample may disrupt the equilibrium between keto-enol tautomers in 1,3-dicarbonyl precursors. After the optimization of several key quantitative parameters, a quantitative NMR method for the quantification of 1,3-dicarbonyl drug precursors were also developed to facilitate their quantitative analysis. This is the first study to investigate the keto-enol tautomerism and quantification of 1,3-dicarbonyl drug precursors by NMR, providing a new approach for structure analysis and quantification of new precursor analogues.
Collapse
Affiliation(s)
| | - Wei Jia
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Cui-Mei Liu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Zhen-Dong Hua
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| |
Collapse
|
11
|
Ogura T, Wakayama M. Coaxial-Tube Quantitative Nuclear Magnetic Resonance for Various Solutions Using SI-Traceable Concentration References. Anal Chem 2024; 96:11657-11665. [PMID: 38975800 DOI: 10.1021/acs.analchem.3c05078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Quantitative nuclear magnetic resonance (qNMR) is an accepted method for determining analyte concentrations using quantitative substances in one spectrum. Conventional qNMR is performed using a mixture of analytes and reference substances. In coaxial-tube NMR, two tubes are used as different solutions, similar to normal NMR spectra. Currently, coaxial tubes with various diameters are available; however, coaxial-tube qNMR is limited, and a general analytical protocol is yet to be proposed. In this study, we established an effective volume ratio (EVR) measurement method using the weight density and qNMR methods. Various analyte concentrations were determined using coaxial-tube qNMR and an SI-traceable reagent. The EVR required for the qNMR concentration calculation was determined using a coefficient of variation (CV) of <1% for an inner tube of ϕ 3 mm or less. The peak integral of each substance was correlated with the effective volume, depending on the abundance of the tube and matched 1H in the solution. The T1 relaxation times differed depending on the substructure, and the T1 values of the formate and OH groups varied for each tube set. Thus, each partial structural characteristic of the peak must be understood before qNMR is performed. The concentrations of various substances, including hygroscopic substances, were determined using coaxial-tube qNMR. Coaxial tubes eliminate the need to mix the analyte with the reference substance; thus, we can quantify the analyte without causing pH and structural changes caused by other mixtures and reuse the analyte for other test systems.
Collapse
Affiliation(s)
- Tatsuki Ogura
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Masataka Wakayama
- Integrated Medical and Agricultural School for Public Health, Ehime University, 454 Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
12
|
Abri S, Durr H, Barton HA, Adkins-Travis K, Shriver LP, Pukale DD, Fulton JA, Leipzig ND. Chitosan-based multifunctional oxygenating antibiotic hydrogel dressings for managing chronic infection in diabetic wounds. Biomater Sci 2024; 12:3458-3470. [PMID: 38836321 PMCID: PMC11197983 DOI: 10.1039/d4bm00355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Current treatment strategies for infection of chronic wounds often result in compromised healing and necrosis due to antibiotic toxicity, and underlying biomarkers affected by treatments are not fully known. Here, a multifunctional dressing was developed leveraging the unique wound-healing properties of chitosan, a natural polysaccharide known for its numerous benefits in wound care. The dressing consists of an oxygenating perfluorocarbon functionalized methacrylic chitosan (MACF) hydrogel incorporated with antibacterial polyhexamethylene biguanide (PHMB). A non-healing diabetic infected wound model with emerging metabolomics tools was used to explore the anti-infective and wound healing properties of the resultant multifunctional dressing. Direct bacterial bioburden assessment demonstrated superior antibacterial properties of hydrogels over a commercial dressing. However, wound tissue quality analyses confirmed that sustained PHMB for 21 days resulted in tissue necrosis and disturbed healing. Therefore, a follow-up comparative study investigated the best treatment course for antiseptic application ranging from 7 to 21 days, followed by the oxygenating chitosan-based MACF treatment for the remainder of the 21 days. Bacterial counts, tissue assessments, and lipidomics studies showed that 14 days of application of MACF-PHMB dressings followed by 7 days of MACF dressings provides a promising treatment for managing infected non-healing diabetic skin ulcers.
Collapse
Affiliation(s)
- Shahrzad Abri
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Hannah Durr
- Integrated Biosciences Program, Department of Biology, The University of Akron, Akron, Ohio 44325, USA
| | - Hazel A Barton
- Department of Geological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Kayla Adkins-Travis
- Department of Chemistry, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Center for Proteomics, Metabolomics, and Isotope Tracing, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Dipak D Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Judith A Fulton
- Summa Health System-Translational Research Center Akron, Akron, Ohio 44304, USA
- Northeast Ohio Medical University-REDIzone, Rootstown, Ohio 44272, USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
- Integrated Biosciences Program, Department of Biology, The University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
13
|
Heinrich G, Kondratiuk M, Gooßen LJ, Wiesenfeldt MP. Rapid reaction optimization by robust and economical quantitative benchtop 19F NMR spectroscopy. Nat Protoc 2024; 19:1529-1556. [PMID: 38409535 DOI: 10.1038/s41596-023-00951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/16/2023] [Indexed: 02/28/2024]
Abstract
The instrumental analysis of reaction mixtures is usually the rate-determining step in the optimization of chemical processes. Traditionally, reactions are analyzed by gas chromatography, HPLC or quantitative NMR spectroscopy on high-field spectrometers. However, chromatographic methods require elaborate work-up and calibration protocols, and high-field NMR spectrometers are expensive to purchase and operate. This protocol describes an inexpensive and highly effective analysis method based on low-field benchtop NMR spectroscopy. Its key feature is the use of fluorine-labeled model substrates that, because of the wide chemical shift range and high sensitivity of 19F, enable separate, quantitative detection of product and by-product signals even on low-field, permanent magnet spectrometers. An external lock/shim device obviates the need for deuterated solvents, permitting the direct, noninvasive measurement of crude reaction mixtures with minimal workup. The low field-strength facilitates a homogeneous excitation over a wide chemical shift range, minimizing systematic integration errors. The addition of the optimal amount of the nonshifting relaxation agent tris(acetylacetonato) iron(III) minimizes relaxation delays at full resolution, reducing the analysis time to 32 s per sample. The correct choice of processing parameters is also crucial. A step-by-step guideline is provided, the influence of all parameters, including adjustments needed when using high-field spectrometers, is discussed and potential pitfalls are highlighted. The wide applicability of the analytical protocol for reaction optimization is illustrated by three examples: a Buchwald-Hartwig amination, a Suzuki coupling and a C-H arylation reaction.
Collapse
Affiliation(s)
- G Heinrich
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - M Kondratiuk
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - L J Gooßen
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - M P Wiesenfeldt
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
14
|
Sarkar A, Dong G, Quaglia-Motta J, Sackett K. Flow-NMR as a Process-Monitoring Tool for mRNA IVT Reaction. J Pharm Sci 2024; 113:900-905. [PMID: 38008177 DOI: 10.1016/j.xphs.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Messenger RNA (mRNA) based vaccines were instrumental in accelerating the end of the SARS-CoV-2 pandemic and are being aggressively developed as prophylaxes for a range of viral diseases. The swift adoption of mRNA-based therapeutics has also left open vast areas of opportunity for improving the development of mRNA-based drugs. One such area with immense potential focuses on the mRNA drug substance production, where mRNA is generated by a cell-free reaction called in vitro transcription (IVT). Process analytical technologies (PAT) are integral to the pharmaceutical industry and are necessary to facilitate agile process optimization and enhance process quality, control, and understanding. Due to the complexity and novelty inherent to the IVT reaction, there is a need for effective PAT that would provide in-depth, real-time insight into the reaction process to allow delivery of novel mRNA vaccines to patients faster in a more cost-effective way. Herein, we showcase the development of flow-nuclear magnetic resonance (flow-NMR) as a highly effective process-analytical tool for monitoring mRNA IVT reactions to support process development, optimization, and production.
