1
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
2
|
Duck SA, Smith KR, Saleh MG, Jansen E, Papantoni A, Song Y, Edden RAE, Carnell S. GABA (gamma-aminobutyric acid) levels in dorsal anterior cingulate cortex are negatively associated with food motivation in a pediatric sample. Sci Rep 2024; 14:24845. [PMID: 39438541 PMCID: PMC11496509 DOI: 10.1038/s41598-024-75520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Food motivation varies between individuals, affecting body weight and risk for eating disorders. Prior neuroimaging studies in youth and adults have revealed functional and structural alterations in the anterior cingulate cortex [ACC] in those with obesity and disordered eating but have not investigated their neurochemical underpinnings. In a sample of 37 children aged 4 to 13 years old, we used Magnetic Resonance Spectroscopy [MRS] to assess levels of γ-aminobutyric acid [GABA] - the major inhibitory neurotransmitter in the human brain - quantified relative to creatine in a 27-ml voxel including the dorsal ACC. We used the CEBQ to assess trait food motivation. In analyses adjusting for age, lower GABA+/Cr levels in the dorsal ACC were associated with higher trait enjoyment of food. Higher enjoyment of food scores were in turn associated with higher energy intake during an ad libitum test meal and during a postprandial task assessing intake in the absence of hunger, and higher body weight. Our results indicate a role for GABA function in the dorsal ACC in determining individual variation in food motivation in children.
Collapse
Affiliation(s)
- Sarah Ann Duck
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muhammad G Saleh
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elena Jansen
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Afroditi Papantoni
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yulu Song
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Chen J, Wang X, Li Z, Yuan H, Wang X, Yun Y, Wu X, Yang P, Qin L. Thalamo-cortical neural mechanism of sodium salicylate-induced hyperacusis and anxiety-like behaviors. Commun Biol 2024; 7:1346. [PMID: 39420035 PMCID: PMC11487285 DOI: 10.1038/s42003-024-07040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Tinnitus has been identified as a potential contributor to anxiety. Thalamo-cortical pathway plays a crucial role in the transmission of auditory and emotional information, but its casual link to tinnitus-associated anxiety remains unclear. In this study, we explore the neural activities in the thalamus and cortex of the sodium salicylate (NaSal)-treated mice, which exhibit both hyperacusis and anxiety-like behaviors. We find an increase in gamma band oscillations (GBO) in both auditory cortex (AC) and prefrontal cortex (PFC), as well as phase-locking between cortical GBO and thalamic neural activity. These changes are attributable to a suppression of GABAergic neuron activity in thalamic reticular nucleus (TRN), and optogenetic activation of TRN reduces NaSal-induced hyperacusis and anxiety-like behaviors. The elevation of endocannabinoid (eCB)/ cannabinoid receptor 1 (CB1R) transmission in TRN contributes to the NaSal-induced abnormalities. Our results highlight the regulative role of TRN in the auditory and limbic thalamic-cortical pathways.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xueru Wang
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Zijie Li
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hui Yuan
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Yun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, China
| | - Ling Qin
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Braga JD, Komaru T, Umino M, Nagao T, Matsubara K, Egusa A, Yanaka N, Nishimura T, Kumrungsee T. Histidine-containing dipeptide deficiency links to hyperactivity and depression-like behaviors in old female mice. Biochem Biophys Res Commun 2024; 729:150361. [PMID: 38972141 DOI: 10.1016/j.bbrc.2024.150361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Carnosine, anserine, and homocarnosine are histidine-containing dipeptides (HCDs) abundant in the skeletal muscle and nervous system in mammals. To date, studies have extensively demonstrated effects of carnosine and anserine, the predominant muscular HCDs, on muscular functions and exercise performance. However, homocarnosine, the predominant brain HCD, is underexplored. Moreover, roles of homocarnosine and its related HCDs in the brain and behaviors remain poorly understood. Here, we investigated potential roles of endogenous brain homocarnosine and its related HCDs in behaviors by using carnosine synthase-1-deficient (Carns1-/-) mice. We found that old Carns1-/- mice (female 12 months old) exhibited hyperactivity- and depression-like behaviors with higher plasma corticosterone levels on light-dark transition and forced swimming tests, but had no defects in spontaneous locomotor activity, repetitive behavior, olfactory functions, and learning and memory abilities, as compared with their age-matched wild-type (WT) mice. We confirmed that homocarnosine and its related HCDs were deficient across brain areas of Carns1-/- mice. Homocarnosine deficiency exhibited small effects on its constituent γ-aminobutyric acid (GABA) in the brain, in which GABA levels in hypothalamus and olfactory bulb were higher in Carns1-/- mice than in WT mice. In WT mice, homocarnosine and GABA were highly present in hypothalamus, thalamus, and olfactory bulb, and their brain levels did not decrease in old mice when compared with younger mice (3 months old). Our present findings provide new insights into roles of homocarnosine and its related HCDs in behaviors and neurological disorders.
Collapse
Affiliation(s)
- Jason D Braga
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan; Institute of Food Science and Technology, College of Agriculture, Food, Environment and Natural Resources, Cavite State University, Indang, Cavite, 4122, Philippines
| | - Takumi Komaru
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Mitsuki Umino
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Tomoka Nagao
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Ai Egusa
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | - Noriyuki Yanaka
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Toshihide Nishimura
- Department of Food Nutrition, Kagawa Nutrition University, Saitama, 350-0214, Japan
| | - Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan; Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, 739-8527, Japan.
| |
Collapse
|
5
|
Dadi P, Pauling CW, Shrivastava A, Shah DD. Synthesis of versatile neuromodulatory molecules by a gut microbial glutamate decarboxylase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583032. [PMID: 38915512 PMCID: PMC11195143 DOI: 10.1101/2024.03.02.583032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Dysbiosis of the microbiome correlates with many neurological disorders, yet very little is known about the chemistry that controls the production of neuromodulatory molecules by gut microbes. Here, we found that an enzyme glutamate decarboxylase (BfGAD) of a gut microbe Bacteroides fragilis forms multiple neuromodulatory molecules such as γ-aminobutyric acid (GABA), hypotaurine, taurine, homotaurine, and β-alanine. We evolved BfGAD and doubled its taurine productivity. Additionally, we increased its specificity towards the substrate L-glutamate. Here, we provide a chemical strategy via which the BfGAD activity could be fine-tuned. In future, this strategy could be used to modulate the production of neuromodulatory molecules by gut microbes.
Collapse
Affiliation(s)
- Pavani Dadi
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Clint W. Pauling
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306
| | - Abhishek Shrivastava
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Dhara D. Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306
| |
Collapse
|
6
|
Saliba A, Debnath S, Tamayo I, Tumova J, Maddox M, Singh P, Fastenau C, Maity S, Lee HJ, Zhang G, Hejazi L, O'Connor JC, Fongang B, Hopp SC, Bieniek KF, Lechleiter JD, Sharma K. Quinolinic acid links kidney injury to brain toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592801. [PMID: 38766008 PMCID: PMC11100748 DOI: 10.1101/2024.05.07.592801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 ( Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a novel connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells adjacent to the ventricle in the setting of kidney failure. These findings were associated with brain inflammation and cell death. A separate mouse model of acute kidney injury also had an increase in circulating toxic tryptophan metabolites along with altered brain inflammation. Patients with advanced CKD similarly demonstrated elevated plasma kynurenine metabolites and quinolinic acid was uniquely correlated with fatigue and reduced quality of life in humans. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.
Collapse
|
7
|
Johnstone N, Cohen Kadosh K. Excitatory and inhibitory neurochemical markers of anxiety in young females. Dev Cogn Neurosci 2024; 66:101363. [PMID: 38447470 PMCID: PMC10925933 DOI: 10.1016/j.dcn.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Between the ages of 10-25 years the maturing brain is sensitive to a multitude of changes, including neurochemical variations in metabolites. Of the different metabolites, gamma-aminobutyric acid (GABA) has long been linked neurobiologically to anxiety symptomology, which begins to manifest in adolescence. To prevent persistent anxiety difficulties into adulthood, we need to understand the maturational trajectories of neurochemicals and how these relate to anxiety levels during this sensitive period. We used magnetic resonance spectroscopy in a sample of younger (aged 10-11) and older (aged 18-25) females to estimate GABA and glutamate levels in brain regions linked to emotion regulation processing, as well as a conceptually distinct control region. Within the Bayesian framework, we found that GABA increased and glutamate decreased with age, negative associations between anxiety and glutamate and GABA ratios in the dorsolateral prefrontal cortex, and a positive relationship of GABA with anxiety levels. The results support the neural over-inhibition hypothesis of anxiety based on GABAergic activity.
Collapse
Affiliation(s)
- Nicola Johnstone
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Kathrin Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
8
|
Charney M, Foster S, Shukla V, Zhao W, Jiang SH, Kozlowska K, Lin A. Neurometabolic alterations in children and adolescents with functional neurological disorder. Neuroimage Clin 2023; 41:103557. [PMID: 38219534 PMCID: PMC10825645 DOI: 10.1016/j.nicl.2023.103557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVES In vivo magnetic resonance spectroscopy (MRS) was used to investigate neurometabolic homeostasis in children with functional neurological disorder (FND) in three regions of interest: supplementary motor area (SMA), anterior default mode network (aDMN), and posterior default mode network (dDMN). Metabolites assessed included N-acetyl aspartate (NAA), a marker of neuron function; myo-inositol (mI), a glial-cell marker; choline (Cho), a membrane marker; glutamate plus glutamine (Glx), a marker of excitatory neurotransmission; γ-aminobutyric acid (GABA), a marker of inhibitor neurotransmission; and creatine (Cr), an energy marker. The relationship between excitatory (glutamate and glutamine) and inhibitory (GABA) neurotransmitter (E/I) balance was also examined. METHODS MRS data were acquired for 32 children with mixed FND (25 girls, 7 boys, aged 10.00 to 16.08 years) and 41 healthy controls of similar age using both short echo point-resolved spectroscopy (PRESS) and Mescher-Garwood point-resolved spectroscopy (MEGAPRESS) sequences in the three regions of interest. RESULTS In the SMA, children with FND had lower NAA/Cr, mI/Cr (trend level), and GABA/Cr ratios. In the aDMN, no group differences in metabolite ratios were found. In the pDMN, children with FND had lower NAA/Cr and mI/Cr (trend level) ratios. While no group differences in E/I balance were found (FND vs. controls), E/I balance in the aDMN was lower in children with functional seizures-a subgroup within the FND group. Pearson correlations found that increased arousal (indexed by higher heart rate) was associated with lower mI/Cr in the SMA and pDMN. CONCLUSIONS Our findings of multiple differences in neurometabolites in children with FND suggest dysfunction on multiple levels of the biological system: the neuron (lower NAA), the glial cell (lower mI), and inhibitory neurotransmission (lower GABA), as well as dysfunction in energy regulation in the subgroup with functional seizures.
