1
|
Rach H, Kilic‐Huck U, Geoffroy PA, Bourcier T, Braun S, Comtet H, Ruppert E, Hugueny L, Hebert M, Reynaud E, Bourgin P. The electroretinography to identify biomarkers of idiopathic hypersomnia and narcolepsy type 1. J Sleep Res 2025; 34:e14278. [PMID: 38993053 PMCID: PMC11744238 DOI: 10.1111/jsr.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Hypersomnia spectrum disorders are underdiagnosed and poorly treated due to their heterogeneity and absence of biomarkers. The electroretinography has been proposed as a proxy of central dysfunction and has proved to be valuable to differentiate certain psychiatric disorders. Hypersomnolence is a shared core feature in central hypersomnia and psychiatric disorders. We therefore aimed to identify biomarkers by studying the electroretinography profile in patients with narcolepsy type 1, idiopathic hypersomnia and in controls. Cone, rod and retinal ganglion cells electrical activity were recorded with flash-electroretinography in non-dilated eye of 31 patients with idiopathic hypersomnia (women 84%, 26.6 ± 5.9 years), 19 patients with narcolepsy type 1 (women 63%, 36.6 ± 12.7 years) and 43 controls (women 58%, 30.6 ± 9.3 years). Reduced cone a-wave amplitude (p = 0.039) and prolonged cone (p = 0.022) and rod b-wave (p = 0.009) latencies were observed in patients with narcolepsy type 1 as compared with controls, while prolonged photopic negative response-wave latency (retinal ganglion cells activity) was observed in patients with idiopathic hypersomnia as compared with controls (p = 0.033). The rod and cone b-wave latency clearly distinguished narcolepsy type 1 from idiopathic hypersomnia and controls (area under the curve > 0.70), and the photopic negative response-wave latency distinguished idiopathic hypersomnia and narcolepsy type 1 from controls with an area under the curve > 0.68. This first original study shows electroretinography anomalies observed in patients with hypersomnia. Narcolepsy type 1 is associated with impaired cone and rod responses, whereas idiopathic hypersomnia is associated with impaired retinal ganglion cells response, suggesting different phototransduction alterations in both hypersomnias. Although these results need to be confirmed with a larger sample size, the electroretinography may be a promising tool for clinicians to differentiate hypersomnia subtypes.
Collapse
Affiliation(s)
- Héloïse Rach
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Ulker Kilic‐Huck
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Pierre A. Geoffroy
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- Département de psychiatrie et d'addictologie, AP‐HP, GHU Paris Nord, DMU NeurosciencesHopital Bichat‐Claude BernardParisFrance
- Université de Paris, NeuroDiderot, Inserm, FHU I2‐D2ParisFrance
| | - Tristan Bourcier
- Department of Ophthalmology & Gepromed, Education DepartmentStrasbourg University HospitalStrasbourgFrance
| | - Sophie Braun
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Henri Comtet
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Elisabeth Ruppert
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Laurence Hugueny
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Marc Hebert
- Centre de Recherche CERVOCentre Intégré Universitaire de Santé et des Services Sociaux de la Capitale NationaleQuébecQuebecCanada
- Département d'Ophtalmologie et d'Oto‐Rhino‐Laryngologie‐Chirurgie Cervico‐Faciale, Faculté de MédecineUniversité LavalQuébecQuebecCanada
| | - Eve Reynaud
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| |
Collapse
|
2
|
Fuyi Q, Xiang C, Xinling Z, Zeyi G, Liu Y, Jia W, Qing L, Zhaowei T, Yong Z. Association between retinal nerve fiber layer thickness and psychiatric disorders: a mendelian randomization study. BMC Psychiatry 2024; 24:640. [PMID: 39350113 PMCID: PMC11443632 DOI: 10.1186/s12888-024-06100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Retinal nerve fiber layer thickness, as a new visual indicator that may help diagnose mental disorders, is gaining attention from researchers. However, the causal relationship between retinal nerve fiber layer thickness and mental disorders is still to be effectively proved. METHODS A bidirectional Two-sample Mendelian randomization analysis was utilized to analyse aggregated data from large-scale genome-wide association studies, we selected genetic loci for retinal nerve fiber layer thickness in independent retinal abnormalities and three prevalent psychiatric disorders (schizophrenia, depression, bipolar disorder) as instrumental variables. The Two-sample Mendelian randomization analysis was mainly performed by inverse variance weighting and weighted median method. The Cochran Q test and leave-one-out sensitivity were used to ensure the robustness of the results. The Mendelian random polymorphism residuals and outliers were used to detect single nucleotide polymorphism outliers, and MR-Egger intercept test was used to test single nucleotide polymorphism horizontal pleiotropy. RESULTS IVW showed that retinal nerve fiber layer thickness was positively associated with schizophrenia (OR = 1.057, 95%CI: 1.000-1.117, P < 0.05), in the study of bipolar disorder, MR analysis also suggested a positive causal relationship between retinal nerve fiber layer thickness and bipolar disorder (OR = 1.025, 95%CI: 1.005-1.046, P < 0.05), which indicated possible causal relationships between retinal nerve fiber layer thickness and these two diseases. Depression (OR = 1.000143, 95%CI: 0.9992631-1.001024, P = 0.74) indicated no significant causal association. No reverse causal effects of psychiatric disorders on retinal nerve fiber layer thickness were found. CONCLUSIONS A statistically significant causal relationship between retinal nerve fiber layer thickness and schizophrenia and bipolar disorder has been supported by genetic means, indicating RNFL has potential to aid in the diagnosis of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Qin Fuyi
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cao Xiang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Xinling
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guo Zeyi
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yilin Liu
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen Jia
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Long Qing
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Teng Zhaowei
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zeng Yong
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Friedel EBN, Tebartz van Elst L, Beringer M, Endres D, Runge K, Maier S, Kornmeier J, Bach M, Domschke K, Heinrich SP, Nickel K. Reduced contrast sensitivity, pattern electroretinogram ratio, and diminished a-wave amplitude in patients with major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01826-8. [PMID: 38805071 DOI: 10.1007/s00406-024-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
The electroretinogram (ERG), a non-invasive electrophysiological tool used in ophthalmology, is increasingly applied to investigate neural correlates of depression. The present study aimed to reconsider previous findings in major depressive disorder (MDD) reporting (1) a diminished contrast sensitivity and (2) a reduced patten ERG (PERG) amplitude ratio, and additionally, to assess (3) the photopic negative response (PhNR) from the flash ERG (fERG), with the RETeval® device, a more practical option for clinical routine use. We examined 30 patients with a MDD and 42 healthy controls (HC), assessing individual contrast sensitivity thresholds with an optotype-based contrast test. Moreover, we compared the PERG ratio, an established method for early glaucoma detection, between both groups. The handheld ERG device was used to measure amplitudes and peak times of the fERG components including a-wave, b-wave and PhNR in both MDD patients and HCs. MDD patients exhibited diminished contrast sensitivity together with a reduced PERG ratio, compared to HC. With the handheld ERG device, we found reduced a-wave amplitudes in MDD, whereas no significant differences were observed in the fERG b-wave or PhNR between patients and controls. The reduced contrast sensitivity and PERG ratio in MDD patients supports the hypothesis that depression is associated with altered visual processing. The findings underscore the PERG's potential as a possible objective marker for depression. The reduced a-wave amplitude recorded with the RETeval® system in MDD patients might open new avenues for using handheld ERG devices as simplified approaches for advancing depression research compared to the PERG.
Collapse
Affiliation(s)
- Evelyn B N Friedel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Malina Beringer
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kornmeier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| | - Michael Bach
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
| | - Sven P Heinrich
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Komatsu H, Onoguchi G, Silverstein SM, Jerotic S, Sakuma A, Kanahara N, Kakuto Y, Ono T, Yabana T, Nakazawa T, Tomita H. Retina as a potential biomarker in schizophrenia spectrum disorders: a systematic review and meta-analysis of optical coherence tomography and electroretinography. Mol Psychiatry 2024; 29:464-482. [PMID: 38081943 PMCID: PMC11116118 DOI: 10.1038/s41380-023-02340-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Abnormal findings on optical coherence tomography (OCT) and electroretinography (ERG) have been reported in participants with schizophrenia spectrum disorders (SSDs). This study aims to reveal the pooled standard mean difference (SMD) in retinal parameters on OCT and ERG among participants with SSDs and healthy controls and their association with demographic characteristics, clinical symptoms, smoking, diabetes mellitus, and hypertension. METHODS Using PubMed, Scopus, Web of Science, and PSYNDEX, we searched the literature from inception to March 31, 2023, using specific search terms. This study was registered with PROSPERO (CRD4202235795) and conducted according to PRISMA 2020. RESULTS We included 65 studies in the systematic review and 44 in the meta-analysis. Participants with SSDs showed thinning of the peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell layer- inner plexiform cell layer, and retinal thickness in all other segments of the macula. A meta-analysis of studies that excluded SSD participants with diabetes and hypertension showed no change in results, except for pRNFL inferior and nasal thickness. Furthermore, a significant difference was found in the pooled SMD of pRNFL temporal thickness between the left and right eyes. Meta-regression analysis revealed an association between retinal thinning and duration of illness, positive and negative symptoms. In OCT angiography, no differences were found in the foveal avascular zone and superficial layer foveal vessel density between SSD participants and controls. In flash ERG, the meta-analysis showed reduced amplitude of both a- and b-waves under photopic and scotopic conditions in SSD participants. Furthermore, the latency of photopic a-wave was significantly shorter in SSD participants in comparison with HCs. DISCUSSION Considering the prior report of retinal thinning in unaffected first-degree relatives and the results of the meta-analysis, the findings suggest that retinal changes in SSDs have both trait and state aspects. Future longitudinal multimodal retinal imaging studies are needed to clarify the pathophysiological mechanisms of these changes and to clarify their utility in individual patient monitoring efforts.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.