Collapse
Affiliation(s)
- Aritra Sarkar
- Analytical Research and Development, Pfizer Research and Development, Eastern Point Road, Groton, CT 06340, United States of America.
| | - Guogang Dong
- Bioprocess Research and Development, Pfizer Research and Development, 1 Burtt Road, Andover, Massachusetts 01810, United States of America
| | - Jennifer Quaglia-Motta
- Bioprocess Research and Development, Pfizer Research and Development, 1 Burtt Road, Andover, Massachusetts 01810, United States of America
| | - Kelly Sackett
- Analytical Research and Development, Pfizer Research and Development, Eastern Point Road, Groton, CT 06340, United States of America.
| |
Collapse
|
15
|
Devi G, Gorki V, Walter NS, Sivangula S, Sobhia ME, Jachak S, Puri R, Kaur S. Exploring the efficacy of ethnomedicinal plants of Himalayan region against the malaria parasite. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117394. [PMID: 37967777 DOI: 10.1016/j.jep.2023.117394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plasmodium falciparum multi-drug resistant (MDR) strains are a great challenge to global health care. This predicament implies the urgent need to discover novel antimalarial drugs candidate from alternative natural sources. The Himalaya constitute a rich repository of medicinal plants which have been used traditionally in the folklore medicine since ages and having no scientific evidence for their activity. Crambe kotschyana Boiss. and Eremurus himalaicus Baker are used for their antipyretic and hepatoprotective properties in Kinnaur district of Himachal Pradesh, India. AIM OF THE STUDY This study would investigate the antiplasmodial efficacy of C. kotschyana and E. himalaicus extracts, their fractions and active components using in vitro, in vivo and in silico approaches to provide a scientific insight into their activity. METHODS The methanol extracts of C. kotschyana (CKME) and E. himalaicus (EHME) were prepared by maceration followed by fractionation using ethyl acetate. The isolation of flavonoid glycosides isorhamnetin-3, 7-di-O-glucoside from C. kotschyana and luteolin-6-C-glucoside (isoorientin) from E. himalaicus was carried out by antiplasmodial activity-guided isolation. In vitro antimalarial activity was assessed by WHO method while in vitro cytotoxicity was ascertained employing the MTT assay. Molecular docking and molecular dynamics simulation were performed using the Glide module of Schrödinger Software and Gromacs-2022 software package respectively. In vivo curative activity was assessed by Ryley and Peters method. RESULTS The methanol extracts of both the plants illustrated the best antiplasmodial activity followed by the ethyl acetate fractions. Iso-orientin (IC50 6.49 μg/ml) and Isorhamnetin-3,7-di-O-glucoside (IC50 9.22 μg/ml) illustrated considerable in vitro activity even against P. falciparum resistant strain. Extracts/fractions as well as the isolated compounds were found to be non-toxic with CC50 > 640 μg/ml. Molecular docking studies were performed with these 2 O-glucosides against four malaria targets to understand the binding pose of these molecules and the results suggested that these molecules have selectivity for lactate dehydrogenase enzyme. CKME and EHME exhibited curative activity in vivo along with increase in Mean Survival Time of mice. CONCLUSION The research delineated the scientific evidence that both the therapeutic herbs possessed antimalarial activity and notably, bioactive compounds responsible to exhibit the antimalarial activity have been isolated, identified and characterized. Further studies are underway to assess the antiplasmodial efficacy of isolated compounds alone and in combination with standard antimalarials.
Collapse
Affiliation(s)
- Geeta Devi
- Ethnobotany and Medicinal Plant Laboratory, Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Varun Gorki
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Neha Sylvia Walter
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Srikanth Sivangula
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S Nagar, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S Nagar, Punjab, India
| | - Sanjay Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Richa Puri
- Ethnobotany and Medicinal Plant Laboratory, Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
16
|
Shah D, Bhattacharya S, Gupta GL, Hatware KV, Jain A, Manthalkar L, Phatak N, Sreelaya P. d-α-tocopheryl polyethylene glycol 1000 succinate surface scaffold polysarcosine based polymeric nanoparticles of enzalutamide for the treatment of colorectal cancer: In vitro, in vivo characterizations. Heliyon 2024; 10:e25172. [PMID: 38333874 PMCID: PMC10850913 DOI: 10.1016/j.heliyon.2024.e25172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
In this study, Enzalutamide (ENZ) loaded Poly Lactic-co-Glycolic Acid (PLGA) nanoparticles coated with polysarcosine and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) were prepared using a three-step modified nanoprecipitation method combined with self-assembly. A three-factor, three-level Box-Behnken design was implemented with Design-Expert® software to evaluate the impact of three independent variables on particle size, zeta potential, and percent entrapment efficiency through a numeric optimization approach. The results were corroborated with ANOVA analysis, regression equations, and response surface plots. Field emission scanning electron microscopy and transmission electron microscope images revealed nanosized, spherical polymeric nanoparticles (NPs) with a size distribution ranging from 178.9 ± 2.3 to 212.8 ± 0.7 nm, a zeta potential of 12.6 ± 0.8 mV, and entrapment efficiency of 71.2 ± 0.7 %. The latter increased with higher polymer concentration. Increased polymer concentration and homogenization speed also enhanced drug entrapment efficiency. In vitro drug release was 85 ± 22.5 %, following the Higuchi model (R2 = 0.98) and Fickian diffusion (n < 0.5). In vitro cytotoxicity assessments, including Mitochondrial Membrane Potential Estimation, Apoptosis analysis, cell cycle analysis, Reactive oxygen species estimation, Wound healing assay, DNA fragmentation assay, and IC50 evaluation with Sulforhodamine B assay, indicated low toxicity and high efficacy of polymeric nanoparticles compared to the drug alone. In vivo studies demonstrated biocompatibility and target specificity. The findings suggest that TPGS surface-scaffolded polysarcosine-based polymer nanoparticles of ENZ could be a promising and safe delivery system with sustained release for colorectal cancer treatment, yielding improved therapeutic outcomes.
Collapse
Affiliation(s)
- Disha Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Ketan Vinayakrao Hatware
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
- School of Pharmacy, International Medical University (IMU), Jalan Jalil Perkasa 1, Bukit Jalil, 57700 Kuala Lumpur, Malaysia
| | - Arinjay Jain
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Laxmi Manthalkar
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Niraj Phatak
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Putrevu Sreelaya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
17
|
Song P, Xu J, Liu X, Zhang Z, Rao X, Martinho RP, Bao Q, Liu C. Stationary wavelet denoising of solid-state NMR spectra using multiple similar measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 359:107615. [PMID: 38310668 DOI: 10.1016/j.jmr.2023.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
Accumulating several scans of free induction decays is always needed to improve the signal-to-noise ratio of NMR spectra, especially for the low gyromagnetic ratio solid-state NMR. In this study, we present a new denoising approach based on the correlations between multiple similar NMR spectra. Contrary to the simple averaging of multiple scans or denoising the final averaged spectrum, we propose a Wavelet-based Denoising technique for Multiple Similar scans(WDMS). Firstly, the stationary wavelet transform is applied to decompose every spectrum into approximation coefficients and detail coefficients. Then, the detail coefficients are multiplied by weights calculated based on Pearson's correlation coefficient and structural similarity index between approximation coefficients of different spectra. Finally, the average of these detailed components is used to denoise the spectra. The proposed method is carried on the assumption that noise between multiple spectra is uncorrelated while peak signal information is similar between different spectra, thus preserving the possibility of applying further processing to the data. As a demonstration, the standard wavelet denoise is applied to the WDMS-processed spectra, achieving a further increase in the S/N ratio. We confirm the reliability of the denoising approach based on multiple scans on 1D/2D solid-state MAS/static NMR spectra. In addition, we also show that this method can be used to deal with a single Car-Purcell-Meiboom-Gill (CPMG) echo train.
Collapse
Affiliation(s)
- Peijun Song
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinjie Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, PR China
| | - Zhi Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, PR China
| | - Xinglong Rao
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Ricardo P Martinho
- University of Twente Faculty of Science and Technology, Drienerlolaan 5, 7500AE Enschede, the Netherlands
| | - Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, PR China.