Collapse
Affiliation(s)
- Molly Charney
- Department of Neurology, Columbia University Irving Medical Center, New York-Presbyterian, New York, NY, USA; Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sheryl Foster
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Radiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Vishwa Shukla
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wufan Zhao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sam H Jiang
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kasia Kozlowska
- Department of Psychological Medicine, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; Brain Dynamics Centre, Westmead Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| | - Alexander Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Brændholt M, Kluger DS, Varga S, Heck DH, Gross J, Allen MG. Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neurosci Biobehav Rev 2023; 152:105262. [PMID: 37271298 DOI: 10.1016/j.neubiorev.2023.105262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Breathing plays a crucial role in shaping perceptual and cognitive processes by regulating the strength and synchronisation of neural oscillations. Numerous studies have demonstrated that respiratory rhythms govern a wide range of behavioural effects across cognitive, affective, and perceptual domains. Additionally, respiratory-modulated brain oscillations have been observed in various mammalian models and across diverse frequency spectra. However, a comprehensive framework to elucidate these disparate phenomena remains elusive. In this review, we synthesise existing findings to propose a neural gradient of respiratory-modulated brain oscillations and examine recent computational models of neural oscillations to map this gradient onto a hierarchical cascade of precision-weighted prediction errors. By deciphering the computational mechanisms underlying respiratory control of these processes, we can potentially uncover new pathways for understanding the link between respiratory-brain coupling and psychiatric disorders.
Collapse
Affiliation(s)
- Malthe Brændholt
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany.
| | - Somogy Varga
- School of Culture and Society, Aarhus University, Denmark; The Centre for Philosophy of Epidemiology, Medicine and Public Health, University of Johannesburg, South Africa
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Micah G Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, UK
| |
Collapse
|
10
|
Zou ZL, Qiu J, Zhou XB, Huang YL, Wang JY, Zhou B, Zhang Y. Glutamate decarboxylase 1 gene polymorphisms are associated with respiratory symptoms in panic disorder. World J Psychiatry 2023; 13:435-443. [PMID: 37547739 PMCID: PMC10401499 DOI: 10.5498/wjp.v13.i7.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 07/17/2023] Open
Abstract
BACKGROUND Genetic factors play an important role in the pathogenesis of panic disorder (PD). However, the effect of genetic variants on PD remains controversial.
AIM To evaluate the associations between glutamate decarboxylase 1 (GAD1) gene polymorphisms and PD risk and assess the effect of GAD1 gene polymorphisms on the severity of clinical symptoms in PD.
METHODS We recruited 230 PD patients and 224 healthy controls in this study. All participants were assessed for anxiety and panic symptom severity using the Hamilton Anxiety Rating Scale (HAM-A) and Panic Disorder Severity Scale (PDSS). GAD1 gene polymorphisms (rs1978340 and rs3749034) were genotyped and assessed for allele frequencies.
RESULTS There were no significant differences between cases and controls in the genotype distributions or allele frequencies of GAD1 (rs1978340 and rs3749034). In addition, the effect of GAD1 (rs1978340 and rs3749034) on PD severity was not significant. However, regarding respiratory symptoms, patients with the GAD1 rs1978340 A/A genotype had significantly higher scores than those with the A/G or G/G genotype.
CONCLUSION Here, we showed that the A/A genotype of GAD1 rs1978340 was associated with increased severity of respiratory symptoms in patients with PD.
Collapse
Affiliation(s)
- Zhi-Li Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Jian Qiu
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Xiao-Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Yu-Lan Huang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Jin-Yu Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610000, Sichuan Province, China
| | - Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
11
|
Aderinwale A, Tolossa GB, Kim AY, Jang EH, Lee YI, Jeon HJ, Kim H, Yu HY, Jeong J. Two-channel EEG based diagnosis of panic disorder and major depressive disorder using machine learning and non-linear dynamical methods. Psychiatry Res Neuroimaging 2023; 332:111641. [PMID: 37054495 DOI: 10.1016/j.pscychresns.2023.111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
The current study aimed to investigate the possibility of rapid and accurate diagnoses of Panic disorder (PD) and Major depressive disorder (MDD) using machine learning. The support vector machine method was applied to 2-channel EEG signals from the frontal lobes (Fp1 and Fp2) of 149 participants to classify PD and MDD patients from healthy individuals using non-linear measures as features. We found significantly lower correlation dimension and Lempel-Ziv complexity in PD patients and MDD patients in the left hemisphere compared to healthy subjects at rest. Most importantly, we obtained a 90% accuracy in classifying MDD patients vs. healthy individuals, a 68% accuracy in classifying PD patients vs. controls, and a 59% classification accuracy between PD and MDD patients. In addition to demonstrating classification performance in a simplified setting, the observed differences in EEG complexity between subject groups suggest altered cortical processing present in the frontal lobes of PD patients that can be captured through non-linear measures. Overall, this study suggests that machine learning and non-linear measures using only 2-channel frontal EEGs are useful for aiding the rapid diagnosis of panic disorder and major depressive disorder.
Collapse
Affiliation(s)
- Adedoyin Aderinwale
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea; Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, South Korea
| | - Gemechu Bekele Tolossa
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea; Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Ah Young Kim
- Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, South Korea
| | - Eun Hye Jang
- Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, South Korea
| | - Yong-Il Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyewon Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Han Young Yu
- Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, South Korea.
| | - Jaeseung Jeong
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, South Korea.
| |
Collapse
|
12
|
Gu X, Dou M, Yuan M, Zhang W. Identifying novel proteins underlying loneliness by integrating GWAS summary data with human brain proteomes. Neuropsychopharmacology 2023; 48:1087-1097. [PMID: 36755143 PMCID: PMC10209215 DOI: 10.1038/s41386-023-01536-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Enduring loneliness is associated with mental disorders and physical diseases. Although genome-wide association studies (GWAS) have identified risk loci associated with loneliness, how these loci confer the risk remains largely unknown. In the current study, we aimed to investigate key proteins underlying loneliness in the brain by integrating human brain proteomes and transcriptomes with loneliness GWAS to perform a discovery proteome-wide association study (PWAS), followed by a confirmatory PWAS, transcriptome-wide association analysis (TWAS), Mendelian randomization (MR), Steigering filtering analysis and Bayesian colocalization analysis. Moreover, given the fact that loneliness is associated with mental disorders, we explored the shared genetic architecture between loneliness and mental disorders. Totally, we identified 18 genes to be associated with loneliness via their cis-regulated brain protein abundance. Eleven of the 18 genes (61.1%) were replicated in the confirmatory PWAS, and mRNA levels of 4 genes were further validated to be associated with loneliness.MR and genetic colocalization analysis further confirmed that the increased protein abundance of ALDH2 and ICA1L was protective against loneliness, while the increased protein abundance of GPX1 was a risk for developing loneliness. Furthermore, we found genetic correlations, bidirectional causal associations and overlapping phenotype-associated protein profiles between loneliness and mental disorders including major depression and schizophrenia. In summary, our findings provided clues about the brain-related molecular basis underlying loneliness, which warrants further investigation.
Collapse
Affiliation(s)
- Xiaojing Gu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
| | - Meng Dou
- Chengdu institute of computer application, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Kanishka, Jha SK. Compensatory cognition in neurological diseases and aging: A review of animal and human studies. AGING BRAIN 2023; 3:100061. [PMID: 36911258 PMCID: PMC9997140 DOI: 10.1016/j.nbas.2022.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022] Open
Abstract
Specialized individual circuits in the brain are recruited for specific functions. Interestingly, multiple neural circuitries continuously compete with each other to acquire the specialized function. However, the dominant among them compete and become the central neural network for that particular function. For example, the hippocampal principal neural circuitries are the dominant networks among many which are involved in learning processes. But, in the event of damage to the principal circuitry, many times, less dominant networks compensate for the primary network. This review highlights the psychopathologies of functional loss and the aspects of functional recuperation in the absence of the hippocampus.
Collapse
Affiliation(s)
- Kanishka
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Tongta S, Daendee S, Kalandakanond-Thongsong S. Anxiety-like behavior and GABAergic system in ovariectomized rats exposed to chronic mild stress. Physiol Behav 2023; 258:114014. [PMID: 36328075 DOI: 10.1016/j.physbeh.2022.114014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Stress or low level of estrogen could promote anxiety and depression; thus, it is of interest to investigate the combined effect of mild stress and the lack of estrogen on mental disorders by utilizing an animal model. This study was conducted to assess anxiety- and depressive- like behaviors in ovariectomized (Ovx) rats exposed to chronic mild stress (CMS) and determine the alteration in gamma-aminobutyric acid (GABA)-related transmission. Ovx rats were randomly assigned into four groups: (1) estrogen replacement (E2-NoCMS), (2) estrogen replacement and exposure to CMS (E2-CMS), (3) vehicle (VEH-NoCMS), and (4) vehicle and exposure to CMS (VEH-CMS). Following 4-week CMS, VEH groups (VEH-NoCMS and VEH-CMS) showed a similar level of anxiety-like behavior in elevated T-maze, whereas E2-CMS, VEH-NoCMS and VEH-CMS showed anxiety-like behavior in open field. The depressive-like behavior in the force swimming test tended to be affected by estrogen deprivation than CMS. The alteration of the GABAergic system as determined from the GABA level and mRNA expression of GABA-related transmission (i.e., glutamic acid decarboxylase, GABA transporter and GABAA subunits) showed that the GABA level in the amygdala and frontal cortex was affected by CMS. For mRNA expression, the mRNA profile in the amygdala and hippocampus of VEH-NoCMS and E2-CMS was the same but different from those of VEH-NoCMS and E2-CMS. In addition, compared with E2-NoCMS, the mRNA profile in the frontal cortex was similar in VEH-NoCMS, E2-CMS, and VEH-CMS. These findings indicated that the underlying mechanism of the GABAergic system was differently modified, although VEH-NoCMS and VEH-CMS showed anxiety-like behavior. The findings of this study may provide a comprehensive understanding of the modulation of the GABAergic system during estrogen deprivation under CMS, as observed in menopausal women who were daily exposed to stress.
