1
|
Ibragimov K, Keane GP, Carreño Glaría C, Cheng J, Llosa AE. Haloperidol (oral) versus olanzapine (oral) for people with schizophrenia and schizophrenia-spectrum disorders. Cochrane Database Syst Rev 2024; 7:CD013425. [PMID: 38958149 PMCID: PMC11220909 DOI: 10.1002/14651858.cd013425.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
BACKGROUND Schizophrenia is often a severe and disabling psychiatric disorder. Antipsychotics remain the mainstay of psychotropic treatment for people with psychosis. In limited resource and humanitarian contexts, it is key to have several options for beneficial, low-cost antipsychotics, which require minimal monitoring. We wanted to compare oral haloperidol, as one of the most available antipsychotics in these settings, with a second-generation antipsychotic, olanzapine. OBJECTIVES To assess the clinical benefits and harms of haloperidol compared to olanzapine for people with schizophrenia and schizophrenia-spectrum disorders. SEARCH METHODS We searched the Cochrane Schizophrenia study-based register of trials, which is based on monthly searches of CENTRAL, CINAHL, ClinicalTrials.gov, Embase, ISRCTN, MEDLINE, PsycINFO, PubMed and WHO ICTRP. We screened the references of all included studies. We contacted relevant authors of trials for additional information where clarification was required or where data were incomplete. The register was last searched on 14 January 2023. SELECTION CRITERIA Randomised clinical trials comparing haloperidol with olanzapine for people with schizophrenia and schizophrenia-spectrum disorders. Our main outcomes of interest were clinically important change in global state, relapse, clinically important change in mental state, extrapyramidal side effects, weight increase, clinically important change in quality of life and leaving the study early due to adverse effects. DATA COLLECTION AND ANALYSIS We independently evaluated and extracted data. For dichotomous outcomes, we calculated risk ratios (RR) and their 95% confidence intervals (CI) and the number needed to treat for an additional beneficial or harmful outcome (NNTB or NNTH) with 95% CI. For continuous data, we estimated mean differences (MD) or standardised mean differences (SMD) with 95% CIs. For all included studies, we assessed risk of bias (RoB 1) and we used the GRADE approach to create a summary of findings table. MAIN RESULTS We included 68 studies randomising 9132 participants. We are very uncertain whether there is a difference between haloperidol and olanzapine in clinically important change in global state (RR 0.84, 95% CI 0.69 to 1.02; 6 studies, 3078 participants; very low-certainty evidence). We are very uncertain whether there is a difference between haloperidol and olanzapine in relapse (RR 1.42, 95% CI 1.00 to 2.02; 7 studies, 1499 participants; very low-certainty evidence). Haloperidol may reduce the incidence of clinically important change in overall mental state compared to olanzapine (RR 0.70, 95% CI 0.60 to 0.81; 13 studies, 1210 participants; low-certainty evidence). For every eight people treated with haloperidol instead of olanzapine, one fewer person would experience this improvement. The evidence suggests that haloperidol may result in a large increase in extrapyramidal side effects compared to olanzapine (RR 3.38, 95% CI 2.28 to 5.02; 14 studies, 3290 participants; low-certainty evidence). For every three people treated with haloperidol instead of olanzapine, one additional person would experience extrapyramidal side effects. For weight gain, the evidence suggests that there may be a large reduction in the risk with haloperidol compared to olanzapine (RR 0.47, 95% CI 0.35 to 0.61; 18 studies, 4302 participants; low-certainty evidence). For every 10 people treated with haloperidol instead of olanzapine, one fewer person would experience weight increase. A single study suggests that haloperidol may reduce the incidence of clinically important change in quality of life compared to olanzapine (RR 0.72, 95% CI 0.57 to 0.91; 828 participants; low-certainty evidence). For every nine people treated with haloperidol instead of olanzapine, one fewer person would experience clinically important improvement in quality of life. Haloperidol may result in an increase in the incidence of leaving the study early due to adverse effects compared to olanzapine (RR 1.99, 95% CI 1.60 to 2.47; 21 studies, 5047 participants; low-certainty evidence). For every 22 people treated with haloperidol instead of olanzapine, one fewer person would experience this outcome. Thirty otherwise relevant studies and several endpoints from 14 included studies could not be evaluated due to inconsistencies and poor transparency of several parameters. Furthermore, even within studies that were included, it was often not possible to use data for the same reasons. Risk of bias differed substantially for different outcomes and the certainty of the evidence ranged from very low to low. The most common risks of bias leading to downgrading of the evidence were blinding (performance bias) and selective reporting (reporting bias). AUTHORS' CONCLUSIONS Overall, the certainty of the evidence was low to very low for the main outcomes in this review, making it difficult to draw reliable conclusions. We are very uncertain whether there is a difference between haloperidol and olanzapine in terms of clinically important global state and relapse. Olanzapine may result in a slightly greater overall clinically important change in mental state and in a clinically important change in quality of life. Different side effect profiles were noted: haloperidol may result in a large increase in extrapyramidal side effects and olanzapine in a large increase in weight gain. The drug of choice needs to take into account side effect profiles and the preferences of the individual. These findings and the recent inclusion of olanzapine alongside haloperidol in the WHO Model List of Essential Medicines should increase the likelihood of it becoming more easily available in low- and middle- income countries, thereby improving choice and providing a greater ability to respond to side effects for people with lived experience of schizophrenia. There is a need for additional research using appropriate and equivalent dosages of these drugs. Some of this research needs to be done in low- and middle-income settings and should actively seek to account for factors relevant to these. Research on antipsychotics needs to be person-centred and prioritise factors that are of interest to people with lived experience of schizophrenia.
Collapse
Affiliation(s)
- Khasan Ibragimov
- Ecole des Hautes Etudes en Sante Publique (EHESP), Hautes Etudes en Sante Publique (EHESP), Paris, France
- Epicentre, Paris, France
| | | | | | - Jie Cheng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Augusto Eduardo Llosa
- Epicentre, Paris, France
- Operational Centre Barcelona, Médecins Sans Frontières, Barcelona, Spain
| |
Collapse
|
2
|
Lawrie SM. Do antipsychotic drugs shrink the brain? Probably not. J Psychopharmacol 2022; 36:425-427. [PMID: 35395921 DOI: 10.1177/02698811221092252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Fountoulakis KN, Stahl SM. The effect of first- and second-generation antipsychotics on brain morphology in schizophrenia: A systematic review of longitudinal magnetic resonance studies with a randomized allocation to treatment arms. J Psychopharmacol 2022; 36:428-438. [PMID: 35395911 DOI: 10.1177/02698811221087645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Schizophrenia manifests as loss of brain volume in specific areas in a progressive nature and an important question concerns whether long-term treatment with medications contributes to this. The aim of the current PRISMA systematic review was to search for prospective studies involving randomization to treatment. PROSPERO ID: CRD42020197874. The MEDLINE/PUBMED was searched and it returned 2638 articles; 3 were fulfilling the inclusion criteria. A fourth was published later; they included 359 subjects, of whom 86 were healthy controls, while the rest were first-episode patients, with 91 under olanzapine, 93 under haloperidol, 48 under risperidone, 5 under paliperidone, 6 under ziprasidone, and 30 under placebo. Probably one-third of patients were suffering from a psychotic disorder other than schizophrenia. The consideration of their results suggested that there is no significant difference between these medications concerning their effects on brain structure and also in comparison to healthy subjects. There does not seem to be any strong support to the opinion that medications that treat psychosis cause loss of brain volume in patients with schizophrenia. On the contrary, the data might imply the possible presence of a protective effect for D2, 5-HT2, and NE alpha-2 antagonists (previously called SGAs). However, the literature is limited and focused research in large study samples is essential to clarify the issue, since important numerical differences do exist. The possibility of the results and their heterogeneity to be artifacts secondary to a modification of magnetic resonance imaging (MRI) signal by antipsychotics should not be easily rejected until relevant data are available.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stephen M Stahl
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.,Department of Psychiatry, Cambridge University, Cambridge, UK
| |
Collapse
|
4
|
Kanahara N, Yamanaka H, Shiko Y, Kawasaki Y, Iyo M. The effects of cumulative antipsychotic dose on brain structures in patients with schizophrenia: Observational study of multiple CT scans over a long-term clinical course. Psychiatry Res Neuroimaging 2022; 319:111422. [PMID: 34856453 DOI: 10.1016/j.pscychresns.2021.111422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Multiple lines of evidence indicate that antipsychotic agents could affect brain structures of schizophrenia patients. However, the effect of antipsychotic dosage or type on brain structure is uncertain. The present study retrospectively analyzed brain computed tomography (CT) images from a psychiatric hospital to examine the relationship between cumulative dose of antipsychotics and brain volume reduction in schizophrenia patients. A total of 43 patients with repeated relapse episode of psychosis were included and CT scans that were performed an average of 3.2 times per patient during nearly 13 years of follow-up were analyzed. The results revealed significant positive relationships of expansion of cerebrospinal fluid space with cumulative dosage of all antipsychotics and that of typical antipsychotics. Patients treated with antipsychotics including typical antipsychotics exhibited a greater volume reduction compared to patients treated with only atypical antipsychotics. The present study was one of the longest longitudinal studies examining the effects of antipsychotics on brain volume in schizophrenia patients. These results suggest a relation between cumulative lifetime antipsychotic dosage and progressive brain volume reduction in patients with schizophrenia. However, the effects of specific agent on brain structure are still uncertain, and more detailed analysis is needed.
Collapse
Affiliation(s)
- Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan; Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Hiroshi Yamanaka
- Department of Psychiatry, Chiba Psychiatric Medical Center, Chiba, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
5
|
Markopoulou M, Karakasi V, Garyfallos G, Pavlidis P, Douzenis A. Research findings on Greek forensic patients found not guilty by reason of insanity. A juxtaposition of patients who committed a criminal offense during their first psychotic episode with those who did so later in the course of their illness. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2021; 75:101673. [PMID: 33517142 DOI: 10.1016/j.ijlp.2021.101673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/07/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to compare the baseline characteristics (demographic, psychiatric-psychopathological and legal) among Greek forensic patients found not guilty by reason of insanity. The first step of this approach being differentiating patients who committed a criminal offense during their first psychotic episode from the ones who did so later in the course of their illness. All patients were hospitalized in the Department of Forensic Psychiatry (DFP) of the Psychiatric Hospital of Thessaloniki (PHT) from January 2015 to January 2020 and were examined in order to be included in the study. The final research sample consisted of 78 patients (70 identifying themselves as males and 8 identifying themselves as females) aged 18 and older, 21 of whom committed a criminal offense during their first psychotic episode (FEP, N = 21) and 57 did so later on in the course of their illness (Course, N = 57). Data were collected from multiple sources and several psychometric tools were used (Mini International Neuropsychiatric Interview-M.I.N·I, Positive And Negative Syndrome Scale-PANSS, Addiction Severity Index-ASI, CAGE Questionnaire, Hostility and Direction of Hostility Questionnaire-HDHQ, Global Assessment of Functioning-GAF and Aggression Questionnaire). Comparing the two groups (FEP vs. Course) we found that patients in FEP were younger, had experienced stressful life events in the last 24 months, committed more serious violent crimes, and more frequently attempted suicide after the crime. Their victims were usually members of their family. The main psychometric disparities between the two groups were found in the "Hostility" score of the Aggression questionnaire, and the items "Criticism of Others" and "Paranoid Hostility" of the HDHQ questionnaire, where patients in FEP scored lower. Patients in FEP scored significantly higher in items P1 (delusions), P4 (excitement), P6 (suspiciousness/persecution) and P7 (hostility) of the PANSS scale. No statistically significant differences were found between the two groups regarding their evaluation with the CAGE, ASI or GAF questionnaires. When comparing the patients' present scores in PANSS scale, the patients in FEP had lower total scores in the Positive and the General Psychopathology subscales. Both groups showed significant improvement during hospitalization in all scales (PANSS & GAF), except for the Negative Subscale of the PANSS scale. Through logistic regression analysis, we found that patients in FEP were younger, more likely to have recently experienced stressful life events and more likely to have assaulted a member of their family. Patients with higher scores in the "Hostility" subscale of the Aggression questionnaire were found to remain at risk for committing a crime during the course of their illness. These findings underline the need to design and develop specialized mental health services in order to identify and treat patients involved in violent crime in a timely and effective manner addressing their multiple needs.