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Optics Valley Laboratory, Hubei 430074, PR China.
| |
Collapse
|
18
|
Gopalaiah SB, Jayaseelan K. Analytical Strategies to Investigate Molecular Signaling, Proteomics, Extraction and Quantification of Withanolides - A Comprehensive Review. Crit Rev Anal Chem 2024:1-25. [PMID: 38300174 DOI: 10.1080/10408347.2024.2307887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Withanolides are the class of steroidal molecules getting greater emphasis in recent years. Quality control throughout the manufacturing and storage period is often one of the key problems that have restricted their broad use in India's indigenous and Ayurvedic medical systems for thousands of years. Because of their diverse clinical potential, withanolides have received a great deal of scientific attention. Analytical techniques are being devised for the automated isolation, identification, and estimation of every single protein within the cell as well as in herbal extracts of withanolides, due to which now researchers are interested in determining the effects of metabolism as well as various stimuli on protein expression, which made the study easier. This study discusses the potential use of hyphenated analytical methods that are reliable in understanding the molecular signaling features, proteome evaluation and characterization of withanolides, in addition to examining existing methodological limitations. The choice of analytical techniques for the withanolides analysis, however, relies on the nature of the sample matrix, the aim of the analysis, and the sensitivity of the technique.
Collapse
Affiliation(s)
- Sinchana B Gopalaiah
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Kavitha Jayaseelan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
19
|
Duong QH, Kwahk EJ, Kim J, Park H, Cho H, Kim H. Bioinspired Fluorine Labeling for 19F NMR-Based Plasma Amine Profiling. Anal Chem 2024; 96:1614-1621. [PMID: 38244044 DOI: 10.1021/acs.analchem.3c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Metabolite profiling serves as a powerful tool that advances our understanding of biological systems, disease mechanisms, and environmental interactions. In this study, we present an approach employing 19F-nuclear magnetic resonance (19F NMR) spectroscopy for plasma amine profiling. This method utilizes a highly efficient and reliable fluorine-labeling reagent, 3,5-difluorosalicylaldehyde, which effectively emulates pyridoxal phosphate, facilitating the formation of Schiff base compounds with primary amines. The fluorine labeling allows for distinct resolution of 19F NMR signals from amine mixtures, leading to precise identification and quantification of amine metabolites in human plasma. This advancement offers valuable tools for furthering metabolomics research.
Collapse
Affiliation(s)
- Quynh Huong Duong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eun-Jeong Kwahk
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jumi Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hahyoun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Heyjin Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
20
|
El-Sayed A, Sabry MA, Elmansi H, Eid M, Shalan S. Stability indicating eco-friendly quantitation of terbutaline and its pro-drug bambuterol using quantitative proton nuclear magnetic spectroscopy. BMC Chem 2024; 18:25. [PMID: 38291471 PMCID: PMC10829239 DOI: 10.1186/s13065-024-01120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Quantitative 1H-NMR became an increasingly important issue in pharmaceutical analytical chemistry. This study used NMR spectroscopy to assay the bronchodilator drug terbutaline sulfate and its pro-drug bambuterol hydrochloride in pure form and pharmaceutical preparations. The technique proceeded using deuterium oxide (D2O) as an 1H-NMR solvent and phloroglucinol anhydrous as an internal standard (IS). Comparatively, to the phloroglucinol signal at 5.9 ppm, the resulting quantitative signals of the studied drugs were corrected. The terbutaline singlet signal at 6.3 ppm was chosen for quantification, while the bambuterol quantitative singlet signal was at 2.9 ppm. The two drugs were rectilinear over the concentration range of 1.0-16.0 mg/mL. LOD values were 0.19 and 0.21 mg/mL while LOQ values were 0.58 and 0.64 mg/mL for terbutaline and bambuterol respectively. The developed method has been validated according to the International Conference of Harmonization (ICH) regarding linearity, accuracy, precision, specificity, and robustness. A greenness profile assessment was applied, and the method proved to be green. The method enables the assay of the two drugs in pure drug and pharmaceutical preparations. The method also enables the assay of the two drugs in the presence of each other; thus, it is considered a stability-indicating method where terbutaline is an acid degradation product of bambuterol.
Collapse
Affiliation(s)
- Asmaa El-Sayed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed A Sabry
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manal Eid
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Shereen Shalan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
21
|
Kircher R, Xu J, Barskiy DA. In Situ Hyperpolarization Enables 15N and 13C Benchtop NMR at Natural Isotopic Abundance. J Am Chem Soc 2024; 146:514-520. [PMID: 38126275 DOI: 10.1021/jacs.3c10030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Without employing isotopic labeling, we demonstrate the generation of 15N and 13C NMR signals for molecules containing -NH2 motifs using benchtop NMR spectrometers (1-1.4 T). Specifically, high-SNR (>50) detection of ammonia, 4-aminopyridine, benzylamine, and phenethylamine dissolved in methanol or dichloromethane is demonstrated after only 10 s of parahydrogen bubbling using signal amplification by reversible exchange and applying a pulse sequence based on spin-lock-induced crossing. Optimization of the sequence parameters allows us to achieve up to 12% 15N and 0.4% 13C polarization in situ without the need for the sample transfer typically employed in other hyperpolarization methods. Moreover, hyperpolarization is generated continuously without having to stop the parahydrogen bubbling to reset magnetization, paving the way toward fast 2D spectroscopic methods and relaxometry. The provided methodology may find application for the identification of diluted chemicals relevant to industry and research with the aid of affordable benchtop NMR spectrometers.
Collapse
Affiliation(s)
- Raphael Kircher
- Johannes Gutenberg Universität Mainz, 55128, Mainz, Germany
- Helmholtz-Institut Mainz, 55128, Mainz, Germany
- Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| | - Jingyan Xu
- Johannes Gutenberg Universität Mainz, 55128, Mainz, Germany
- Helmholtz-Institut Mainz, 55128, Mainz, Germany
- Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| | - Danila A Barskiy
- Johannes Gutenberg Universität Mainz, 55128, Mainz, Germany
- Helmholtz-Institut Mainz, 55128, Mainz, Germany
- Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| |
Collapse
|
22
|
Gardon L, Becker N, Rähse N, Hölbling C, Apostolidis A, Schulz CM, Bochinsky K, Gremer L, Heise H, Lakomek NA. Amyloid fibril formation kinetics of low-pH denatured bovine PI3K-SH3 monitored by three different NMR techniques. Front Mol Biosci 2023; 10:1254721. [PMID: 38046811 PMCID: PMC10691488 DOI: 10.3389/fmolb.2023.1254721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: Misfolding of amyloidogenic proteins is a molecular hallmark of neurodegenerative diseases in humans. A detailed understanding of the underlying molecular mechanisms is mandatory for developing innovative therapeutic approaches. The bovine PI3K-SH3 domain has been a model system for aggregation and fibril formation. Methods: We monitored the fibril formation kinetics of low pH-denatured recombinantly expressed [U-13C, 15N] labeled bovine PI3K-SH3 by a combination of solution NMR, high-resolution magic angle spinning (HR-MAS) NMR and solid-state NMR spectra. Solution NMR offers the highest sensitivity and, therefore, allows for the recording of two-dimensional NMR spectra with residue-specific resolution for individual time points of the time series. However, it can only follow the decay of the aggregating monomeric species. In solution NMR, aggregation occurs under quiescent experimental conditions. Solid-state NMR has lower sensitivity and allows only for the recording of one-dimensional spectra during the time series. Conversely, solid-state NMR is the only technique to detect disappearing monomers and aggregated species in the same sample by alternatingly recoding scalar coupling and dipolar coupling (CP)-based spectra. HR-MAS NMR is used here as a hybrid method bridging solution and solid-state NMR. In solid-state NMR and HR-MAS NMR the sample is agitated due to magic angle spinning. Results: Good agreement of the decay rate constants of monomeric SH3, measured by the three different NMR methods, is observed. Moderate MAS up to 8 kHz seems to influence the aggregation kinetics of seeded fibril formation only slightly. Therefore, under sufficient seeding (1% seeds used here), quiescent conditions (solution NMR), and agitated conditions deliver similar results, arguing against primary nucleation induced by MAS as a major contributor. Using solid-state NMR, we find that the amount of disappeared monomer corresponds approximately to the amount of aggregated species under the applied experimental conditions (250 µM PI3K-SH3, pH 2.5, 298 K, 1% seeds) and within the experimental error range. Data can be fitted by simple mono-exponential conversion kinetics, with lifetimes τ in the 14-38 h range. Atomic force microscopy confirms that fibrils substantially grew in length during the aggregation experiment. This argues for fibril elongation as the dominant growth mechanism in fibril mass (followed by the CP-based solid-state NMR signal). Conclusion: We suggest a combined approach employing both solution NMR and solid-state NMR, back-to-back, on two aliquots of the same sample under seeding conditions as an additional approach to follow monomer depletion and growth of fibril mass simultaneously. Atomic force microscopy images confirm fibril elongation as a major contributor to the increase in fibril mass.