- Miyagi Psychiatric Center, Natori, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefan Jerotic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yoshihisa Kakuto
- Miyagi Psychiatric Center, Natori, Japan
- Department of Community Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Brabec M, Constable PA, Thompson DA, Marmolejo-Ramos F. Group comparisons of the individual electroretinogram time trajectories for the ascending limb of the b-wave using a raw and registered time series. BMC Res Notes 2023; 16:238. [PMID: 37773138 PMCID: PMC10542250 DOI: 10.1186/s13104-023-06535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVES The electroretinogram is a clinical test commonly used in the diagnosis of retinal disorders with the peak time and amplitude of the a- and b-waves used as the main indicators of retinal function. However, subtle changes that affect the shape of the electroretinogram waveform may occur in the early stages of disease or in conditions that have a neurodevelopmental or neurodegenerative origin. In such cases, we introduce a statistical approach to mathematically model the shape of the electroretinogram waveform that may aid clinicians and researchers using the electroretinogram or other biological signal recordings to identify morphological features in the waveforms that may not be captured by the time or time-frequency domains of the waveforms. We present a statistical graphics-based analysis of the ascending limb of the b-wave (AL-b) of the electroretinogram in children with and without a diagnosis of autism spectrum disorder (ASD) with a narrative explanation of the statistical approach to illustrate how different features of the waveform based on location and scale derived from raw and registered time series can reveal subtle differences between the groups. RESULTS Analysis of the raw time trajectories confirmed findings of previous studies with a reduced and delayed b-wave amplitude in ASD. However, when the individual time trajectories were registered then group differences were visible in the mean amplitude at registered time ~ 0.6 suggesting a novel method to differentiate groups using registration of the ERG waveform.
Collapse
Affiliation(s)
- Marek Brabec
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
| | - Paul A Constable
- Flinders University, College of Nursing and Health Sciences, Caring Futures Institute, Adelaide, SA, Australia.
| | - Dorothy A Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic, Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fernando Marmolejo-Ramos
- Centre for Change and Complexity in Learning, The University of South Australia, Adelaide, Australia
| |
Collapse
|
6
|
Constable PA, Lim JKH, Thompson DA. Retinal electrophysiology in central nervous system disorders. A review of human and mouse studies. Front Neurosci 2023; 17:1215097. [PMID: 37600004 PMCID: PMC10433210 DOI: 10.3389/fnins.2023.1215097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The retina and brain share similar neurochemistry and neurodevelopmental origins, with the retina, often viewed as a "window to the brain." With retinal measures of structure and function becoming easier to obtain in clinical populations there is a growing interest in using retinal findings as potential biomarkers for disorders affecting the central nervous system. Functional retinal biomarkers, such as the electroretinogram, show promise in neurological disorders, despite having limitations imposed by the existence of overlapping genetic markers, clinical traits or the effects of medications that may reduce their specificity in some conditions. This narrative review summarizes the principal functional retinal findings in central nervous system disorders and related mouse models and provides a background to the main excitatory and inhibitory retinal neurotransmitters that have been implicated to explain the visual electrophysiological findings. These changes in retinal neurochemistry may contribute to our understanding of these conditions based on the findings of retinal electrophysiological tests such as the flash, pattern, multifocal electroretinograms, and electro-oculogram. It is likely that future applications of signal analysis and machine learning algorithms will offer new insights into the pathophysiology, classification, and progression of these clinical disorders including autism, attention deficit/hyperactivity disorder, bipolar disorder, schizophrenia, depression, Parkinson's, and Alzheimer's disease. New clinical applications of visual electrophysiology to this field may lead to earlier, more accurate diagnoses and better targeted therapeutic interventions benefiting individual patients and clinicians managing these individuals and their families.
Collapse
Affiliation(s)
- Paul A. Constable
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, SA, Australia
| | - Jeremiah K. H. Lim
- Discipline of Optometry, School of Allied Health, University of Western Australia, Perth, WA, Australia
| | - Dorothy A. Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
7
|
Xiao X, Zhong D, Liu H, Fan R, Jiang C, Zheng Z, Li Y, Wan L. Role of optical coherence tomography in depression detection: a protocol of systematic review and meta-analysis. BMJ Open 2023; 13:e065549. [PMID: 37423631 DOI: 10.1136/bmjopen-2022-065549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
INTRODUCTION Optical coherence tomography (OCT) is a non-invasive approach for detecting changes in the retinal layers, which may also reflect changes in brain structure and function. As one of the leading causes of disability worldwide, depression has been associated with alteration of brain neuroplasticity. However, the role of OCT measurements in detecting depression remains unknown. This study aims to employ a systematic review and meta-analysis approach to explore ocular biomarkers measured by OCT for detecting depression. METHODS AND ANALYSIS We will search studies describing the relationship between OCT and depression across seven electronic databases, and retrieve articles published from database inception to date. We will also manually search grey literature and reference lists included in the retrieved studies. Two independent reviewers will screen studies, extract data and assess risk of bias. Target outcomes will include peripapillary retinal nerve fibre layer thickness, macular ganglion cell complex thickness and macular volume, as well as other related indicators. Next, we will conduct subgroup analysis and meta-regression to explore study heterogeneity, then perform sensitivity analysis to investigate the robustness of the synthesised results. Meta-analysis will be performed using Review Manager (V.5.4.1) and STATA (V.12.0), and the certainty of evidence will be graded according to the Grading of Recommendations Assessment, Development and Evaluation system. ETHICS AND DISSEMINATION Ethics approval is not necessary because the data used in this systematic review and meta-analysis will be extracted from published studies. Study results will be disseminated by publishing our findings in a peer-reviewed journal.
Collapse
Affiliation(s)
- Xili Xiao
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongling Zhong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Liu
- Department of Rehabilitation Medicine, Nanbu County People's Hospital, Nanchong, China
| | - Rong Fan
- Department of Rehabilitation Medicine, Nanbu County People's Hospital, Nanchong, China
| | - Chengzhi Jiang
- Department of Rehabilitation Medicine, Sichuan Science City Hospital, Mianyang, China
| | - Zhong Zheng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuxi Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wan
- School of sports medicine and health, Chengdu Sport University, Chengdu, China
| |
Collapse
|
8
|
Tursini K, Remy I, Le Cam S, Louis-Dorr V, Malka-Mahieu H, Schwan R, Gross G, Laprévote V, Schwitzer T. Subsequent and simultaneous electrophysiological investigation of the retina and the visual cortex in neurodegenerative and psychiatric diseases: what are the forecasts for the medicine of tomorrow? Front Psychiatry 2023; 14:1167654. [PMID: 37333926 PMCID: PMC10272854 DOI: 10.3389/fpsyt.2023.1167654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Visual electrophysiological deficits have been reported in neurodegenerative disorders as well as in mental disorders. Such alterations have been mentioned in both the retina and the cortex, notably affecting the photoreceptors, retinal ganglion cells (RGCs) and the primary visual cortex. Interestingly, such impairments emphasize the functional role of the visual system. For this purpose, the present study reviews the existing literature with the aim of identifying key alterations in electroretinograms (ERGs) and visual evoked potentials electroencephalograms (VEP-EEGs) of subjects with neurodegenerative and psychiatric disorders. We focused on psychiatric and neurodegenerative diseases due to similarities in their neuropathophysiological mechanisms. Our research focuses on decoupled and coupled ERG/VEP-EEG results obtained with black-and-white checkerboards or low-level visual stimuli. A decoupled approach means recording first the ERG, then the VEP-EEG in the same subject with the same visual stimuli. The second method means recording both ERG and VEP-EEG simultaneously in the same participant with the same visual stimuli. Both coupled and decoupled results were found, indicating deficits mainly in the N95 ERG wave and the P100 VEP-EEG wave in Parkinson’s, Alzheimer’s, and major depressive disorder. Such results reinforce the link between the retina and the visual cortex for the diagnosis of psychiatric and neurodegenerative diseases. With that in mind, medical devices using coupled ERG/VEP-EEG measurements are being developed in order to further investigate the relationship between the retina and the visual cortex. These new techniques outline future challenges in mental health and the use of machine learning for the diagnosis of mental disorders, which would be a crucial step toward precision psychiatry.
Collapse
Affiliation(s)
- Katelyne Tursini
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- BioSerenity, Paris, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
| | - Irving Remy
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- BioSerenity, Paris, France
- INSERM U1114, Université de Strasbourg, Strasbourg, France
| | - Steven Le Cam
- CRAN, CNRS UMR 7039, Université de Lorraine, Nancy, France
| | | | | | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
- Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Grégory Gross
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
| | - Vincent Laprévote
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1114, Université de Strasbourg, Strasbourg, France
- Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
- Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
9
|
Modrzejewska M, Bosy-Gąsior W. The Use of Optical Coherence Tomography and Electrophysiological Tests in the Early Diagnosis of Inflammatory Changes in the CNS in children with ASD-A Review of Contemporary Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3591. [PMID: 36834288 PMCID: PMC9964154 DOI: 10.3390/ijerph20043591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
This article is a review of the contemporary literature on the possibility of using modern ophthalmological diagnostics, such as optical coherence tomography and electrophysiological tests, in the assessment of changes in eyesight correlating with inflammatory changes in the central nervous system (CNS) as one of the risk factors for neurodevelopmental disorders in children with ASD. A significant role is attributed to the activation of nerve and glial cells, as well as inflammatory changes in the brain, both of which can be of great importance in regard to an autism development predisposition. This fact indicates the possibility of using certain ophthalmic markers to depict an early correlation between the CNS and its outermost layer, i.e., the retina. A comprehensive ophthalmological assessment, and above all, characteristic changes in the functional function of photoreceptors and disorders of the structures of the retina or optic nerve fibers found in the latest OCT or ERG tests may in the future become diagnostic tools, further confirming the early characteristics of autism in children and adolescents. The above information, therefore, emphasizes the importance of cooperation between specialists in improving the diagnosis and treatment of children with autism.
Collapse
Affiliation(s)
- Monika Modrzejewska
- 2nd Department of Ophthalmology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Wiktoria Bosy-Gąsior
- Scientific Association of Students 2nd Department of Ophthalmology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
10
|
Structural and functional retinal alterations in patients with paranoid schizophrenia. Transl Psychiatry 2022; 12:402. [PMID: 36151078 PMCID: PMC9508100 DOI: 10.1038/s41398-022-02167-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Ophthalmological methods have increasingly raised the interest of neuropsychiatric specialists. While the integrity of the retinal cell functions can be evaluated with the electroretinogram (ERG), optical coherence tomography (OCT) allows a structural investigation of retinal layer thicknesses. Previous studies indicate possible functional and structural retinal alterations in patients with schizophrenia. Twenty-five patients with paranoid schizophrenia and 25 healthy controls (HC) matched for age, sex, and smoking status participated in this study. Both, ERG and OCT were applied to obtain further insights into functional and structural retinal alterations. A significantly reduced a-wave amplitude and thickness of the corresponding para- and perifoveal outer nuclear layer (ONL) was detected in patients with paranoid schizophrenia with a positive correlation between both measurement parameters. Amplitude and peak time of the photopic negative response (PhNR) and thickness of the parafoveal ganglion cell layer (GCL) were decreased in patients with schizophrenia compared to HC. Our results show both structural and functional retinal differences between patients with paranoid schizophrenia and HC. We therefore recommend the comprehensive assessment of the visual system of patients with schizophrenia, especially to further investigate the effect of antipsychotic medication, the duration of illness, or other factors such as inflammatory or neurodegenerative processes. Moreover, longitudinal studies are required to investigate whether the functional alterations precede the structural changes.