Collapse
Affiliation(s)
- M Markopoulou
- Department of Forensic Psychiatry, General Hospital of Thessaloniki G. Papanikolaou, Psychiatric Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Karakasi
- 3(rd) Department of Psychiatry, Aristotle University of Thessaloniki, Medical School, AHEPA Hospital, Thessaloniki, Greece
| | - G Garyfallos
- 2(nd) Department of Psychiatry, Aristotle University of Thessaloniki, General Hospital of Thessaloniki G. Papanikolaou, Psychiatric Hospital of Thessaloniki, Thessaloniki, Greece
| | - P Pavlidis
- Laboratory of Forensic Sciences, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - A Douzenis
- 2(nd) Department of Psychiatry, National and Kapodistrian University of Athens, Medical School, "Attikon" Hospital, Athens, Greece
| |
Collapse
|
6
|
Affiliation(s)
- Konstantinos N Fountoulakis
- Third Department of Psychiatry, Faculty of Medicine, Aristotle University of Thessaloniki School of Health Sciences, Pylaia, Thessaloniki, Greece
| |
Collapse
|
7
|
Tronchin G, Akudjedu TN, Ahmed M, Holleran L, Hallahan B, Cannon DM, McDonald C. Progressive subcortical volume loss in treatment-resistant schizophrenia patients after commencing clozapine treatment. Neuropsychopharmacology 2020; 45:1353-1361. [PMID: 32268345 PMCID: PMC7298040 DOI: 10.1038/s41386-020-0665-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The association of antipsychotic medication with abnormal brain morphometry in schizophrenia remains uncertain. This study investigated subcortical morphometric changes 6 months after switching treatment to clozapine in patients with treatment-resistant schizophrenia compared with healthy volunteers, and the relationships between longitudinal volume changes and clinical variables. In total, 1.5T MRI images were acquired at baseline before commencing clozapine and again after 6 months of treatment for 33 patients with treatment-resistant schizophrenia and 31 controls, and processed using the longitudinal pipeline of Freesurfer v.5.3.0. Two-way repeated MANCOVA was used to assess group differences in subcortical volumes over time and partial correlations to determine association with clinical variables. Whereas no significant subcortical volume differences were found between patients and controls at baseline (F(8,52) = 1.79; p = 0.101), there was a significant interaction between time, group and structure (F(7,143) = 52.54; p < 0.001). Corrected post-hoc analyses demonstrated that patients had significant enlargement of lateral ventricles (F(1,59) = 48.89; p < 0.001) and reduction of thalamus (F(1,59) = 34.85; p < 0.001), caudate (F(1,59) = 59.35; p < 0.001), putamen (F(1,59) = 87.20; p < 0.001) and hippocampus (F(1,59) = 14.49; p < 0.001) volumes. Thalamus and putamen volume reduction was associated with improvement in PANSS (r = 0.42; p = 0.021, r = 0.39; p = 0.033), SANS (r = 0.36; p = 0.049, r = 0.40; p = 0.027) and GAF (r = -0.39; p = 0.038, r = -0.42; p = 0.024) scores. Reduced thalamic volume over time was associated with increased serum clozapine level at follow-up (r = -0.44; p = 0.010). Patients with treatment-resistant schizophrenia display progressive subcortical volume deficits after switching to clozapine despite experiencing symptomatic improvement. Thalamo-striatal progressive volumetric deficit associated with symptomatic improvement after clozapine exposure may reflect an adaptive response related to improved outcome rather than a harmful process.
Collapse
Affiliation(s)
- Giulia Tronchin
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland.
| | - Theophilus N Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
- Institute of Medical Imaging & Visualisation, Faculty of Health & Social Science, Department of Medical Science & Public Science, Bournemouth University, Bournemouth, UK
| | - Mohamed Ahmed
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Laurena Holleran
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| |
Collapse
|
8
|
Fountoulakis KN, Moeller HJ, Kasper S, Tamminga C, Yamawaki S, Kahn R, Tandon R, Correll CU, Javed A. The report of the joint WPA/CINP workgroup on the use and usefulness of antipsychotic medication in the treatment of schizophrenia. CNS Spectr 2020; 26:1-25. [PMID: 32594935 DOI: 10.1017/s1092852920001546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This is a report of a joint World Psychiatric Association/International College of Neuropsychopharmacology (WPA/CINP) workgroup concerning the risk/benefit ratio of antipsychotics in the treatment of schizophrenia. It utilized a selective but, within topic, comprehensive review of the literature, taking into consideration all the recently discussed arguments on the matter and avoiding taking sides when the results in the literature were equivocal. The workgroup's conclusions suggested that antipsychotics are efficacious both during the acute and the maintenance phase, and that the current data do not support the existence of a supersensitivity rebound psychosis. Long-term treated patients have better overall outcome and lower mortality than those not taking antipsychotics. Longer duration of untreated psychosis and relapses are modestly related to worse outcome. Loss of brain volume is evident already at first episode and concerns loss of neuropil volume rather than cell loss. Progression of volume loss probably happens in a subgroup of patients with worse prognosis. In humans, antipsychotic treatment neither causes nor worsens volume loss, while there are some data in favor for a protective effect. Schizophrenia manifests 2 to 3 times higher mortality vs the general population, and treatment with antipsychotics includes a number of dangers, including tardive dyskinesia and metabolic syndrome; however, antipsychotic treatment is related to lower mortality, including cardiovascular mortality. In conclusion, the literature strongly supports the use of antipsychotics both during the acute and the maintenance phase without suggesting that it is wise to discontinue antipsychotics after a certain period of time. Antipsychotic treatment improves long-term outcomes and lowers overall and specific-cause mortality.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans-Jurgen Moeller
- Department of Psychiatry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Siegfried Kasper
- Universitätsklinik für Psychiatrie und Psychotherapie, Medizinische Universität Wien, Vienna, Austria
| | - Carol Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Rene Kahn
- Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rajiv Tandon
- Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Christoph U Correll
- Department of Psychiatry, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, New York, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Afzal Javed
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Pakistan Psychiatric Research Centre, Fountain House, Lahore, Pakistan
| |
Collapse
|
9
|
Stark T, Di Bartolomeo M, Di Marco R, Drazanova E, Platania CBM, Iannotti FA, Ruda-Kucerova J, D'Addario C, Kratka L, Pekarik V, Piscitelli F, Babinska Z, Fedotova J, Giurdanella G, Salomone S, Sulcova A, Bucolo C, Wotjak CT, Starcuk Z, Drago F, Mechoulam R, Di Marzo V, Micale V. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem Pharmacol 2020; 177:114004. [PMID: 32360362 DOI: 10.1016/j.bcp.2020.114004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Gestational methylazoxymethanol acetate (MAM) treatment produces offspring with adult phenotype relevant to schizophrenia, including positive- and negative-like symptoms, cognitive deficits, dopaminergic dysfunction, structural and functional abnormalities. Here we show that adult rats prenatally treated with MAM at gestational day 17 display significant increase in dopamine D3 receptor (D3) mRNA expression in prefrontal cortex (PFC), hippocampus and nucleus accumbens, accompanied by increased expression of dopamine D2 receptor (D2) mRNA exclusively in the PFC. Furthermore, a significant change in the blood perfusion at the level of the circle of Willis and hippocampus, paralleled by the enlargement of lateral ventricles, was also detected by magnetic resonance imaging (MRI) techniques. Peripubertal treatment with the non-euphoric phytocannabinoid cannabidiol (30 mg/kg) from postnatal day (PND) 19 to PND 39 was able to reverse in MAM exposed rats: i) the up-regulation of the dopamine D3 receptor mRNA (only partially prevented by haloperidol 0.6 mg/kg/day); and ii) the regional blood flow changes in MAM exposed rats. Molecular modelling predicted that cannabidiol could bind preferentially to dopamine D3 receptor, where it may act as a partial agonist according to conformation of ionic-lock, which is highly conserved in GPCRs. In summary, our results demonstrate that the mRNA expression of both dopamine D2 and D3 receptors is altered in the MAM model; however only the transcript levels of D3 are affected by cannabidiol treatment, likely suggesting that this gene might not only contribute to the schizophrenia symptoms but also represent an unexplored target for the antipsychotic activity of cannabidiol.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; RG "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Di Marco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladimir Pekarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julia Fedotova
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation; Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology RASci., St. Petersburg, Russian Federation; Lobachevsky State University of Nizhny Novgorod, Institute of Biology and Biomedicine, Nizhny Novgorod, Russian Federation
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alexandra Sulcova
- ICCI - International Cannabis and Cannabinoid Institute, Praha, Czech Republic
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- RG "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany; Boehringer Ingelheim Pharma GmbH & KO KG, Germany
| | - Zenon Starcuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval and Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
10
|
Di Sero A, Jørgensen KN, Nerland S, Melle I, Andreassen OA, Jovicich J, Agartz I. Antipsychotic treatment and basal ganglia volumes: Exploring the role of receptor occupancy, dosage and remission status. Schizophr Res 2019; 208:114-123. [PMID: 31006616 DOI: 10.1016/j.schres.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Antipsychotic treatment may affect brain morphology, and enlargement of the basal ganglia (BG) is a replicated finding. Here we investigated associations between antipsychotic treatment and BG volumes in patients with psychotic and bipolar disorders. We hypothesized that current treatment and, among those medicated, higher dosage, estimated D2R occupancy and being in remission would predict larger BG volumes. Structural covariance analysis was performed to examine if correlations between BG volumes and cortical thickness differed by treatment status. 224 patients treated with antipsychotics; 26 previously treated, 29 never treated and 301 healthy controls (HC) were included from the TOP study cohort (NORMENT, Norway). T1-weighted MR images were processed using FreeSurfer. D2R occupancy was estimated based on serum concentration measurements for patients receiving stable monotherapy. Statistical analyses were adjusted for age, gender and estimated intracranial volume (ICV). We found larger right (p < 0.003) and left putamen (p < 0.02) and right globus pallidus (GP) (p < 0.03) in currently medicated patients compared to HC. Bilateral regional cortical thinning was also observed in currently and previously medicated patients compared to HC. In medicated patients, higher chlorpromazine equivalent dose (CPZ) was associated with larger left GP (p < 0.04). There was no association with estimated D2R occupancy (n = 47) or remission status. Lower positive correlation between left putamen volume and cortical thickness of the left lateral occipital cortex was found in medicated patients compared to HC. We replicated the BG enlargement in medicated patients, but found no association with estimated D2R occupancy. Further studies are needed to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Alessia Di Sero
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Center for Mind and Brain Sciences, University of Trento, Trento, Italy; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway
| | - Kjetil N Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway.
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jorge Jovicich
- Center for Mind and Brain Sciences, University of Trento, Trento, Italy
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Norwegian Centre for Research on Mental Disorders, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Norway; Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Lahera G, Gálvez JL, Sánchez P, Martínez-Roig M, Pérez-Fuster JV, García-Portilla P, Herrera B, Roca M. Functional recovery in patients with schizophrenia: recommendations from a panel of experts. BMC Psychiatry 2018; 18:176. [PMID: 29871616 PMCID: PMC5989342 DOI: 10.1186/s12888-018-1755-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/22/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The management of schizophrenia is evolving towards a more comprehensive model based on functional recovery. The concept of functional recovery goes beyond clinical remission and encompasses multiple aspects of the patient's life, making it difficult to settle on a definition and to develop reliable assessment criteria. In this consensus process based on a panel of experts in schizophrenia, we aimed to provide useful insights on functional recovery and its involvement in clinical practice and clinical research. METHODS After a literature review of functional recovery in schizophrenia, a scientific committee of 8 members prepared a 75-item questionnaire, including 6 sections: (I) the concept of functional recovery (9 items), (II) assessment of functional recovery (23 items), (III) factors influencing functional recovery (16 items), (IV) psychosocial interventions and functional recovery (8 items), (V) pharmacological treatment and functional recovery (14 items), and (VI) the perspective of patients and their relatives on functional recovery (5 items). The questionnaire was sent to a panel of 53 experts, who rated each item on a 9-point Likert scale. Consensus was achieved in a 2-round Delphi dynamics, using the median (interquartile range) scores to consider consensus in either agreement (scores 7-9) or disagreement (scores 1-3). Items not achieving consensus in the first round were sent back to the experts for a second consideration. RESULTS After the two recursive rounds, consensus was achieved in 64 items (85.3%): 61 items (81.3%) in agreement and 3 (4.0%) in disagreement, all of them from section II (assessment of functional recovery). Items not reaching consensus were related to the concepts of functional recovery (1 item, 1.3%), functional assessment (5 items, 6.7%), factors influencing functional recovery (3 items, 4.0%), and psychosocial interventions (2 items, 5.6%). CONCLUSIONS Despite the lack of a well-defined concept of functional recovery, we identified a trend towards a common archetype of the definition and factors associated with functional recovery, as well as its applicability in clinical practice and clinical research.