Collapse
Affiliation(s)
- Luis Gardon
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nina Becker
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nick Rähse
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Christoph Hölbling
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Athina Apostolidis
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Celina M. Schulz
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Kevin Bochinsky
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Henrike Heise
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nils-Alexander Lakomek
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Triyasmono L, Schollmayer C, Holzgrabe U. Chemometric analysis applied to 1 H NMR and FTIR data for a quality parameter distinction of red fruit (Pandanus conoideus, lam.) oil products. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:788-799. [PMID: 36509547 DOI: 10.1002/pca.3196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Red fruit oil (RFO) is a natural product extracted from Pandanus conoideus Lam. fruit, a native plant from Papua, Indonesia. Recent studies indicate that RFO is popularly consumed as herbal medicine. Therefore, the quality of RFO must be assured. OBJECTIVES This study aimed to develop a chemometric analysis applied to 1 H nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) data for important quality parameter distinction of red fruit oil (RFO), especially regarding the degree of unsaturation and the amount of free fatty acids (FFA). MATERIALS AND METHODS Forty samples consisting of one crude RFO, thirty-three commercial RFOs, and three oils as blends, including olive oil, virgin coconut oil, and black seed oil, were analysed by 1 H NMR and FTIR spectroscopy. After appropriate preprocessing of the spectra, principal component analysis (PCA) and partial least squares regression (PLSR) were used for model development. RESULTS The essential signals for modelling the degree of unsaturation are the signal at δ = 5.37-5.27 ppm (1 H NMR) and the band at 3000-3020 cm-1 (FTIR). The FFA profile represents the signal at δ = 2.37-2.20 ppm (1 H NMR) and the band at 1680-1780 cm-1 (FTIR). PCA allows the visualisation grouping on both methods with > 98% total principal component (PC) for the degree of unsaturation and > 88% total PC for FFA values. In addition, the PLSR model provides an acceptable coefficient of determination (R2 ) and errors in calibration, prediction, and cross-validation. CONCLUSION Chemometric analysis applied to 1 H NMR and FTIR spectra of RFO successfully grouped and predicted product quality based on the degree of unsaturation and FFA value categories.
Collapse
Affiliation(s)
- Liling Triyasmono
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjar Baru, Indonesia
| | - Curd Schollmayer
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Guo X, Miller W, Zangi M, McElderry JD. Application of quantitative NMR in pharmaceutical analysis: Method qualification and potency determination for two new chemical entities in early-stage clinical studies. J Pharm Biomed Anal 2023; 234:115561. [PMID: 37421701 DOI: 10.1016/j.jpba.2023.115561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Quantitative NMR (qNMR), being a well-established analytical tool featuring efficiency, simplicity as well as versatility, has been extensively employed in pharmaceutical and medicinal testing. In this study, two 1H qNMR methods were developed to determine the %wt/wt potency of two new chemical entities (compound A and compound B) used in early clinical phase process chemistry and formulation development. The qNMR methods were demonstrated to be significantly more sustainable and efficient than the LC-based approach by substantially reducing the cost, hands-on-time, and materials consumed for testing. The qNMR methods were achieved on a 400 MHz NMR spectrometer equipped with 5 mm BBO S1 broad band room temperature probe. The methods with CDCl3 (for compound A) and DMSO-d6 (compound B) as solvent as well as commercially certified standards for quantitation were phase-appropriately qualified in terms of specificity, accuracy, repeatability/precision, linearity, and range. Both qNMR methods were demonstrated to be linear over the range of 0.8-1.2 mg/mL (80% to 120% of the nominal sample concentration of 1.0 mg/mL) with a correlation coefficient greater than 0.995. The methods were also demonstrated to be accurate with average recoveries ranging from 98.8% to 98.9% and 99.4-99.9% for compound A and compound B respectively as well as precise with %RSD of 0.46% and 0.33% for compound A and compound B respectively. The potency results of compound A and compound B determined by qNMR were compared with those determined by the conventional LC-based method and the qNMR results were demonstrated to be consistent with the LC-based method with absolute difference of 0.4% and 0.5% for compound A and B respectively.
Collapse
Affiliation(s)
- Xun Guo
- Analytical Development, Biogen Inc., Cambridge, MA 02142, United States.
| | - William Miller
- Analytical Development, Biogen Inc., Cambridge, MA 02142, United States
| | - Maryam Zangi
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, United States
| | | |
Collapse
|
25
|
Novikova D, Al Mustafa A, Grigoreva T, Vorona S, Selivanov S, Tribulovich V. NMR-Verified Dearomatization of 5,7-Substituted Pyrazolo[1,5-a]pyrimidines. Molecules 2023; 28:6584. [PMID: 37764360 PMCID: PMC10535613 DOI: 10.3390/molecules28186584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Tetrahydropyrazolo[1,5-a]pyrimidine (THPP) is an attractive scaffold for designing biologically active compounds. The most obvious way to obtain such compounds is to reduce pyrazolopyrimidines with complex hydrides, because the pyrimidine ring is reduced in the preference over the pyrazole ring. The presence of substituents at positions five and seven of pyrazolo[1,5-a]pyrimidines complicates the set of reaction products but makes it more attractive for medicinal chemistry because four possible stereoisomers can be formed during reduction. However, the formation of only syn-isomers has been described in the literature. This article is the first report on the formation of anti-configured isomers along with syn-isomers in the reduction of model 5,7-dimethylpyrazolo[1,5-a]pyrimidine, which was confirmed by NMR. The bicyclic core in the syn-configuration was shown to be conformationally stable, which was used to estimate the long-range interproton distances using NOESY data. At the same time, long-range dipole-dipole interactions corresponding to a distance between protons of more than 6 Å were first registered and quantified. In turn, the bicyclic core in the trans-configuration represents a conformationally labile system. For these structures, an analysis of conformations observed in solutions was carried out. Our results indicate the significant potential of trans-configured tetrahydropyrazolo[1,5-a]pyrimidines for the development of active small molecules. While possessing structural lability due to the low energy of the conformational transition, they have the ability to adjust to the active site of the desired target.
Collapse
Affiliation(s)
- Daria Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia; (A.A.M.); (T.G.); (S.V.)
| | - Ammar Al Mustafa
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia; (A.A.M.); (T.G.); (S.V.)
| | - Tatyana Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia; (A.A.M.); (T.G.); (S.V.)
| | - Svetlana Vorona
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia; (A.A.M.); (T.G.); (S.V.)
| | - Stanislav Selivanov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia;
- Department of Organic Chemistry, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Vyacheslav Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia; (A.A.M.); (T.G.); (S.V.)
| |
Collapse
|
26
|
Miao Y, Ma H, Huang J. Recent Advances in Toxicity Prediction: Applications of Deep Graph Learning. Chem Res Toxicol 2023; 36:1206-1226. [PMID: 37562046 DOI: 10.1021/acs.chemrestox.2c00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The development of new drugs is time-consuming and expensive, and as such, accurately predicting the potential toxicity of a drug candidate is crucial in ensuring its safety and efficacy. Recently, deep graph learning has become prevalent in this field due to its computational power and cost efficiency. Many novel deep graph learning methods aid toxicity prediction and further prompt drug development. This review aims to connect fundamental knowledge with burgeoning deep graph learning methods. We first summarize the essential components of deep graph learning models for toxicity prediction, including molecular descriptors, molecular representations, evaluation metrics, validation methods, and data sets. Furthermore, based on various graph-related representations of molecules, we introduce several representative studies and methods for toxicity prediction from the perspective of GNN architectures and graph pretrained models. Compared to other types of models, deep graph models not only advance in higher accuracy and efficiency but also provide more intuitive insights, which is significant in the development of model interpretation and generalization ability. The graph pretrained models are emerging as they can extract prominent features from large-scale unlabeled molecular graph data and improve the performance of downstream toxicity prediction tasks. We hope this survey can serve as a handbook for individuals interested in exploring deep graph learning for toxicity prediction.