Collapse
Affiliation(s)
- Sushawadee Tongta
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | | |
Collapse
|
15
|
Bonnekoh LM, Seidenbecher S, Knigge K, Hünecke AK, Metzger CD, Tempelmann C, Kanowski M, Kaufmann J, Meyer-Lotz G, Schlaaff K, Dobrowolny H, Tozzi L, Gescher DM, Steiner J, Kirschbaum C, Frodl T. Long-term cortisol stress response in depression and comorbid anxiety is linked with reduced N-acetylaspartate in the anterior cingulate cortex. World J Biol Psychiatry 2023; 24:34-45. [PMID: 35332851 DOI: 10.1080/15622975.2022.2058084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Major Depression (MDD) and anxiety disorders are stress-related disorders that share pathophysiological mechanisms. There is evidence for alterations of glutamate-glutamine, N-acetylaspartate (NAA) and GABA in the anterior cingulate cortex (ACC), a stress-sensitive region affected by hypothalamic-pituitary-adrenal axis (HPA). The aim was to investigate metabolic alterations in the ACC and whether hair cortisol, current stress or early life adversity predict them. METHODS We investigated 22 patients with MDD and comorbid anxiety disorder and 23 healthy controls. Proton magnetic resonance spectroscopy was performed with voxels placed in pregenual (pg) and dorsal (d) ACC in 3 T. Analysis of hair cortisol was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The N-acetylaspartate/Creatin ratio (NAA/Cr) was reduced in patients in both pgACC (p = .040) and dACC (p = .016). A significant interactive effect of diagnosis and cortisol on both pg-NAA/Cr (F = 5.00, p = .033) and d-NAA/Cr (F = 7.86, p = .009) was detected, whereby in controls cortisol was positively correlated with d-NAA/Cr (r = 0.61, p = .004). CONCLUSIONS Our results suggest a relationship between NAA metabolism in ACC and HPA axis activity as represented by long-term cortisol output.
Collapse
Affiliation(s)
- Linda M Bonnekoh
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Münster, Münster, Germany
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Katrin Knigge
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Anne-Kathrin Hünecke
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Coraline D Metzger
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Claus Tempelmann
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Sciences (CBBS), Otto von Guericke Universität Magdeburg, Magdeburg, Germany
| | - Martin Kanowski
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Konstantin Schlaaff
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Translational Psychiatry Laboratory, Otto von Guericke University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Leonardo Tozzi
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Dorothee M Gescher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University RWTH, Aachen, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Translational Psychiatry Laboratory, Otto von Guericke University, Magdeburg, Germany
| | - Clemens Kirschbaum
- Department of Psychology, Dresden University of Technology, Dresden, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Sciences (CBBS), Otto von Guericke Universität Magdeburg, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University RWTH, Aachen, Germany
| |
Collapse
|
16
|
Specific and common functional connectivity deficits in drug-free generalized anxiety disorder and panic disorder: A data-driven analysis. Psychiatry Res 2023; 319:114971. [PMID: 36459805 DOI: 10.1016/j.psychres.2022.114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022]
Abstract
Evidence of comparing neural network differences between anxiety disorder subtypes is limited, while it is crucial to reveal the pathogenesis of anxiety disorders. The present study aimed to investigate specific and common resting-state functional connectivity (FC) networks in generalized anxiety disorder (GAD), panic disorder (PD), and healthy controls (HC). We employed the gRAICAR algorithm to decompose the resting-state fMRI into independent components and align the components across 61 subjects (22 GAD, 18 PD and 21 HC). The default mode network and precuneus network exhibited GAD-specific aberrance, the anterior default mode network showed atypicality specific to PD, and the right fronto-parietal network showed aberrance common to GAD and PD. Between GAD-specific networks, FC between bilateral dorsolateral prefrontal cortex (DLPFC) was positively correlated with interoceptive sensitivity. In the common network, altered FCs between DLPFC and angular gyrus, and between orbitofrontal cortex and precuneus, were positively correlated with anxiety severity and interoceptive sensitivity. The pathological mechanism of PD could closely relate to the dysfunction of prefrontal cortex, while GAD could involve more extensive brain areas, which may be related to fear generalization.
Collapse
|
17
|
Tongta S, Daendee S, Kalandakanond-Thongsong S. Effects of estrogen receptor β or G protein-coupled receptor 30 activation on anxiety-like behaviors in relation to GABAergic transmission in stress-ovariectomized rats. Neurosci Lett 2022; 789:136885. [PMID: 36152742 DOI: 10.1016/j.neulet.2022.136885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
For mental disorders such as anxiety and depression, stress and stressful events are considered as precipitating causes that may be enhanced by estrogen variability. This condition is proven by the higher vulnerability of women than men. Despite the complexity of underlying mechanisms, the gamma-aminobutyric acid (GABA) system piques interest as its receptor contains multiple psychoactive modulatory sites including neurosteroids. Moreover, according to clinical and experimental reports, GABA-associated genes can be altered by stress and hormonal status. Therefore, this study investigated the effects of estrogen receptor β (ERβ) or G protein-coupled receptor 30 (GPR30) activation on anxiety/depression-like behaviors and the alterations in the GABA-associated gene of ovariectomized rats under chronic mild stress (CMS). Mild stressors were focused on because they represent a realistic simulation of daily life stress. In this study, ovariectomized rats were treated with vehicle, estradiol (E2), diarylpropionitrile (DPN; ERβ agonist) or G1 (GPR30 agonist) and exposed to 4-week CMS. The results showed that E2, DPN, and G1 treatments reduced anxiety-like behaviors without affecting depression-like behaviors. Concurrently, the GABA level and most GABA- and neurosteroid-associated mRNAs were altered by E2. Similar mRNA profiles were observed in DPN- and E2-administrations but not in G1 treatment. Collectively, these data suggest that estrogen exerts an anxiolytic-like action through either ERβ and/or GPR30 activation, and the modulatory effects of estrogen on GABAergic system are likely to be modulated through ERβ. The findings of this study therefore further provide insights into the roles of estrogen and daily mild stressors in GABA-related activity and behavioral responses, especially anxiety.
Collapse
Affiliation(s)
- Sushawadee Tongta
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | | |
Collapse
|
18
|
Steinberg SN, Tedla NB, Hecht E, Robins DL, King TZ. White matter pathways associated with empathy in females: A DTI investigation. Brain Cogn 2022; 162:105902. [PMID: 36007350 DOI: 10.1016/j.bandc.2022.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
Empathy is a component of social cognition that allows us to understand, perceive, experience, and respond to the emotional state of others. In this study, we seek to build on previous research that suggests that sex and hormone levels may impact white matter microstructure. These white matter microstructural differences may influence social cognition. We examine the fractional anisotropy (FA) of white matter pathways associated with the complex human process of empathy in healthy young adult females during the self-reported luteal phase of their menstrual cycle. We used tract-based spatial statistics to perform statistical comparisons of FA and conducted multiple linear regression analysis to examine the strength of association between white matter FA and scores on the Empathy Quotient (EQ), a self-report questionnaire in which individuals report how much they agree or disagree with 60 statements pertaining to their empathic tendencies. Results identified a significant negative relationship between EQ scores and FA within five clusters of white matter: in the left forceps minor/body of the corpus callosum, left corticospinal tract, intraparietal sulcus/primary somatosensory cortex, superior longitudinal fasciculus, and right inferior fronto-occipital fasciculus/forceps minor. These consistent findings across clusters suggest that lower self-reported empathy is related to higher FA across healthy young females in specific white matter regions during the menstrual luteal phase. Future research should seek to examine if self-reported empathy varies across the menstrual cycle, using blood samples to confirm cycle phase and hormone levels.
Collapse
Affiliation(s)
| | - Neami B Tedla
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Erin Hecht
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Diana L Robins
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
19
|
Prefrontal cortical circuits in anxiety and fear: an overview. Front Med 2022; 16:518-539. [PMID: 35943704 DOI: 10.1007/s11684-022-0941-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/06/2022] [Indexed: 11/04/2022]
Abstract
Pathological anxiety is among the most difficult neuropsychiatric diseases to treat pharmacologically, and it represents a major societal problem. Studies have implicated structural changes within the prefrontal cortex (PFC) and functional changes in the communication of the PFC with distal brain structures in anxiety disorders. Treatments that affect the activity of the PFC, including cognitive therapies and transcranial magnetic stimulation, reverse anxiety- and fear-associated circuit abnormalities through mechanisms that remain largely unclear. While the subjective experience of a rodent cannot be precisely determined, rodent models hold great promise in dissecting well-conserved circuits. Newly developed genetic and viral tools and optogenetic and chemogenetic techniques have revealed the intricacies of neural circuits underlying anxiety and fear by allowing direct examination of hypotheses drawn from existing psychological concepts. This review focuses on studies that have used these circuit-based approaches to gain a more detailed, more comprehensive, and more integrated view on how the PFC governs anxiety and fear and orchestrates adaptive defensive behaviors to hopefully provide a roadmap for the future development of therapies for pathological anxiety.
Collapse
|
20
|
Wu H, Zhong Y, Xu H, Ding H, Yuan S, Wu Y, Liu G, Liu N, Wang C. Glutamic Acid Decarboxylase 1 Gene Methylation and Panic Disorder Severity: Making the Connection by Brain Gray Matter Volume. Front Psychiatry 2022; 13:853613. [PMID: 35686186 PMCID: PMC9170964 DOI: 10.3389/fpsyt.2022.853613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE This study aimed to test the hypothesis that the relationship between glutamic acid decarboxylase (GAD) 1 gene methylation and severity of clinical symptoms of panic disorder (PD) is mediated by the effect of GAD1 gene methylation on gray matter volume (GMV) and the effect of GMV on PD. METHODS Panic disorder (n = 24) patients were recruited consecutively from the Affiliated Brain Hospital of Nanjing Medical University through outpatient and public advertising, eligible healthy controls (HCs) (n = 22) were recruited from public advertising. We compared GMV and GAD1 gene methylation in PD and HCs to estimate the differences, and on the basis of the relationship between gray matter volumes and GAD1 gene methylation in PD patients was evaluated, the role of GMV as a mediator of GAD1 gene methylation and PD clinical symptoms was analyzed. RESULTS Panic disorder patients had significantly lower methylation in the GAD1 promoter region on Cytosine-phosphate-guanine (CPG) 7 than HCs (t = 2.380, p = 0.021). Pearson correlation analysis found a significant negative association between cg171674146 (cg12) site and clinical severity (n = 24, r = -0.456, p = 0.025). Compared to HCs, patients with PD had decreased gray matter volumes in several brain regions, which were also associated with PD severity. Left postcentral gyrus (PoCG) GMV mediated the association between cg12 methylation and PD severity, and there was a significant mediation effect of right angular gyrus (ANG) gray matter volumes on the relationship between cg12 methylation and PD severity. LIMITATION No direct results can be derived for methylation patterns in different brain regions; the study is cross-sectional; relatively small size.
