1
|
Tiwari A, Haj N, Elgrably B, Berihu M, Laskov V, Barash S, Zigron S, Sason H, Shamay Y, Karni-Ashkenazi S, Holdengreber M, Saar G, Vandoorne K. Cross-Modal Imaging Reveals Nanoparticle Uptake Dynamics in Hematopoietic Bone Marrow during Inflammation. ACS NANO 2024; 18:7098-7113. [PMID: 38343099 PMCID: PMC10919094 DOI: 10.1021/acsnano.3c11201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/06/2024]
Abstract
Nanoparticles have been employed to elucidate the innate immune cell biology and trace cells accumulating at inflammation sites. Inflammation prompts innate immune cells, the initial responders, to undergo rapid turnover and replenishment within the hematopoietic bone marrow. Yet, we currently lack a precise understanding of how inflammation affects cellular nanoparticle uptake at the level of progenitors of innate immune cells in the hematopoietic marrow. To bridge this gap, we aimed to develop imaging tools to explore the uptake dynamics of fluorescently labeled cross-linked iron oxide nanoparticles in the bone marrow niche under varying degrees of inflammation. The inflammatory models included mice that received intramuscular lipopolysaccharide injections to induce moderate inflammation and streptozotocin-induced diabetic mice with additional intramuscular lipopolysaccharide injections to intensify inflammation. In vivo magnetic resonance imaging (MRI) and fluorescence imaging revealed an elevated level of nanoparticle uptake at the bone marrow as the levels of inflammation increased. The heightened uptake of nanoparticles within the inflamed marrow was attributed to enhanced permeability and retention with increased nanoparticle intake by hematopoietic progenitor cells. Moreover, intravital microscopy showed increased colocalization of nanoparticles within slowly patrolling monocytes in these inflamed hematopoietic marrow niches. Our discoveries unveil a previously unknown role of the inflamed hematopoietic marrow in enhanced storage and rapid deployment of nanoparticles, which can specifically target innate immune cells at their production site during inflammation. These insights underscore the critical function of the hematopoietic bone marrow in distributing iron nanoparticles to innate immune cells during inflammation. Our findings offer diagnostic and prognostic value, identifying the hematopoietic bone marrow as an imaging biomarker for early detection in inflammation imaging, advancing personalized clinical care.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Narmeen Haj
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Betsalel Elgrably
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Maria Berihu
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Viktor Laskov
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Third
Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Sivan Barash
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Shachar Zigron
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Hagit Sason
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Yosi Shamay
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Shiri Karni-Ashkenazi
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Maya Holdengreber
- Biomedical
Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Galit Saar
- Biomedical
Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Katrien Vandoorne
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Mousavi A, Stefanek E, Jafari A, Ajji Z, Naghieh S, Akbari M, Savoji H. Tissue-engineered heart chambers as a platform technology for drug discovery and disease modeling. BIOMATERIALS ADVANCES 2022; 138:212916. [PMID: 35913255 DOI: 10.1016/j.bioadv.2022.212916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Current drug screening approaches are incapable of fully detecting and characterizing drug effectiveness and toxicity of human cardiomyocytes. The pharmaceutical industry uses mathematical models, cell lines, and in vivo models. Many promising drugs are abandoned early in development, and some cardiotoxic drugs reach humans leading to drug recalls. Therefore, there is an unmet need to have more reliable and predictive tools for drug discovery and screening applications. Biofabrication of functional cardiac tissues holds great promise for developing a faithful 3D in vitro disease model, optimizing drug screening efficiencies enabling precision medicine. Different fabrication techniques including molding, pull spinning and 3D bioprinting were used to develop tissue-engineered heart chambers. The big challenge is to effectively organize cells into tissue with structural and physiological features resembling native tissues. Some advancements have been made in engineering miniaturized heart chambers that resemble a living pump for drug screening and disease modeling applications. Here, we review the currently developed tissue-engineered heart chambers and discuss challenges and prospects.