Collapse
Affiliation(s)
- Yuwei Miao
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Hehuan Ma
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Junzhou Huang
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
27
|
Vijayakumar J, Goudarzi NM, Eeckhaut G, Schrijnemakers K, Cnudde V, Boone MN. Characterization of Pharmaceutical Tablets by X-ray Tomography. Pharmaceuticals (Basel) 2023; 16:ph16050733. [PMID: 37242516 DOI: 10.3390/ph16050733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Solid dosage forms such as tablets are extensively used in drug administration for their simplicity and large-scale manufacturing capabilities. High-resolution X-ray tomography is one of the most valuable non-destructive techniques to investigate the internal structure of the tablets for drug product development as well as for a cost effective production process. In this work, we review the recent developments in high-resolution X-ray microtomography and its application towards different tablet characterizations. The increased availability of powerful laboratory instrumentation, as well as the advent of high brilliance and coherent 3rd generation synchrotron light sources, combined with advanced data processing techniques, are driving the application of X-ray microtomography forward as an indispensable tool in the pharmaceutical industry.
Collapse
Affiliation(s)
- Jaianth Vijayakumar
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
| | - Niloofar Moazami Goudarzi
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
| | - Guy Eeckhaut
- Janssen Pharmaceutica, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Veerle Cnudde
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Pore-Scale Processes in Geomaterials Research (PProGRess), Department of Geology, Ghent University, Krijgslaan 281/S8, 9000 Gent, Belgium
- Environmental Hydrogeology, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CD Utrecht, The Netherlands
| | - Matthieu N Boone
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
| |
Collapse
|
28
|
Song CH, Jia W, Liu CM, Hua ZD, Meng X, Zhao YB, Li T, Cai LS, Zhao X. New trends of new psychoactive substances (NPS)-infused chocolate: Identification and quantification of trace level of NPS in complex matrix by GC-MS and NMR. Talanta 2023; 255:124257. [PMID: 36630788 DOI: 10.1016/j.talanta.2023.124257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
For the first time, the identification and quantification of trace level of new psychoactive substances (NPS) in a complex chocolate matrix have been reported. Since the beginning of 2022, suspected NPS-infused chocolate samples confiscated in inbound packages have been continuously sent to our laboratory for analysis. The qualitative gas chromatography-mass spectrometry (GC-MS) results were verified by 1H nuclear magnetic resonance (1H NMR) and 19F NMR to distinguish between potential aromatic isomers. A total of 11 NPS including deoxymethoxetamine, 3-OH-PCP, 6-APB, 4-APB, 4-OH-MiPT, 3-FEA, 2-FEA, 3-MMC, bromazolam, 2-FDCK, and ADB-BUTINACA were detected in 65 seized chocolate samples. A general 1H quantitative NMR (1H qNMR) method for quantification of 297 types of NPS in complex chocolate matrixes was devised for the first time after rigorous analysis of various critical features of merit, including suitable deuterated solvent, internal standard, quantitative peaks, and instrument acquisition parameters. Validation of the method using six different types of NPS afforded limits of detection of 0.05-0.1 mg/mL, limits of quantification of 0.01-0.03 mg/mL, repeatability and reproducibility lower than 0.5% and 3.6%, recoveries of 91.7%∼104.4%, and absence of matrix effect. The quantitative analysis of 65 seized chocolate samples by 1H qNMR and 19F qNMR showed that the content of NPS was in the range of 0.5 mg/g∼44.1 mg/g. Generally, the developed qNMR method was simple, fast, precise, and can be performed without reference materials of NPS. Since the type and content of NPS are relatively random, chocolate consumers will face huge health risks. Therefore, this new trend of NPS-infused chocolate deserves and requires more attention from national NPS monitoring departments as well as forensic laboratories.
Collapse
Affiliation(s)
- Chun-Hui Song
- China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Wei Jia
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P.R.C.; National Anti-Drug Laboratory of China; Beijing, 100193, China
| | - Cui-Mei Liu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P.R.C.; National Anti-Drug Laboratory of China; Beijing, 100193, China.
| | - Zhen-Dong Hua
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P.R.C.; National Anti-Drug Laboratory of China; Beijing, 100193, China
| | - Xin Meng
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P.R.C.; National Anti-Drug Laboratory of China; Beijing, 100193, China
| | - Yan-Biao Zhao
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P.R.C.; National Anti-Drug Laboratory of China; Beijing, 100193, China
| | - Tao Li
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, P.R.C.; National Anti-Drug Laboratory of China; Beijing, 100193, China
| | - Le-Si Cai
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, 100101, China
| | - Xia Zhao
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, 100101, China
| |
Collapse
|
29
|
Borim de Souza AJ, Ocampos FMM, Catoia Pulgrossi R, Dokkedal AL, Colnago LA, Cechin I, Saldanha LL. NMR-Based Metabolomics Reveals Effects of Water Stress in the Primary and Specialized Metabolisms of Bauhinia ungulata L. (Fabaceae). Metabolites 2023; 13:metabo13030381. [PMID: 36984821 PMCID: PMC10053921 DOI: 10.3390/metabo13030381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Bauhinia ungulata is a plant used in Brazilian traditional medicine for the treatment of diabetes. Phytochemical studies revealed flavonoids and the saccharide pinitol related to hypoglycemic activity of the Bauhinia species. To determine the effects of water deficit on ecophysiological parameter and metabolite fingerprints of B. ungulata, specimens were treated with the following water regimens under greenhouse conditions: daily watering (control), watering every 7 days (group 7D), and watering every 15 days (group 15D). Metabolite profiling of the plants subjected to water deficit was determined by LC-HRMS/MS. An NMR-based metabolomics approach applied to analyze the extracts revealed increased levels of known osmoprotective and bioactive compounds, such as D-pinitol, in the water deficit groups. Physiological parameters were determined by gas exchange in planta analysis. The results demonstrated a significant decrease in gas exchange under severe drought stress, while biomass production was not significantly different between the control and group 7D under moderate stress. Altogether, the results revealed that primary and specialized/secondary metabolism is affected by long periods of severe water scarcity downregulating the biosynthesis of bioactive metabolites such as pinitol, and the flavonoids quercetin and kaempferol. These results may be useful for guiding agricultural production and standardizing medicinal herb materials of this medicinal plant.
Collapse
Affiliation(s)
| | | | - Rafael Catoia Pulgrossi
- Department of Statistics, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | - Anne Lígia Dokkedal
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
| | | | - Inês Cechin
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
| | - Luiz Leonardo Saldanha
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
- Correspondence: (F.M.M.O.); (L.L.S.)
| |
Collapse
|
30
|
Wood JS, Dal Poggetto G, Wang X, Reibarkh M, Williamson RT, Cohen RD. Quantitative nuclear magnetic resonance of chloride by an accurate internal standard approach. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:22-31. [PMID: 36166190 DOI: 10.1002/mrc.5316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Chloride is the most common counterion used to improve aqueous solubility and enhance stability of small molecule active pharmaceutical ingredients. While several analytical techniques, such as titration, HPLC with charged aerosol detection, and ion chromatography, are currently utilized to assay the level of chloride, they have notable limitations, and these instruments may not be readily available. Here, we present a generally applicable 35 Cl solution NMR method to assay the level of chloride in pharmaceutical compounds. The method uses KClO4 as an internal standard for improved accuracy in comparison with external standard methods, and it was found to be robust, linear over three orders of magnitude, precise (<3% RSD), and accurate (<0.5% absolute error).