Collapse
Affiliation(s)
- Guillermo Lahera
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina, Universidad de Alcalá, Plaza de San Diego, s/n, 28801 Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - José L Gálvez
- Unidad de Salud Mental Comunitaria del Hospital Universitario Virgen del Rocio, Av. Manuel Siurot, S/N, 41013, Sevilla, Spain
| | - Pedro Sánchez
- Unidad de Psicosis Refractaria, Hospital Psiquiátrico de Álava-Osakidetza, C/ Álava, n°45, 01006, Vitoria - Gasteiz, Spain
- Facultad de Medicina, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Leioa, Spain
| | | | - J V Pérez-Fuster
- Centro de Salud Mental Fuente San Luis, Hospital Universitario Doctor Peset, Av. de Gaspar Aguilar, 90, 46017, València, Spain
| | - Paz García-Portilla
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Área de Psiquiatría, Facultad de Medicina, Universidad de Oviedo, Av. Julián Clavería, s/n, 33006, Oviedo, Asturias, Spain
| | - Berta Herrera
- Medical Affairs Department, Janssen-Cilag, Avenida Partenón, 16 1 (Campo de las Naciones), S. A, 28042, Madrid, Spain
| | - Miquel Roca
- Institut Universitari d'Investigació en Ciencies de la Salut (IUNIS), RedIAPP, Hospital Juan March, Universidad de las Islas Baleares, Cra. de Valldemossa, km 7.5., Palma de Mallorca, (Illes Balears), Spain.
| |
Collapse
|
12
|
Huang XF, Song X. Effects of antipsychotic drugs on neurites relevant to schizophrenia treatment. Med Res Rev 2018; 39:386-403. [PMID: 29785841 DOI: 10.1002/med.21512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Although antipsychotic drugs are mainly used for treating schizophrenia, they are widely used for treating various psychiatric diseases in adults, the elderly, adolescents and even children. Today, about 1.2% of the worldwide population suffers from psychosis and related disorders, which translates to about 7.5 million subjects potentially targeted by antipsychotic drugs. Neurites project from the cell body of neurons and connect neurons to each other to form neural networks. Deficits in neurite outgrowth and integrity are implicated in psychiatric diseases including schizophrenia. Neurite deficits contribute to altered brain development, neural networking and connectivity as well as symptoms including psychosis and altered cognitive function. This review revealed that (1) antipsychotic drugs could have profound effects on neurites, synaptic spines and synapse, by which they may influence and regulate neural networking and plasticity; (2) antipsychotic drugs target not only neurotransmitter receptors but also intracellular signaling molecules regulating the signaling pathways responsible for neurite outgrowth and maintenance; (3) high doses and chronic administration of antipsychotic drugs may cause some loss of neurites, synaptic spines, or synapsis in the cortical structures. In addition, confounding effects causing neurite deficits may include elevated inflammatory cytokines and antipsychotic drug-induced metabolic side effects in patients on chronic antipsychotic therapy. Unraveling how antipsychotic drugs affect neurites and neural connectivity is essential for improving therapeutic outcomes and preventing aversive effects for patients on antipsychotic drug treatment.
Collapse
Affiliation(s)
- Xu-Feng Huang
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, Australia
| | - Xueqin Song
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Huhtaniska S, Jääskeläinen E, Heikka T, Moilanen JS, Lehtiniemi H, Tohka J, Manjón JV, Coupé P, Björnholm L, Koponen H, Veijola J, Isohanni M, Kiviniemi V, Murray GK, Miettunen J. Long-term antipsychotic and benzodiazepine use and brain volume changes in schizophrenia: The Northern Finland Birth Cohort 1966 study. Psychiatry Res Neuroimaging 2017; 266:73-82. [PMID: 28618327 DOI: 10.1016/j.pscychresns.2017.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022]
Abstract
High doses of antipsychotics have been associated with loss in cortical and total gray matter in schizophrenia. However, previous imaging studies have not taken benzodiazepine use into account, in spite of evidence suggesting adverse effects such as cognitive impairment and increased mortality. In this Northern Finland Birth Cohort 1966 study, 69 controls and 38 individuals with schizophrenia underwent brain MRI at the ages of 34 and 43 years. At baseline, the average illness duration was over 10 years. Brain structures were delineated using an automated volumetry system, volBrain, and medication data on cumulative antipsychotic and benzodiazepine doses were collected using medical records and interviews. We used linear regression with intracranial volume and sex as covariates; illness severity was also taken into account. Though both medication doses associated to volumetric changes in subcortical structures, after adjusting for each other and the average PANSS total score, higher scan-interval antipsychotic dose associated only to volume increase in lateral ventricles and higher benzodiazepine dose associated with volume decrease in the caudate nucleus. To our knowledge, there are no previous studies reporting associations between benzodiazepine dose and brain structural changes. Further studies should focus on how these observations correspond to cognition and functioning.
Collapse
Affiliation(s)
- Sanna Huhtaniska
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland.
| | - Erika Jääskeläinen
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Tuomas Heikka
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | - Jani S Moilanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Heli Lehtiniemi
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - José V Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), PICTURA Research Group, France
| | - Lassi Björnholm
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | - Hannu Koponen
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 22, University of Helsinki, Finland
| | - Juha Veijola
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Matti Isohanni
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, FIN-90029 Oulu, Finland
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Box 189, Cambridge CB2 2QQ, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge CB2 3EB, UK
| | - Jouko Miettunen
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| |
Collapse
|
14
|
Dempster K, Norman R, Théberge J, Densmore M, Schaefer B, Williamson P. Cognitive performance is associated with gray matter decline in first-episode psychosis. Psychiatry Res Neuroimaging 2017; 264:46-51. [PMID: 28458083 DOI: 10.1016/j.pscychresns.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/08/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
Progressive loss of gray matter has been demonstrated over the early course of schizophrenia. Identification of an association between cognition and gray matter may lead to development of early interventions directed at preserving gray matter volume and cognitive ability. The present study evaluated the association between gray matter using voxel-based morphometry (VBM) and cognitive testing in a sample of 16 patients with first-episode psychosis. A simple regression was applied to investigate the association between gray matter at baseline and 80 months and cognitive tests at baseline. Performance on the Wisconsin Card Sorting Task (WCST) at baseline was positively associated with gray matter volume in several brain regions. There was an association between decreased gray matter at baseline in the nucleus accumbens and Trails B errors. Performing worse on Trails B and making more WCST perseverative errors at baseline was associated with gray matter decline over 80 months in the right globus pallidus, left inferior parietal lobe, Brodmann's area (BA) 40, and left superior parietal lobule and BA 7 respectively. All significant findings were cluster corrected. The results support a relationship between aspects of cognitive impairment and gray matter abnormalities in first-episode psychosis.
Collapse
Affiliation(s)
- Kara Dempster
- Department of Psychiatry, Western University, London, Ontario, Canada.
| | - Ross Norman
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Betsy Schaefer
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Peter Williamson
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
15
|
Altamura AC, Delvecchio G, Paletta S, Di Pace C, Reggiori A, Fiorentini A, Mirabile MD, Paoli RA, Cinnante C, Triulzi F, Mauri MC, Brambilla P. Gray matter volumes may predict the clinical response to paliperidone palmitate long-acting in acute psychosis: A pilot longitudinal neuroimaging study. Psychiatry Res Neuroimaging 2017; 261:80-84. [PMID: 28161644 DOI: 10.1016/j.pscychresns.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 11/17/2022]
Abstract
In schizophrenia, paliperidone palmitate (PP) long acting injectable (LAI) has been reported to sustain plasma concentrations and improve clinical symptoms. Moreover, it has also been demonstrated the important role of total gray matter (GM) volumes in predicting the clinical outcome. However, no studies investigating the association between PP-LAI treatment and brain morphometry has been published so far. Therefore, the main aim of our 24 weeks prospective observational exploratory study was to investigate the relation between brain anatomy and clinical outcome in seven patients with acute psychosis treated with PP-LAI. At baseline and every month (from T0 to T6) patients were clinically evaluated with the Brief Psychiatric Rating Scale (BPRS). 3T Magnetic Resonance Imaging at baseline was acquired and total GM and intracranial volumes were extracted to explore their predictive values on BPRS scores. After 24 weeks of treatment with PP-LAI, patients showed statistically significant improvements in BPRS scores. Moreover, subjects with higher total GM volumes had a significantly higher BPRS improvement at 24 weeks compared to patients with lower total GM volumes. Our findings confirm the effectiveness of PP-LAI in treating acute psychosis and suggest that greater GM volumes predict drug response, potentially supporting a favorable prognosis.
Collapse
Affiliation(s)
- A Carlo Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Silvia Paletta
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Chiara Di Pace
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alessandra Reggiori
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alessio Fiorentini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - M Donatella Mirabile
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Riccardo A Paoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Claudia Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo C Mauri
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA.
| |
Collapse
|
16
|
Shah C, Zhang W, Xiao Y, Yao L, Zhao Y, Gao X, Liu L, Liu J, Li S, Tao B, Yan Z, Fu Y, Gong Q, Lui S. Common pattern of gray-matter abnormalities in drug-naive and medicated first-episode schizophrenia: a multimodal meta-analysis. Psychol Med 2017; 47:401-413. [PMID: 27776571 DOI: 10.1017/s0033291716002683] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies of schizophrenia at drug-naive state and on antipsychotic medication have reported a number of regions of gray-matter (GM) abnormalities but the reports have been inconsistent. The aim of this study was to conduct multimodal meta-analysis to compare the cross-sectional voxel-based morphometry studies of brain GM in antipsychotic-naive first-episode schizophrenia (AN-FES) and those with antipsychotic treatment within 1 year (AT-FES) to determine the similarities and differences in these groups. We conducted two separate meta-analyses containing 24 studies with a sample size of 801 patients and 957 healthy controls. A multimodal meta-analysis method was used to compare the findings between AN-FES and AT-FES. Meta-regression analyses were done to determine the influence of different variables including age, duration of illness, and positive and negative symptom scores. Finally, jack-knife analyses were done to test the robustness of the results. AN-FES and AT-FES showed common patterns of GM abnormalities in frontal (gyrus rectus), superior temporal, left hippocampal and insular cortex. GM in the left supramarginal gyrus and left middle temporal gyrus were found to be increased in AN-FES but decreased in AT-FES, whereas left median cingulate/paracingulate gyri and right hippocampus GM was decreased in AN-FES but increased in AT-FES. Findings suggest that both AN-FES and AT-FES share frontal, temporal and insular regions as common anatomical regions to be affected indicating these to be the primary regions of GM abnormalities in both groups.