Collapse
Affiliation(s)
- Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Evan Stefanek
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Arman Jafari
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Zineb Ajji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada; Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
3
|
Tiwari A, Elgrably B, Saar G, Vandoorne K. Multi-Scale Imaging of Vascular Pathologies in Cardiovascular Disease. Front Med (Lausanne) 2022; 8:754369. [PMID: 35071257 PMCID: PMC8766766 DOI: 10.3389/fmed.2021.754369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease entails systemic changes in the vasculature. The endothelial cells lining the blood vessels are crucial in the pathogenesis of cardiovascular disease. Healthy endothelial cells direct the blood flow to tissues as vasodilators and act as the systemic interface between the blood and tissues, supplying nutrients for vital organs, and regulating the smooth traffic of leukocytes into tissues. In cardiovascular diseases, when inflammation is sensed, endothelial cells adjust to the local or systemic inflammatory state. As the inflamed vasculature adjusts, changes in the endothelial cells lead to endothelial dysfunction, altered blood flow and permeability, expression of adhesion molecules, vessel wall inflammation, thrombosis, angiogenic processes, and extracellular matrix production at the endothelial cell level. Preclinical multi-scale imaging of these endothelial changes using optical, acoustic, nuclear, MRI, and multimodal techniques has progressed, due to technical advances and enhanced biological understanding on the interaction between immune and endothelial cells. While this review highlights biological processes that are related to changes in the cardiac vasculature during cardiovascular diseases, it also summarizes state-of-the-art vascular imaging techniques. The advantages and disadvantages of the different imaging techniques are highlighted, as well as their principles, methodologies, and preclinical and clinical applications with potential future directions. These multi-scale approaches of vascular imaging carry great potential to further expand our understanding of basic vascular biology, to enable early diagnosis of vascular changes and to provide sensitive diagnostic imaging techniques in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Betsalel Elgrably
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Biomedical Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Katrien Vandoorne
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
The nuclear receptor co-repressor 1 is a novel cardioprotective factor against acute myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2022; 166:50-62. [DOI: 10.1016/j.yjmcc.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 01/01/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
|
5
|
Daal MRR, Strijkers GJ, Hautemann DJ, Nederveen AJ, Wüst RCI, Coolen BF. Longitudinal CMR assessment of cardiac global longitudinal strain and hemodynamic forces in a mouse model of heart failure. Int J Cardiovasc Imaging 2022; 38:2385-2394. [PMID: 36434328 PMCID: PMC9700588 DOI: 10.1007/s10554-022-02631-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
To longitudinally assess left ventricle (LV) global longitudinal strain (GLS) and hemodynamic forces during the early stages of cardiac dysfunction in a mouse model of heart failure with preserved ejection fraction (HFpEF). Cardiac MRI measurements were performed in control mice (n = 6), and db/db mice (n = 7), whereby animals were scanned four times between the age of 11-15 weeks. After the first scan, the db/db animals received a doxycycline intervention to accelerate progression of HFpEF. Systolic function was evaluated based on a series of prospectively ECG-triggered short-axis CINE images acquired from base to apex. Cardiac GLS and hemodynamic forces values were evaluated based on high frame rate retrospectively gated 2-, 3-, and 4-chamber long-axis CINE images. Ejection fraction (EF) was not different between control and db/db animals, despite that cardiac output, as well as end systolic and end diastolic volume were significantly higher in control animals. Whereas GLS parameters were not significantly different between groups, hemodynamic force root mean square (RMS) values, as well as average hemodynamic forces and the ratio between hemodynamic forces in the inferolateral-anteroseptal and apical-basal direction were lower in db/db mice compared to controls. More importantly, hemodynamic forces parameters showed a significant interaction effect between time and group. Our results indicated that hemodynamic forces parameters were the only functional outcome measure that showed distinct temporal differences between groups. As such, changes in hemodynamic forces reflect early alterations in cardiac function which can be of added value in (pre)clinical research on HFpEF.
Collapse
Affiliation(s)
- Mariah R. R. Daal
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob C. I. Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Thielen NT, Kleinsasser AA, Freeling JL. Myocardial contrast echocardiography assessment of mouse myocardial infarction: comparison of kinetic parameters with conventional methods. PeerJ 2021; 9:e11500. [PMID: 34141476 DOI: 10.7717/peerj.11500/supp-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/02/2021] [Indexed: 05/25/2023] Open
Abstract
This study explores the use of a minimally invasive assessment of myocardial infarction (MI) in mice using myocardial contrast echocardiography (MCE). The technique uses existing equipment and software readily available to the average researcher. C57/BL6 mice were randomized to either MI or sham surgery and evaluated using MCE at 1- or 2-weeks post-surgery. Size-isolated microbubbles were injected via retro-orbital catheter where their non-linear characteristics were utilized to produce the two-dimensional parameters of Wash-in-Rate and the Peak Enhancement, indicative of relative myocardial perfusion and blood volume, respectively. Three-dimensional cardiac reconstructions allowed the calculation of the Percent Agent, interpreted as the vascularity of the entire myocardium. These MCE parameters were compared to conventional assessments including M-Mode, strain analysis, and 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Except for the Wash-in-Rate 2-week cohort, all MCE parameters were able to differentiate sham-operated versus MI animals and correlated with TTC staining (P < 0.05). MCE parameters were also able to identify MI group animals which failed to develop infarctions as determined by TTC staining. This study provides basic validation of these MCE parameters to detect MI in mice complementary to conventional methods while providing additional hemodynamic information in vivo.