Collapse
Affiliation(s)
- Jared S Wood
- Merck & Co., Inc., Rahway, New Jersey, USA
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | | | - Xiao Wang
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | - R Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | | |
Collapse
|
31
|
Osman A, Chittiboyina AG, Avula B, Ali Z, Adams SJ, Khan IA. Quality Consistency of Herbal Products: Chemical Evaluation. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:163-219. [PMID: 37392312 DOI: 10.1007/978-3-031-26768-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The widespread utility of herbal products has been rising considerably worldwide, including both developed and developing countries, leading to the rapid growth of their availability in the United States and globally. This substantial increase in consumption of herbal products has witnessed the emergence of adverse effects upon oral administration of certain of these products, and thus has raised safety concerns. The adverse effects caused by the consumption of certain botanical medicines occur primarily as a result of the poor quality of plant raw materials or the finished products, which inherently may affect safety and/or efficacy. The poor quality of some herbal products can be attributed to a lack of proper quality assurance and quality control. A high demand for herbal products that surpasses production, combined with a desire for maximizing profits, along with a lack of rigorous quality control within some manufacturing facilities have led to the emergence of quality inconsistencies. The underlying causes for this involve the misidentification of plant species, or their substitution, adulteration, or contamination with harmful ingredients. Analytical assessments have revealed there to be frequent and significant compositional variations between marketed herbal products. The inconsistency of the quality of herbal products can be ascribed essentially to the inconsistency of the botanical raw material quality used to manufacture the products. Thus, the quality assurance and the quality control of the botanical raw materials is may contribute significantly to improving the quality and consistency of the quality of the end products. The current chapter focuses on the chemical evaluation of quality and consistency of herbal products, including botanical dietary supplements. Different techniques, instruments, applications, and methods used in identifying, quantifying, and generating chemical fingerprints and chemical profiles of the ingredients of the herbal products will be described. The strengths and weaknesses of the various techniques available will be addressed. Limitations of the other approaches including morphological or microscopic analysis and DNA-based analysis will be presented.
Collapse
Affiliation(s)
- Ahmed Osman
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA.
| | - Amar G Chittiboyina
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Bharathi Avula
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Zulfiqar Ali
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Sebastian J Adams
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
32
|
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is one of the two major analytical platforms in the field of metabolomics, the other being mass spectrometry (MS). NMR is less sensitive than MS and hence it detects a relatively small number of metabolites. However, NMR exhibits numerous unique characteristics including its high reproducibility and non-destructive nature, its ability to identify unknown metabolites definitively, and its capabilities to obtain absolute concentrations of all detected metabolites, sometimes even without an internal standard. These characteristics outweigh the relatively low sensitivity and resolution of NMR in metabolomics applications. Since biological mixtures are highly complex, increased demand for new methods to improve detection, better identify unknown metabolites, and provide more accurate quantitation continues unabated. Technological and methodological advances to date have helped to improve the resolution and sensitivity and detection of a larger number of metabolite signals. Efforts focused on measuring unknown metabolite signals have resulted in the identification and quantitation of an expanded pool of metabolites including labile metabolites such as cellular redox coenzymes, energy coenzymes, and antioxidants. This chapter describes quantitative NMR methods in metabolomics with an emphasis on recent methodological developments, while highlighting the benefits and challenges of NMR-based metabolomics.
Collapse
Affiliation(s)
- G A Nagana Gowda
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA.
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA.
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
33
|
Vanderschaeghe H, Houlleberghs M, Verheyden L, Dom D, Chandran CV, Radhakrishnan S, Martens JA, Breynaert E. Absolute Quantification of Residual Solvent in Mesoporous Silica Drug Formulations Using Magic-Angle Spinning NMR Spectroscopy. Anal Chem 2022; 95:1880-1887. [PMID: 36579853 DOI: 10.1021/acs.analchem.2c03646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Porous silica is used as a drug delivery agent to improve the bioavailability of sparsely soluble compounds. In this approach, the active pharmaceutical ingredient (API) is commonly loaded into the porous silica by incipient wetness impregnation using organic solvents. Subsequent solvent elimination is critical as the residual solvent concentration cannot exceed threshold values set by health and safety regulations (e.g., EMA/CHMP/ICH/82260/2006). For dichloromethane and methanol, for example, residual concentrations must be below 600 and 3000 ppm, respectively. Today, EU and USA Pharmacopoeias recommend tedious procedures for residual solvent quantification, requiring extraction of the solvent and subsequent quantification using capillary gas chromatography with static headspace sampling (sHS-GC). This work presents a new method based on the combination of standard addition and absolute quantification using magic-angle spinning nuclear magnetic resonance spectroscopy (MAS qNMR). The methodology was originally developed for absolute quantification of water in zeolites and has now been validated for quantification of residual solvent in drug formations using mesoporous silica loaded with ibuprofen dissolved in DCM and MeOH as test samples. Interestingly, formulations prepared using as-received or predried mesoporous silica contained 5465 versus 484.9 ppm DCM, respectively. This implies that the initial water content of the silica carrier can impact the residual solvent concentration in drug-loaded materials. This observation could provide new options to minimize the occurrence of these undesired solvents in the final formulation.
Collapse
Affiliation(s)
- Hannah Vanderschaeghe
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Maarten Houlleberghs
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Loes Verheyden
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Dirk Dom
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
- NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - C Vinod Chandran
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
- NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
- NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Johan A Martens
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| | - Eric Breynaert
- Center for Surface Chemistry and Catalysis (COK-kat), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
- NMR/X-ray platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001Heverlee, Belgium
| |
Collapse
|
34
|
Hand AT, Lamb AC, Richmond MG, Wang X, Steren CA, Xue ZL. Syntheses of Group 5 Amide Amidinates and Their Reactions with Water: Different Reactivities of Nb(V) and Ta(V) Complexes. Inorg Chem 2022; 61:19075-19087. [DOI: 10.1021/acs.inorgchem.2c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Adam T. Hand
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam C. Lamb
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael G. Richmond
- Department of Chemistry, The University of North Texas, Denton, Texas 76203, United States
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Carlos A. Steren
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zi-Ling Xue
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
35
|
Rubim de Santana PI, Diz de Almeida JSF, França TCC, Junker J. Quantitative NMR Interpretation without Reference. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:7490691. [PMID: 36406159 PMCID: PMC9671720 DOI: 10.1155/2022/7490691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
As has been documented numerous times over the years, nuclear magnetic resonance (NMR) experiments are intrinsically quantitative. Still, quantitative NMR methods have not been widely adopted or largely introduced into pharmacopoeias. Here, we describe the quantitative interpretation of the 1D proton NMR experiment using only absolute signal intensities with the variation of common experimental parameters and their application.
Collapse
Affiliation(s)
- Priscila Ivo Rubim de Santana
- Laboratory of Molecular Modeling Applied to Chemical em Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
- Oswaldo Cruz Foundation, CDTS, Av. Brasil 4365, Rio de Janeiro 21040-900, Brazil
| | | | - Tanos Celmar Costa França
- Laboratory of Molecular Modeling Applied to Chemical em Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jochen Junker
- Oswaldo Cruz Foundation, CDTS, Av. Brasil 4365, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
36
|
Çiçek SS, Moreno Cardenas C, Girreser U. Determination of Total Sennosides and Sennosides A, B, and A 1 in Senna Leaflets, Pods, and Tablets by Two-Dimensional qNMR. Molecules 2022; 27:7349. [PMID: 36364175 PMCID: PMC9656819 DOI: 10.3390/molecules27217349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 03/20/2024] Open
Abstract
In the present work, a two-dimensional qNMR method for the determination of sennosides was established. Using band-selective HSQC and the cross correlations of the characteristic 10-10' bonds, we quantified the total amount of the value-determining dianthranoids in five minutes, thus, rendering the method not only fast, but also specific and stability indicating. The validation of the method revealed excellent accuracy (recovery rates of 98.5 to 103%), precision (RSD values of 3.1%), and repeatability (2.2%) and demonstrated the potential of 2D qNMR in the quality control of medicinal plants. In a second method, the use of 2D qNMR for the single analysis of sennosides A, B, and A1 was evaluated with acceptable measurement times (31 min), accuracy (93.8%), and repeatability (5.4% and 5.6%) for the two major purgatives sennoside A and B. However, the precision for sennoside B and A1 was not satisfactory, mainly due to the low resolution of the HSQC signals of the two compounds.