Collapse
Affiliation(s)
- Huiqin Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shiting Yuan
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| | - Gang Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Na Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Kang D, Hesam-Shariati N, McAuley JH, Alam M, Trost Z, Rae CD, Gustin SM. Disruption to normal excitatory and inhibitory function within the medial prefrontal cortex in people with chronic pain. Eur J Pain 2021; 25:2242-2256. [PMID: 34242465 DOI: 10.1002/ejp.1838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Growing evidence indicates a link between changes in the medial prefrontal cortex and the pathophysiology of chronic pain. In particular, chronic pain is associated with altered medial prefrontal anatomy and biochemistry. Due to the comorbid affective disorders seen across all pain conditions, the medial prefrontal cortex is a region of significance as it is involved in emotional processing. We have recently reported that a decrease in medial prefrontal N-acetylaspartate and glutamate is associated with increased emotional dysregulation, indicating there are neurotransmitter imbalances in chronic pain. Therefore, we compared medial prefrontal neurochemistry in 24 people with chronic pain conditions to 24 age and sex-matched healthy controls with no history of chronic pain. METHOD GABA-edited MEGA-PRESS was used to measure GABA+ levels, and short TE PRESS was used to measure glutamate levels in the medial prefrontal cortex. Psychometric measures regarding pain intensity a week before scanning, during the scan and the total duration of chronic pain, were also recorded and compared to measured GABA+ and glutamate levels. RESULTS This study reveals that the presence of chronic pain is associated with significant decreases in medial prefrontal GABA+ and glutamate. These findings support the hypothesis that chronic pain is associated with altered medial prefrontal biochemistry. CONCLUSION The dysregulation of glutamatergic and GABAergic neurotransmitter systems supports a model of disinhibition of chronic pain, which may play a key role in both the experience of persistent pain and its associated affective disturbances. SIGNIFICANCE This study reveals a significant reduction in γ-aminobutyric acid (GABA+ ) and glutamate within the medial prefrontal cortex in chronic pain sufferers. While the current findings should be considered with reference to a small sample size, the disruption to normal excitatory and inhibitory medial prefrontal cortex function may be key in the development and maintenance of chronic pain and comorbid mental health disorders.
Collapse
Affiliation(s)
- David Kang
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Negin Hesam-Shariati
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia.,School of Psychology, University of New South, Sydney, NSW, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia.,School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Monzurul Alam
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia.,School of Psychology, University of New South, Sydney, NSW, Australia
| | - Zina Trost
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia.,School of Psychology, University of New South, Sydney, NSW, Australia
| |
Collapse
|
22
|
Caldirola D, Alciati A, Cuniberti F, Perna G. Experimental Drugs for Panic Disorder: An Updated Systematic Review. J Exp Pharmacol 2021; 13:441-459. [PMID: 33889031 PMCID: PMC8055642 DOI: 10.2147/jep.s261403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Several effective pharmacological therapies for panic disorder (PD) are available, but they have some drawbacks, and unsatisfactory outcomes can occur. Expanding the variety of anti-panic medications may allow for improving PD treatment. The authors performed an updated systematic review of preclinical and clinical (Phase I–III) pharmacological studies to look for advances made in the last six years concerning novel-mechanism-based anti-panic compounds or using medications approved for nonpsychiatric medical conditions to treat PD. The study included seven published articles presenting a series of preclinical studies, two Phase I clinical studies with orexin receptor (OXR) antagonists, and two clinical studies investigating the effects of D-cycloserine (DCS) and xenon gas in individuals with PD. The latest preclinical findings confirmed and expanded previous promising indications of OXR1 antagonists as novel-mechanism-based anti-panic compounds. Translating preclinical research into clinical applications remains in the early stages. However, limited clinical findings suggested the selective OXR1 antagonist JNJ-61393115 may exert anti-panic effects in humans. Overall, OXR1 antagonists displayed a favorable profile of short-term safety and tolerability. Very preliminary suggestions of possible anti-panic effects of xenon gas emerged but need confirmation with more rigorous methodology. DCS did not seem promising as an enhancer of cognitive-behavioral therapy in PD. Future studies, including objective panic-related physiological parameters, such as respiratory measures, and expanding the use of panic vulnerability biomarkers, such as hypersensitivity to CO2 panic provocation, may allow for more reliable conclusions about the anti-panic properties of new compounds.
Collapse
Affiliation(s)
- Daniela Caldirola
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| | - Alessandra Alciati
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Rozzano, 20089, Italy
| | - Francesco Cuniberti
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| | - Giampaolo Perna
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| |
Collapse
|
23
|
Cheng CH, Liu CY, Hsu SC, Tseng YJ. Reduced coupling of somatosensory gating and gamma oscillation in panic disorder. Psychiatry Res Neuroimaging 2021; 307:111227. [PMID: 33248324 DOI: 10.1016/j.pscychresns.2020.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/31/2020] [Accepted: 10/11/2020] [Indexed: 11/22/2022]
Abstract
Previous studies have reported that patients with panic disorder (PD) exhibited an aberrant level of GABA concentration, an inhibitory neurotransmitter in the human brain. However, it remains substantially unclear whether the inhibitory function regarding the neurophysiological characteristics is altered in this disease. Sensory gating (SG) is considered as an automatic inhibitory function in the sensory cortex. In addition, brain's gamma oscillation within the sensory cortex is another index to reflect inhibitory function. Here we aimed to investigate whether the patients with PD showed altered inhibitory function in the somatosensory system, including the primary (SI) and secondary (SII) somatosensory cortices. A total of 20 healthy controls and 21 patients with PD underwent magnetoencephalographic recordings. Paired-pulse and single-pulse paradigms were used to study SG and gamma oscillations, respectively. There were no significant between-group differences in the SG function in the SI and SII. However, patients with PD demonstrated a reduced gamma power in the SI. Among the healthy individuals, strong associations between SG ratios and gamma frequency values were observed in the SI. However, such a functional relationship disappeared among the patients with PD. We suggested the reduced coupling of SG and gamma oscillation as one of the neural signatures in PD.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), Taiwan
| | - Yi-Jhan Tseng
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| |
Collapse
|
24
|
Lai CH. Biomarkers in Panic Disorder. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999200918163245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Panic disorder (PD) is a kind of anxiety disorder that impacts the life quality
and functional perspectives in patients. However, the pathophysiological study of PD seems still
inadequate and many unresolved issues need to be clarified.
Objectives:
In this review article of biomarkers in PD, the investigator will focus on the findings of
magnetic resonance imaging (MRI) of the brain in the pathophysiology study. The MRI biomarkers
would be divided into several categories, on the basis of structural and functional perspectives.
Methods:
The structural category would include the gray matter and white matter tract studies. The
functional category would consist of functional MRI (fMRI), resting-state fMRI (Rs-fMRI), and
magnetic resonance spectroscopy (MRS). The PD biomarkers revealed by the above methodologies
would be discussed in this article.
Results:
For the gray matter perspectives, the PD patients would have alterations in the volumes of
fear network structures, such as the amygdala, parahippocampal gyrus, thalamus, anterior cingulate
cortex, insula, and frontal regions. For the white matter tract studies, the PD patients seemed to have
alterations in the fasciculus linking the fear network regions, such as the anterior thalamic radiation,
uncinate fasciculus, fronto-occipital fasciculus, and superior longitudinal fasciculus. For the fMRI
studies in PD, the significant results also focused on the fear network regions, such as the amygdala,
hippocampus, thalamus, insula, and frontal regions. For the Rs-fMRI studies, PD patients seemed to
have alterations in the regions of the default mode network and fear network model. At last, the
MRS results showed alterations in neuron metabolites of the hippocampus, amygdala, occipital
cortex, and frontal regions.
Conclusion:
The MRI biomarkers in PD might be compatible with the extended fear network model
hypothesis in PD, which included the amygdala, hippocampus, thalamus, insula, frontal regions, and
sensory-related cortex.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
25
|
Szkudlarek HJ, Rodríguez-Ruiz M, Hudson R, De Felice M, Jung T, Rushlow WJ, Laviolette SR. THC and CBD produce divergent effects on perception and panic behaviours via distinct cortical molecular pathways. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110029. [PMID: 32623021 DOI: 10.1016/j.pnpbp.2020.110029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022]
Abstract
Clinical and pre-clinical evidence demonstrates divergent psychotropic effects of THC vs. CBD. While THC can induce perceptual distortions and anxiogenic effects, CBD displays antipsychotic and anxiolytic properties. A key brain region responsible for regulation of cognition and affect, the medial prefrontal cortex (PFC), is strongly modulated by cannabinoids, suggesting that these dissociable THC/CBD-dependent effects may involve functional and molecular interplay within the PFC. The primary aim of this study was to investigate potential interactions and molecular substrates involved in PFC-mediated effects of THC and CBD on differential cognitive and affective behavioural processing. Male Sprague Dawley rats received intra-PFC microinfusions of THC, CBD or their combination, and tested in the latent inhibition paradigm, spontaneous oddity discrimination test, elevated T-maze and open field. To identify local, drug-induced molecular modulation in the PFC, PFC samples were collected and processed with Western Blotting. Intra-PFC THC induced strong panic-like responses that were counteracted with CBD. In contrast, CBD did not affect panic-like behaviours but blocked formation of associative fear memories and impaired latent inhibition and oddity discrimination performance. Interestingly, these CBD effects were dependent upon 5-HT1A receptor transmission but not influenced by THC co-administration. Moreover, THC induced robust phosphorylation of ERK1/2 that was prevented by CBD, while CBD decreased phosphorylation of p70S6K, independently of THC. These results suggest that intra-PFC infusion of THC promotes panic-like behaviour associated with increased ERK1/2 phosphorylation. In contrast, CBD impairs perceptive functions and latent inhibition via activation of 5-HT1A receptors and reduced phosphorylation of p70S6K.