Collapse
Affiliation(s)
- Nicholas T Thielen
- Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| | - Adison A Kleinsasser
- Research Computing Group, University of South Dakota, Vermillion, South Dakota, United States
| | - Jessica L Freeling
- Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, United States
| |
Collapse
|
7
|
Thielen NT, Kleinsasser AA, Freeling JL. Myocardial contrast echocardiography assessment of mouse myocardial infarction: comparison of kinetic parameters with conventional methods. PeerJ 2021; 9:e11500. [PMID: 34141476 PMCID: PMC8176928 DOI: 10.7717/peerj.11500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/02/2021] [Indexed: 01/14/2023] Open
Abstract
This study explores the use of a minimally invasive assessment of myocardial infarction (MI) in mice using myocardial contrast echocardiography (MCE). The technique uses existing equipment and software readily available to the average researcher. C57/BL6 mice were randomized to either MI or sham surgery and evaluated using MCE at 1- or 2-weeks post-surgery. Size-isolated microbubbles were injected via retro-orbital catheter where their non-linear characteristics were utilized to produce the two-dimensional parameters of Wash-in-Rate and the Peak Enhancement, indicative of relative myocardial perfusion and blood volume, respectively. Three-dimensional cardiac reconstructions allowed the calculation of the Percent Agent, interpreted as the vascularity of the entire myocardium. These MCE parameters were compared to conventional assessments including M-Mode, strain analysis, and 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Except for the Wash-in-Rate 2-week cohort, all MCE parameters were able to differentiate sham-operated versus MI animals and correlated with TTC staining (P < 0.05). MCE parameters were also able to identify MI group animals which failed to develop infarctions as determined by TTC staining. This study provides basic validation of these MCE parameters to detect MI in mice complementary to conventional methods while providing additional hemodynamic information in vivo.
Collapse
Affiliation(s)
- Nicholas T Thielen
- Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| | - Adison A Kleinsasser
- Research Computing Group, University of South Dakota, Vermillion, South Dakota, United States
| | - Jessica L Freeling
- Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, United States
| |
Collapse
|
8
|
Gallo S, Spilinga M, Albano R, Ferrauto G, Di Gregorio E, Casanova E, Balmativola D, Bonzano A, Boccaccio C, Sapino A, Comoglio PM, Crepaldi T. Activation of the MET receptor attenuates doxorubicin-induced cardiotoxicity in vivo and in vitro. Br J Pharmacol 2020; 177:3107-3122. [PMID: 32133617 PMCID: PMC7280013 DOI: 10.1111/bph.15039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Doxorubicin anti‐cancer therapy is associated with cardiotoxicity, resulting from DNA damage response (DDR). Hepatocyte growth factor (HGF) protects cardiomyocytes from injury, but its effective use is compromised by low biodistribution. In this study, we have investigated whether the activation of the HGF receptor—encoded by the Met gene—by an agonist monoclonal antibody (mAb) could protect against doxorubicin‐induced cardiotoxicity. Experimental Approach The mAb (5 mg·kg−1) was injected in vivo into C57BL/6J mice, before doxorubicin (three doses of 7 mg·kg−1). Cardiac functions were evaluated through MRI after treatment termination. Heart histological staining and mRNA levels of genes associated with heart failure (Acta1 and Nppa), inflammation (IL‐6), and fibrosis (Ctgf, Col1a2, Timp1, and Mmp9) were assessed. MAb (100 nM) was administered in vitro to H9c2 cardiomyoblasts before addition of doxorubicin (25 μM). DDR and apoptosis markers were evaluated by quantitative western blotting, flow cytometry, and immunofluorescence. Stattic was used for pharmacological inactivation of STAT3. Key Results In vivo, administration of the mAb alleviated doxorubicin‐induced cardiac dysfunction and fibrosis. In vitro, mAb mimicked the response to HGF by (a) inhibiting histone H2AX phosphorylation at S139, (b) quenching the expression of the DNA repair enzyme PARP1, and (c) reducing the proteolytic activation of caspase 3. The MET‐driven cardioprotection involved, at least in vitro, the phosphorylation of STAT3. Conclusion and Implications The MET agonist mAb provides a new tool for cardioprotection against anthracycline cardiotoxicity.