Collapse
|
11
|
Yue W, Huang H, Duan J. Potential diagnostic biomarkers for schizophrenia. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:385-416. [PMID: 37724326 PMCID: PMC10388817 DOI: 10.1515/mr-2022-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 09/20/2023]
Abstract
Schizophrenia (SCH) is a complex and severe mental disorder with high prevalence, disability, mortality and carries a heavy disease burden, the lifetime prevalence of SCH is around 0.7%-1.0%, which has a profound impact on the individual and society. In the clinical practice of SCH, key problems such as subjective diagnosis, experiential treatment, and poor overall prognosis are still challenging. In recent years, some exciting discoveries have been made in the research on objective biomarkers of SCH, mainly focusing on genetic susceptibility genes, metabolic indicators, immune indices, brain imaging, electrophysiological characteristics. This review aims to summarize the biomarkers that may be used for the prediction and diagnosis of SCH.
Collapse
Affiliation(s)
- Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University) and Chinese Academy of Medical Sciences Research Unit, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University Health System, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Visual electrophysiology and neuropsychology in bipolar disorders: a review on current state and perspectives. Neurosci Biobehav Rev 2022; 140:104764. [DOI: 10.1016/j.neubiorev.2022.104764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022]
|
13
|
Schwitzer T, Le Cam S, Cosker E, Vinsard H, Leguay A, Angioi-Duprez K, Laprevote V, Ranta R, Schwan R, Dorr VL. Retinal electroretinogram features can detect depression state and treatment response in adults: A machine learning approach. J Affect Disord 2022; 306:208-214. [PMID: 35301040 DOI: 10.1016/j.jad.2022.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a major public health problem. The retina is a relevant site to indirectly study brain functioning. Alterations in retinal processing were demonstrated in MDD with the pattern electroretinogram (PERG). Here, the relevance of signal processing and machine learning tools applied on PERG was studied. METHODS PERG - whose stimulation is reversible checkerboards - was performed according to the International Society for Clinical Electrophysiology of Vision (ISCEV) standards in 24 MDD patients and 29 controls at the inclusion. PERG was recorded every 4 weeks for 3 months in patients. Amplitude and implicit time of P50 and N95 were evaluated. Then, time/frequency features were extracted from the PERG time series based on wavelet analysis. A statistical model has been learned in this feature space and a metric aiming at quantifying the state of the MDD patient has been derived, based on minimum covariance determinant (MCD) mahalanobis distance. RESULTS MDD patients showed significant increase in P50 and N95 implicit time (p = 0,006 and p = 0,0004, respectively, Mann-Whitney U test) at the inclusion. The proposed metric extracted from the raw PERG provided discrimination between patients and controls at the inclusion (p = 0,0001). At the end of the follow-up at week 12, the difference between the metrics extracted on controls and patients was not significant (p = 0,07), reflecting the efficacy of the treatment. CONCLUSIONS Signal processing and machine learning tools applied on PERG could help clinical decision in the diagnosis and the follow-up of MDD in measuring treatment response.
Collapse
Affiliation(s)
- Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1254, IADI, Université de Lorraine, Nancy, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Steven Le Cam
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Eve Cosker
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Heloise Vinsard
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
| | - Ambre Leguay
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
| | - Karine Angioi-Duprez
- Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Service d'Ophtalmologie, CHRU Nancy, Nancy, France
| | - Vincent Laprevote
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Radu Ranta
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1254, IADI, Université de Lorraine, Nancy, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | |
Collapse
|
14
|
Satue M, Fuentes JL, Vilades E, Orduna E, Vicente MJ, Cordon B, Perez-Velilla J, Garcia-Campayo J J, Garcia-Martin E. Evaluation of progressive retinal degeneration in Bipolar disorder patients over a period of 5 years. Curr Eye Res 2022; 47:1061-1067. [PMID: 35438020 DOI: 10.1080/02713683.2022.2064513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To quantify visual and retinal changes in patients with bipolar disorder (BD) over 5 years, compared with controls. METHODS Thirty-eight patients with BD and 122 healthy subjects underwent visual acuity (VA) evaluation, contrast sensitivity vision testing (CSV) with the Pelli Robson and CSV 1000E tests, and retinal thicknesses measurement (ganglion cell layer - GCL- and retinal nerve fiber layer -RNFL-) using Spectralis Optical Coherence Tomography (OCT). All subjects were re-evaluated after 5 years. The relationship between progressive structural changes and disease duration was analysed. RESULTS Visual function parameters in BD patients remained unchanged during the follow up period. A progressive decrease affecting macular and peripapillary RNFL thickness (p < 0.050) was observed in patients. Progressive changes in BD were more pronounced when compared with healthy controls (p < 0.050). A significant correlation between GCL thickness changes and disease duration was found (GCL outer temporal, r=-0.680, p = 0.016; GCL central, r=-0.540, p = 0.038). CONCLUSIONS Progressive axonal loss was detected in BD patients. Visual function parameters were not affected after the 5-year follow up. Despite observed changes in the neuroretina of patients with BD, axonal degeneration in these patients seemed to be mild and might be slowed down by other factors such as BD treatments.
Collapse
Affiliation(s)
- Maria Satue
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research and Innovative Group (GIMSO). Aragon Institute for Health Research (IIS Aragón). University of Zaragoza. Zaragoza (Spain)
| | - Juan Luis Fuentes
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research and Innovative Group (GIMSO). Aragon Institute for Health Research (IIS Aragón). University of Zaragoza. Zaragoza (Spain)
| | - Elisa Vilades
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research and Innovative Group (GIMSO). Aragon Institute for Health Research (IIS Aragón). University of Zaragoza. Zaragoza (Spain)
| | - Elvira Orduna
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research and Innovative Group (GIMSO). Aragon Institute for Health Research (IIS Aragón). University of Zaragoza. Zaragoza (Spain)
| | - Maria José Vicente
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research and Innovative Group (GIMSO). Aragon Institute for Health Research (IIS Aragón). University of Zaragoza. Zaragoza (Spain)
| | - Beatriz Cordon
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research and Innovative Group (GIMSO). Aragon Institute for Health Research (IIS Aragón). University of Zaragoza. Zaragoza (Spain)
| | - Javier Perez-Velilla
- Miguel Servet Ophthalmology Research and Innovative Group (GIMSO). Aragon Institute for Health Research (IIS Aragón). University of Zaragoza. Zaragoza (Spain)
| | - Javier Garcia-Campayo J
- Miguel Servet Ophthalmology Research and Innovative Group (GIMSO). Aragon Institute for Health Research (IIS Aragón). University of Zaragoza. Zaragoza (Spain).,Psychiatry Department, Red de Investigación en Atención primaria (REDIAPP), Miguel Servet University Hospital, Zaragoza, Spain
| | - Elena Garcia-Martin
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research and Innovative Group (GIMSO). Aragon Institute for Health Research (IIS Aragón). University of Zaragoza. Zaragoza (Spain)
| |
Collapse
|
15
|
Léger M, Wolff V, Kabuth B, Albuisson E, Ligier F. The mood disorder spectrum vs. schizophrenia decision tree: EDIPHAS research into the childhood and adolescence of 205 patients. BMC Psychiatry 2022; 22:194. [PMID: 35300648 PMCID: PMC8932125 DOI: 10.1186/s12888-022-03835-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The early detection of patients at risk of developing schizophrenia and bipolar disorder, and more broadly mood spectrum disorder, is a public health concern. The phenotypical overlap between the prodromes in these disorders calls for a simultaneous investigation into both illness trajectories. METHOD This is an epidemiological, retrospective, multicentre, descriptive study conducted in the Grand-Est region of France in order to describe and compare early symptoms in 205 patients: 123 of which were diagnosed with schizophrenia and 82 with bipolar disorder or mood spectrum disorder. Data corresponding to the pre-morbid and prodromal phases, including a timeline of their onset, were studied in child and adolescent psychiatric records via a data grid based on the literature review conducted from birth to 17 years of age. RESULTS Two distinct trajectories were highlighted. Patients with schizophrenia tended to present more difficulties at each developmental stage, with the emergence of negative and positive behavioural symptoms during adolescence. Patients with mood spectrum disorder, however, were more likely to exhibit anxiety and then mood-related symptoms. Overall, our results corroborate current literature findings and are consistent with the neurodevelopmental process. We succeeded in extracting a decision tree with good predictability based on variables relating to one diagnosis: 77.6% of patients received a well-indexed diagnosis. An atypical profile was observed in future mood spectrum disorder patients as some exhibited numerous positive symptoms alongside more conventional mood-related symptoms. CONCLUSION The combination of all these data could help promote the early identification of high-risk patients thereby facilitating early prevention and appropriate intervention in order to improve outcomes.
Collapse
Affiliation(s)
- Mathilde Léger
- Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent [University Department of Childhood and Adolescent Psychiatry], Centre Psychothérapique de Nancy [Nancy Psychotherapy Centre], F-54520 Laxou, France
| | - Vanessa Wolff
- Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent [University Department of Childhood and Adolescent Psychiatry], Centre Psychothérapique de Nancy [Nancy Psychotherapy Centre], F-54520 Laxou, France
| | - Bernard Kabuth
- Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent [University Department of Childhood and Adolescent Psychiatry], Centre Psychothérapique de Nancy [Nancy Psychotherapy Centre], F-54520 Laxou, France ,grid.29172.3f0000 0001 2194 6418EA 4432, PRISME, Université de Lorraine [Lorraine University], Laxou, France
| | - Eliane Albuisson
- grid.410527.50000 0004 1765 1301DRCI UMDS, Centre Hospitalier Universitaire de Nancy, Nancy University Hospital, Laxou, France
| | - Fabienne Ligier
- Pôle Universitaire de Psychiatrie de l'Enfant et de l'Adolescent [University Department of Childhood and Adolescent Psychiatry], Centre Psychothérapique de Nancy [Nancy Psychotherapy Centre], F-54520, Laxou, France. .,EA 4360 APEMAC, Université de Lorraine, Laxou, France.
| |
Collapse
|
16
|
Schwitzer T, Leboyer M, Laprévote V, Schwan R. Retinal electrophysiology and transition to psychiatric disorders in subjects under the influence of cannabis. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110466. [PMID: 34744025 DOI: 10.1016/j.pnpbp.2021.110466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1254, IADI, Université de Lorraine, Nancy, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Fondation FondaMental, Créteil, France.