Collapse
Affiliation(s)
- C Shah
- Radiology Department,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou,Zhejiang,China
| | - W Zhang
- Department of Radiology,Huaxi MR Research Center (HMRRC), the Center for Medical Imaging, West China Hospital of Sichuan University,Chengdu,Sichuan,China
| | - Y Xiao
- Department of Radiology,Huaxi MR Research Center (HMRRC), the Center for Medical Imaging, West China Hospital of Sichuan University,Chengdu,Sichuan,China
| | - L Yao
- Department of Radiology,Huaxi MR Research Center (HMRRC), the Center for Medical Imaging, West China Hospital of Sichuan University,Chengdu,Sichuan,China
| | - Y Zhao
- Department of Radiology,Huaxi MR Research Center (HMRRC), the Center for Medical Imaging, West China Hospital of Sichuan University,Chengdu,Sichuan,China
| | - X Gao
- Department of Radiology,Huaxi MR Research Center (HMRRC), the Center for Medical Imaging, West China Hospital of Sichuan University,Chengdu,Sichuan,China
| | - L Liu
- Department of Radiology,Huaxi MR Research Center (HMRRC), the Center for Medical Imaging, West China Hospital of Sichuan University,Chengdu,Sichuan,China
| | - J Liu
- Department of Radiology,Huaxi MR Research Center (HMRRC), the Center for Medical Imaging, West China Hospital of Sichuan University,Chengdu,Sichuan,China
| | - S Li
- Department of Radiology,Huaxi MR Research Center (HMRRC), the Center for Medical Imaging, West China Hospital of Sichuan University,Chengdu,Sichuan,China
| | - B Tao
- Department of Radiology,Huaxi MR Research Center (HMRRC), the Center for Medical Imaging, West China Hospital of Sichuan University,Chengdu,Sichuan,China
| | - Z Yan
- Radiology Department,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou,Zhejiang,China
| | - Y Fu
- Radiology Department,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou,Zhejiang,China
| | - Q Gong
- Department of Radiology,Huaxi MR Research Center (HMRRC), the Center for Medical Imaging, West China Hospital of Sichuan University,Chengdu,Sichuan,China
| | - S Lui
- Radiology Department,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou,Zhejiang,China
| |
Collapse
|
17
|
Schmaal L, Veltman DJ, van Erp TGM, Sämann PG, Frodl T, Jahanshad N, Loehrer E, Tiemeier H, Hofman A, Niessen WJ, Vernooij MW, Ikram MA, Wittfeld K, Grabe HJ, Block A, Hegenscheid K, Völzke H, Hoehn D, Czisch M, Lagopoulos J, Hatton SN, Hickie IB, Goya-Maldonado R, Krämer B, Gruber O, Couvy-Duchesne B, Rentería ME, Strike LT, Mills NT, de Zubicaray GI, McMahon KL, Medland SE, Martin NG, Gillespie NA, Wright MJ, Hall GB, MacQueen GM, Frey EM, Carballedo A, van Velzen LS, van Tol MJ, van der Wee NJ, Veer IM, Walter H, Schnell K, Schramm E, Normann C, Schoepf D, Konrad C, Zurowski B, Nickson T, McIntosh AM, Papmeyer M, Whalley HC, Sussmann JE, Godlewska BR, Cowen PJ, Fischer FH, Rose M, Penninx BWJH, Thompson PM, Hibar DP. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry 2016; 21:806-12. [PMID: 26122586 PMCID: PMC4879183 DOI: 10.1038/mp.2015.69] [Citation(s) in RCA: 731] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/13/2015] [Accepted: 04/01/2015] [Indexed: 11/09/2022]
Abstract
The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen's d=-0.14, % difference=-1.24). This effect was driven by patients with recurrent MDD (Cohen's d=-0.17, % difference=-1.44), and we detected no differences between first episode patients and controls. Age of onset ⩽21 was associated with a smaller hippocampus (Cohen's d=-0.20, % difference=-1.85) and a trend toward smaller amygdala (Cohen's d=-0.11, % difference=-1.23) and larger lateral ventricles (Cohen's d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status.
Collapse
Affiliation(s)
- L Schmaal
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands,Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 74077, Amsterdam 1070 BB, The Netherlands. E-mail:
| | - D J Veltman
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - T G M van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - P G Sämann
- Max Planck Institute of Psychiatry, Munich, Germany
| | - T Frodl
- Department of Psychiatry, University of Regensburg, Regensburg, Germany,Department of Psychiatry, University of Dublin, Trinity College, Dublin, Ireland
| | - N Jahanshad
- Imaging Genetics Center, Department of Neurology, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - E Loehrer
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - H Tiemeier
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A Hofman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W J Niessen
- Departments of Radiology and Medical Informatics, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - M W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Departments of Radiology and Medical Informatics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M A Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Departments of Radiology and Medical Informatics, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - K Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - H J Grabe
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany,Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany,Helios Hospital Stralsund, Stralsund, Germany
| | - A Block
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - K Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - H Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - D Hoehn
- Max Planck Institute of Psychiatry, Munich, Germany
| | - M Czisch
- Max Planck Institute of Psychiatry, Munich, Germany
| | - J Lagopoulos
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Camperdown, Australia
| | - S N Hatton
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Camperdown, Australia
| | - I B Hickie
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Camperdown, Australia
| | - R Goya-Maldonado
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Germany
| | - B Krämer
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Germany
| | - O Gruber
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Germany
| | - B Couvy-Duchesne
- NeuroImaging Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,School of Psychology, University of Queensland, Brisbane, QLD, Australia,Center for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - M E Rentería
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - L T Strike
- NeuroImaging Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,School of Psychology, University of Queensland, Brisbane, QLD, Australia,Center for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - N T Mills
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - G I de Zubicaray
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | - K L McMahon
- Center for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - S E Medland
- Quantitative Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - N G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - N A Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - M J Wright
- NeuroImaging Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - G B Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - G M MacQueen
- Department of Psychiatry, Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - E M Frey
- Department of Psychiatry, University of Regensburg, Regensburg, Germany
| | - A Carballedo
- Department of Psychiatry and Institute of Neuroscience, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - L S van Velzen
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - M J van Tol
- University of Groningen, University Medical Center Groningen, NeuroImaging Center, Groningen, The Netherlands
| | - N J van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden University, Leiden, The Netherlands,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - I M Veer
- Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - H Walter
- Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - K Schnell
- Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - E Schramm
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - C Normann
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - D Schoepf
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - C Konrad
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - B Zurowski
- Center for Integrative Psychiatry, University of Lübeck, Lübeck, Germany
| | - T Nickson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - M Papmeyer
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - H C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - J E Sussmann
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - B R Godlewska
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - P J Cowen
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - F H Fischer
- Department of Psychosomatic Medicine, Center for Internal Medicine and Dermatology, Charité Universitätsmedizin, Berlin, Germany,Institute for Social Medicine, Epidemology and Health Economics, Charité Universitätsmedizin, Berlin, Germany
| | - M Rose
- Department of Psychosomatic Medicine, Center for Internal Medicine and Dermatology, Charité Universitätsmedizin, Berlin, Germany,Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA
| | - B W J H Penninx
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - P M Thompson
- Imaging Genetics Center, Department of Neurology, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - D P Hibar
- Imaging Genetics Center, Department of Neurology, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| |
Collapse
|
18
|
Abstract
This article reviews the results of longitudinal studies on frontal brain volume reduction in patients with schizophrenia spectrum disorders and focuses on the relationship with antipsychotic treatment. Based on a systematic literature search all studies were included in which results on changes of brain volumes over a longer period of time were correlated with antipsychotic treatment dose and disease severity. The findings indicate that there is evidence for grey and white matter volume changes of the frontal brain, which cannot be explained by the severity of the disease alone but are also very likely a manifestation of long-term effects of antipsychotics. Whether second generation antipsychotics have an advantage compared to first generation antipsychotics is currently unclear. Considering the contribution of antipsychotics to the changes in brain structure, which seem to depend on cumulative dosage and can exert adverse effects on neurocognition, negative and positive symptoms and psychosocial functioning, the guidelines for antipsychotic long-term drug treatment should be reconsidered. This is the reason why we and others recommend prescribing the lowest dose necessary to control symptoms. In non-schizophrenic psychiatric disorders, antipsychotics should be used only with great caution after a careful risk-benefit assessment. Moreover, treatment approaches which can help to minimize antipsychotic medication or even administer them only selectively are of increasing importance.
Collapse
|
19
|
Haloperidol and loss of gray matter in schizophrenia: Reconciling meta-analytical results with molecular pharmacology. Psychiatry Res 2016; 235:209-10. [PMID: 26724909 DOI: 10.1016/j.psychres.2015.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/09/2015] [Indexed: 11/20/2022]
|
20
|
Guo JY, Huhtaniska S, Miettunen J, Jääskeläinen E, Kiviniemi V, Nikkinen J, Moilanen J, Haapea M, Mäki P, Jones PB, Veijola J, Isohanni M, Murray GK. Longitudinal regional brain volume loss in schizophrenia: Relationship to antipsychotic medication and change in social function. Schizophr Res 2015; 168:297-304. [PMID: 26189075 PMCID: PMC4604250 DOI: 10.1016/j.schres.2015.06.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/01/2015] [Accepted: 06/18/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Progressive brain volume loss in schizophrenia has been reported in previous studies but its cause and regional distribution remains unclear. We investigated progressive regional brain reductions in schizophrenia and correlations with potential mediators. METHOD Participants were drawn from the Northern Finland Birth Cohort 1966. A total of 33 schizophrenia individuals and 71 controls were MRI scanned at baseline (mean age=34.7, SD=0.77) and at follow-up (mean age=43.4, SD=0.44). Regional brain change differences and associations with clinical mediators were examined using FSL voxelwise SIENA. RESULTS Schizophrenia cases exhibited greater progressive brain reductions than controls, mainly in the frontal and temporal lobes. The degree of periventricular brain volume reductions were predicted by antipsychotic medication exposure at the fourth ventricular edge and by the number of days in hospital between the scans (a proxy measure of relapse duration) at the thalamic ventricular border. Decline in social and occupational functioning was associated with right supramarginal gyrus reduction. CONCLUSION Our findings are consistent with the possibility that antipsychotic medication exposure and time spent in relapse partially explain progressive brain reductions in schizophrenia. However, residual confounding could also account for the findings and caution must be applied before drawing causal inferences from associations demonstrated in observational studies of modest size. Less progressive brain volume loss in schizophrenia may indicate better preserved social and occupational functions.
Collapse
Affiliation(s)
- Joyce Y. Guo
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Box 189 CB2 0QQ, United Kingdom,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Sanna Huhtaniska
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jouko Miettunen
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland,Institute of Health Sciences, University of Oulu, Oulu, Finland,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Erika Jääskeläinen
- Institute of Health Sciences, University of Oulu, Oulu, Finland,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Juha Nikkinen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Jani Moilanen
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Marianne Haapea
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Pirjo Mäki
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland,Department of Psychiatry, Oulu University Hospital, Oulu, Finland,Department of Psychiatry, Länsi-Pohja Healthcare District, Finland,Department of Psychiatry, the Middle Ostrobothnia Central Hospital, Kiuru, Finland,Mental Health Services, Joint Municipal Authority of Wellbeing in Raahe District, Finland,Mental Health Services, Basic Health Care District of Kallio, Finland,Visala Hospital, the Northern Ostrobothnia Hospital District, Finland
| | - Peter B. Jones
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Box 189 CB2 0QQ, United Kingdom
| | - Juha Veijola
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Matti Isohanni
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Graham K. Murray
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Box 189 CB2 0QQ, United Kingdom,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 0SZ, United Kingdom,Corresponding author at: Department of Psychiatry, University of Cambridge, Box 189 Cambridge Biomedical Campus, CB2 0QQ, United Kingdom. Tel.: + 44 1223769499.
| |
Collapse
|
21
|
Vita A, De Peri L, Deste G, Barlati S, Sacchetti E. The Effect of Antipsychotic Treatment on Cortical Gray Matter Changes in Schizophrenia: Does the Class Matter? A Meta-analysis and Meta-regression of Longitudinal Magnetic Resonance Imaging Studies. Biol Psychiatry 2015; 78:403-12. [PMID: 25802081 DOI: 10.1016/j.biopsych.2015.02.008] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/01/2015] [Accepted: 02/05/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Deficits in cortical gray matter (GM) have been found in patients with schizophrenia, with evidence of progression over time. The aim of this study was to determine the role of potential moderators of such changes, in particular of the amount and type of antipsychotic medication intake. METHODS Longitudinal magnetic resonance imaging studies comparing changes in the volume of cortical GM over time between patients with schizophrenia and healthy control subjects published between January 1, 1983, and March 31, 2014, were analyzed. Hedges' g was calculated for each study and volume changes from baseline to follow-up were analyzed. Meta-regression statistics were applied to investigate the role of potential moderators of the effect sizes. RESULTS Eighteen studies involving 1155 patients with schizophrenia and 911 healthy control subjects were included. Over time, patients with schizophrenia showed a significantly higher loss of total cortical GM volume. This was related to cumulative antipsychotic intake during the interval between scans in the whole study sample. Subgroup meta-analyses of studies on patients treated with second-generation antipsychotics and first-generation antipsychotics revealed a different and contrasting moderating role of medication intake on cortical GM changes: more progressive GM loss correlated with higher mean daily antipsychotic intake in patients treated with at least one first-generation antipsychotic and less progressive GM loss with higher mean daily antipsychotic intake in patients treated only with second-generation antipsychotics. CONCLUSIONS These findings add useful information to the controversial debate on the brain structural effects of antipsychotic medication and may have both clinical relevance and theoretical implications.