Collapse
Affiliation(s)
- Serhat Sezai Çiçek
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Calisto Moreno Cardenas
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Ulrich Girreser
- Pharmazeutisches Institut, Abteilung Pharmazeutische und Medizinische Chemie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| |
Collapse
|
37
|
Sun L, Fan Y, Wang Q, Xiang L, Han H, Chen D. Validated quantitative 31P NMR spectroscopy for positional isomeric impurity determination in L-α-glycerylphosphorylcholine (L-α-GPC). J Pharm Biomed Anal 2022; 221:115067. [PMID: 36179504 DOI: 10.1016/j.jpba.2022.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
Abstract
In this study a quantitative 31P nuclear magnetic resonance (31P NMR) spectroscopy method was described to determine positional isomeric impurity β-GPC in commercial products of L-α-GPC. The samples were dissolved in D2O and trimethyl phosphate (TMP) was selected as an internal calibrant. The measurements were performed on a Bruker 500 MHz spectrometer and the spectra were recorded under optimized process conditions. A good linear relationship was constructed for β-GPC in the range of 62.7-528.0 µg·mL-1, i.e. 0.03-0.25 % (w/w %, in relative to L-α-GPC) with a correlative coefficient of 0.9996. The limit of quantification (LOQ) and limit of detection (LOD) were 62.7 µg·mL-1 and 20.9 µg·mL-1 with signal to noise of 3 and 10, respectively. The spiked recoveries were in the range of 98.17-99.78 % with the relative standard deviation (RSD %) less than 1.0 %. Therefore, it could be supposed that the 31P NMR was a promising alternative method for sensitive determination of β-GPC for strict quality control of L-α-GPC.
Collapse
Affiliation(s)
- Ling Sun
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yujuan Fan
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiaoqiao Wang
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lili Xiang
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haiyun Han
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dongying Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
38
|
Simultaneous Determination of the Saponification Value, Acid Value, Ester Value, and Iodine Value in Commercially Available Red Fruit Oil (Pandanus conoideus, Lam.) Using 1H qNMR Spectroscopy. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractRed fruit oil (RFO) can be extracted from fruits of Pandanus conoideus, Lam., an endogenous plant of Papua, Indonesia. It is a commonly used essential original traditional medicine. By applying a newly developed quantitative 1H NMR (qNMR) spectroscopy method for quality assessment, a simultaneous determination of the saponification value (SV), acid value (AV), ester value (EV), and iodine value (IV) in RFO was possible. Dimethyl sulfone (DMSO2) was used as an internal standard. Optimization of NMR parameters, such as NMR pulse sequence, relaxation delay time, and receiver gain, finally established the 1H NMR-based quantification approach. Diagnostic signals of the internal standard at δ = 2.98 ppm, SV at δ = 2.37–2.20 ppm, AV at δ = 2.27–2.20 ppm, EV at δ = 2.37–2.27 ppm, and IV at δ = 5.37–5.27 ppm, respectively, were used for quantitative analysis. The method was validated concerning linearity (R2 = 0.999), precision (less than 0.83%), and repeatability in the range 99.17–101.17%. Furthermore, this method was successfully applied to crude RFO, crude RFO with palmitic and oleic acid addition, and nine commercial products. The qNMR results for the respective fat values are in accordance with the results of standard methods, as can be seen from the F- and t-test (< 1.65 and < 1.66, respectively). The fundamental advantages of qNMR, such as its rapidity and simplicity, make it a feasible and existing alternative to titration for the quality control of RFO.
Collapse
|
39
|
Abri S, Attia R, Pukale DD, Leipzig ND. Modulatory Contribution of Oxygenating Hydrogels and Polyhexamethylene Biguanide on the Antimicrobial Potency of Neutrophil-like Cells. ACS Biomater Sci Eng 2022; 8:3842-3855. [PMID: 35960539 PMCID: PMC10259321 DOI: 10.1021/acsbiomaterials.2c00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophils are a first line of host defense against infection and utilize a series of oxygen-dependent processes to eliminate pathogens. Research suggests that oxygen availability can improve anti-infective mechanisms by promoting the formation of reactive oxygen species. Also, oxygen can synergistically upregulate the antibacterial properties of certain antibiotics against bacteria by altering their metabolism and causing an increase in the antibiotic uptake of bacteria. Therefore, understanding the effects of oxygen availability, as provided via a biomaterial treatment alone or along with potent antibacterial agents, on neutrophil functions can lead us to the development of new anti-inflammatory and anti-infective approaches. However, the study of neutrophil functions in vitro is often limited by their short life span and nonreproducibility, which suggests the need for cell line-based models as a substitute for primary neutrophils. Here, we took advantage of the differentiated human leukemia-60 cell line (HL-60), as an in vitro neutrophil model, to test the effects of local oxygen and antibacterial delivery by fluorinated methacrylamide chitosan (MACF) hydrogels incorporated with polyhexamethylene biguanide (PHMB) antibacterial agent. Considering the natural modes of neutrophil actions to combat bacteria, we studied the impact of our dual functioning oxygenating-antibacterial platforms on neutrophil phagocytosis and antibacterial properties as well as the formation of neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). Our results demonstrated that supplemental oxygen and antibacterial delivery from MACF-PHMB hydrogel platforms upregulated neutrophil antibacterial properties and ROS production. NET formation by neutrophils upon treatment with MACF and PHMB varied when chemical and biological stimuli were used. Overall, this study presents a model to study immune responses in vitro and lays the foundation for future studies to investigate if similar responses also occur in vivo.
Collapse
Affiliation(s)
- Shahrzad Abri
- Department of Chemical, Biomolecular and Corrosion Engineering, University of Akron, Ohio, United States of America
| | - Rheem Attia
- Department of Biomedical Engineering, University of Akron, Ohio, United States of America
| | - Dipak D. Pukale
- Department of Chemical, Biomolecular and Corrosion Engineering, University of Akron, Ohio, United States of America
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular and Corrosion Engineering, University of Akron, Ohio, United States of America
| |
Collapse
|
40
|
The application of 19F NMR spectroscopy for the analysis of fluorinated new psychoactive substances (NPS). Forensic Sci Int 2022; 340:111450. [PMID: 36152449 DOI: 10.1016/j.forsciint.2022.111450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
In this study, fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR) served as a highly specific tool for identification of fluorinated new psychoactive substances (NPS) as well as a suitable analytical method for the accurate quantification of fluorinated NPS in different seized samples. In the first part of the study, 19F NMR spectroscopy of a number of different fluorinated NPS, including 51 synthetic cannabinoids, 8 synthetic cathinones, 7 phenethylamines, 8 fentanyl analogues, and 9 other types of compounds was conducted. The chemical shifts and multiplet of the primary fluorides (RCH2F), fluorobenzenes (ortho-ArF, meta-ArF, and para-ArF), and trifluoromethylbenzenes (ArCF3) were discussed in detail to illustrate the role of 19F signals as special fingerprints in assisting the structure identification of fluorine-containing NPS. To the best of our knowledge, this study is the largest evaluation of fluorinated NPS compounds by 19F NMR. The second part of this study dealt with the problems encountered in the 19F quantification procedure and the criteria to be considered for successful quantification by 19F NMR. General high field (HF)- and low field (LF)- 19F qNMR methods for the quantification of fluorinated NPS were established after the thorough discussion of NMR spectrum acquisition and processing parameters such as: transmitter frequency offset (O1P), spin-lattice relaxation time (T1), and different baseline correction methods. The limit of quantifications (LOQs) for HF-19F qNMR varied between 0.1 mg/mL and 0.2 mg/mL, and for LF-19F qNMR varied between 1.0 mg/mL and 2.0 mg/mL. The limit of detections (LODs) for HF-19F qNMR varied between 0.03 mg/mL and 0.06 mg/mL, and for LF-19F qNMR varied between 0.3 mg/mL and 0.6 mg/mL. Finally, the developed methods were applied for the quantification of fluorinated-NPS in seventeen herbal blends, e-liquid, tablet, and powder NPS seizures.