Collapse
Affiliation(s)
- Hanna J Szkudlarek
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Mar Rodríguez-Ruiz
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Roger Hudson
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Marta De Felice
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Tony Jung
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Walter J Rushlow
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Psychiatry. Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Steven R Laviolette
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Psychiatry. Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
26
|
Fujihara K, Sato T, Miyasaka Y, Mashimo T, Yanagawa Y. Genetic deletion of the 67-kDa isoform of glutamate decarboxylase alters conditioned fear behavior in rats. FEBS Open Bio 2020; 11:340-353. [PMID: 33325157 PMCID: PMC7876494 DOI: 10.1002/2211-5463.13065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
The GABAergic system is thought to play an important role in the control of cognition and emotion, such as fear, and is related to the pathophysiology of psychiatric disorders. For example, the expression of the 67‐kDa isoform of glutamate decarboxylase (GAD67), a GABA‐producing enzyme, is downregulated in the postmortem brains of patients with major depressive disorder and schizophrenia. However, knocking out the Gad1 gene, which encodes GAD67, is lethal in mice, and thus, the association between Gad1 and cognitive/emotional functions is unclear. We recently developed Gad1 knockout rats and found that some of them can grow into adulthood. Here, we performed fear‐conditioning tests in adult Gad1 knockout rats to assess the impact of the loss of Gad1 on fear‐related behaviors and the formation of fear memory. In a protocol assessing both cued and contextual memory, Gad1 knockout rats showed a partial antiphase pattern of freezing during training and significantly excessive freezing during the contextual test compared with wild‐type rats. However, Gad1 knockout rats did not show any synchronous increase in freezing with auditory tones in the cued test. On the other hand, in a contextual memory specialized protocol, Gad1 knockout rats exhibited comparable freezing behavior to wild‐type rats, while their fear extinction was markedly impaired. These results suggest that GABA synthesis by GAD67 has differential roles in cued and contextual fear memory.
Collapse
Affiliation(s)
- Kazuyuki Fujihara
- Departments of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Department of Psychiatry and Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takumi Sato
- Departments of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Institute of Medical Science, the University of Tokyo, Japan
| | - Yuchio Yanagawa
- Departments of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
27
|
Strawn JR, Levine A. Treatment Response Biomarkers in Anxiety Disorders: From Neuroimaging to Neuronally-Derived Extracellular Vesicles and Beyond. Biomark Neuropsychiatry 2020; 3:100024. [PMID: 32974615 PMCID: PMC7508464 DOI: 10.1016/j.bionps.2020.100024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple and diverse psychotherapeutic or psychopharmacologic treatments effectively reduce symptoms for many patients with anxiety disorders, but the trajectory and magnitude of response vary considerably. This heterogeneity of treatment response has invigorated the search for biomarkers of treatment response in anxiety disorders, across the lifespan. In this review, we summarize evidence for biomarkers of treatment response in children, adolescents and adults with generalized, separation and social anxiety disorders as well as panic disorder. We then discuss the relationship between these biomarkers of treatment response and the pathophysiology of anxiety disorders. Finally, we provide context for treatment response biomarkers of the future, including neuronally-derived extracellular vesicles in anxiety disorders and discuss challenges that must be overcome prior to the debut of treatment response biomarkers in the clinic. A number of promising treatment response biomarkers have been identified, although there is an urgent need to replicate findings and to identify which biomarkers might guide clinicians in selecting from available treatments rather than just simply identifying patients who may be less likely to respond to a given intervention.
Collapse
Affiliation(s)
- Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience; Anxiety Disorders Research Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio
- Department of Pediatrics, Division of Child & Adolescent Psychiatry and Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Amir Levine
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY
| |
Collapse
|
28
|
Seo HS, Jeong EK, Choi S, Kwon Y, Park HJ, Kim I. Changes of Neurotransmitters in Youth with Internet and Smartphone Addiction: A Comparison with Healthy Controls and Changes after Cognitive Behavioral Therapy. AJNR Am J Neuroradiol 2020; 41:1293-1301. [PMID: 32616578 DOI: 10.3174/ajnr.a6632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/01/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Neurotransmitter changes in youth addicted to the Internet and smartphone were compared with normal controls and in subjects after cognitive behavioral therapy. In addition, the correlations between neurotransmitters and affective factors were investigated. MATERIALS AND METHODS Nineteen young people with Internet and smartphone addiction and 19 sex- and age-matched healthy controls (male/female ratio, 9:10; mean age, 15.47 ± 3.06 years) were included. Twelve teenagers with Internet and smartphone addiction (male/female ratio, 8:4; mean age, 14.99 ± 1.95 years) participated in 9 weeks of cognitive behavioral therapy. Meshcher-Garwood point-resolved spectroscopy was used to measure γ-aminobutyric acid and Glx levels in the anterior cingulate cortex. The γ-aminobutyric acid and Glx levels in the addicted group were compared with those in controls and after cognitive behavioral therapy. The γ-aminobutyric acid and Glx levels correlated with clinical scales of Internet and smartphone addiction, impulsiveness, depression, anxiety, insomnia, and sleep quality. RESULTS Brain parenchymal and gray matter volume-adjusted γ-aminobutyric acid-to-creatine ratios were higher in subjects with Internet and smartphone addiction (P = .028 and .016). After therapy, brain parenchymal- and gray matter volume-adjusted γ-aminobutyric acid-to-creatine ratios were decreased (P = .034 and .026). The Glx level was not statistically significant in subjects with Internet and smartphone addiction compared with controls and posttherapy status. Brain parenchymal- and gray matter volume-adjusted γ-aminobutyric acid-to-creatine ratios correlated with clinical scales of Internet and smartphone addictions, depression, and anxiety. Glx/Cr was negatively correlated with insomnia and sleep quality scales. CONCLUSIONS The high γ-aminobutyric acid levels and disrupted balance of γ-aminobutyric acid-to-Glx including glutamate in the anterior cingulate cortex may contribute to understanding the pathophysiology and treatment of Internet and smartphone addiction and associated comorbidities.
Collapse
Affiliation(s)
- H S Seo
- From the Department of Radiology (H.S.S.), Korea University Ansan Hospital, Ansan, Korea
| | - E-K Jeong
- Utah Center for Advanced Imaging Research (E.-K.J.), University of Utah, Salt Lake City, Utah
| | - S Choi
- Department of Psychology (S.C., Y.K.), Duksung Women's University, Seoul, Korea
| | - Y Kwon
- Department of Psychology (S.C., Y.K.), Duksung Women's University, Seoul, Korea
| | - H-J Park
- Department of Nuclear Medicine (H.-J.P.), Yonsei University College of Medicine, Seoul, Korea
| | - I Kim
- Siemens Healthcare (I.K.), Seoul, Korea
| |
Collapse
|
29
|
Negative association between left prefrontal GABA concentration and BDNF serum concentration in young adults. Heliyon 2020; 6:e04025. [PMID: 32490241 PMCID: PMC7260440 DOI: 10.1016/j.heliyon.2020.e04025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/31/2019] [Accepted: 05/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background The brain's major inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and the brain-derived neurotrophic factor (BDNF) play important roles in several stress-related disorders. Magnetic resonance spectroscopy (MRS) allows for non-invasive quantification of GABA concentration in the brain. We investigated the relationship between GABA concentration in the left dorsolateral prefrontal cortex (DLPFC) and BDNF concentration in the serum in a community-based sample of young subjects. Methods For the GABA measurement a single voxel MR spectrum was assessed in the prefrontal lobe (25 × 40 × 30 mm) using the MEGA-PRESS method in 276 subjects. BDNF serum concentrations were assessed with an ELISA kit. For 147 subjects we had both MRS and BDNF serum data, and for 79 subjects we had genotype data on the BDNF rs6265 polymorphism. Depressive psychopathology was assessed using Beck's Depression Inventory (BDI), Montgomery-Asberg Depression Rating Scale (MADRS) and Structured Clinical Interviews for Diagnostic and Statistical Manual of Mental Disorders (SCID) for DSM-IV. Results GABA concentration in the left DLPFC was negatively associated with BDNF serum concentration (r = -.264, p = .001). This correlation remained significant if corrected for sex (r = -.264, p = .001). BDNF serum concentration was also positively associated with volumes and surface areas of the left prefrontal cortex (p = .048, p = .005). There were no significant associations or interaction with depressive psychopathology (BDI, MADRS, SCID) or rs6265. Conclusion The results of this study suggest that GABA, BDNF and prefrontal brain volumes are interrelated, but do not show a strong association to depressive psychopathology, possibly due to the mild forms of psychiatric conditions present in our community-based sample.
Collapse
|
30
|
Kim K, Jang EH, Kim AY, Fava M, Mischoulon D, Papakostas GI, Kim H, Na EJ, Yu HY, Jeon HJ. Pre-treatment peripheral biomarkers associated with treatment response in panic symptoms in patients with major depressive disorder and panic disorder: A 12-week follow-up study. Compr Psychiatry 2019; 95:152140. [PMID: 31669792 DOI: 10.1016/j.comppsych.2019.152140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/11/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Peripheral biomarkers have been studied to predict treatment response of panic symptoms. We hypothesized that depressive disorder (MDD) vs. panic disorder (PD) would exhibit different peripheral biomarkers, and their correlation with severity of panic attacks (PA) would also differ. METHODS Forty-one MDD patients, 52 PD patients, and 59 healthy controls were followed for 12 weeks. We measured peripheral biomarkers along with the Panic Disorder Severity Scale (PDSS) at each visit-pre-treatment, 2, 4, 8, and 12 weeks on a regular schedule. Peripheral biomarkers including serum cytokines, plasma and serum brain-derived neurotrophic factor (BDNF), leptin, adiponectin, and C-reactive protein (CRP) were quantified using enzyme-linked immunosorbent assay (ELISA). RESULTS Patients with MDD and PD demonstrated significantly higher levels of pre-treatment IL-6 compared to controls, but no differences were seen in plasma and serum BDNF, leptin, adiponectin, and CRP. Pre-treatment leptin showed a significant clinical correlation with reduction of panic symptoms in MDD patients at visit 5 (p=0.011), whereas pre-treatment IL-6 showed a negative correlation with panic symptom reduction in PD patients (p=0.022). An improvement in three panic-related items was observed to be positively correlated with pre-treatment leptin in MDD patients: distress during PA, anticipatory anxiety, and occupational interference. CONCLUSION Higher pre-treatment leptin was associated with better response to treatment regarding panic symptoms in patients with MDD, while higher IL-6 was associated with worse response regarding panic symptoms in PD patients. Different predictive peripheral biomarkers observed in MDD and PD suggest the need for establishing individualized predictive biomarkers, even in cases of similar symptoms observed in different disorders.