Collapse
Affiliation(s)
- Antonio Vita
- University of Brescia, School of Medicine; Department of Mental Health, Spedali Civili Hospital, Brescia, Italy.
| | | | - Giacomo Deste
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Emilio Sacchetti
- University of Brescia, School of Medicine; Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| |
Collapse
|
22
|
Ahmed M, Cannon DM, Scanlon C, Holleran L, Schmidt H, McFarland J, Langan C, McCarthy P, Barker GJ, Hallahan B, McDonald C. Progressive Brain Atrophy and Cortical Thinning in Schizophrenia after Commencing Clozapine Treatment. Neuropsychopharmacology 2015; 40:2409-17. [PMID: 25829144 PMCID: PMC4538355 DOI: 10.1038/npp.2015.90] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/10/2015] [Accepted: 03/10/2015] [Indexed: 01/20/2023]
Abstract
Despite evidence that clozapine may be neuroprotective, there are few longitudinal magnetic resonance imaging (MRI) studies that have specifically explored an association between commencement of clozapine treatment for schizophrenia and changes in regional brain volume or cortical thickness. A total of 33 patients with treatment-resistant schizophrenia and 31 healthy controls matched for age and gender underwent structural MRI brain scans at baseline and 6-9 months after commencing clozapine. MRI images were analyzed using SIENA (Structural Image Evaluation, using Normalization, of Atrophy) and FreeSurfer to investigate changes over time in brain volume and cortical thickness respectively. Significantly greater reductions in volume were detected in the right and left medial prefrontal cortex and in the periventricular area in the patient group regardless of treatment response. Widespread further cortical thinning was observed in patients compared with healthy controls. The majority of patients improved symptomatically and functionally over the study period, and patients who improved were more likely to have less cortical thinning of the left medial frontal cortex and the right middle temporal cortex. These findings demonstrate on-going reductions in brain volume and progressive cortical thinning in patients with schizophrenia who are switched to clozapine treatment. It is possible that this gray matter loss reflects a progressive disease process irrespective of medication use or that it is contributed to by switching to clozapine treatment. The clinical improvement of most patients indicates that antipsychotic-related gray matter volume loss may not necessarily be harmful or reflect neurotoxicity.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Cathy Scanlon
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Laurena Holleran
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Heike Schmidt
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - John McFarland
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Camilla Langan
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Peter McCarthy
- Department of Radiology, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Gareth J Barker
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Brian Hallahan
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
23
|
Yang C, Wu S, Lu W, Bai Y, Gao H. Brain differences in first-episode schizophrenia treated with quetiapine: a deformation-based morphometric study. Psychopharmacology (Berl) 2015; 232:369-77. [PMID: 25080851 DOI: 10.1007/s00213-014-3670-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 06/24/2014] [Indexed: 02/02/2023]
Abstract
RATIONALE With the development of various imaging techniques, the deformation-based morphometry (DBM) method provides an objective automatic examination of the whole brain. OBJECTIVES This study aims to assess the abnormalities in the brains of first-episode schizophrenia (FES) patients treated with quetiapine using another advanced nonrigid registration method, hierarchical attribute matching mechanism for elastic registration, through the application of DBM in the entire brain. METHODS Thirty FES patients and 30 normal controls were grouped by age and handedness and subjected to magnetic resonance imaging examination. The patients had relatively short durations of untreated psychosis (DUP; 6.4 ± 5.2 months), and only a single antipsychotic drug, quetiapine (dosage, 200 ± 75 mg), was used for treatment. Statistically significant changes in regional volume were analyzed via DBM. In addition, a voxel-wise analysis of correlations between the duration of treatment or dosage and volume was also performed. RESULTS Compared with control subjects, FES patients showed contracted regions located in Brodmann area (BA) 42 and BA 19. By contrast, expanded regions were observed in BA 38, BA 21, BA 6 and 8, and left cerebellum. A negative correlation was observed between dosage and volume in the hippocampus, while a positive correlation was found in the caudate. Meanwhile, a negative correlation was observed between duration of treatment and volume in BA 38. CONCLUSION Both regional volume reductions and increases were detected in the brains of FES patients treated with quetiapine compared with healthy control subjects. Such differences may be partially relevant to dosage and treatment duration in clinic.
Collapse
Affiliation(s)
- Chunlan Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100022, China
| | | | | | | | | |
Collapse
|
24
|
Roiz-Santiáñez R, Ayesa-Arriola R, Tordesillas-Gutiérrez D, Ortiz-García de la Foz V, Pérez-Iglesias R, Pazos A, Sánchez E, Crespo-Facorro B. Three-year longitudinal population-based volumetric MRI study in first-episode schizophrenia spectrum patients. Psychol Med 2014; 44:1591-1604. [PMID: 24067252 DOI: 10.1017/s0033291713002365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Schizophrenia is a chronic brain disorder associated with structural brain abnormalities already present at the onset of the illness. Whether these brain abnormalities might progress over time is still under debate. METHOD The aim of this study was to investigate likely progressive brain volume changes in schizophrenia during the first 3 years after initiating antipsychotic treatment. The study included 109 patients with a schizophrenia spectrum disorder and a control group of 76 healthy subjects. Subjects received detailed clinical and cognitive assessment and structural magnetic resonance imaging (MRI) at regular time points during a 3-year follow-up period. The effects of brain changes on cognitive and clinical variables were examined along with the impact of potential confounding factors. RESULTS Overall, patients and healthy controls exhibited a similar pattern of brain volume changes. However, patients showed a significant lower progressive decrease in the volume of the caudate nucleus than control subjects (F 1,307.2 = 2.12, p = 0.035), with healthy subjects showing a greater reduction than patients during the follow-up period. Clinical and cognitive outcomes were not associated with progressive brain volume changes during the early years of the illness. CONCLUSIONS Brain volume abnormalities that have been consistently observed at the onset of non-affective psychosis may not inevitably progress, at least over the first years of the illness. Taking together with clinical and cognitive longitudinal data, our findings, showing a lack of brain deterioration in a substantial number of individuals, suggest a less pessimistic and more reassuring perception of the illness.
Collapse
Affiliation(s)
- R Roiz-Santiáñez
- Marqués de Valdecilla University Hospital, IFIMAV, Santander, Spain
| | - R Ayesa-Arriola
- Marqués de Valdecilla University Hospital, IFIMAV, Santander, Spain
| | | | | | - R Pérez-Iglesias
- Marqués de Valdecilla University Hospital, IFIMAV, Santander, Spain
| | - A Pazos
- Marqués de Valdecilla University Hospital, IFIMAV, Santander, Spain
| | - E Sánchez
- Department of Neuroradiology, Marqués de Valdecilla University Hospital, Santander, Spain
| | - B Crespo-Facorro
- Marqués de Valdecilla University Hospital, IFIMAV, Santander, Spain
| |
Collapse
|
25
|
Ebdrup BH, Nørbak H, Borgwardt S, Glenthøj B. Volumetric changes in the basal ganglia after antipsychotic monotherapy: a systematic review. Curr Med Chem 2014; 20:438-47. [PMID: 23157636 PMCID: PMC3715891 DOI: 10.2174/0929867311320030015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/09/2012] [Accepted: 09/26/2012] [Indexed: 11/22/2022]
Abstract
Introduction: Exposure to antipsychotic medication has been extensively associated with structural brain changes in the basal ganglia (BG). Traditionally antipsychotics have been divided into first and second generation antipsychotics (FGAs and SGAs) however, the validity of this classification has become increasingly controversial. To address if specific antipsychotics induce differential effects on BG volumes or whether volumetric effects are explained by FGA or SGA classification, we reviewed longitudinal structural magnetic resonance imaging (MRI) studies investigating effects of antipsychotic monotherapy. Material and Methods: We systematically searched PubMed for longitudinal MRI studies of patients with schizophrenia or non-affective psychosis who had undergone a period of antipsychotic monotherapy. We used specific, predefined search terms and extracted studies were hand searched for additional studies. Results: We identified 13 studies published in the period from 1996 to 2011. Overall six compounds (two classified as FGAs and four as SGAs) have been investigated: haloperidol, zuclophentixol, risperidone, olanzapine, clozapine, and quetiapine. The follow-up period ranged from 3-24 months. Unexpectedly, no studies found that specific FGAs induce significant BG volume increases. Conversely, both volumetric increases and decreases in the BG have been associated with SGA monotherapy. Discussion: Induction of striatal volume increases is not a specific feature of FGAs. Except for clozapine treatment in chronic patients, volume reductions are not restricted to specific SGAs. The current review adds brain structural support to the notion that antipsychotics should no longer be classified as either FGAs or SGAs. Future clinical MRI studies should strive to elucidate effects of specific antipsychotic drugs.
Collapse
Affiliation(s)
- B H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research, CNSR & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Psychiatric Center Glostrup, University Hospital DK-Glostrup, Denmark.
| | | | | | | |
Collapse
|
26
|
Ayesa-Arriola R, Roiz-Santiáñez R, Pérez-Iglesias R, Ferro A, Sainz J, Crespo-Facorro B. Neuroanatomical Differences between First-Episode Psychosis Patients with and without Neurocognitive Deficit: A 3-Year Longitudinal Study. Front Psychiatry 2013; 4:134. [PMID: 24146655 PMCID: PMC3797976 DOI: 10.3389/fpsyt.2013.00134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The course of cognitive function in first-episode psychosis (FEP) patients suggests that some individuals are normal or near normal whereas some cases present a marked decline. The goal of the present longitudinal study was to identify neuroanatomical differences between deficit and non-deficit patients. METHODS Fifty nine FEP patients with neuroimage and neurocognitive information were studied at baseline and 3 year after illness onset. A global cognitive function score was used to classify deficit and non-deficit patients at baseline. Analysis of covariances and repeated-measures analysis were performed to evaluate differences in brain volumes. Age, premorbid IQ, and intracranial volume were used as covariates. We examined only volumes of whole brain, whole brain gray and white matter, cortical CSF and lateral ventricles, lobular volumes of gray and white matter, and subcortical (caudate nucleus and thalamus) regions. RESULTS At illness onset 50.8% of patients presented global cognitive deficit. There were no significant differences between neuropsychological subgroups in any of the brain regions studied at baseline [all F(1, 54) ≤ 3.42; all p ≥ 0.07] and follow-up [all F(1, 54) ≤ 3.43; all p ≥ 0.07] time points. There was a significant time by group interaction for the parietal tissue volume [F(1, 54) = 4.97, p = 0.030] and the total gray matter volume [F(1, 54) = 4.31, p = 0.042], with the deficit group showing a greater volume decrease. CONCLUSION Our results did not confirm the presence of significant morphometric differences in the brain regions evaluated between cognitively impaired and cognitively preserved schizophrenia patients at the early stages of the illness. However, there were significant time by group interactions for the parietal tissue volume and the total gray matter volume during the 3-year follow-up period, which might indicate that cognitive deficit in schizophrenia would be associated with progressive brain volume loss.