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France; Université Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, FHU ADAPT, INSERMU955, IMRB, Translational Neuropsychiatry laboratory, F-94010 Creteil, France
| | - Vincent Laprévote
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1254, IADI, Université de Lorraine, Nancy, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France; Fondation FondaMental, Créteil, France
| |
Collapse
|
17
|
Maziade M, Bureau A, Jomphe V, Gagné AM. Retinal function and preclinical risk traits in children and adolescents at genetic risk of schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110432. [PMID: 34454992 DOI: 10.1016/j.pnpbp.2021.110432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND The millions of children having a parent affected by a major psychiatric disorder may carry, as vulnerability indicators, electroretinographic (ERG) anomalies resembling those seen in adult patients. Our goal was to determine whether ERG anomalies in high-risk youths are related to clinical precursors of a later transition to illness such as the presence of childhood DSM-IV diagnoses, bouts of psychotic like experiences, lower global IQ and social functioning deterioration. METHODS The 99 youths (53% males) aged 5-27 years had one parent affected by schizophrenia, bipolar disorder or major depressive disorder. They were assessed with a best-estimate DSM-IV diagnoses based on review of medical charts and a structured interview (K-SADS or SCID), global IQ (WISC-V and WAIS-IV), global functioning (GAF scale) and psychotic-like experiences using interviews and a review of medical records. The electroretinogram of rods and cones was recorded. RESULTS Cone Vmax latency was longer in offspring having psychotic-like experiences, respective adjusted mean [SE] ms of 31.59 [0.27] and of 30.96 [0.14]; P = 0.018). The cone Vmax delayed latency was associated with a lower global IQ (R = -0.18; P = 0.045) and with deteriorated global functioning (GAF; R = -0.25; P = 0.008). In contrast, rods had decreased b-wave amplitude only in offspring with a non-psychotic non-affective DSM diagnoses, respective means [SE] μV of 170.18 [4.90] and of 184.01 [6.12]; P = 0.044). CONCLUSIONS ERG may mark neurodevelopmental pathways leading to adult illness and have an effect on early pre-clinical traits, giving clues to clinicians for the surveillance of sibling differences in high-risk families.
Collapse
Affiliation(s)
- M Maziade
- CERVO Brain Research Center, Centre intégré universitaire de santé et des services sociaux de la Capitale-Nationale, Québec, Canada; Université Laval, Faculté de Médecine, Département de psychiatrie et neurosciences, Québec, Canada.
| | - A Bureau
- CERVO Brain Research Center, Centre intégré universitaire de santé et des services sociaux de la Capitale-Nationale, Québec, Canada; Université Laval, Faculté de Médecine, Département de médecine sociale et préventive, Québec, Canada
| | - V Jomphe
- CERVO Brain Research Center, Centre intégré universitaire de santé et des services sociaux de la Capitale-Nationale, Québec, Canada
| | - A M Gagné
- CERVO Brain Research Center, Centre intégré universitaire de santé et des services sociaux de la Capitale-Nationale, Québec, Canada
| |
Collapse
|
18
|
Schwitzer T, Leboyer M, Schwan R. A Reflection Upon the Contribution of Retinal and Cortical Electrophysiology to Time of Information Processing in Psychiatric Disorders. Front Psychiatry 2022; 13:856498. [PMID: 35449563 PMCID: PMC9017967 DOI: 10.3389/fpsyt.2022.856498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.,INSERM U1254, IADI, Université de Lorraine, Nancy, France.,Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France.,Université Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires ≪ H. Mondor ≫, DMU IMPACT, FHU ADAPT, INSERMU955, IMRB, Translational Neuropsychiatry Laboratory, Creteil, France
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.,INSERM U1254, IADI, Université de Lorraine, Nancy, France.,Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Fondation FondaMental, Créteil, France
| |
Collapse
|
19
|
Schwitzer T, Moreno-Zaragoza A, Dramé L, Schwan R, Angioi-Duprez K, Albuisson E, Laprévote V. Variations of retinal dysfunctions with the level of cannabis use in regular users: Toward a better understanding of cannabis use pathophysiology. Front Psychiatry 2022; 13:959347. [PMID: 36465284 PMCID: PMC9712212 DOI: 10.3389/fpsyt.2022.959347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The impact of regular cannabis use on retinal function has already been studied using flash (fERG) and pattern (PERG) electroretinogram. Delayed ganglion and bipolar cells responses were observed as showed by increased peak time of PERG N95 and fERG b-wave recorded in photopic condition. Hypoactivity of amacrine cells was also showed by decreased amplitudes of oscillatory potentials (OPs). However, it is unknown how these retinal anomalies evolve according to the level of cannabis use in cannabis users. The aim of this study was to longitudinally assess the retinal function during a treatment aiming to reduce cannabis use. We recorded PERG and fERG in 40 regular cannabis users receiving either an 8 weeks mindfulness-based relapse prevention program or an 8 weeks treatment-as-usual therapy. ERGs were recorded before treatment, at the end of it, and 4 weeks afterward. We found reduced peak times in PERG N95 and fERG b-wave (p = 0.032 and p = 0.024: Dunn's post-hoc test) recorded at week 8 and increased amplitudes in OP2 and OP3 (p = 0.012 and p = 0.030: Dunn's post-hoc test) recorded at week 12 in users with decreased cannabis use. These results support variations of retinal anomalies with the level of cannabis use, implying that reduction of cannabis use could restore retinal function in regular users.
Collapse
Affiliation(s)
- Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.,INSERM U1254, Imagerie Adaptative Diagnostique et Interventionnelle, Université de Lorraine, Nancy, France.,Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Fondation FondaMental, Créteil, France
| | - Aldo Moreno-Zaragoza
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
| | - Louis Dramé
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.,INSERM U1254, Imagerie Adaptative Diagnostique et Interventionnelle, Université de Lorraine, Nancy, France.,Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Fondation FondaMental, Créteil, France
| | - Karine Angioi-Duprez
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Service d'Ophtalmologie, Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), Nancy, France
| | - Eliane Albuisson
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,CHRU-Nancy, Délégation à la Recherche Clinique et à l'Innovation, Département Méthodologie Promotion Investigation, Unité de Méthodologie, Data Management et Statistique, Unité de Méthodologie, Datamanagement et Statistiques, Nancy, France.,Centre National de la Recherche Scientifique, Institut Élie-Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, France.,Département du Grand Est de Recherche en Soins Primaires: DEGERESP, Nancy, France
| | - Vincent Laprévote
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.,Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Complete evaluation of retinal function in Major Depressive Disorder: From central slowdown to hyperactive periphery. J Affect Disord 2021; 295:453-462. [PMID: 34507226 DOI: 10.1016/j.jad.2021.08.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Developing easy-to-access biomarkers is crucial in Major Depressive Disorder. The retina has already been suggested as relevant. However, there is a need for a global and local assessment of whole retinal function using a reproducible, standardized protocol allowing for comparison across studies. Our aim is to assess whole retinal function in patients with actual unipolar Major Depressive Episode (MDE) using pattern, flash and multifocal electroretinogram (ERG) according to the International Society for Clinical Electrophysiology of Vision standardized protocols. METHODS We assessed retinal function in 14 males and females with MDE, diagnosed based on the Diagnostic and Statistical Manual of Mental Disorders, and in age- and sex-matched healthy controls. RESULTS Comparing the patients with the controls, we observed the following using multifocal ERG: a significant increase in N1 peak time in ring 3 and a decrease in P1 amplitude in ring 2; using pattern ERG: a significant increase in P50 peak time; using flash ERG: a decrease in a- and b-wave peak time and an increase in the b-wave amplitude in dark-adapted 3.0, a decrease in a- and b-wave peak time and an increase in both wave amplitudes in light-adapted 3.0, and a decrease in the b-wave peak time in light-adapted flicker. LIMITATIONS Sample size. Contribution of pharmacological treatments to the outcomes cannot be formally excluded. CONCLUSIONS Patients with MDE exhibit delayed signaling in the central retina and hyperreactivity to light in the periphery. Central retinal function may be a marker of psychomotor retardation and cognitive impairment in MDE.
Collapse
|
21
|
Friedel EBN, Tebartz van Elst L, Schmelz C, Ebert D, Maier S, Endres D, Runge K, Domschke K, Bubl E, Kornmeier J, Bach M, Heinrich SP, Nickel K. Replication of Reduced Pattern Electroretinogram Amplitudes in Depression With Improved Recording Parameters. Front Med (Lausanne) 2021; 8:732222. [PMID: 34778295 PMCID: PMC8585854 DOI: 10.3389/fmed.2021.732222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The retina has gained increasing attention in non-ophthalmological research in recent years. The pattern electroretinogram (PERG), a method to evaluate retinal ganglion cell function, has been used to identify objective correlates of the essentially subjective state of depression. A reduction in the PERG contrast gain was demonstrated in patients with depression compared to healthy controls with normalization after remission. PERG responses are not only modulated by stimulus contrast, but also by check size and stimulation frequency. Therefore, the rationale was to evaluate potentially more feasible procedures for PERG recordings in daily diagnostics in psychiatry. Methods: Twenty-four participants (12 patients with major depression (MDD) and 12 age- and sex-matched healthy controls) were examined in this pilot study. We investigated PERG amplitudes for two steady-state pattern reversal frequencies (12.5/18.75 rps) and four sizes of a checkerboard stimulus (0.8°, 1.6°, 3.2°, and 16°) to optimize the PERG recordings in MDD patients. Results: Smaller PERG amplitudes in MDD patients were observed for all parameters, whereby the extent of the reduction appeared to be stimulus-specific. The most pronounced decline in the PERG of MDD patients was observed at the higher stimulation frequency and the finest pattern, whilst responses for the largest check size were less affected. Following the PERG ratio protocol for early glaucoma, where similar stimulus dependent modulations have been reported, we calculated PERG ratios (0.8°/16°) for all participants. At the higher frequency (18.75 rps), significantly reduced ratios were observed in MDD patients. Conclusion: The “normalization” of the PERG responses—via building a ratio—appears to be a very promising approach with regard to the development of an objective biomarker of the depressive state, facilitating inter-individual assessments of PERG recordings in patients with psychiatric disorders.