Collapse
Affiliation(s)
- Kiwon Kim
- Department of Psychiatry, Veteran Health Service Medical Center, Seoul, South Korea; Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Hye Jang
- Bio-Medical IT Convergence Research Division, Electronics and Telecommunications Research Institute (ETRI), Republic of Korea
| | - Ah Young Kim
- Bio-Medical IT Convergence Research Division, Electronics and Telecommunications Research Institute (ETRI), Republic of Korea
| | - Maurizio Fava
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David Mischoulon
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - George I Papakostas
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Hyewon Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Jin Na
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han Young Yu
- Bio-Medical IT Convergence Research Division, Electronics and Telecommunications Research Institute (ETRI), Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
GABA A Receptors Are Well Preserved in the Hippocampus of Aged Mice. eNeuro 2019; 6:ENEURO.0496-18.2019. [PMID: 31340951 PMCID: PMC6709233 DOI: 10.1523/eneuro.0496-18.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
GABA is the primary inhibitory neurotransmitter in the nervous system. GABAA receptors (GABAARs) are pentameric ionotropic channels. Subunit composition of the receptors is associated with the affinity of GABA binding and its downstream inhibitory actions. Fluctuations in subunit expression levels with increasing age have been demonstrated in animal and human studies. However, our knowledge regarding the age-related hippocampal GABAAR expression changes is limited and based on rat studies. This study is the first analysis of the aging-related changes of the GABAAR subunit expression in the CA1, CA2/3, and dentate gyrus regions of the mouse hippocampus. Using Western blotting and immunohistochemistry we found that the GABAergic system is robust, with no significant age-related differences in GABAAR α1, α2, α3, α5, β3, and γ2 subunit expression level differences found between the young (6 months) and old (21 months) age groups in any of the hippocampal regions examined. However, we detected a localized decrease of α2 subunit expression around the soma, proximal dendrites, and in the axon initial segment of pyramidal cells in the CA1 and CA3 regions that is accompanied by a pronounced upregulation of the α2 subunit immunoreactivity in the neuropil of aged mice. In summary, GABAARs are well preserved in the mouse hippocampus during normal aging although GABAARs in the hippocampus are severely affected in age-related neurological disorders, including Alzheimer’s disease.
Collapse
|
32
|
Abstract
The medial prefrontal cortex (mPFC) is a crucial cortical region that integrates information from numerous cortical and subcortical areas and converges updated information to output structures. It plays essential roles in the cognitive process, regulation of emotion, motivation, and sociability. Dysfunction of the mPFC has been found in various neurological and psychiatric disorders, such as depression, anxiety disorders, schizophrenia, autism spectrum disorders, Alzheimer's disease, Parkinson's disease, and addiction. In the present review, we summarize the preclinical and clinical studies to illustrate the role of the mPFC in these neurological diseases.
Collapse
Affiliation(s)
- Pan Xu
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Ai Chen
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan China
| | - Yipeng Li
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Xuezhi Xing
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Hui Lu
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| |
Collapse
|
33
|
Page CE, Coutellier L. Prefrontal excitatory/inhibitory balance in stress and emotional disorders: Evidence for over-inhibition. Neurosci Biobehav Rev 2019; 105:39-51. [PMID: 31377218 DOI: 10.1016/j.neubiorev.2019.07.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/04/2023]
Abstract
Chronic stress-induced emotional disorders like anxiety and depression involve imbalances between the excitatory glutamatergic system and the inhibitory GABAergic system in the prefrontal cortex (PFC). However, the precise nature and trajectory of excitatory/inhibitory (E/I) imbalances in these conditions is not clear, with the literature reporting glutamatergic and GABAergic findings that are at times contradictory and inconclusive. Here we propose and discuss the hypothesis that chronic stress-induced emotional dysfunction involves hypoactivity of the PFC due to increased inhibition. We will also discuss E/I imbalances in the context of sex differences. In this review, we will synthesize research about how glutamatergic and GABAergic systems are perturbed by chronic stress and in related emotional disorders like anxiety and depression and propose ideas for reconciling contradictory findings in support of the hypothesis of over-inhibition. We will also discuss evidence for how aspects of the GABAergic system such as parvalbumin (PV) cells can be targeted therapeutically for reinstating activity and plasticity in the PFC and treating stress-related disorders.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Neuroscience, Ohio State University, Columbus OH, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, Columbus OH, United States; Department of Psychology, Ohio State University, Columbus OH, United States.
| |
Collapse
|
34
|
Demartini B, Gambini O, Uggetti C, Cariati M, Cadioli M, Goeta D, Marceglia S, Ferrucci R, Priori A. Limbic neurochemical changes in patients with functional motor symptoms. Neurology 2019; 93:e52-e58. [DOI: 10.1212/wnl.0000000000007717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/11/2019] [Indexed: 01/04/2023] Open
Abstract
ObjectiveTo assess by magnetic resonance spectroscopy (MRS) the N-acetylaspartate, myo-inositol, choline, sum of glutamate and glutamine (Glx), and creatine (Cr) content in the anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC) and in the occipital cortex (OCC) (control region) in patients with functional motor symptoms (FMS) and healthy controls, and to determine whether neurochemical limbic changes as estimated by MRS correlate with FMS-related motor symptom severity, alexithymia, anxiety, depression, and quality of life.MethodsThis case-control study enrolled 10 patients with FMS and 10 healthy controls. Participants underwent MRS and were tested with the Mini-Mental State Examination, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, 20-Item Toronto Alexithymia Scale, and EuroQol 5D.ResultsIn patients with FMS, MRS showed increased Glx/Cr in the ACC/mPFC but normal content in the control OCC. All the other metabolites tested were normal in both regions. The increased Glx/Cr content in the ACC/mPFC correlated with alexithymia, anxiety, and severity of symptoms.ConclusionsThe abnormal limbic Glx increase could have a crucial pathophysiologic role in FMS, possibly by altering limbic-motor interactions, ultimately leading to abnormal movements.
Collapse
|
35
|
Sheth C, Prescot AP, Legarreta M, Renshaw PF, McGlade E, Yurgelun-Todd D. Reduced gamma-amino butyric acid (GABA) and glutamine in the anterior cingulate cortex (ACC) of veterans exposed to trauma. J Affect Disord 2019; 248:166-174. [PMID: 30735853 DOI: 10.1016/j.jad.2019.01.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/01/2019] [Accepted: 01/22/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Trauma-related diagnoses such as posttraumatic stress disorder (PTSD) are prevalent in veterans. The identification of mechanisms related to stress vulnerability and development of PTSD specifically in a veteran population may aid in the prevention of PTSD and identification of novel treatment targets. METHODS Veterans with PTSD (n = 27), trauma-exposed veterans with no PTSD (TEC, n = 18) and non-trauma-exposed controls (NTEC, n = 28) underwent single-voxel proton (1H) magnetic resonance spectroscopy (MRS) at 3 Tesla in the dorsal anterior cingulate cortex (dACC) using a two-dimensional (2D) J-resolved point spectroscopy sequence in addition to completing a clinical battery. RESULTS The PTSD and TEC groups demonstrated lower gamma-amino butyric acid (GABA)/H2O (p = 0.02) and glutamine (Gln)/H2O (p = 0.02) in the dACC as compared to the NTEC group. The PTSD group showed a trend towards higher Glu/GABA (p = 0.053) than the NTEC group. Further, GABA/H2O in the dACC correlated negatively with sleep symptoms in the PTSD group (p = 0.03) but not in the TEC and NTEC groups. LIMITATIONS Cross-sectional study design, concomitant medications, single voxel measurement as opposed to global changes, absence of measure of childhood or severity of trauma and objective sleep measures, female participants not matched for menstrual cycle phase. CONCLUSIONS Exposure to trauma in veterans may be associated with lower GABA/H2O and Gln/H2O in the dACC, suggesting disruption in the GABA-Gln-glutamate cycle. Further, altered Glu/GABA in the dACC in the PTSD group may indicate an excitatory-inhibitory imbalance. Further, lower GABA/H2O in the ACC was associated with poor sleep in the PTSD group. Treatments that restore GABAergic balance may be particularly effective in reducing sleep symptoms in PTSD.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA.
| | - Andrew P Prescot
- Department of Radiology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Margaret Legarreta
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Erin McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| |
Collapse
|
36
|
Pandya M, Palpagama TH, Turner C, Waldvogel HJ, Faull RL, Kwakowsky A. Sex- and age-related changes in GABA signaling components in the human cortex. Biol Sex Differ 2019; 10:5. [PMID: 30642393 PMCID: PMC6332906 DOI: 10.1186/s13293-018-0214-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/09/2018] [Indexed: 12/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system. Previous studies have shown fluctuations in expression levels of GABA signaling components-glutamic acid decarboxylase (GAD), GABA receptor (GABAR) subunit, and GABA transporter (GAT)-with increasing age and between sexes; however, this limited knowledge is highly based on animal models that produce inconsistent findings. This study is the first analysis of the age- and sex-specific changes of the GAD, GABAA/BR subunits, and GAT expression in the human primary sensory and motor cortices; superior (STG), middle (MTG), and inferior temporal gyrus (ITG); and cerebellum. Utilizing Western blotting, we found that the GABAergic system is relatively robust against sex and age-related differences in all brain regions examined. However, we observed several sex-dependent differences in GABAAR subunit expression in STG along with age-dependent GABAAR subunit and GAD level alteration. No significant age-related differences were found in α1, α2, α5, β3, and γ2 subunit expression in the STG. However, we found significantly higher GABAAR α3 subunit expression in the STG in young males compared to old males. We observed a significant sex-dependent difference in α1 subunit expression: males presenting significantly higher levels compared to women across all stages of life in STG. Older females showed significantly lower α2, α5, and β3 subunit expression compared to old males in the STG. These changes found in the STG might significantly influence GABAergic neurotransmission and lead to sex- and age-specific disease susceptibility and progression.