Collapse
Affiliation(s)
- Rosa Ayesa-Arriola
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
| | - Roberto Roiz-Santiáñez
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
| | - Rocío Pérez-Iglesias
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Psychosis Studies Department, Institute of Psychiatry, London, UK
| | - Adele Ferro
- Department of Experimental Clinical Medicine, Inter-University Center for Behavioural Neurosciences (ICBN), University of Udine, Udine, Italy
| | - Jesús Sainz
- CSIC, Spanish National Research Council, Institute of Biomedicine and Biotechnology of Cantabria, University of Cantabria, Santander, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
| |
Collapse
|
27
|
[Can long-term treatment with antipsychotic drugs lead to structural brain damage? Pro]. DER NERVENARZT 2013; 84:1117-9. [PMID: 23868706 DOI: 10.1007/s00115-013-3815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S. Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev 2013; 37:1680-91. [PMID: 23769814 PMCID: PMC3964856 DOI: 10.1016/j.neubiorev.2013.06.001] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/15/2022]
Abstract
Context Antipsychotic treatment is the first-line treatment option for schizophrenia. Individual studies suggested they can significantly affect brain structure and account for progressive brain changes observed during the illness. Objectives To quantitatively examine the effect of antipsychotics as compared to illness related factors on progressive brain changes in schizophrenia. Data sources Electronic databases were searched until April 2012. All magnetic resonance imaging studies reporting progressive brain changes in schizophrenia subjects and antipsychotic exposure were retrieved. Study selection 30 longitudinal MRI studies with antipsychotic administration in schizophrenia patients met the inclusion criteria. Data extraction Brain volumes before and after antipsychotic exposure, duration of illness, severity of psychotic symptoms as well as demographic, clinical, and methodological variables were extracted from each publication, or obtained directly from its authors. Data synthesis The overall sample was of 1046 schizophrenia patients and 780 controls for a median duration of follow-up of 72.4 weeks. At baseline, patients showed significant whole brain volume reductions and enlarged lateral ventricle (LV) volumes compared to controls. No baseline volumetric abnormalities were detected in the gray matter volumes (GMV), white matter volumes, cerebrospinal fluid and caudate nucleus. Longitudinally, there were progressive GMV decreases and LV enlargements in patients but not in controls. The GMV decreases were inversely correlated with cumulative exposure to antipsychotic treatments, while no effects were observed for duration of illness or illness severity. Conclusions Schizophrenia is characterized by progressive gray matter volume decreases and lateral ventricular volume increases. Some of these neuroanatomical alterations may be associated with antipsychotic treatment.
Collapse
Affiliation(s)
- P Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
This study sought to examine whole brain and regional gray matter (GM) phenotypes across the schizophrenia (SZ)-bipolar disorder psychosis dimension using voxel-based morphometry (VBM 8.0 with DARTEL segmentation/normalization) and semi-automated regional parcellation, FreeSurfer (FS 4.3.1/64 bit). 3T T1 MPRAGE images were acquired from 19 volunteers with schizophrenia (SZ), 16 with schizoaffective disorder (SAD), 17 with psychotic bipolar I disorder (BD-P) and 10 healthy controls (HC). Contrasted with HC, SZ showed extensive cortical GM reductions, most pronounced in fronto-temporal regions; SAD had GM reductions overlapping with SZ, albeit less extensive; and BD-P demonstrated no GM differences from HC. Within the psychosis dimension, BD-P showed larger volumes in fronto-temporal and other cortical/subcortical regions compared with SZ, whereas SAD showed intermediate GM volumes. The two volumetric methodologies, VBM and FS, revealed highly overlapping results for cortical GM, but partially divergent results for subcortical volumes (basal ganglia, amygdala). Overall, these findings suggest that individuals across the psychosis dimension show both overlapping and unique GM phenotypes: decreased GM, predominantly in fronto-temporal regions, is characteristic of SZ but not of psychotic BD-P, whereas SAD display GM deficits overlapping with SZ, albeit less extensive.
Collapse
|
30
|
Effect of antipsychotic drugs on cortical thickness. A randomized controlled one-year follow-up study of haloperidol, risperidone and olanzapine. Schizophr Res 2012; 141:22-8. [PMID: 22884754 DOI: 10.1016/j.schres.2012.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/10/2012] [Accepted: 07/21/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Imaging evidence indicates that brain alterations are primary to the full-blown onset of schizophrenia and seem to progress across time. The potential effects of antipsychotic medication on brain structure represent a key factor in understanding brain changes in psychosis. We aimed to investigate the effects of low doses of haloperidol, risperidone and olanzapine on cortical thickness. METHOD We investigated the effects of risperidone (N=16), olanzapine (N=18) and low doses of haloperidol (N=18) in cortical thickness changes during 1-year follow-up period in a large and heterogeneous sample of schizophrenia spectrum patients. The relationship between cortical thickness changes and clinical and cognitive outcome was also assessed. A group of 45 healthy volunteers was also longitudinally evaluated. Magnetic resonance imaging brain scans (1.5T) were obtained and images were analyzed by using BRAINS2. RESULTS There were no significant effects of time (F(1,47)<1.66; P>0.204), treatment group (F(2,47)<1.47; P>0.242) or group-by-time interaction (F(2,47)<1.82; P>0.174) for any of the cortical thickness variables. When the group of healthy controls was included in the analyses, it is of note that group-by-time interaction showed a significant result for the frontal lobe at trend level (F(3,81)=2.686; P=0.052). After the Bonferroni adjustment for multiple comparisons, there were no significant associations between changes in cortical thickness and clinical and cognitive outcome. CONCLUSIONS Low doses of haloperidol, risperidone, and olanzapine seem to equally affect gray matter cortical thickness, overall and lobes, at the medium-term (1 year). The clinical effectiveness of treatments was not significantly related to changes in cortical thickness.
Collapse
|
31
|
Schennach R, Riedel M, Musil R, Möller HJ. Treatment Response in First-episode Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2012; 10:78-87. [PMID: 23430971 PMCID: PMC3569147 DOI: 10.9758/cpn.2012.10.2.78] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 05/31/2012] [Indexed: 12/18/2022]
Abstract
First episode schizophrenia (FES) patients tend to be more responsive to treatment. An adequate response has been associated with a favourable long-term course in FES patients. Yet, despite the generally very favourable response profile around one quarter of the patients shows persisting symptoms of psychosis. To improve the outcome and course of psychosis great effort has emerged in identifying biological and clinical variables associated with non-response in order to identify non-responders as early as possible and adopt specific treatment strategies improving illness outcome. Different antipsychotic treatment regimens have been evaluated in terms of their efficacy in reducing symptoms of FES with psychological interventions gaining increasing importance in the treatment concept of patients suffering from their first illness episode. Therefore, aim of this review is to summarize current evidence on the response patterns, the most important predictors of response/non-response as well as on effective treatment interventions in FES patients.
Collapse
Affiliation(s)
- Rebecca Schennach
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | |
Collapse
|
32
|
One year longitudinal study of the straight gyrus morphometry in first-episode schizophrenia-spectrum patients. Psychiatry Res 2012; 202:80-3. [PMID: 22595509 DOI: 10.1016/j.pscychresns.2011.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/18/2011] [Accepted: 10/06/2011] [Indexed: 11/22/2022]
Abstract
The aim of this study was to use a region-of-interest approach with magnetic resonance imaging to examine the volume of the straight gyrus volume change in first-episode schizophrenia-spectrum patients compared with healthy subjects over a 1-year follow-up period. We did not find a differential pattern of volumetric change between the two groups.
Collapse
|
33
|
Antipsychotic induced alteration of growth and proteome of rat neural stem cells. Neurochem Res 2012; 37:1649-59. [PMID: 22528831 DOI: 10.1007/s11064-012-0768-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/19/2012] [Accepted: 03/27/2012] [Indexed: 01/19/2023]
Abstract
Neural stem cells (NSCs) play a crucial role in the development and maturation of the central nervous system and therefore have the potential to target by therapeutic agents for a wide variety of diseases including neurodegenerative and neuropsychiatric illnesses. It has been suggested that antipsychotic drugs have significant effects on NSC activities. However, the molecular mechanisms underlying antipsychotic-induced changes of NSC activities, particularly growth and protein expression, are largely unknown. NSCs were treated with either haloperidol (HD; 3 μM), risperidone (RS; 3 μM) or vehicle (DMSO) for 96 h. Protein expression profiles were studied through a proteomics approach. RS promoted and HD inhibited the growth of NSCs. Proteomics analysis revealed that 15 protein spots identified as 12 unique proteins in HD-, and 20 protein spots identified as 14 proteins in RS-treated groups, were differentially expressed relative to control. When these identified proteins were compared between the two drug-treated groups, 2 proteins overlapped leaving 10 HD-specific and 12 RS-specific proteins. Further comparison of the overlapped altered proteins of 96 h treatment with the neuroleptics-induced overlapped proteins at 24 h time interval (Kashem et al. [40] in Neurochem Int 55:558-565, 2009) suggested that overlapping altered proteins expression at 24 h was decreased (17 proteins i.e. 53 % of total expressed proteins) with the increase of time (96 h) (2 proteins; 8 % of total expressed proteins). This result indicated that at early stage both drugs showed common mode of action but the action was opposite to each other while administration was prolonged. The opposite morphological pattern of cellular growth at 96 h has been associated with dominant expression of oxidative stress and apoptosis cascades in HD, and activation of growth regulating metabolic pathways in RS treated cells. These results may explain RS induced repairing of neural damage caused by a wide variety of neural diseases including schizophrenia.
Collapse
|
34
|
Piontkewitz Y, Arad M, Weiner I. Tracing the development of psychosis and its prevention: what can be learned from animal models. Neuropharmacology 2011; 62:1273-89. [PMID: 21703648 DOI: 10.1016/j.neuropharm.2011.04.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder manifested symptomatically after puberty whose pharmacotherapy remains unsatisfactory. In recent years, longitudinal structural neuroimaging studies have revealed that neuroanatomical aberrations occur in this disorder and in fact precede symptom onset, raising the exciting possibility that SCZ can be prevented. There is some evidence that treatment with atypical antipsychotic drugs (APDs) prior to the development of the full clinical phenotype reduces the risk of transition to psychosis, but results remain controversial. It remains unknown whether progressive structural brain aberrations can be halted. Given the diagnostic, ethical, clinical and methodological problems of pharmacological and imaging studies in patients, getting such information remains a major challenge. Animal neurodevelopmental models of SCZ are invaluable for investigating such questions because they capture the notion that the effects of early brain damage are progressive. In recent years, data derived from such models have converged on key neuropathological and behavioral deficits documented in SCZ attesting to their strong validity, and making them ideal tools for evaluating progression of pathology following in-utero insults as well as its prevention. We review here our recent studies that use longitudinal in vivo structural imaging to achieve this aim in the prenatal immune stimulation model that is based on the association of prenatal infection and increased risk for SCZ. Pregnant rats were injected on gestational day 15 with the viral mimic polyriboinosinic-polyribocytidylic acid (poly I:C) or saline. Male and female offspring were imaged and tested behaviorally on postnatal days (PNDs) 35, 46, 56, 70 and 90. In other experiments, offspring of poly I:C- and saline-treated dams received the atypical antipsychotic drugs (APDs) clozapine or risperidone in two developmental windows: PND 34-47 and PND 48-61, and underwent behavioral testing and imaging at adulthood. Prenatal poly I:C-induced interference with fetal brain development led to aberrant postnatal brain development as manifested in structural abnormalities in the hippocampus, the striatum, the prefrontal cortex and lateral ventricles (LV), as seen in SCZ. The specific trajectories were region-, age- and sex-specific, with females having delayed onset of pathology compared to males. Brain pathology was accompanied by development of behavioral abnormalities phenotypic of SCZ, attentional deficit and hypersensitivity to amphetamine, with same sex difference. Hippocampal volume loss and LV volume expansion as well as behavioral abnormalities were prevented in the offspring of poly I:C mothers who received clozapine or risperidone during the asymptomatic period of adolescence (PND 34-47). Administration at a later window, PNDs 48-61, exerted sex-, region- and drug- specific effects. Our data show that prenatal insult leads to progressive postnatal brain pathology, which gradually gives rise to "symptoms"; that treatment with atypical APDs can prevent both brain and behavioral pathology; and that the earlier the intervention, the more pathological outcomes can be prevented.