Collapse
Affiliation(s)
- Evelyn B N Friedel
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Eye Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Céline Schmelz
- Pfalzklinikum-Clinic for Psychiatry and Neurology, Klingenmünster, Germany
| | - Dieter Ebert
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Emanuel Bubl
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kornmeier
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| | - Michael Bach
- Eye Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sven P Heinrich
- Eye Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Perche O, Lesne F, Patat A, Raab S, Twyman R, Ring RH, Briault S. Electroretinography and contrast sensitivity, complementary translational biomarkers of sensory deficits in the visual system of individuals with fragile X syndrome. J Neurodev Disord 2021; 13:45. [PMID: 34625026 PMCID: PMC8501595 DOI: 10.1186/s11689-021-09375-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disturbances in sensory function are an important clinical feature of neurodevelopmental disorders such as fragile X syndrome (FXS). Evidence also directly connects sensory abnormalities with the clinical expression of behavioral impairments in individuals with FXS; thus, positioning sensory function as a potential clinical target for the development of new therapeutics. Using electroretinography (ERG) and contrast sensitivity (CS), we previously reported the presence of sensory deficits in the visual system of the Fmr1-/y genetic mouse model of FXS. The goals of the current study were two-folds: (1) to assess the feasibility of measuring ERG and CS as a biomarker of sensory deficits in individuals with FXS, and (2) to investigate whether the deficits revealed by ERG and CS in Fmr1-/y mice translate to humans with FXS. METHODS Both ERG and CS were measured in a cohort of male individuals with FXS (n = 20, 18-45 years) and age-matched healthy controls (n = 20, 18-45 years). Under light-adapted conditions, and using both single flash and flicker (repeated train of flashes) stimulation protocols, retinal function was recorded from individual subjects using a portable, handheld, full-field flash ERG device (RETeval®, LKC Technologies Inc., Gaithersburg, MD, USA). CS was assessed in each subject using the LEA SYMBOLS® low-contrast test (Good-Lite, Elgin, IL, USA). RESULTS Data recording was successfully completed for ERG and assessment of CS in most individuals from both cohorts demonstrating the feasibility of these methods for use in the FXS population. Similar to previously reported findings from the Fmr1-/y genetic mouse model, individuals with FXS were found to exhibit reduced b-wave and flicker amplitude in ERG and an impaired ability to discriminate contrasts compared to healthy controls. CONCLUSIONS This study demonstrates the feasibility of using ERG and CS for assessing visual deficits in FXS and establishes the translational validity of the Fmr1-/y mice phenotype to individuals with FXS. By including electrophysiological and functional readouts, the results of this study suggest the utility of both ERG and CS (ERG-CS) as complementary translational biomarkers for characterizing sensory abnormalities found in FXS, with potential applications to the clinical development of novel therapeutics that target sensory function abnormalities to treat core symptomatology in FXS. TRIAL REGISTRATION ID-RCB number 2019-A01015-52 registered on the 17 May 2019.
Collapse
Affiliation(s)
- Olivier Perche
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France
- UMR7355, Centre National de la Recherche Scientifique (CNRS), Orléans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
| | | | - Alain Patat
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
| | | | | | - Robert H Ring
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sylvain Briault
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France.
- UMR7355, Centre National de la Recherche Scientifique (CNRS), Orléans, France.
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France.
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK.
| |
Collapse
|
23
|
Arsenault E, Lavigne AA, Mansouri S, Gagné AM, Francis K, Bittar TP, Quessy F, Abdallah K, Barbeau A, Hébert M, Labonté B. Sex-Specific Retinal Anomalies Induced by Chronic Social Defeat Stress in Mice. Front Behav Neurosci 2021; 15:714810. [PMID: 34483859 PMCID: PMC8415161 DOI: 10.3389/fnbeh.2021.714810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder (MDD) is one of the most common consequences of chronic stress. Still, there is currently no reliable biomarker to detect individuals at risk to develop the disease. Recently, the retina emerged as an effective way to investigate psychiatric disorders using the electroretinogram (ERG). In this study, cone and rod ERGs were performed in male and female C57BL/6 mice before and after chronic social defeat stress (CSDS). Mice were then divided as susceptible or resilient to stress. Our results suggest that CSDS reduces the amplitude of both oscillatory potentials and a-waves in the rods of resilient but not susceptible males. Similar effects were revealed following the analysis of the cone b-waves, which were faster after CSDS in resilient mice specifically. In females, rod ERGs revealed age-related changes with no change in cone ERGs. Finally, our analysis suggests that baseline ERG can predict with an efficacy up to 71% the expression of susceptibility and resilience before stress exposition in males and females. Overall, our findings suggest that retinal activity is a valid biomarker of stress response that could potentially serve as a tool to predict whether males and females will become susceptible or resilient when facing CSDS.
Collapse
Affiliation(s)
- Eric Arsenault
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Andrée-Anne Lavigne
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada
| | - Samaneh Mansouri
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Anne-Marie Gagné
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada
| | - Kimberley Francis
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada
| | - Thibault P Bittar
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Francis Quessy
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Khaled Abdallah
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada
| | - Annie Barbeau
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada
| | - Marc Hébert
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Ophthalmology and Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
24
|
Retinal structural changes in mood disorders: The optical coherence tomography to better understand physiopathology? Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110080. [PMID: 32827610 DOI: 10.1016/j.pnpbp.2020.110080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mood disorders are particularly common, disabling conditions. Diagnosis can be difficult as it may involve different pathophysiological assumptions. This could explain why such disorders are resistant to treatment. The retina is part of the central nervous system and shares a common embryonic origin with the brain. Optical coherence tomography (OCT) is an imaging technique for analysing the different layers of the retina. We reviewed studies that examined the retina with OCT in mood disorders. METHODS We conducted Pubmed search and additional manual research based on the bibliography in each of selected articles. We found and analysed 11 articles relevant to our subject. RESULTS This literature review confirms that it is possible to use OCT to detect neurodegeneration and neuroinflammation in mood disorders. Their impact is thought to depend on the duration and severity of the disease, and whether it is in acute or chronic stage. The differences seen in studies dealing with depression and those looking at bipolar disorder may reflect the particular characteristics of each disorder. A number of OCT parameters can be proposed as biomarkers of active or chronic inflammation and neurodegeneration. Markers of predisposition to an at-risk mental state are also suggested. LIMITATIONS The main limitation is selection bias, studies including more varied population would help to confirm and precise these results. CONCLUSION OCT is thus a particularly promising tool for evaluating some of the etiopathogenetic mechanisms involved in mood disorders. The combination with other approaches could help to find more specific biomarkers.
Collapse
|
25
|
Li X, Fan F, Chen X, Li J, Ning L, Lin K, Chen Z, Qin Z, Yeung AS, Li X, Wang L, So KF. Computer Vision for Brain Disorders Based Primarily on Ocular Responses. Front Neurol 2021; 12:584270. [PMID: 33967931 PMCID: PMC8096911 DOI: 10.3389/fneur.2021.584270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
Real-time ocular responses are tightly associated with emotional and cognitive processing within the central nervous system. Patterns seen in saccades, pupillary responses, and spontaneous blinking, as well as retinal microvasculature and morphology visualized via office-based ophthalmic imaging, are potential biomarkers for the screening and evaluation of cognitive and psychiatric disorders. In this review, we outline multiple techniques in which ocular assessments may serve as a non-invasive approach for the early detections of various brain disorders, such as autism spectrum disorder (ASD), Alzheimer's disease (AD), schizophrenia (SZ), and major depressive disorder (MDD). In addition, rapid advances in artificial intelligence (AI) present a growing opportunity to use machine learning-based AI, especially computer vision (CV) with deep-learning neural networks, to shed new light on the field of cognitive neuroscience, which is most likely to lead to novel evaluations and interventions for brain disorders. Hence, we highlight the potential of using AI to evaluate brain disorders based primarily on ocular features.
Collapse
Affiliation(s)
- Xiaotao Li
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,BIAI INC., Chelmsford, MA, United States.,BIAI Intelligence Biotech LLC, Shenzhen, China
| | - Fangfang Fan
- Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Xuejing Chen
- Retina Division, Department of Ophthalmology, Boston University Eye Associates, Boston University, Boston, MA, United States
| | - Juan Li
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,BIAI INC., Chelmsford, MA, United States.,BIAI Intelligence Biotech LLC, Shenzhen, China
| | - Li Ning
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kangguang Lin
- Department of Affective Disorders and Academician Workstation of Mood and Brain Sciences, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong-Hong Kong-Macau Institute of Central Nervous System (CNS) Regeneration, Jinan University, Guangzhou, China
| | - Zan Chen
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhenyun Qin
- Key Laboratory for Nonlinear Mathematical Models and Methods, School of Mathematical Science, Fudan University, Shanghai, China
| | - Albert S Yeung
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Xiaojian Li
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of Central Nervous System (CNS) Regeneration, Jinan University, Guangzhou, China.,The State Key Laboratory of Brain and Cognitive Sciences, Department of Ophthalmology, University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
26
|
Constable PA, Lee IO, Marmolejo-Ramos F, Skuse DH, Thompson DA. The photopic negative response in autism spectrum disorder. Clin Exp Optom 2021; 104:841-847. [PMID: 33826873 DOI: 10.1080/08164622.2021.1903808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
CLINICAL RELEVANCE To ascertain if the photopic negative response of the electroretinogram is different in autism spectrum disorder as a potential clinical marker. BACKGROUND Visual function can be atypical in autism spectrum disorder and structural imaging of the ganglion cell layers has been reported to differ in these individuals. Therefore, we sought to investigate if the photopic negative response of the full field electroretinograms, a measure of ganglion cell function, could help explain the visual perceptual differences in autism spectrum disorder and support the structural changes observed. METHODS Participants (n = 55 autism spectrum disorder, aged 5.4-26.7 years) and control (n = 87, aged 5.4-27.3 years) were recruited for the study. Full-field light-adapted electroretinograms using a Troland protocol with 10 flash strengths from -0.367 to 1.204 log photopic cd.s.m-2 were recorded in each eye. The photopic negative response amplitudes at Tmin and at t = 72 ms were compared between groups along with the a- and b-wave values. RESULTS There were no significant interactions between groups for the Photopic Negative Response measures of amplitude or time (p > 0.30). There was a group interaction between groups and flash strengths for the b-wave amplitude as previously reported (p < 0.001). CONCLUSION The photopic negative response results suggest that there are no significant differences in the summed retinal ganglion cell responses produced by a full-field stimulus.