Collapse
Affiliation(s)
- Simona Gallo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - Martina Spilinga
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Turin, Turin, Italy
| | | | - Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elena Casanova
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | | | | | - Carla Boccaccio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Tiziana Crepaldi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
9
|
van den Boomen M, Kause HB, van Assen HC, Dankers PYW, Bouten CVC, Vandoorne K. Triple-marker cardiac MRI detects sequential tissue changes of healing myocardium after a hydrogel-based therapy. Sci Rep 2019; 9:19366. [PMID: 31852978 PMCID: PMC6920418 DOI: 10.1038/s41598-019-55864-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Regenerative therapies based on injectable biomaterials, hold an unparalleled potential for treating myocardial ischemia. Yet, noninvasive evaluation of their efficacy has been lagging behind. Here, we report the development and longitudinal application of multiparametric cardiac magnetic resonance imaging (MRI) to evaluate a hydrogel-based cardiac regenerative therapy. A pH-switchable hydrogel was loaded with slow releasing insulin growth factor 1 and vascular endothelial growth factor, followed by intramyocardial injection in a mouse model of ischemia reperfusion injury. Longitudinal cardiac MRI assessed three hallmarks of cardiac regeneration: angiogenesis, resolution of fibrosis and (re)muscularization after infarction. The multiparametric approach contained dynamic contrast enhanced MRI that measured improved vessel features by assessing fractional blood volume and permeability*surface area product, T1-mapping that displayed reduced fibrosis, and tagging MRI that showed improved regional myocardial strain in hydrogel treated infarcts. Finally, standard volumetric MRI demonstrated improved left ventricular functioning in hydrogel treated mice followed over time. Histology confirmed MR-based vessel features and fibrotic measurements. Our novel triple-marker strategy enabled detection of ameliorated regeneration in hydrogel treated hearts highlighting the translational potential of these longitudinal MRI approaches.
Collapse
Affiliation(s)
- Maaike van den Boomen
- Department of Biomedical Engineering, Cell-Matrix Interaction for Cardiovascular Tissue Regeneration, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Hanne B Kause
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hans C van Assen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Cell-Matrix Interaction for Cardiovascular Tissue Regeneration, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Katrien Vandoorne
- Department of Biomedical Engineering, Cell-Matrix Interaction for Cardiovascular Tissue Regeneration, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
10
|
MacQueen LA, Sheehy SP, Chantre CO, Zimmerman JF, Pasqualini FS, Liu X, Goss JA, Campbell PH, Gonzalez GM, Park SJ, Capulli AK, Ferrier JP, Kosar TF, Mahadevan L, Pu WT, Parker KK. A tissue-engineered scale model of the heart ventricle. Nat Biomed Eng 2018; 2:930-941. [PMID: 31015723 PMCID: PMC6774355 DOI: 10.1038/s41551-018-0271-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 06/20/2018] [Indexed: 02/08/2023]
Abstract
Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myocardial tissue genesis and chamber-level contractile function. Incorporating neonatal rat ventricular myocytes or cardiomyocytes derived from human induced pluripotent stem cells, the tissue-engineered ventricles have a diastolic chamber volume of ~500 µl (comparable to that of the native rat ventricle and approximately 1/250 the size of the human ventricle), and ejection fractions and contractile work 50-250 times smaller and 104-108 times smaller than the corresponding values for rodent and human ventricles, respectively. We also measured tissue coverage and alignment, calcium-transient propagation and pressure-volume loops in the presence or absence of test compounds. Moreover, we describe an instrumented bioreactor with ventricular-assist capabilities, and provide a proof-of-concept disease model of structural arrhythmia. The model ventricles can be evaluated with the same assays used in animal models and in clinical settings.
Collapse
Affiliation(s)
- Luke A MacQueen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Sean P Sheehy
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christophe O Chantre
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - John F Zimmerman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Francesco S Pasqualini
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Xujie Liu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Josue A Goss
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Patrick H Campbell
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Grant M Gonzalez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Sung-Jin Park
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Andrew K Capulli
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - John P Ferrier
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - T Fettah Kosar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - L Mahadevan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kevin Kit Parker
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Abstract
The use of imaging represents a major impact on the refinement and the reduction of in vivo studies in animal models, in particular for allowing longitudinal monitoring of the onset and the progression of disease within the same animal, and studying the biological effects of drug candidate and their therapeutic effectiveness. But the use of imaging procedures can affect animal physiology, and the need to anesthetize the animals for imaging entails potential health risks. During anesthesia, there is an inevitable autonomic nervous system depression which induces cardiovascular depression, respiratory depression, and hypothermia. Also other procedures associated with imaging such as animal preparation (e.g., fasting, premedication), blood sampling, and dosage/contrast agent injections can also affect physiology and animal welfare. All these factors are likely to have confounding effect on the outcome of the imaging studies and pose important concerns regarding the animal's well-being, particularly when imaging immune deprived animals or diseased animals. We will discuss these challenges and considerations during imaging to maximize efficacious data while promoting animal welfare.