Collapse
Affiliation(s)
- Yael Piontkewitz
- Department of Psychology, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
35
|
Brain volume changes after withdrawal of atypical antipsychotics in patients with first-episode schizophrenia. J Clin Psychopharmacol 2011; 31:146-53. [PMID: 21346618 DOI: 10.1097/jcp.0b013e31820e3f58] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The influence of antipsychotic medication on brain morphology in schizophrenia may confound interpretation of brain changes over time. We aimed to assess the effect of discontinuation of atypical antipsychotic medication on change in brain volume in patients. Sixteen remitted, stable patients with first-episode schizophrenia, schizoaffective or schizophreniform disorder and 20 healthy controls were included. Two magnetic resonance imaging brain scans were obtained from all subjects with a 1-year interval. The patients either discontinued (n = 8) their atypical antipsychotic medication (olanzapine, risperidone, or quetiapine) or did not (n = 8) discontinue during the follow-up period. Intracranial volume and volumes of total brain, cerebral gray and white matter, cerebellum, third and lateral ventricle, nucleus caudatus, nucleus accumbens, and putamen were obtained. Multiple linear regression analyses were used to assess main effects for group (patient-control) and discontinuation (yes-no) for brain volume (change) while correcting for age, sex, and intracranial volume. Decrease in cerebral gray matter and caudate nucleus volume over time was significantly more pronounced in patients relative to controls. Our data suggest decreases in the nucleus accumbens and putamen volumes during the interval in patients who discontinued antipsychotic medication, whereas increases were found in patients who continued their antipsychotics. We confirmed earlier findings of excessive gray matter volume decrements in patients with schizophrenia compared with normal controls. We found evidence suggestive of decreasing volumes of the putamen and nucleus accumbens over time after discontinuation of medication. This might suggest that discontinuation reverses effects of atypical medication.
Collapse
|
36
|
Progressive striatal and hippocampal volume loss in initially antipsychotic-naive, first-episode schizophrenia patients treated with quetiapine: relationship to dose and symptoms. Int J Neuropsychopharmacol 2011; 14:69-82. [PMID: 20701823 DOI: 10.1017/s1461145710000817] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
First-generation antipsychotics have been associated with striatal volume increases. The effects of second-generation antipsychotics (SGAs) on the striatum are unclear. Moreover, SGAs may have neuroprotective effects on the hippocampus. Dose-dependent volumetric effects of individual SGAs have scarcely been investigated. Here we investigated structural brain changes in antipsychotic-naive, first-episode schizophrenia patients after 6 months treatment with the SGA, quetiapine. We have recently reported on baseline volume reductions in the caudate nucleus and hippocampus. Baseline and follow-up T1-weighted images (3 T) from 22 patients and 28 matched healthy controls were analysed using tensor-based morphometry. Non-parametric voxel-wise group comparisons were performed. Small volume correction was employed for striatum, hippocampus and ventricles. Dose-dependent medication effects and associations with psychopathology were assessed. Patients had significant bilateral striatal and hippocampal loss over the 6-month treatment period. When compared to controls the striatal volume loss was most pronounced with low quetiapine doses and less apparent with high doses. Post-hoc analyses revealed that the striatal volume loss was most pronounced in the caudate and putamen, but not in accumbens. Conversely, hippocampal volume loss appeared more pronounced with high quetiapine doses than with low doses. Clinically, higher baseline positive symptoms were associated with more striatal and hippocampal loss over time. Although patients' ventricles did not change significantly, ventricular increases correlated with less improvement of negative symptoms. Progressive regional volume loss in quetiapine-treated, first-episode schizophrenia patients may be dose-dependent and clinically relevant. The mechanisms underlying progressive brain changes, specific antipsychotic compounds and clinical symptoms warrant further research.
Collapse
|
37
|
Roiz-Santiáñez R, Pérez-Iglesias R, Ortiz-García de la Foz V, Tordesillas-Gutiérrez D, Mata I, Marco de Lucas E, Pazos A, Tabarés-Seisdedos R, Vázquez-Barquero JL, Crespo-Facorro B. Straight gyrus morphology in first-episode schizophrenia-spectrum patients. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:84-90. [PMID: 20832444 DOI: 10.1016/j.pnpbp.2010.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/18/2010] [Accepted: 09/03/2010] [Indexed: 11/26/2022]
Abstract
Previous studies on the straight gyrus have shown inconsistent results in first-episode schizophrenia. In the present study, straight gyrus morphometry in first-episode schizophrenia-spectrum patients was investigated by using a region-of-interest methodology. 141 schizophrenia-spectrum patients and 81 healthy subjects were studied. Magnetic resonance imaging brain scans (1.5 T) were obtained and images were analyzed by using BRAINS2. The main resulting measurements were straight gyrus gray matter volume and cortical surface area. Patients with schizophrenia-spectrum disorders did not significantly differ from controls in the straight gyrus morphometric variables evaluated (p>0.115). There was neither significant group-by-side (p>0.199) or group-by-gender interaction (p>0.096). Clinical variables were not significantly related with straight gyrus morphology. Our results, based on a large and representative sample, do not confirm the presence of significant straight gyrus morphometric anomalies in schizophrenia-spectrum disorders, after controlling for potential confounding variables.
Collapse
Affiliation(s)
- Roberto Roiz-Santiáñez
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wüstenberg T, Begemann M, Bartels C, Gefeller O, Stawicki S, Hinze-Selch D, Mohr A, Falkai P, Aldenhoff JB, Knauth M, Nave KA, Ehrenreich H. Recombinant human erythropoietin delays loss of gray matter in chronic schizophrenia. Mol Psychiatry 2011; 16:26-36, 1. [PMID: 20479759 DOI: 10.1038/mp.2010.51] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodevelopmental abnormalities together with neurodegenerative processes contribute to schizophrenia, an etiologically heterogeneous, complex disease phenotype that has been difficult to model in animals. The neurodegenerative component of schizophrenia is best documented by magnetic resonance imaging (MRI), demonstrating progressive cortical gray matter loss over time. No treatment exists to counteract this slowly proceeding atrophy. The hematopoietic growth factor erythropoietin (EPO) is neuroprotective in animals. Here, we show by voxel-based morphometry in 32 human subjects in a placebo-controlled study that weekly high-dose EPO for as little as 3 months halts the progressive atrophy in brain areas typically affected in schizophrenia, including hippocampus, amygdala, nucleus accumbens, and several neocortical areas. Specifically, gray matter protection is highly associated with improvement in attention and memory functions. These findings suggest that a neuroprotective strategy is effective against common pathophysiological features of schizophrenic patients, and strongly encourage follow-up studies to optimize EPO treatment dose and duration.
Collapse
Affiliation(s)
- T Wüstenberg
- Department of Neuroradiology, Georg-August-University, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Baharnoori M, Bartholomeusz C, Boucher AA, Buchy L, Chaddock C, Chiliza B, Föcking M, Fornito A, Gallego JA, Hori H, Huf G, Jabbar GA, Kang SH, El Kissi Y, Merchán-Naranjo J, Modinos G, Abdel-Fadeel NA, Neubeck AK, Ng HP, Novak G, Owolabi O, Prata DP, Rao NP, Riecansky I, Smith DC, Souza RP, Thienel R, Trotman HD, Uchida H, Woodberry KA, O'Shea A, DeLisi LE. The 2nd Schizophrenia International Research Society Conference, 10-14 April 2010, Florence, Italy: summaries of oral sessions. Schizophr Res 2010; 124:e1-62. [PMID: 20934307 PMCID: PMC4182935 DOI: 10.1016/j.schres.2010.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 01/06/2023]
Abstract
The 2nd Schizophrenia International Research Society Conference, was held in Florence, Italy, April 10-15, 2010. Student travel awardees served as rapporteurs of each oral session and focused their summaries on the most significant findings that emerged from each session and the discussions that followed. The following report is a composite of these reviews. It is hoped that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research.
Collapse
Affiliation(s)
- Moogeh Baharnoori
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Montreal, Quebec, Canada H4H 1R3, phone (514) 761-6131 ext 3346,
| | - Cali Bartholomeusz
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Level 2-3, Alan Gilbert Building, 161 Barry St, Carlton South, Victoria 3053, Australia, phone +61 3 8344 1878, fax +61 3 9348 0469,
| | - Aurelie A. Boucher
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown NSW 2050, Australia, phone +61 (0)2 9351 0948, fax +61 (0)2 9351 0652,
| | - Lisa Buchy
- Douglas Hospital Research Centre, 6875 LaSalle Blvd, Verdun, Québec, Canada, H4H 1R3 phone: 514-761-6131 x 3386, fax: 514-888-4064,
| | - Christopher Chaddock
- PO67, Section of Neuroimaging, Division of Psychological Medicine, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, phone 020 7848 0919, mobile 07734 867854 fax 020 7848 0976,
| | - Bonga Chiliza
- Department of Psychiatry, University of Stellenbosch, Tygerberg, 7505, South Africa, phone: +27 (0)21 9389227, fax +27 (0)21 9389738,
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland, phone +353 1 809 3857, fax +353 1 809 3741,
| | - Alex Fornito
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Downing Site, Downing St, Cambridge, UK, CB2 3EB, phone +44 (0) 1223 764670, fax +44 (0) 1223 336581,
| | - Juan A. Gallego
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd St, Glen Oaks, NY 11004, phone 718-470-8177, fax 718-343-1659,
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8502, JAPAN, phone: +81 42 341 2711; fax: +81 42 346 1744,
| | - Gisele Huf
- National Institute of Quality Control in Health - Oswaldo Cruz Foundation.Av. Brasil 4365 Manguinhos Rio de Janeiro RJ BRAZIL 21045-900, phone + 55 21 38655112, fax + 55 21 38655139,
| | - Gul A. Jabbar
- Clinical Research Coordinator, Harvard Medical School Department of Psychiatry, 940 Belmont Street 2-B, Brockton, MA 02301, office (774) 826-1624, cell (845) 981-9514, fax (774) 286-1076,
| | - Shi Hyun Kang
- Seoul National Hospital, 30-1 Junggok3-dong Gwangjin-gu, Seoul, 143-711, Korea, phone +82-2-2204-0326, fax +82-2-2204-0394,
| | - Yousri El Kissi
- Psychiatry department, Farhat Hached Hospital. Ibn Jazzar Street, 4002 Sousse. Tunisia. phone + 216 98468626, fax + 216 73226702,
| | - Jessica Merchán-Naranjo
- Adolescent Unit. Department of Psychiatry. Hospital General Universitario Gregorio Marañón. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain. C/Ibiza 43, C.P:28009, phone +34 914265005, fax +34 914265004,
| | - Gemma Modinos
- Department of Psychosis Studies (PO67), Institute of Psychiatry, King's College London, King's Health Partners, De Crespigny Park, SE5 8AF London, United Kingdo, phone +44 (0)20 78480917, fax +44 (0)20 78480976,
| | - Nashaat A.M. Abdel-Fadeel
- Minia University, Egypt, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, phone 617 953 0414, fax 617-998-5007, ,
| | - Anna-Karin Neubeck
- Project Manager at Karolinska Institute, Skinnarviksringen 12, 117 27 Stockholm, Sweden, phone +46708777908,
| | - Hsiao Piau Ng
- Singapore Bioimaging Consortium, A*STAR, Singapore; Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, phone 857-544-0192, fax 617-525-6150,
| | - Gabriela Novak
- University of Toronto, Medical Sciences Building, Room 4345, 1 King's College Circle, Toronto, Ontario, M5S 1A8, phone (416) 946-8219, fax (416) 971-2868,
| | - Olasunmbo.O. Owolabi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Science University of Ilorin, Ilorin, Nigeria, phone +2348030764811,
| | - Diana P. Prata
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK, phone +44(0)2078480917, fax +44(0)2078480976,
| | - Naren P. Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029 Karnataka, India, phone +91 9448342379,
| | - Igor Riecansky
- Address: Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia, phone +421-2-52 92 62 76, fax +421-2-52 96 85 16,
| | - Darryl C. Smith
- 3336 Mt Pleasant St. NW #2, Washington, DC 20010, phone 202.494.3892,
| | - Renan P. Souza
- Centre for Addiction and Mental Health 250 College St R31 Toronto - Ontario - Canada M5T1R8, phone +14165358501 x4883, fax +14169794666,
| | - Renate Thienel
- Postdoctoral Research Fellow, PRC Brain and Mental Health, University of Newcastle, Mc Auley Centre Level 5, Mater Hospital, Edith Street, Waratah NSW 2298, phone +61 (2) 40335636,
| | - Hanan D. Trotman
- 36 Eagle Row, Atlanta, GA 30322, phone 404-727-8384, fax 404-727-1284,
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Psychopharmacology Research Program, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan, phone +81.3.3353.1211(x62454), fax +81.3.5379.0187,
| | - Kristen A. Woodberry
- Landmark Center 2 East, 401 Park Drive, Boston, MA 02215, phone 617-998-5022, fax 617-998-5007,
| | - Anne O'Shea
- Coordinator of reports. Harvard Medical School, VA Boston Healthcare System, 940 Belmont Street, Brockton, MA 02301, phone 774-826-1374, anne_o’
| | - Lynn E. DeLisi
- VA Boston Healthcare System and Harvard Medical School, 940 Belmont Street, Brockton, MA 02301, phone 774-826-1355, fax 774-826-2721
| |
Collapse
|
40
|
Neuner I, Kellermann T, Stöcker T, Kircher T, Habel U, Shah JN, Schneider F. Amygdala hypersensitivity in response to emotional faces in Tourette's patients. World J Biol Psychiatry 2010; 11:858-72. [PMID: 20560820 DOI: 10.3109/15622975.2010.480984] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Tourette's syndrome is characterised by motor and vocal tics as well as a high level of impulsivity and emotional dysregulation. Neuroimaging studies point to structural changes of the basal ganglia, prefrontal cortex and parts of the limbic system. However, there is no link between behavioural symptoms and the structural changes in the amygdala. One aspect of daily social interaction is the perception of emotional facial expressions, closely linked to amgydala function. METHODS We therefore investigated via fMRI the implicit discrimination of six emotional facial expressions in 19 adult Tourette's patients. RESULTS In comparison to healthy control group, Tourette's patients showed significantly higher amygdala activation, especially pronounced for fearful, angry and neutral expressions. The BOLD-activity of the left amygdala correlated negatively with the personality trait extraversion. CONCLUSIONS We will discuss these findings as a result of either deficient frontal inhibition due to structural changes or a desynchronization in the interaction of the cortico-striato-thalamo-cortical network within structures of the limbic system. Our data show an altered pattern of implicit emotion discrimination and emphasize the need to consider motor and non-motor symptoms in Tourette's syndrome in the choice of both behavioural and pharmacological treatment.