Collapse
|
41
|
1H NMR spectrometry for methanol quantification in apple wines and ciders as optimised by comparison to SIDA-HS-GC-MS. Food Chem 2022; 387:132912. [DOI: 10.1016/j.foodchem.2022.132912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022]
|
42
|
An evaluation of qH NMR: A complementary approach to GC-FID for quantification of Thymol and trans-Anethole in essential oils and supplements. J Pharm Biomed Anal 2022; 220:114992. [PMID: 35985134 DOI: 10.1016/j.jpba.2022.114992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022]
Abstract
Sweet fennel (Foeniculum vulgare Mill. var. dulce) and thyme (Zataria multiflora Boiss.) are regarded as the important supplies for pharmaceutical, food, cosmetic, and perfume industries. The major components trans-anethole and thymol are represented in fennel and thyme, respectively. The essential oils (EOs) content and the value of their related constituents should be given in strict quality control due to the storage conditions, source, and adulterations. In this study, we compared the validation of quantitative 1H NMR (qH NMR) method with the gas chromatography with flame ionization detection (GC-FID) to quantify the trans-anethole and thymol in fennel and thyme EOs and their related supplements. The current results showed that the quantification of trans-anethole and thymol by qH NMR method was successfully achieved from their EOs and supplements. All the validation parameters including linearity, robustness, repeatability, and stability were authenticated for thymol and trans-anethole quantification. Similar results were obtained in both qH NMR and conventional GC-FID methods. Therefore, according to the measured values, the qH NMR method was adequate to determine the constituents of the EOs, with the results being roughly comparable to those obtained by GC-FID, with the advantage of being simple, repeatable, rapid (8-10 min, while for GC-FID 55 min) and essential for quality control of commercial samples.
Collapse
|
43
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
44
|
McLoughlin EC, O'Brien JE, Trujillo C, Meegan MJ, O'Boyle NM. Application of 2D EXSY and qNMR Spectroscopy for Diastereomeric Excess Determination Following Chiral Resolution of β-Lactams. Chemistry 2022:e202200119. [PMID: 35876400 DOI: 10.1002/open.202200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/04/2022] [Indexed: 11/07/2022]
Abstract
Trans-β-lactam isomers have garnered much attention as anti-cancer microtubule targeting agents. Currently available synthetic methods are available for the preparation of enantiopure β-lactams and favour isomeric cis/trans β-lactam mixtures. Indirect chiral resolution offers the opportunity for isolation of exclusively enantiopure trans-β-lactams. In this study, liquid chromatography chiral resolution of β-lactams derivatized as diastereomer mixtures with a panel of N-protected amino acids is explored, where N-(Boc)-L-proline served as the optimal chiral derivatising reagent. High-performance liquid chromatography failed to adequately determine diastereomeric excess (de) of resolved diastereomers. Variable temperature, 1 H NMR and 2D EXSY spectroscopic analyses of proline-derivatised diastereomers were successfully employed to characterise equilibrating rotamers of resolved diastereomers and determine their de. Integration of resolved resonances corresponding to H3 and H4 of the β-lactam ring served as a quantitative qNMR tool for the calculation of de following resolution.
Collapse
Affiliation(s)
- Eavan C McLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland
| | - John E O'Brien
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Cristina Trujillo
- Trinity Biomedical Sciences Institute, School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Mary J Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
45
|
Wang D, Park JH, Zheng J, Cai B, Keire DA, Chen K. Multiphase Drug Distribution and Exchange in Oil-in-Water Nanoemulsion Revealed by High-Resolution 19F qNMR. Mol Pharm 2022; 19:2142-2150. [PMID: 35657300 DOI: 10.1021/acs.molpharmaceut.2c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An oil-in-water (o/w) nanoemulsion (NE), composed of oil globules, stabilized by a surfactant, and dispersed in an aqueous phase, is increasingly developed in complex drug formulation. Kinetically stable NEs are used to formulate hydrophobic drugs and typically provide higher dosage strengths and better content uniformity. However, little is known accurately about drug distribution in its multiphase solution, especially for the possible drug presence in the surfactant (s) phase, the interface layer between the dispersed oil (o) and the continuous water (w) phases. Here, high-resolution 19F quantitative NMR spectroscopy was applied directly and noninvasively on an o/w NE drug product containing difluprednate (DFPN). The well-resolved 19F peaks of DFPN depended on the shielding molecules in each phase, which revealed mass-balanced DFPN distribution in multiple phases of (w), (s), and (o) of NE globules at a quantity of 1.8 ± 0.1, 35 ± 2, and 59 ± 3% per labeled content, respectively. Furthermore, the dilution-dependent 19F peak line broadening and shift suggested a millisecond dynamic exchange between the NE and the less-noticed smaller but thermodynamically stable microemulsion (ME) globules in NE solution. The high-resolution NMR result revealed that the drug availability could be quickly achieved using an o/w NE formulation because of the drug multiphase distribution and the ME-assisted fast drug exchange among globules.
Collapse
Affiliation(s)
- Deyun Wang
- Northeast Medical Products Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jamaica, New York 11433, United States
| | - Jin H Park
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jiwen Zheng
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Bing Cai
- Division of Liquid Based Products I, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - David A Keire
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri 63110, United States
| | - Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
46
|
Pettinau F, Manca I, Manca I, Pittau B. Rapid Approach for Pharmaceutical Quality Evaluation and Comparison. ChemistrySelect 2022. [DOI: 10.1002/slct.202200712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francesca Pettinau
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| | - Ilaria Manca
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| | - Ilaria Manca
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| | - Barbara Pittau
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| |
Collapse
|
47
|
Agboluaje M, Hutchinson RA. Measurement and Modeling of Methyl Acrylate Radical Polymerization in Polar and Nonpolar Solvents. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maryam Agboluaje
- Department of Chemical Engineering, Queen’s University, Dupuis Hall, Kingston, Ontario K7L3N6, Canada
| | - Robin A. Hutchinson
- Department of Chemical Engineering, Queen’s University, Dupuis Hall, Kingston, Ontario K7L3N6, Canada
| |
Collapse
|
48
|
Abstract
During the past few decades, the direct analysis of metabolic intermediates in biological samples has greatly improved the understanding of metabolic processes. The most used technologies for these advances have been mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. NMR is traditionally used to elucidate molecular structures and has now been extended to the analysis of complex mixtures, as biological samples: NMR-based metabolomics. There are however other areas of small molecule biochemistry for which NMR is equally powerful. These include the quantification of metabolites (qNMR); the use of stable isotope tracers to determine the metabolic fate of drugs or nutrients, unravelling of new metabolic pathways, and flux through pathways; and metabolite-protein interactions for understanding metabolic regulation and pharmacological effects. Computational tools and resources for automating analysis of spectra and extracting meaningful biochemical information has developed in tandem and contributes to a more detailed understanding of systems biochemistry. In this review, we highlight the contribution of NMR in small molecule biochemistry, specifically in metabolic studies by reviewing the state-of-the-art methodologies of NMR spectroscopy and future directions.
Collapse
Affiliation(s)
- Sofia Moco
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
49
|
Dreydoppel M, Balbach J, Weininger U. Monitoring protein unfolding transitions by NMR-spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2022; 76:3-15. [PMID: 34984658 PMCID: PMC9018662 DOI: 10.1007/s10858-021-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 06/01/2023]
Abstract
NMR-spectroscopy has certain unique advantages for recording unfolding transitions of proteins compared e.g. to optical methods. It enables per-residue monitoring and separate detection of the folded and unfolded state as well as possible equilibrium intermediates. This allows a detailed view on the state and cooperativity of folding of the protein of interest and the correct interpretation of subsequent experiments. Here we summarize in detail practical and theoretical aspects of such experiments. Certain pitfalls can be avoided, and meaningful simplification can be made during the analysis. Especially a good understanding of the NMR exchange regime and relaxation properties of the system of interest is beneficial. We show by a global analysis of signals of the folded and unfolded state of GB1 how accurate values of unfolding can be extracted and what limits different NMR detection and unfolding methods. E.g. commonly used exchangeable amides can lead to a systematic under determination of the thermodynamic protein stability. We give several perspectives of how to deal with more complex proteins and how the knowledge about protein stability at residue resolution helps to understand protein properties under crowding conditions, during phase separation and under high pressure.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
50
|
Humpierre AR, Zanuy A, Saenz M, Vasco AV, Méndez Y, Westermann B, Cardoso F, Quintero L, Santana D, Verez V, Valdés Y, Rivera DG, Garrido R. Quantitative NMR for the structural analysis of novel bivalent glycoconjugates as vaccine candidates. J Pharm Biomed Anal 2022; 214:114721. [DOI: 10.1016/j.jpba.2022.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|