Collapse
Affiliation(s)
- Jordi L Tremoleda
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK.
| | - Sven Macholl
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jane K Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Abdurrachim D, Prompers JJ. Evaluation of cardiac energetics by non-invasive 31P magnetic resonance spectroscopy. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1939-1948. [PMID: 29175056 DOI: 10.1016/j.bbadis.2017.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 01/10/2023]
Abstract
Alterations in myocardial energy metabolism have been implicated in the pathophysiology of cardiac diseases such as heart failure and diabetic cardiomyopathy. 31P magnetic resonance spectroscopy (MRS) is a powerful tool to investigate cardiac energetics non-invasively in vivo, by detecting phosphorus (31P)-containing metabolites involved in energy supply and buffering. In this article, we review the historical development of cardiac 31P MRS, the readouts used to assess cardiac energetics from 31P MRS, and how 31P MRS studies have contributed to the understanding of cardiac energy metabolism in heart failure and diabetes. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
Affiliation(s)
- Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Functional Metabolism Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Sanches PG, op ‘t Veld RC, de Graaf W, Strijkers GJ, Grüll H. Novel axolotl cardiac function analysis method using magnetic resonance imaging. PLoS One 2017; 12:e0183446. [PMID: 28837595 PMCID: PMC5570274 DOI: 10.1371/journal.pone.0183446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/06/2017] [Indexed: 11/19/2022] Open
Abstract
The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function of axolotls. Three axolotls were imaged with magnetic resonance imaging using a retrospectively gated Fast Low Angle Shot cine sequence. Within one scanning session the axolotl heart was imaged three times in all planes, consecutively. Heart rate, ejection fraction, stroke volume and cardiac output were calculated using three techniques: (1) combined long-axis, (2) short-axis series, and (3) ultrasound (control for heart rate only). All values are presented as mean ± standard deviation. Heart rate (beats per minute) among different animals was 32.2±6.0 (long axis), 30.4±5.5 (short axis) and 32.7±4.9 (ultrasound) and statistically similar regardless of the imaging method (p > 0.05). Ejection fraction (%) was 59.6±10.8 (long axis) and 48.1±11.3 (short axis) and it differed significantly (p = 0.019). Stroke volume (μl/beat) was 133.7±33.7 (long axis) and 93.2±31.2 (short axis), also differed significantly (p = 0.015). Calculations were consistent among the animals and over three repeated measurements. The heart rate varied depending on depth of anaesthesia. We described a new method for defining and imaging the anatomical planes of the axolotl heart and propose one of our techniques (long axis analysis) may prove useful in defining cardiac function in regenerating axolotl hearts.
Collapse
Affiliation(s)
- Pedro Gomes Sanches
- Biomedical NMR group, Department of Biomedical engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Roel C. op ‘t Veld
- Biomedical NMR group, Department of Biomedical engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wolter de Graaf
- Biomedical NMR group, Department of Biomedical engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Gustav J. Strijkers
- Biomedical NMR group, Department of Biomedical engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Holger Grüll
- Biomedical NMR group, Department of Biomedical engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
14
|
Carlsson Å, Sohlin MC, Lagerstrand KM, Aronsson EF, Ljungberg M. The influence of cardiac triggering time and an optimization strategy for improved cardiac MR spectroscopy. Z Med Phys 2017; 27:310-317. [PMID: 28554547 DOI: 10.1016/j.zemedi.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/17/2023]
Abstract
PURPOSE To study how cardiac motion affects the spectral quality in cardiac MR spectroscopy and to establish an optimization strategy for the cardiac triggering time for improved quality and success rate of cardiac MRS. METHOD Water spectra were acquired while the cardiac triggering time was varied over the cardiac cycle, and five different spectral quality parameters were studied (frequency, phase, linewidth, amplitude and noise). Furthermore, three different optimization strategies for the cardiac triggering time were tested, and finally, a comparison was made between water suppressed lipid spectra acquired in systole and diastole. RESULTS The cardiac triggering time had a high impact on the spectral quality, especially on the mean signal amplitude and the standard deviation of the signal amplitude, phase and linewidth. Generally, the highest spectral quality was observed for spectra acquired in mid to end systole, at approximately 23% of the cardiac cycle. The exact optimal triggering time differed between subjects and needed to be individually optimized. To optimize the triggering time with our proposed MRS-method gave in average 13% higher signal than when the triggering time was determined through imaging. Lipid spectra acquired in systole demonstrated higher quality with improved SNR compared with acquisitions made in diastole. CONCLUSION This study shows that the spectral quality in cardiac MRS is strongly dependent on the cardiac triggering time, and that the spectral quality as well as the repeatability between acquisitions is greatly improved when the cardiac triggering time is individually optimized in mid to end systole using MRS.