Collapse
Affiliation(s)
- Madhavi Pandya
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
37
|
Yoga: Balancing the excitation-inhibition equilibrium in psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2019; 244:387-413. [PMID: 30732846 DOI: 10.1016/bs.pbr.2018.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Social behavioral disturbances are central to most psychiatric disorders. A disequilibrium within the cortical excitatory and inhibitory neurotransmitter systems underlies these deficits. Gamma-aminobutyric acid (GABA) and glutamate are the most abundant excitatory and inhibitory neurotransmitters in the brain that contribute to this equilibrium. Several contemporary therapies used in treating psychiatric disorders, regulate this GABA-glutamate balance. Yoga has been studied as an adjuvant treatment across a broad range of psychiatric disorders and is shown to have short-term therapeutic gains. Emerging evidence from recent clinical in vivo experiments suggests that yoga improves GABA-mediated cortical-inhibitory tone and enhances peripheral oxytocin levels. This is likely to have a more controlled downstream response of the hypothalamo-pituitary-adrenal system by means of reduced cortisol release and hence a blunted sympathetic response to stress. Animal and early fetal developmental studies suggest an inter-dependent role of oxytocin and GABA in regulating social behaviors. In keeping with these observations, we propose an integrated neurobiological model to study the mechanisms of therapeutic benefits with yoga. Apart from providing a neuroscientific basis for applying a traditional system of practice in the clinical setting, this model can be used as a framework for studying yoga mechanisms in future clinical trials.
Collapse
|
38
|
Sahoo S, S. B. Pharmacogenomic assessment of herbal drugs in affective disorders. Biomed Pharmacother 2019; 109:1148-1162. [DOI: 10.1016/j.biopha.2018.10.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
|
39
|
The role of mid-insula in the relationship between cardiac interoceptive attention and anxiety: evidence from an fMRI study. Sci Rep 2018; 8:17280. [PMID: 30467392 PMCID: PMC6250688 DOI: 10.1038/s41598-018-35635-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/08/2018] [Indexed: 01/04/2023] Open
Abstract
Interoception refers to the perception of the internal bodily states. Recent accounts highlight the role of the insula in both interoception and the subjective experience of anxiety. The current study aimed to delve deeper into the neural correlates of cardiac interoception; more specifically, the relationship between interoception-related insular activity, interoceptive accuracy, and anxiety. This was done using functional magnetic resonance imaging (fMRI) in an experimental design in which 40 healthy volunteers focused on their heartbeat and anxious events. Interoceptive accuracy and anxiety levels were measured using the Heartbeat Perception Task and State Trait Anxiety Inventory, respectively. The results showed posterior, mid and anterior insular activity during cardiac interoception, whereas anxiety-related activation showed only anterior insular activity. Activation of the anterior insula when focused on cardiac interoception was positively correlated to state and trait anxiety levels, respectively. Moreover, the mid-insular activity during the cardiac attention condition not only related to individuals’ interoceptive accuracy but also to their levels of state and trait anxiety, respectively. These findings confirm that there are distinct neural representations of heartbeat attention and anxious experience across the insular regions, and suggest the mid-insula as a crucial link between cardiac interoception and anxiety.
Collapse
|
40
|
Lenz M, Galanis C, Kleidonas D, Fellenz M, Deller T, Vlachos A. Denervated mouse dentate granule cells adjust their excitatory but not inhibitory synapses following in vitro entorhinal cortex lesion. Exp Neurol 2018; 312:1-9. [PMID: 30401642 DOI: 10.1016/j.expneurol.2018.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 01/04/2023]
Abstract
Neurons adjust their synaptic strength in a homeostatic manner following changes in network activity and connectivity. While this form of plasticity has been studied in detail for excitatory synapses, homeostatic plasticity of inhibitory synapses remains not well-understood. In the present study, we employed entorhinal cortex lesion (ECL) of organotypic entorhino-hippocampal tissue cultures to test for homeostatic changes in GABAergic neurotransmission onto partially denervated dentate granule cells. Using single and paired whole-cell patch-clamp recordings, as well as immunostainings for synaptic markers, we find that excitatory synaptic strength is robustly increased 3 days post lesion (dpl), whereas GABAergic neurotransmission is not changed after denervation. Even under conditions of pharmacological inhibition of glutamatergic neurotransmission, which prevents neurons to compensate for the loss of input via excitatory synaptic scaling, down-scaling of GABAergic synapses does not emerge 3 days after denervation. We conclude that granule cells maintain structural and functional properties of GABAergic synapses even in the face of substantial changes in network connectivity. Hence, alterations in inhibitory neurotransmission, as seen in pathological brain states, may not simply reflect a homeostatic response to disconnection.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany; Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt 60590, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Meike Fellenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt 60590, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt 60590, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.
| |
Collapse
|
41
|
GAD65 Promoter Polymorphism rs2236418 Modulates Harm Avoidance in Women via Inhibition/Excitation Balance in the Rostral ACC. J Neurosci 2018; 38:5067-5077. [PMID: 29724796 DOI: 10.1523/jneurosci.1985-17.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 01/04/2023] Open
Abstract
Anxiety disorders are common and debilitating conditions with higher prevalence in women. However, factors that predispose women to anxiety phenotypes are not clarified. Here we investigated potential contribution of the single nucleotide polymorphism rs2236418 in GAD2 gene to changes in regional inhibition/excitation balance, anxiety-like traits, and related neural activity in both sexes. One hundred and five healthy individuals were examined with high-field (7T) multimodal magnetic resonance imaging (MRI); including resting-state functional MRI in combination with assessment of GABA and glutamate (Glu) levels via MR spectroscopy. Regional GABA/Glu levels in anterior cingulate cortex (ACC) subregions were assessed as mediators of gene-personality interaction for the trait harm avoidance and moderation by sex was tested. In AA homozygotes, with putatively lower GAD2 promoter activity, we observed increased intrinsic neuronal activity and higher inhibition/excitation balance in pregenual ACC (pgACC) compared with G carriers. The pgACC drove a significant interaction of genotype, region, and sex, where inhibition/excitation balance was significantly reduced only in female AA carriers. This finding was specific for rs2236418 as other investigated single nucleotide polymorphisms of the GABA synthesis related enzymes (GAD1, GAD2, and GLS) were not significant. Furthermore, only in women there was a negative association of pgACC GABA/Glu ratios with harm avoidance. A moderated-mediation model revealed that pgACC GABA/Glu also mediated the association between the genotype variant and level of harm avoidance, dependent on sex. Our data thus provide new insights into the neurochemical mechanisms that control emotional endophenotypes in humans and constitute predisposing factors for the development of anxiety disorders in women.SIGNIFICANCE STATEMENT Anxiety disorders are among the most common and burdensome psychiatric disorders, with higher prevalence rates in women. The causal mechanisms are, however, poorly understood. In this study we propose a neurobiological basis that could help to explain female bias of anxiety endophenotypes. Using magnetic resonance brain imaging and personality questionnaires we show an interaction of the genetic variation rs2236418 in the GAD2 gene and sex on GABA/glutamate (Glu) balance in the pregenual anterior cingulate cortex (pgACC), a region previously connected to affect regulation and anxiety disorders. The GAD2 gene polymorphism further influenced baseline neuronal activity in the pgACC. Importantly, GABA/Glu was shown to mediate the relationship between the genetic variant and harm avoidance, however, only in women.
Collapse
|
42
|
Chaihulonggumulitang Shows Psycho-cardiology Therapeutic Effects on Acute Myocardial Infarction by Enhancing Bone Marrow Mesenchymal Stem Cells Mobilization. Sci Rep 2018; 8:3724. [PMID: 29487305 PMCID: PMC5829256 DOI: 10.1038/s41598-018-21789-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/09/2018] [Indexed: 12/25/2022] Open
Abstract
Ischemic myocardium initiates the mobilization and homing of bone marrow mesenchymal stem cells (BM-MSCs) to promote myocardial regeneration after acute myocardial infarction (AMI). Inflammation caused by necrotic cardiomyocytes induce major pathological changes (cardiac remodeling and myocardial apoptosis) as well as anxiety disorder. This process may be inhibited by the differentiation and paracrine effects of BM-MSCs. However, the spontaneous mobilization of BMSCs is insufficient to prevent this effect. Given the anti-inflammatory effects of BM-MSCs, ventricular remodeling and anxiety following AMI, methods focused on enhancing BMSCs mobilization are promising. BFG is a classical traditional Chinese prescription medicine and has been proved effective in treating AMI and reducing anxiety, but the potential mechanism of its function remains unknown. In the present study, we explored the effects of Chaihulonggumulitang (BFG) on AMI and anxiety in vivo and in vitro. We also tested its effects in promoting BMSCs mobilization and alleviating inflammation. Our data showed that the classical Chinese prescription BFG promoted BM-MSCs mobilization, inhibited inflammatory response, and improved heart damage and anxiety developed from AMI. Thus, we provided an underlying mechanism of BFG function in psycho-cardiology conditions such as AMI.
Collapse
|
43
|
Dong MX, Li CM, Shen P, Hu QC, Wei YD, Ren YF, Yu J, Gui SW, Liu YY, Pan JX, Xie P. Recombinant tissue plasminogen activator induces long-term anxiety-like behaviors via the ERK1/2-GAD1-GABA cascade in the hippocampus of a rat model. Neuropharmacology 2018; 128:119-131. [DOI: 10.1016/j.neuropharm.2017.09.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 01/04/2023]
|
44
|
Nantes JC, Proulx S, Zhong J, Holmes SA, Narayanan S, Brown RA, Hoge RD, Koski L. GABA and glutamate levels correlate with MTR and clinical disability: Insights from multiple sclerosis. Neuroimage 2017; 157:705-715. [DOI: 10.1016/j.neuroimage.2017.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 01/04/2023] Open
|
45
|
Abadie D, Essilini A, Fulda V, Gouraud A, Yéléhé-Okouma M, Micallef J, Montastruc F, Montastruc JL. Drug-induced panic attacks: Analysis of cases registered in the French pharmacovigilance database. J Psychiatr Res 2017; 90:60-66. [PMID: 28231495 DOI: 10.1016/j.jpsychires.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND The potential role of drugs in the onset of panic attacks (PAs) is poorly understood. AIM The objective of our study was to characterize drug-induced PAs. METHOD We performed an analysis of PAs registered in the French pharmacovigilance database between 01/01/1985 and 05/11/2014. RESULTS Among the 163 recorded cases, 136 (83.4%) were directly related to drugs, mainly antidepressants (11.3%, mainly serotonin reuptake inhibitors), mefloquine (7.2%), isotretinoin (5.2%), rimonabant (3.6%) and corticosteroids (4.7%). PAs are labelled in the Summary of Product Characteristics (SmPC) for a minority (8.6%) of these drugs. In 31.4% of these cases, withdrawal of the suspected drug was performed more than a week after the onset of PAs. PAs could also be secondary to another adverse drug reaction (ADR; n = 14, 8.6%), mainly an allergy to antineoplastic or immunomodulating agents. In 13 cases (8.0%), PAs occurred during a drug-withdrawal syndrome, mainly after benzodiazepines or opioids. Most cases (73%) involved patients without any previous psychiatric disorder. CONCLUSION This is the first pharmacoepidemiological study about iatrogenic PAs. Beside antidepressants, the most often encountered drugs are not indicated for psychiatric diseases. This study also reveals that iatrogenic PAs mostly occur in patients without any psychiatric medical history and that PAs can be triggered by another ADR. Lastly, the many cases with delayed management underline the need to raise awareness of this relatively unknown ADR among physicians, especially since PAs are generally not labelled in SmPCs of the suspected drugs.