Collapse
Affiliation(s)
- Paul A Constable
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Irene O Lee
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fernando Marmolejo-Ramos
- Centre for Change and Complexity in Learning, The University of South Australia, Adelaide, Australia
| | - David H Skuse
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dorothy A Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
27
|
Delayed on- and off-retinal responses of cones pathways in regular cannabis users: An On-Off flash electroretinogram case-control study. J Psychiatr Res 2021; 136:312-318. [PMID: 33636687 DOI: 10.1016/j.jpsychires.2021.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022]
Abstract
The retina is considered a useful area for investigating synaptic transmission abnormalities in neuropsychiatric disorders, including as a result of using cannabis, the most widely consumed illicit substance in the developed world. The impact of regular cannabis use on retinal function has already been evaluated, using pattern and flash electroretinogram (ERG) to demonstrate a delay in ganglion and bipolar cell response. Using multifocal ERG, it was showed that the delay to be preferentially located in the central retina. ERG tests do not separately examine the impact of cannabis on the On and Off pathways. The purpose of this study is to assess On and Off pathway function using On-Off ERG. We conducted an On-Off ERG test in 42 regular cannabis users and 26 healthy controls. The protocol was compliant with the International Society for Clinical Electrophysiology of Vision (ISCEV) standards. Amplitude and peak time were measured for the a-, b- and d-waves. Results in the regular cannabis users showed a significant increase in the latencies of both the b- and the d-wave (p = 0.020, p = 0.022, respectively, Mann-Whitney U test), with no change in the wave amplitudes. A-wave peak time and amplitude were unchanged. These findings are reflective of an effect of regular cannabis use on the On and Off pathways and are consistent with previous findings which also identified increases in retinal neuron response times. We confirm here that regular cannabis use impacts the post-receptoral cones pathway at the level of bipolar cells, affecting the On and Off pathways.
Collapse
|
28
|
Abstract
PURPOSE To evaluate visual and retinal changes in patients with bipolar disorder. To analyze the correlation between structural changes and visual function parameters. METHODS Thirty patients with bipolar disorder and 80 healthy controls underwent visual function evaluation with Early Treatment Diabetic Retinopathy Study charts at 100%, 2.50%, and 1.25% contrast, Pelli-Robson chart, and color vision Farnsworth and Lanthony tests. Analysis of the different retinal layers was performed using Spectralis optical coherence tomography with automated segmentation software. Correlation analysis between structural and functional parameters was conducted. RESULTS Patients with bipolar disorder presented worse color vision compared with controls (Lanthony's index, P = 0.002). Full macular thickness, the retinal nerve fiber layer (RNFL), ganglion cell layer, and inner plexiform layer were reduced in patients compared with healthy individuals (P < 0.005). The inner nuclear layer was significantly thickened in patients (P < 0.005). Peripapillary RNFL thickness was reduced in all temporal sectors (P < 0.005). Significant correlations were found between visual acuity and the RNFL thickness, the Pelli-Robson score and the inner plexiform layer, and between the Lanthony's color index and the ganglion cell layer thickness. CONCLUSION Patients with bipolar disorder present quantifiable thinning of the macular RNFL, ganglion cell layer, and inner plexiform layer, as well as in the peripapillary RNFL thickness, and increasing thinning in the inner nuclear layer.
Collapse
|
29
|
Lipidomics of the brain, retina, and biofluids: from the biological landscape to potential clinical application in schizophrenia. Transl Psychiatry 2020; 10:391. [PMID: 33168817 PMCID: PMC7653030 DOI: 10.1038/s41398-020-01080-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia is a serious neuropsychiatric disorder, yet a clear pathophysiology has not been identified. To date, neither the objective biomarkers for diagnosis nor specific medications for the treatment of schizophrenia are clinically satisfactory. It is well accepted that lipids are essential to maintain the normal structure and function of neurons in the brain and that abnormalities in neuronal lipids are associated with abnormal neurodevelopment in schizophrenia. However, lipids and lipid-like molecules have been largely unexplored in contrast to proteins and their genes in schizophrenia. Compared with the gene- and protein-centric approaches, lipidomics is a recently emerged and rapidly evolving research field with particular importance for the study of neuropsychiatric disorders such as schizophrenia, in which even subtle aberrant alterations in the lipid composition and concentration of the neurons may disrupt brain functioning. In this review, we aimed to highlight the lipidomics of the brain, retina, and biofluids in both human and animal studies, discuss aberrant lipid alterations in correlation with schizophrenia, and propose future directions from the biological landscape towards potential clinical applications in schizophrenia. Recent studies are in support of the concept that aberrations in some lipid species [e.g. phospholipids, polyunsaturated fatty acids (PUFAs)] lead to structural alterations and, in turn, impairments in the biological function of membrane-bound proteins, the disruption of cell signaling molecule accessibility, and the dysfunction of neurotransmitter systems. In addition, abnormal lipidome alterations in biofluids are linked to schizophrenia, and thus they hold promise in the discovery of biomarkers for the diagnosis of schizophrenia.
Collapse
|
30
|
Ma C, Li X, Chen J, Li Z, Guan J, Li Y, Yin S, Shi Y. Association Analysis Between Common Variants of the TRPM1 Gene and Three Mental Disorders in the Han Chinese Population. Genet Test Mol Biomarkers 2020; 24:649-657. [PMID: 33001715 PMCID: PMC7585623 DOI: 10.1089/gtmb.2019.0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Our study was designed to determine if the TRPM1 gene is associated with any of three mental disorders. The project included a cross disorder meta-analysis and association analysis including 141701 cases and 175248 controls. Materials and Methods: We genotyped eight tag single nucleotide polymorphisms (SNPs) in 1248 unrelated schizophrenia (SCZ) patients, 1056 major depressive disorder patients, 1344 bipolar disorder patients, and 1248 normal controls. We then performed a meta-analysis of 10 GWASs to identify common genetic factors among these three mental disorders. Finally, we performed a meta-analysis of six GWASs to explore the role of rs10162727 in SCZ. Result: Although two haplotypes of the TRPM1 gene, rs1035706-rs10162727 and rs10162727-rs3784599, were identified in the control group, as well as all three disease groups, none of the eight tag SNP associations remained significant after correction for multiple tests. In this cross-disorder meta-analysis of the three diseases, none of the tag SNPs were confirmed to be common among the diseases. In addition, in the meta-analysis conducted for the rs10162727 locus in SCZ, there was no significant association (p-value = 0.84, odds ratio = 1.02 [95% CI = 0.87-1.19]). Conclusion: In the Han Chinese population, no significant evidence was found linking variants of the TRPM1 gene with any of the mental disorders examined.
Collapse
Affiliation(s)
- Chuanchuan Ma
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Xiuli Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Jianhua Chen
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
| | - Jian Guan
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yigang Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shankai Yin
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Peredo R, Gagné AM, Gilbert E, Hébert M, Maziade M, Mérette C. Electroretinography may reveal cognitive impairment among a cohort of subjects at risk of a major psychiatric disorder. Psychiatry Res 2020; 291:113227. [PMID: 32593852 DOI: 10.1016/j.psychres.2020.113227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Almost a third of the offspring of parents diagnosed with schizophrenia or bipolar disorder could develop a mental disorder or related symptoms. The objectives of this study were to test the existence of two distinct subgroups of youth at-risk, according to their retinal response to luminance measured with electroretinography (ERG), and to relate the resulting cluster memberships with the cognitive clusters previously reported. METHODOLOGY A clustering analysis was performed with ERG measurements in 107 at-risk offspring. Each subgroup was compared to a healthy control group of 203 individuals. The ERG subgroup memberships were then associated with the cognitive clusters. RESULTS A two-cluster solution was obtained: HR-Cluster1 (n=53) showed a control-like ERG profile and HR-Cluster2 (n=54) showed reduced rod amplitudes and prolonged cone latencies of the b-wave. Subjects in the HR-Cluster2 were 2.7 times more likely to belong to the most detrimental cognitive subgroup than subjects in the HR-Cluster1 (49% Vs 18%). CONCLUSION At-risk offspring showed two distinct ERG profiles: a control-like and an altered profile. A higher risk of impaired cognitive function was observed in subjects with the altered ERG profile, suggesting the ERG as a potential biomarker of susceptibility to mental illness among youth at risk.
Collapse
Affiliation(s)
- Rossana Peredo
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec city, QC, Canada; CERVO Brain Research Centre, Quebec city, QC, G1J 2G3, Canada
| | - Anne-Marie Gagné
- CERVO Brain Research Centre, Quebec city, QC, G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Quebec city, QC, Canada
| | - Elsa Gilbert
- CERVO Brain Research Centre, Quebec city, QC, G1J 2G3, Canada; Department of Health Sciences, UQR, Campus Levis, QC, Canada
| | - Marc Hébert
- CERVO Brain Research Centre, Quebec city, QC, G1J 2G3, Canada; Department of Ophthalmology and otorhinolaryngology, Faculty of Medicine, Laval University, Quebec city, QC, Canada
| | - Michel Maziade
- CERVO Brain Research Centre, Quebec city, QC, G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Quebec city, QC, Canada
| | - Chantal Mérette
- CERVO Brain Research Centre, Quebec city, QC, G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Quebec city, QC, Canada.
| |
Collapse
|
32
|
Liu Y, Huang L, Tong Y, Chen J, Gao D, Yang F. Association of retinal nerve fiber abnormalities with serum CNTF and cognitive functions in schizophrenia patients. PeerJ 2020; 8:e9279. [PMID: 32676219 PMCID: PMC7335503 DOI: 10.7717/peerj.9279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies have reported reductions in retinal nerve fiber layers (RNFL) in schizophrenia. Ciliary neurotrophic factor (CNTF) has shown protective effects on both the neurogenesis and retina. This study aimed at investigating retinal abnormalities and establishing their correlation with serum CNTF and cognitive impairments in schizophrenic Chinese patients. METHODS In total, 221 patients diagnosed with schizophrenia and 149 healthy controls were enrolled. Serum CNTF and clinical features of patients were investigated. Cognitive functions were evaluated with Repeatable Battery for the Assessment of Neuropsychology Status (RBANS). RNFL thickness and macular thickness (MT) of both eyes were measured with optical coherence tomography (OCT). T-tests and analysis of covariance were used to compare the variables between the patient and control groups, while multiple linear regression analysis was performed to determine the associations of RNFL thickness, CNTF and cognitive impairments. RESULTS RNFL was found thinner in patients than in healthy controls (right: 88.18 ± 25.84 µm vs.102.13 ± 14.32 µm, p = 0.001; left: 92.84 ± 13.54 µm vs.103.71 ± 11.94 µm, p < 0.001). CNTF was lower in the schizophrenia group (1755.45 ± 375.73 pg/ml vs. 1909.99 ± 368.08 pg/ml, p = 0.001). Decline in RNFL thickness was found correlated with course of illness and serum CNTF in patients (all p < 0.05). Similarly, cognitive functions such as immediate memory and visuospatial functions were also found correlated with decline in RNFL thickness. CONCLUSION Decline in RNFL thickness was associated with cognitive impairments of schizophrenia and CNFT serum concentration. The possibility of reduction in RNFL thickness as a biomarker for schizophrenia needs to be further examined.