Collapse
Affiliation(s)
- Åsa Carlsson
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiation Physics, Gothenburg University, Gothenburg, Sweden.
| | - Maja C Sohlin
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiation Physics, Gothenburg University, Gothenburg, Sweden
| | - Kerstin M Lagerstrand
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiation Physics, Gothenburg University, Gothenburg, Sweden
| | - Eva Forsell Aronsson
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiation Physics, Gothenburg University, Gothenburg, Sweden
| | - Maria Ljungberg
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiation Physics, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
15
|
Abstract
Cardiovascular diseases are a consequence of genetic and environmental risk factors that together generate arterial wall and cardiac pathologies. Blood vessels connect multiple systems throughout the entire body and allow organs to interact via circulating messengers. These same interactions facilitate nervous and metabolic system's influence on cardiovascular health. Multiparametric imaging offers the opportunity to study these interfacing systems' distinct processes, to quantify their interactions, and to explore how these contribute to cardiovascular disease. Noninvasive multiparametric imaging techniques are emerging tools that can further our understanding of this complex and dynamic interplay. Positron emission tomography/magnetic resonance imaging and multichannel optical imaging are particularly promising because they can simultaneously sample multiple biomarkers. Preclinical multiparametric diagnostics could help discover clinically relevant biomarker combinations pivotal for understanding cardiovascular disease. Interfacing systems important to cardiovascular disease include the immune, nervous, and hematopoietic systems. These systems connect with classical cardiovascular organs, such as the heart and vasculature, and with the brain. The dynamic interplay between these systems and organs enables processes, such as hemostasis, inflammation, angiogenesis, matrix remodeling, metabolism, and fibrosis. As the opportunities provided by imaging expand, mapping interconnected systems will help us decipher the complexity of cardiovascular disease and monitor novel therapeutic strategies.
Collapse
Affiliation(s)
- Katrien Vandoorne
- From the Center for Systems Biology (K.V., M.N.) and Department of Imaging (K.V., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology (K.V., M.N.) and Department of Imaging (K.V., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (M.N.).
| |
Collapse
|
16
|
Vandoorne K, Vandsburger MH, Jacobs I, Han Y, Dafni H, Nicolay K, Strijkers GJ. Noninvasive mapping of endothelial dysfunction in myocardial ischemia by magnetic resonance imaging using an albumin-based contrast agent. NMR IN BIOMEDICINE 2016; 29:1500-1510. [PMID: 27604064 DOI: 10.1002/nbm.3599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 05/28/2023]
Abstract
Noninvasive preclinical methods for the characterization of myocardial vascular function are crucial to an understanding of the dynamics of ischemic cardiac disease. Ischemic heart disease is associated with myocardial endothelial dysfunction, resulting in leakage of plasma albumin into the extravascular space. These features can be harnessed in a novel noninvasive three-dimensional magnetic resonance imaging method to measure fractional blood volume (fBV) and vascular permeability (permeability-surface area product, PS) using labeled albumin as a blood pool contrast agent. C57BL/6 mice were imaged before and 3 days after myocardial infarction (MI). Following the quantification of endogenous myocardial R1 , the dynamics of intravenously injected albumin-based contrast agent, extravasating from permeable myocardial blood vessels, were tracked on short-axis magnetic resonance images of the entire heart. This study successfully discriminated between infarcted and remote regions at 3 days post-infarct, based on a reduced fBV and increased PS in the infarcted region. These findings were confirmed using ex vivo fluorescence imaging and histology. We have demonstrated a novel method to quantify blood volume and permeability in the infarcted myocardium, providing an imaging biomarker for the assessment of endothelial dysfunction. This method has the potential to three-dimensionally visualize subtle changes in myocardial permeability and to track endothelial function for longitudinal cardiac studies determining pathophysiological processes during infarct healing.