Collapse
Affiliation(s)
- Delphine Abadie
- Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Faculty of Medicine, 37 allées Jules Guesde, 31000 Toulouse, France.
| | - Anaïs Essilini
- Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Faculty of Medicine, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Virginie Fulda
- Regional Pharmacovigilance Center, Hôpital Européen Georges Pompidou, 20-40 rue Leblanc, 75015 Paris, France
| | - Aurore Gouraud
- Regional Pharmacovigilance Center, Hospices Civils de Lyon, 162 avenue Lacassagne, 69424 Lyon, France
| | - Mélissa Yéléhé-Okouma
- Regional Pharmacovigilance Center, Hôpitaux de Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035 Nancy, France
| | - Joëlle Micallef
- Regional Pharmacovigilance Center, Department of Medical and Clinical Pharmacology, Hôpital Sainte-Marguerite AP-HM, 270 boulevard de Saint-Marguerite, 13009 Marseille, France
| | - François Montastruc
- Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Faculty of Medicine, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Jean Louis Montastruc
- Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Faculty of Medicine, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
46
|
Li SJ, Ou CY, He SN, Huang XW, Luo HL, Meng HY, Lu GD, Jiang YM, Vieira Peres T, Luo YN, Deng XF. Sodium p-Aminosalicylic Acid Reverses Sub-Chronic Manganese-Induced Impairments of Spatial Learning and Memory Abilities in Rats, but Fails to Restore γ-Aminobutyric Acid Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040400. [PMID: 28394286 PMCID: PMC5409601 DOI: 10.3390/ijerph14040400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Excessive manganese (Mn) exposure is not only a health risk for occupational workers, but also for the general population. Sodium para-aminosalicylic acid (PAS-Na) has been successfully used in the treatment of manganism, but the involved molecular mechanisms have yet to be determined. The present study aimed to investigate the effects of PAS-Na on sub-chronic Mn exposure-induced impairments of spatial learning and memory, and determine the possible involvements of γ-aminobutyric acid (GABA) metabolism in vivo. Sprague-Dawley male rats received daily intraperitoneal injections MnCl2 (as 6.55 mg/kg Mn body weight, five days per week for 12 weeks), followed by daily subcutaneous injections of 100, 200, or 300 mg/kg PAS-Na for an additional six weeks. Mn exposure significantly impaired spatial learning and memory ability, as noted in the Morris water maze test, and the following PAS-Na treatment successfully restored these adverse effects to levels indistinguishable from controls. Unexpectedly, PAS-Na failed to recover the Mn-induced decrease in the overall GABA levels, although PAS-Na treatment reversed Mn-induced alterations in the enzyme activities directly responsible for the synthesis and degradation of GABA (glutamate decarboxylase and GABA-transaminase, respectively). Moreover, Mn exposure caused an increase of GABA transporter 1 (GAT-1) and decrease of GABA A receptor (GABAA) in transcriptional levels, which could be reverted by the highest dose of 300 mg/kg PAS-Na treatment. In conclusion, the GABA metabolism was interrupted by sub-chronic Mn exposure. However, the PAS-Na treatment mediated protection from sub-chronic Mn exposure-induced neurotoxicity, which may not be dependent on the GABA metabolism.
Collapse
Affiliation(s)
- Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Chao-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Sheng-Nan He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Xiao-Wei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Hai-Lan Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Hao-Yang Meng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Tanara Vieira Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer, 209, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| | - Yi-Ni Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Xiang-Fa Deng
- Department of Anatomy, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
47
|
Sobanski T, Wagner G. Functional neuroanatomy in panic disorder: Status quo of the research. World J Psychiatry 2017; 7:12-33. [PMID: 28401046 PMCID: PMC5371170 DOI: 10.5498/wjp.v7.i1.12] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/16/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To provide an overview of the current research in the functional neuroanatomy of panic disorder.
METHODS Panic disorder (PD) is a frequent psychiatric disease. Gorman et al (1989; 2000) proposed a comprehensive neuroanatomical model of PD, which suggested that fear- and anxiety-related responses are mediated by a so-called “fear network” which is centered in the amygdala and includes the hippocampus, thalamus, hypothalamus, periaqueductal gray region, locus coeruleus and other brainstem sites. We performed a systematic search by the electronic database PubMed. Thereby, the main focus was laid on recent neurofunctional, neurostructural, and neurochemical studies (from the period between January 2012 and April 2016). Within this frame, special attention was given to the emerging field of imaging genetics.
RESULTS We noted that many neuroimaging studies have reinforced the role of the “fear network” regions in the pathophysiology of panic disorder. However, recent functional studies suggest abnormal activation mainly in an extended fear network comprising brainstem, anterior and midcingulate cortex (ACC and MCC), insula, and lateral as well as medial parts of the prefrontal cortex. Interestingly, differences in the amygdala activation were not as consistently reported as one would predict from the hypothesis of Gorman et al (2000). Indeed, amygdala hyperactivation seems to strongly depend on stimuli and experimental paradigms, sample heterogeneity and size, as well as on limitations of neuroimaging techniques. Advanced neurochemical studies have substantiated the major role of serotonergic, noradrenergic and glutamatergic neurotransmission in the pathophysiology of PD. However, alterations of GABAergic function in PD are still a matter of debate and also their specificity remains questionable. A promising new research approach is “imaging genetics”. Imaging genetic studies are designed to evaluate the impact of genetic variations (polymorphisms) on cerebral function in regions critical for PD. Most recently, imaging genetic studies have not only confirmed the importance of serotonergic and noradrenergic transmission in the etiology of PD but also indicated the significance of neuropeptide S receptor, CRH receptor, human TransMEMbrane protein (TMEM123D), and amiloride-sensitive cation channel 2 (ACCN2) genes.
CONCLUSION In light of these findings it is conceivable that in the near future this research will lead to the development of clinically useful tools like predictive biomarkers or novel treatment options.
Collapse
|
48
|
Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology 2017; 42:254-270. [PMID: 27510423 PMCID: PMC5143487 DOI: 10.1038/npp.2016.146] [Citation(s) in RCA: 437] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
The study of inflammation in fear- and anxiety-based disorders has gained interest as growing literature indicates that pro-inflammatory markers can directly modulate affective behavior. Indeed, heightened concentrations of inflammatory signals, including cytokines and C-reactive protein, have been described in posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), panic disorder (PD), and phobias (agoraphobia, social phobia, etc.). However, not all reports indicate a positive association between inflammation and fear- and anxiety-based symptoms, suggesting that other factors are important in future assessments of inflammation's role in the maintenance of these disorders (ie, sex, co-morbid conditions, types of trauma exposure, and behavioral sources of inflammation). The most parsimonious explanation of increased inflammation in PTSD, GAD, PD, and phobias is via the activation of the stress response and central and peripheral immune cells to release cytokines. Dysregulation of the stress axis in the face of increased sympathetic tone and decreased parasympathetic activity characteristic of anxiety disorders could further augment inflammation and contribute to increased symptoms by having direct effects on brain regions critical for the regulation of fear and anxiety (such as the prefrontal cortex, insula, amygdala, and hippocampus). Taken together, the available data suggest that targeting inflammation may serve as a potential therapeutic target for treating these fear- and anxiety-based disorders in the future. However, the field must continue to characterize the specific role pro-inflammatory signaling in the maintenance of these unique psychiatric conditions.
Collapse
|
49
|
Goddard AW. The Neurobiology of Panic: A Chronic Stress Disorder. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017736038. [PMID: 32440580 PMCID: PMC7219873 DOI: 10.1177/2470547017736038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Panic disorder is an often chronic and impairing human anxiety syndrome, which frequently results in serious psychiatric and medical comorbidities. Although, to date, there have been many advances in the diagnosis and treatment of panic disorder, its pathophysiology still remains to be elucidated. In this review, recent evidence for a neurobiological basis of panic disorder is reviewed with particular attention to risk factors such as genetic vulnerability, chronic stress, and temperament. In addition, neuroimaging data are reviewed which provides support for the concept of panic disorder as a fear network disorder. The potential impact of the National Institute of Mental Health Research Domain Criteria constructs of acute and chronic threats responses and their implications for the neurobiology of panic disorder are also discussed.
Collapse
Affiliation(s)
- Andrew W. Goddard
- UCSF Fresno Medical Education and
Research Program, University of California, San Francisco, USA
| |
Collapse
|
50
|
Decreased Anterior Cingulate Cortex γ-Aminobutyric Acid in Youth With Tourette's Disorder. Pediatr Neurol 2016; 65:64-70. [PMID: 27743746 DOI: 10.1016/j.pediatrneurol.2016.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND γ-Aminobutyric acid has been implicated in the pathophysiology of Tourette's disorder. The present study primarily sought to examine in vivo γ-aminobutyric acid levels in the anterior cingulate cortex in psychotropic medication-free adolescents and young adults. Secondarily, we sought to determine associations between γ-aminobutyric acid in the anterior cingulate cortex and measures of tic severity, tic-related impairment, and anxiety and depression symptoms. METHODS γ-Aminobutyric acid levels were measured using proton magnetic resonance spectroscopy. Analysis of covariance compared γ-aminobutyric acid levels in 15 youth with Tourette's disorder (mean age = 15.0, S.D. = 2.7) and 36 healthy comparison subjects (mean age = 15.9, S.D. = 2.1). Within the Tourette disorder group, we examined correlations between γ-aminobutyric acid levels and tic severity and tic-related impairment, as well as anxiety and depression severity. RESULTS Anterior cingulate cortex γ-aminobutyric acid levels were lower in participants with Tourette's disorder compared with control subjects. Within the Tourette disorder group, γ-aminobutyric acid levels did not correlate with any clinical measures. CONCLUSIONS Our findings support a role for γ-aminobutyric acid in Tourette's disorder. Larger prospective studies will further elucidate this role.
Collapse
|