Collapse
Affiliation(s)
- Yanhong Liu
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Lvzhen Huang
- People's Hospital of Peking University, Peking University, Beijing, China
| | - Yongsheng Tong
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Jingxu Chen
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Dongfang Gao
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Fude Yang
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Peking University, Beijing, China
| |
Collapse
|
33
|
Tan A, Schwitzer T, Conart JB, Angioi-Duprez K. [Retinal investigations in patients with major depressive disorder, bipolar disorder or schizophrenia: A review of the literature]. J Fr Ophtalmol 2020; 43:586-597. [PMID: 32631695 DOI: 10.1016/j.jfo.2019.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022]
Abstract
Major depressive disorder, bipolar disorder and schizophrenia are currently among the most common psychiatric disorders, known to constitute a serious public health issue in terms of morbidity, mortality and functional handicap. Their pathophysiology is still unclear, but there is now increasing evidence supporting the existence of abnormalities of neurotransmission. As the retina is an extension of the central nervous system, it may be an interesting site of study which might provide a better understanding of the pathophysiology of psychiatric disorders. Several studies have demonstrated retinal abnormalities, with abnormal cone and rod responses on electroretinography (ERG), suggesting a process of functional neuronal loss, structurally supported by a decrease in the retinal nerve fiber layer thickness (RNFL) on optical coherence tomography (OCT), which suggests involvement of the molecular signal pathways of neurotransmission. These tests could be useful tools for diagnosing and monitoring psychiatric disorders. This article is an overview of the literature on retinal abnormalities observed in patients with major depressive disorder, bipolar disorder or schizophrenia, and discusses how they could be pathophysiologic markers.
Collapse
Affiliation(s)
- A Tan
- CHU de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France.
| | - T Schwitzer
- Centre psychothérapique de Nancy, 1, rue Dr Archambault, 11010 Laxou, France.
| | - J-B Conart
- CHU de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France.
| | - K Angioi-Duprez
- CHU de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
34
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
35
|
Cosker E, Schwan R, Angioi-Duprez K, Laprévote V, Schwitzer T. New insights on the role of the retina in diagnostic and therapeutic strategies in major depressive disorder. Neurosci Biobehav Rev 2020; 113:262-272. [PMID: 32147530 DOI: 10.1016/j.neubiorev.2020.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) affects people worldwide. MDD treatments include antidepressants, which involve a delayed onset of action, long-term treatment, side effects and, frequently, only partial efficacy. The lack of access to the living brain, and the complex and still poorly elucidated pathophysiology of MDD, hinders treatment development. There is not only a need for new treatment strategies, but also for new approaches to investigating the pathophysiology of MDD. Light therapy is a well-established treatment acting through the retina. Since the retina is part of the central nervous system, it has been suggested as a useful area for investigating mental illness. In this article, we will first set out the evidence that MDD affects the retina's structure and function. We will then review studies evaluating the efficacy of light therapy in unipolar non-seasonal MDD. Finally, we discuss the disruption of melatoninergic pathways in MDD, its assessment through the retina and the treatment of this disruption with light therapy.
Collapse
Affiliation(s)
- Eve Cosker
- Pôle Hospitalo-Universitaire De Psychiatrie d'Adultes et d'Addictologie Du Grand Nancy, Centre Psychothérapique De Nancy, Laxou, France; INSERM U1114, Fédération De Médecine Translationnelle De Strasbourg, Pôle De Psychiatrie, Centre Hospitalier Régional Universitaire De Strasbourg, Strasbourg, France
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire De Psychiatrie d'Adultes et d'Addictologie Du Grand Nancy, Centre Psychothérapique De Nancy, Laxou, France; INSERM U1114, Fédération De Médecine Translationnelle De Strasbourg, Pôle De Psychiatrie, Centre Hospitalier Régional Universitaire De Strasbourg, Strasbourg, France; Faculté de Médecine, Université de Lorraine, Nancy, France
| | | | - Vincent Laprévote
- Pôle Hospitalo-Universitaire De Psychiatrie d'Adultes et d'Addictologie Du Grand Nancy, Centre Psychothérapique De Nancy, Laxou, France; INSERM U1114, Fédération De Médecine Translationnelle De Strasbourg, Pôle De Psychiatrie, Centre Hospitalier Régional Universitaire De Strasbourg, Strasbourg, France; Faculté de Médecine, Université de Lorraine, Nancy, France
| | - Thomas Schwitzer
- Pôle Hospitalo-Universitaire De Psychiatrie d'Adultes et d'Addictologie Du Grand Nancy, Centre Psychothérapique De Nancy, Laxou, France; INSERM U1114, Fédération De Médecine Translationnelle De Strasbourg, Pôle De Psychiatrie, Centre Hospitalier Régional Universitaire De Strasbourg, Strasbourg, France; Faculté de Médecine, Université de Lorraine, Nancy, France.
| |
Collapse
|
36
|
Tan A, Schwitzer T, Conart JB, Angioi-Duprez K. Study of retinal structure and function in patients with major depressive disorder, bipolar disorder or schizophrenia: A review of the literature. J Fr Ophtalmol 2020; 43:e157-e166. [PMID: 32381369 DOI: 10.1016/j.jfo.2020.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/24/2019] [Accepted: 04/15/2020] [Indexed: 01/25/2023]
Abstract
Major depressive disorder, bipolar disorder and schizophrenia are currently among the most common psychiatric disorders, known to constitute a serious public health issue in terms of morbidity, mortality and functional handicap. Their pathophysiology is still unclear, but there is now increasing evidence supporting the existence of abnormalities of neurotransmission. As the retina is an extension of the central nervous system, it may be an interesting site of study which might provide a better understanding of the pathophysiology of psychiatric disorders. Several studies have demonstrated retinal abnormalities, with abnormal cone and rod responses on electroretinography (ERG), suggesting a process of functional neuronal loss, structurally supported by a decrease in the retinal nerve fiber layer thickness (RNFL) on optical coherence tomography (OCT), which suggests involvement of the molecular signal pathways of neurotransmission. These tests could be useful tools for diagnosing and monitoring psychiatric disorders. This article is an overview of the literature on retinal abnormalities observed in patients with major depressive disorder, bipolar disorder or schizophrenia, and discusses how they could be pathophysiologic markers.
Collapse
Affiliation(s)
- A Tan
- Centre hospitalier universitaire de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France.
| | - T Schwitzer
- Centre psychothérapique de Nancy, 1, rue Dr-Archambault, 11010 Laxou, France
| | - J-B Conart
- Centre hospitalier universitaire de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| | - K Angioi-Duprez
- Centre hospitalier universitaire de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
37
|
Retinal functioning and reward processing in schizophrenia. Schizophr Res 2020; 219:25-33. [PMID: 31280976 DOI: 10.1016/j.schres.2019.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022]
Abstract
Retinal responses to light, as measured by electroretinography (ERG), have been shown to be reduced in schizophrenia. Data from a prior ERG study in healthy humans indicated that activity of a retinal cell type affected in schizophrenia can be modified by the presence of a food reward. Therefore, we aimed to determine whether ERG amplitudes would be sensitive to the well-documented reward processing impairment in schizophrenia. Flash ERG data from 15 clinically stable people with schizophrenia or schizoaffective disorder and 15 healthy controls were collected under three conditions: baseline, anticipation of a food reward, and immediately after consuming the food reward. At the group level, data indicated that controls' ERG responses varied as a function of salience of the food reward (baseline vs. anticipation vs. consumption) whereas patients' ERG responses did not vary significantly across conditions. Correlations between ERG amplitudes and scores on measures of hedonic capacity (including motivation and pleasure negative symptom ratings for patients) indicated consistent relationships. These data suggest that flash ERG amplitudes may be a sensitive indicator of the integrity of reward processing mechanisms. However, several differences in the direction of findings between this and a prior study in controls point to the need for further investigation of the contributions of a number of key variables to the observed effects.
Collapse
|
38
|
Silverstein SM, Fradkin SI, Demmin DL. Schizophrenia and the retina: Towards a 2020 perspective. Schizophr Res 2020; 219:84-94. [PMID: 31708400 PMCID: PMC7202990 DOI: 10.1016/j.schres.2019.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Differences between people with schizophrenia and psychiatrically healthy controls have been consistently demonstrated on measures of retinal function such as electroretinography (ERG), and measures of retinal structure such as optical coherence tomography (OCT). Since our 2015 review of this literature, multiple new studies have been published using these techniques. At the same time, the accumulation of data has highlighted the "fault lines" in these fields, suggesting methodological considerations that need greater attention in future studies. METHODS We reviewed studies of ERG and OCT in schizophrenia, as well as data from studies whose findings are relevant to interpreting these papers, such as those on effects of the following on ERG and OCT data: comorbid medical conditions that are over-represented in schizophrenia, smoking, antipsychotic medication, substance abuse, sex and gender, obesity, attention, motivation, and influences of brain activity on retinal function. RESULTS Recent ERG and OCT studies continue to support the hypothesis of retinal structural and functional abnormalities in schizophrenia, and suggest that these are relevant to understanding broader aspects of pathophysiology, neurodevelopment, and neurodegeneration in this disorder. However, there are differences in findings which suggest that the effects of multiple variables on ERG and OCT data need further clarification. CONCLUSIONS The retina, as the only component of the CNS that can be imaged directly in live humans, has potential to clarify important aspects of schizophrenia. With greater attention to specific methodological issues, the true potential of ERG and OCT as biomarkers for important clinical phenomena in schizophrenia should become apparent.
Collapse
Affiliation(s)
- Steven M Silverstein
- Rutgers University Behavioral Health Care, United States; Rutgers University, Robert Wood Johnson Medical School, Departments of Psychiatry and Ophthalmology, United States.
| | | | - Docia L Demmin
- Rutgers University, Department of Psychology, United States.
| |
Collapse
|
39
|
Moghimi P, Jimenez NT, McLoon LK, Netoff TI, Lee MS, MacDonald A, Miller RF. Electoretinographic evidence of retinal ganglion cell-dependent function in schizophrenia. Schizophr Res 2020; 219:34-46. [PMID: 31615740 PMCID: PMC7442157 DOI: 10.1016/j.schres.2019.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/02/2023]
Abstract
Schizophrenia is a complex disorder that is diagnosed mainly with clinical observation and evaluation. Recent studies suggest that many people with schizophrenia have abnormalities in the function of the N-methyl-d-aspartate receptor (NMDAR). The retina is part of the central nervous system and expresses the NMDAR, raising the possibility of the early detection of NMDAR-related schizophrenia by detecting differences in retinal function. As a first-step, we used two non-invasive outpatient tests of retinal function, the photopic negative response (PhNR) of the light-adapted flash-electroretinogram (PhNR-fERG) and the pattern ERG (PERG), to test individuals with schizophrenia and controls to determine if there were measurable differences between the two populations. The PhNR-fERG showed that males with schizophrenia had a significant increase in the variability of the overall response, which was not seen in the females with schizophrenia. Additionally at the brightest flash strength, there were significant increases in the PhNR amplitude in people with schizophrenia that were maximal in controls. Our results show measurable dysfunction of retinal ganglion cells (RGCs) in schizophrenia using the PhNR-fERG, with a good deal of variability in the retinal responses of people with schizophrenia. The PhNR-fERG holds promise as a method to identify individuals more at risk for developing schizophrenia, and may help understand heterogeneity in etiology and response to treatment.