Collapse
Affiliation(s)
- Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | | | - I Jacobs
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Y Han
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Hagit Dafni
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Biomedical Engineering and Physics, Academic Medical Center (AMC), Amsterdam, the Netherlands
| |
Collapse
|
17
|
Vanhoutte L, Gerber BL, Gallez B, Po C, Magat J, Balligand JL, Feron O, Moniotte S. High field magnetic resonance imaging of rodents in cardiovascular research. Basic Res Cardiol 2016; 111:46. [PMID: 27287250 DOI: 10.1007/s00395-016-0565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
Transgenic and gene knockout rodent models are primordial to study pathophysiological processes in cardiovascular research. Over time, cardiac MRI has become a gold standard for in vivo evaluation of such models. Technical advances have led to the development of magnets with increasingly high field strength, allowing specific investigation of cardiac anatomy, global and regional function, viability, perfusion or vascular parameters. The aim of this report is to provide a review of the various sequences and techniques available to image mice on 7-11.7 T magnets and relevant to the clinical setting in humans. Specific technical aspects due to the rise of the magnetic field are also discussed.
Collapse
Affiliation(s)
- Laetitia Vanhoutte
- Department of Paediatric Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium. .,Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium.
| | - Bernhard L Gerber
- Division of Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium.,Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Unit (REMA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Chrystelle Po
- CNRS, ICube, FMTS, Institut de Physique Biologique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Julie Magat
- L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Inserm U1045, Bordeaux, France
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Stéphane Moniotte
- Department of Paediatric Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
18
|
Calcagno C, Mulder WJM, Nahrendorf M, Fayad ZA. Systems Biology and Noninvasive Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:e1-8. [PMID: 26819466 PMCID: PMC4861402 DOI: 10.1161/atvbaha.115.306350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Claudia Calcagno
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.).
| | - Willem J M Mulder
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| | - Matthias Nahrendorf
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| | - Zahi A Fayad
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| |
Collapse
|
19
|
Trotier AJ, Castets CR, Lefrançois W, Ribot EJ, Franconi JM, Thiaudière E, Miraux S. USPIO-enhanced 3D-cine self-gated cardiac MRI based on a stack-of-stars golden angle short echo time sequence: Application on mice with acute myocardial infarction. J Magn Reson Imaging 2016; 44:355-65. [PMID: 26778077 DOI: 10.1002/jmri.25150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To develop and assess a 3D-cine self-gated method for cardiac imaging of murine models. MATERIALS AND METHODS A 3D stack-of-stars (SOS) short echo time (STE) sequence with a navigator echo was performed at 7T on healthy mice (n = 4) and mice with acute myocardial infarction (MI) (n = 4) injected with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. In all, 402 spokes were acquired per stack with the incremental or the golden angle method using an angle increment of (360/402)° or 222.48°, respectively. A cylindrical k-space was filled and repeated with a maximum number of repetitions (NR) of 10. 3D cine cardiac images at 156 μm resolution were reconstructed retrospectively and compared for the two methods in terms of contrast-to-noise ratio (CNR). The golden angle images were also reconstructed with NR = 10, 6, and 3, to assess cardiac functional parameters (ejection fraction, EF) on both animal models. RESULTS The combination of 3D SOS-STE and USPIO injection allowed us to optimize the identification of cardiac peaks on navigator signal and generate high CNR between blood and myocardium (15.3 ± 1.0). The golden angle method resulted in a more homogeneous distribution of the spokes inside a stack (P < 0.05), enabling reducing the acquisition time to 15 minutes. EF was significantly different between healthy and MI mice (P < 0.05). CONCLUSION The method proposed here showed that 3D-cine images could be obtained without electrocardiogram or respiratory gating in mice. It allows precise measurement of cardiac functional parameters even on MI mice. J. Magn. Reson. Imaging 2016;44:355-365.
Collapse
Affiliation(s)
- Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Charles R Castets
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Peat DT, Hirsch ML, Gadian DG, Horsewill AJ, Owers-Bradley JR, Kempf JG. Low-field thermal mixing in [1-13C] pyruvic acid for brute-force hyperpolarization. Phys Chem Chem Phys 2016; 18:19173-82. [DOI: 10.1039/c6cp02853e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We detail the process of low-field thermal mixing (LFTM) between 1H and 13C nuclei in neat [1-13C] pyruvic acid at cryogenic temperatures (4–15 K).