Collapse
Affiliation(s)
- Irene Neuner
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
BACKGROUND People with schizophrenia are often found to have smaller brains and larger brain ventricles than normal, but the role of antipsychotic medication remains unclear. METHOD We conducted a systematic review of magnetic resonance imaging (MRI) studies. We included longitudinal studies of brain changes in patients taking antipsychotic drugs and we examined studies of antipsychotic-naive patients for comparison purposes. RESULTS Fourteen out of 26 longitudinal studies showed a decline in global brain or grey-matter volume or an increase in ventricular or cerebrospinal fluid (CSF) volume during the course of drug treatment, including the largest studies conducted. The frontal lobe was most consistently affected, but overall changes were diffuse. One large study found different degrees of volume loss with different antipsychotics, and another found that volume changes were associated with taking medication compared with taking none. Analyses of linear associations between drug exposure and brain volume changes produced mixed results. Five out of 21 studies of patients who were drug naive, or had only minimal prior treatment, showed some differences from controls in volumes of interest. No global differences were reported in three studies of drug-naive patients with long-term illness. Studies of high-risk groups have not demonstrated differences from controls in global or lobar brain volumes. CONCLUSIONS Some evidence points towards the possibility that antipsychotic drugs reduce the volume of brain matter and increase ventricular or fluid volume. Antipsychotics may contribute to the genesis of some of the abnormalities usually attributed to schizophrenia.
Collapse
Affiliation(s)
- J Moncrieff
- Department of Mental Health Sciences, University College London, UK.
| | | |
Collapse
|
42
|
Lanius RA, Brewin CR, Bremner JD, Daniels JK, Friedman MJ, Liberzon I, McFarlane A, Schnurr PP, Shin L, Stein M, Vermetten E. Does neuroimaging research examining the pathophysiology of posttraumatic stress disorder require medication-free patients? J Psychiatry Neurosci 2010; 35:80-9. [PMID: 20184804 PMCID: PMC2834789 DOI: 10.1503/jpn.090047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In an attempt to avoid unknown influence, most neuroimaging studies examining the pathophysiology of posttraumatic stress disorder (PTSD) exclude patients taking medications. Here we review the empirical evidence for relevant medications having a confounding effect on task performance or cerebral blood flow (CBF) in this population. The evidence for potentially confounding effects of psychotherapy in PTSD are also discussed. METHODS The literature that we reviewed was obtained through a PubMed search from 1980 to 2009 using the search terms posttraumatic stress disorder, PTSD, psychotropic medications, neuroimaging, functional magnetic resonance imaging, positron emission tomography, cerebral blood flow, CBF, serotonin-specific reuptake blocker, benzodiazepine, ketamine, methamphetamine, lamotrigine and atypical antipsychotic agents. RESULTS The empirical evidence for relevant medications having a confounding effect on task performance or CBF in relevant areas remains sparse for most psychotropic medications among patients with PTSD. However, considerable evidence is accumulating for 2 of the most commonly prescribed medication classes (serotonin-specific reuptake inhibitors and benzodiazepines) in healthy controls. Compelling data for the potentially confounding effects on brain areas relevant to PTSD for psychotherapeutic interventions are also accumulating. CONCLUSION Neuroimaging studies examining the pathophysiology of PTSD should ideally recruit both medicated (assuming that the medication treatment has not resulted in the remission of symptoms) and unmedicated participants, to allow the findings to be generalized with greater confidence to the entire population of patients with PTSD. More research is needed into the independent effects of medications on task performance and CBF in regions of interest in PTSD. Neuroimaging studies should also take into account whether patients are currently engaged in psychotherapeutic treatment.
Collapse
Affiliation(s)
- Ruth A. Lanius
- Correspondence to: Dr. R.A. Lanius, Department of Psychiatry, University of Western Ontario, 339 Windermere Rd., PO Box 5339, London ON N6A 5A5; fax 519 663-3927;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ebdrup BH, Glenthøj B, Rasmussen H, Aggernaes B, Langkilde AR, Paulson OB, Lublin H, Skimminge A, Baaré W. Hippocampal and caudate volume reductions in antipsychotic-naive first-episode schizophrenia. J Psychiatry Neurosci 2010; 35:95-104. [PMID: 20184807 PMCID: PMC2834791 DOI: 10.1503/jpn.090049] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Enlarged ventricles and reduced hippocampal volume are consistently found in patients with first-episode schizophrenia. Studies investigating brain structure in antipsychotic-naive patients have generally focused on the striatum. In this study, we examined whether ventricular enlargement and hippocampal and caudate volume reductions are morphological traits of antipsychotic-naive first-episode schizophrenia. METHODS We obtained high-resolution 3-dimensional T1-weighted magnetic resonance imaging scans for 38 antipsychotic-naive first-episode schizophrenia patients and 43 matched healthy controls by use of a 3-T scanner. We warped the brain images to each other by use of a high-dimensional intersubject registration algorithm. We performed voxel-wise group comparisons with permutation tests. We performed small volume correction for the hippocampus, caudate and ventricles by use of a false discovery rate correction (p < 0.05) to control for multiple comparisons. We derived and analyzed estimates of brain structure volumes. We grouped patients as those with (n = 9) or without (n = 29) any lifetime substance abuse to examine the possible effects of substance abuse. RESULTS We found that hippocampal and caudate volumes were decreased in patients with first-episode schizophrenia. We found no ventricular enlargement, differences in global volume or significant associations between tissue volume and duration of untreated illness or psychopathology. The hippocampal volume reductions appeared to be influenced by a history of substance abuse. Exploratory analyses indicated reduced volume of the nucleus accumbens in patients with first-episode schizophrenia. LIMITATIONS This study was not a priori designed to test for differences between schizophrenia patients with or without lifetime substance abuse, and this subgroup was small. CONCLUSION Reductions in hippocampal and caudate volume may constitute morphological traits in antipsychotic-naive first-episode schizophrenia patients. However, the clinical implications of these findings are unclear. Moreover, past substance abuse may accentuate hippocampal volume reduction. Magnetic resonance imaging studies addressing the potential effects of substance abuse in antipsychotic-naive first-episode schizophrenia patients are warranted.
Collapse
Affiliation(s)
- Bjørn H. Ebdrup
- Correspondence to: Dr. B.H. Ebdrup, Center for Neuropsychiatric Schizophrenia Research, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Psychiatric Center Glostrup, University Hospital Glostrup, DK-2600 Glostrup, Denmark; fax 45 4323 4653;
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Crespo-Facorro B, Roiz-Santiáñez R, Pérez-Iglesias R, Tordesillas-Gutiérrez D, Mata I, Rodríguez-Sánchez JM, de Lucas EM, Vázquez-Barquero JL. Specific brain structural abnormalities in first-episode schizophrenia. A comparative study with patients with schizophreniform disorder, non-schizophrenic non-affective psychoses and healthy volunteers. Schizophr Res 2009; 115:191-201. [PMID: 19796919 DOI: 10.1016/j.schres.2009.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/26/2009] [Accepted: 09/07/2009] [Indexed: 12/31/2022]
Abstract
Evidence so far indicates the consistent association between brain structural abnormalities and schizophrenia already present at the early phases of the illness. This study investigates the specificity of brain structural abnormalities in schizophrenia by using region-of-interest method of volumetric analysis in a heterogeneous sample of schizophrenia spectrum patients at their first break of the illness. 225 subjects, comprising 82 schizophrenia patients, 36 schizophreniform disorder patients and 24 patients with non-schizophrenic non-affective psychoses, and 83 healthy individuals underwent a magnetic resonance imaging brain scan. Quantitative brain morphometric variables were assessed: cortical CSF, lateral ventricle, total brain tissue, white matter and cortical and subcortical gray matter volumes. The contribution of sociodemographic, cognitive and clinical characteristics was controlled. Compared with controls, schizophrenia (P=0.017) and schizophreniform disorder (P=0.023) patients showed an increase in cortical CSF volume. Schizophrenia patients had also markedly enlarged lateral ventricle volume compared to controls (P=0.026). The patients with non-schizophrenic non-affective psychoses did not significantly differ in lateral ventricle and cortical CSF volumes from controls. Compared with controls, schizophrenia and schizophreniform disorder patients demonstrated a significant decrease in total brain tissue (-1.30% and -1.12% respectively). Thalamic volume was reduced (-3.84%) in schizophrenia patients compared to controls (P=0.040). Clinical and cognitive variables were not significantly related with morphological changes. The brain changes found in patients with a first episode of schizophrenia spectrum disorders are robustly associated with the diagnoses of schizophrenia and schizophreniform disorder and are independent of relevant intervening variables.
Collapse
Affiliation(s)
- Benedicto Crespo-Facorro
- Department of Psychiatry, University Hospital Marqués de Valdecilla, CIBERSAM, School of Medicine, University of Cantabria, Santander, Spain.
| | | | | | | | | | | | | | | |
Collapse
|