Collapse
Affiliation(s)
- David T. Peat
- School of Physics & Astronomy
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | | | - David G. Gadian
- School of Physics & Astronomy
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | | | | | | |
Collapse
|
21
|
Hirsch ML, Smith BA, Mattingly M, Goloshevsky AG, Rosay M, Kempf JG. Transport and imaging of brute-force (13)C hyperpolarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:87-94. [PMID: 26540650 DOI: 10.1016/j.jmr.2015.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 05/15/2023]
Abstract
We demonstrate transport of hyperpolarized frozen 1-(13)C pyruvic acid from its site of production to a nearby facility, where a time series of (13)C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained (13)C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T<∼2K and B∼14T) to pre-polarize protons to a large Boltzmann value (∼0.4% (1)H polarization). After polarizing the neat, frozen sample, ejection quickly (<1s) passed it through a low field (B<100G) to establish the (1)H pre-polarization spin temperature on (13)C via the process known as low-field thermal mixing (yielding ∼0.1% (13)C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the (13)C relaxation time was sufficient to transport the sample for ∼10min before finally dissolving in warm water and obtaining a (13)C image of the hyperpolarized, dilute, aqueous product (∼0.01% (13)C polarization, a >100-fold gain over thermal signals in the 1T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1∼30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T∼60K and B=1.3T), for T1((13)C) near 5min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1∼5h at 30K, 2T), whereas even intercity transfer is possible (T1>20h) at reasonable conditions of 6K and 2T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 10(2)-fold more) by polarizing below 100mK, where nanoparticle agents are known to hasten T1 buildup by 100-fold, and to yield very little impact on T1 losses at temperatures relevant to transport.
Collapse
|
22
|
Niendorf T, Pohlmann A, Reimann HM, Waiczies H, Peper E, Huelnhagen T, Seeliger E, Schreiber A, Kettritz R, Strobel K, Ku MC, Waiczies S. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology. Front Pharmacol 2015; 6:255. [PMID: 26617515 PMCID: PMC4642111 DOI: 10.3389/fphar.2015.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
- German Centre for Cardiovascular ResearchBerlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Henning M. Reimann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | | | - Eva Peper
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology, Charité—Universitätsmedizin BerlinBerlin, Germany
| | - Adrian Schreiber
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | - Ralph Kettritz
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | | | - Min-Chi Ku
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| |
Collapse
|
23
|
Bakermans AJ, Abdurrachim D, van Nierop BJ, Koeman A, van der Kroon I, Baartscheer A, Schumacher CA, Strijkers GJ, Houten SM, Zuurbier CJ, Nicolay K, Prompers JJ. In vivo mouse myocardial (31)P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations. NMR IN BIOMEDICINE 2015; 28:1218-1227. [PMID: 26269430 PMCID: PMC4573916 DOI: 10.1002/nbm.3371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 05/31/2023]
Abstract
(31)P MRS provides a unique non-invasive window into myocardial energy homeostasis. Mouse models of cardiac disease are widely used in preclinical studies, but the application of (31)P MRS in the in vivo mouse heart has been limited. The small-sized, fast-beating mouse heart imposes challenges regarding localized signal acquisition devoid of contamination with signal originating from surrounding tissues. Here, we report the implementation and validation of three-dimensional image-selected in vivo spectroscopy (3D ISIS) for localized (31)P MRS of the in vivo mouse heart at 9.4 T. Cardiac (31)P MR spectra were acquired in vivo in healthy mice (n = 9) and in transverse aortic constricted (TAC) mice (n = 8) using respiratory-gated, cardiac-triggered 3D ISIS. Localization and potential signal contamination were assessed with (31)P MRS experiments in the anterior myocardial wall, liver, skeletal muscle and blood. For healthy hearts, results were validated against ex vivo biochemical assays. Effects of isoflurane anesthesia were assessed by measuring in vivo hemodynamics and blood gases. The myocardial energy status, assessed via the phosphocreatine (PCr) to adenosine 5'-triphosphate (ATP) ratio, was approximately 25% lower in TAC mice compared with controls (0.76 ± 0.13 versus 1.00 ± 0.15; P < 0.01). Localization with one-dimensional (1D) ISIS resulted in two-fold higher PCr/ATP ratios than measured with 3D ISIS, because of the high PCr levels of chest skeletal muscle that contaminate the 1D ISIS measurements. Ex vivo determinations of the myocardial PCr/ATP ratio (0.94 ± 0.24; n = 8) confirmed the in vivo observations in control mice. Heart rate (497 ± 76 beats/min), mean arterial pressure (90 ± 3.3 mmHg) and blood oxygen saturation (96.2 ± 0.6%) during the experimental conditions of in vivo (31)P MRS were within the normal physiological range. Our results show that respiratory-gated, cardiac-triggered 3D ISIS allows for non-invasive assessments of in vivo mouse myocardial energy homeostasis with (31)P MRS under physiological conditions.
Collapse
Affiliation(s)
- Adrianus J. Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bastiaan J. van Nierop
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anneke Koeman
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge van der Kroon
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Antonius Baartscheer
- Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cees A. Schumacher
- Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gustav J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander M. Houten
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, and Department of Pediatrics, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Coert J. Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jeanine J. Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|