Collapse
Affiliation(s)
- Pantea Moghimi
- Department of Neurobiology, University of Chicago, Chicago, IL, United States of America
| | - Nathalia Torres Jimenez
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States of America,Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America,Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Linda K. McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States of America,Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America,Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Theoden I. Netoff
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States of America,Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Michael S. Lee
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Angus MacDonald
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Departments of Psychology and Psychiatry, University of Minnesota, Minneapolis, MN, United States of America.
| | - Robert F. Miller
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States of America,Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America,Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
40
|
People with current major depression resemble healthy controls on flash Electroretinogram indices associated with impairment in people with stabilized schizophrenia. Schizophr Res 2020; 219:69-76. [PMID: 31375317 DOI: 10.1016/j.schres.2019.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 11/21/2022]
Abstract
Flash electroretinography (fERG) has been used to identify anomalies in retinal functioning in several psychiatric disorders. In schizophrenia (SCZ), fERG abnormalities are reliably observed, but findings from studies of major depressive disorder (MDD) have been less consistent. In this study, fERG data were recorded from MDD patients in a current major depressive episode (n = 25), and compared to data from SCZ patients (n = 25) and healthy controls (HC; n = 25), to determine the degree to which fERG anomalies in acute MDD overlap or contrast with those observed in stabilized (though not symptom free) SCZ. The primary variables of interest were a-wave (photoreceptor activity), b-wave (bipolar-Müller cell activity), and photopic negative response (PhNR; ganglion cell activity) amplitudes and implicit times. Across most conditions, there were no significant differences between the MDD and HC groups in a- or b-wave response, but the SCZ group consistently demonstrated reduced amplitudes. Interestingly, MDD patients demonstrated an increase in photopic a-wave implicit time relative to SCZ patients, and a decrease in PhNR implicit time relative to controls. Correlations between BDI-II scores and fERG metrics were not significant for either patient group. Overall, these data indicate that, using an fERG protocol that distinguishes SCZ patients from controls, MDD patients experiencing a current depressive episode closely resemble healthy controls in their fERG responses. Therefore, MDD-related fERG changes may be more subtle than those observed in SCZ and detectable only with larger sample sizes than we employed and/or using a different set of fERG test parameters.
Collapse
|
41
|
Almonte MT, Capellàn P, Yap TE, Cordeiro MF. Retinal correlates of psychiatric disorders. Ther Adv Chronic Dis 2020; 11:2040622320905215. [PMID: 32215197 PMCID: PMC7065291 DOI: 10.1177/2040622320905215] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
Diagnosis and monitoring of psychiatric disorders rely heavily on subjective self-reports of clinical symptoms, which are complicated by the varying consistency of accounts reported by patients with an impaired mental state. Hence, more objective and quantifiable measures have been sought to provide clinicians with more robust methods to evaluate symptomology and track progression of disease in response to treatments. Owing to the shared origins of the retina and the brain, it has been suggested that changes in the retina may correlate with structural and functional changes in the brain. Vast improvements in retinal imaging, namely optical coherence tomography (OCT) and electrodiagnostic technology, have made it possible to investigate the eye at a microscopic level, allowing for the investigation of potential biomarkers in vivo. This review provides a summary of retinal biomarkers associated with schizophrenia, bipolar disorder and major depression, demonstrating how retinal biomarkers may be used to complement existing methods and provide structural markers of pathophysiological mechanisms that underpin brain dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Melanie T. Almonte
- Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | | | - Timothy E. Yap
- Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | | |
Collapse
|
42
|
Jimenez NT, Lines JW, Kueppers RB, Kofuji P, Wei H, Rankila A, Coyle JT, Miller RF, McLoon LK. Electroretinographic Abnormalities and Sex Differences Detected with Mesopic Adaptation in a Mouse Model of Schizophrenia: A and B Wave Analysis. Invest Ophthalmol Vis Sci 2020; 61:16. [PMID: 32053730 PMCID: PMC7326504 DOI: 10.1167/iovs.61.2.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/02/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose Mesopic flash electroretinography (fERG) as a tool to identify N-methyl-d-aspartate receptor (NMDAR) hypofunction in subjects with schizophrenia shows great potential. We report the first fERG study in a genetic mouse model of schizophrenia characterized by NMDAR hypofunction from gene silencing of serine racemase (SR) expression (SR-/-), an established risk gene for schizophrenia. We analyzed fERG parameters under various background light adaptations to determine the most significant variables to allow for early identification of people at risk for schizophrenia, prior to onset of psychosis. SR is a risk gene for schizophrenia, and negative and cognitive symptoms antedate the onset of psychosis that is required for diagnosis. Methods The scotopic, photopic, and mesopic fERGs were analyzed in male and female mice in both SR-/- and wild-type (WT) mice and also analyzed for sex differences. Amplitude and implicit time of the a- and b-wave components, b-/a-wave ratio, and Fourier transform analysis were analyzed. Results Mesopic a- and b-wave implicit times were significantly delayed, and b-wave amplitudes, b/a ratios, and Fourier transform were significantly decreased in the male SR-/- mice compared to WT, but not in female SR-/- mice. No significant differences were observed in photopic or scotopic fERGs between genotype. Conclusions The fERG prognostic capability may be improved by examination of background light adaptation, a larger array of light intensities, considering sex as a variable, and performing Fourier transform analyses of all waveforms. This should improve the ability to differentiate between controls and subjects with schizophrenia characterized by NMDAR hypofunction.
Collapse
Affiliation(s)
- Nathalia Torres Jimenez
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Justin W. Lines
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Rachel B. Kueppers
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Paulo Kofuji
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Henry Wei
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Amy Rankila
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Joseph T. Coyle
- Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts, United States
| | - Robert F. Miller
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Linda K. McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
43
|
Light-Adapted Electroretinogram Differences in Autism Spectrum Disorder. J Autism Dev Disord 2020; 50:2874-2885. [DOI: 10.1007/s10803-020-04396-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Hébert M, Mérette C, Gagné AM, Paccalet T, Moreau I, Lavoie J, Maziade M. The Electroretinogram May Differentiate Schizophrenia From Bipolar Disorder. Biol Psychiatry 2020; 87:263-270. [PMID: 31443935 DOI: 10.1016/j.biopsych.2019.06.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND The retina is recognized as an approachable part of the brain owing to their common embryonic origin. The electroretinogram (ERG) has proved to be a valuable tool to investigate psychiatric disorders. We therefore investigated its accuracy as a tool to differentiate schizophrenia (SZ) from bipolar disorder (BP) even after balancing patients for their main antipsychotic medication. METHODS ERG cone and rod luminance response functions were recorded in 150 patients with SZ and 151 patients with BP and compared with 200 control subjects. We created a subgroup of subjects-45 with SZ and 45 with BP-balanced for their main antipsychotic medication. RESULTS A reduced cone a-wave amplitude and a prolonged b-wave latency were observed in both disorders, whereas a reduced cone b-wave amplitude was present in SZ only. Reduced mixed rod-cone a- and b-wave amplitudes were observed in both disorders. Patients with SZ were distinguishable from control subjects with 0.91 accuracy, 77% sensitivity, and 91% specificity with similar numbers for patients with BP (0.89, 76%, and 88%, respectively). Patients with SZ and patients with BP could be differentiated with an accuracy of 0.86 (whole sample) and 0.83 (subsamples of 45 patients with 80% sensitivity and 82% specificity). Antipsychotic dosages were not correlated with ERG parameters. CONCLUSIONS The ERG waveform parameters used in this study provided a very accurate distinction between the two disorders when using a logistic regression model. This supports the ERG as a tool that could aid the clinician in the differential diagnosis of SZ and BP in stabilized medicated patients.
Collapse
Affiliation(s)
- Marc Hébert
- Centre de Recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Québec, Quebec, Canada; Département d'Ophtalmologie et d'Oto-Rhino-Laryngologie-Chirurgie Cervico-Faciale, Faculté de Médecine, Université Laval, Québec, Quebec, Canada.
| | - Chantal Mérette
- Centre de Recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Québec, Quebec, Canada; Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Anne-Marie Gagné
- Centre de Recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Québec, Quebec, Canada
| | - Thomas Paccalet
- Institut National de Santé Publique du Québec, Québec, Quebec, Canada
| | - Isabel Moreau
- Centre de Recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Québec, Quebec, Canada
| | | | - Michel Maziade
- Centre de Recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Québec, Quebec, Canada; Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
45
|
Silverstein SM, Thompson JL. Progress, Possibilities, and Pitfalls in Electroretinography Research in Psychiatry. Biol Psychiatry 2020; 87:202-203. [PMID: 31908288 DOI: 10.1016/j.biopsych.2019.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Steven M Silverstein
- Departments of Psychiatry and Ophthalmology, Rutgers-Robert Wood Johnson Medical School, Newark, New Jersey; Rutgers University Behavioral Health Care, Newark, New Jersey.
| | - Judy L Thompson
- Department of Psychiatric Rehabilitation and Counseling Professions, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
46
|
Balasco L, Provenzano G, Bozzi Y. Sensory Abnormalities in Autism Spectrum Disorders: A Focus on the Tactile Domain, From Genetic Mouse Models to the Clinic. Front Psychiatry 2020; 10:1016. [PMID: 32047448 PMCID: PMC6997554 DOI: 10.3389/fpsyt.2019.01016] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Sensory abnormalities are commonly recognized as diagnostic criteria in autism spectrum disorder (ASD), as reported in the last edition of the Diagnostic and Statistical Manual of Mental Disorder (DSM-V). About 90% of ASD individuals have atypical sensory experiences, described as both hyper- and hypo-reactivity, with abnormal responses to tactile stimulation representing a very frequent finding. In this review, we will address the neurobiological bases of sensory processing in ASD, with a specific focus of tactile sensitivity. In the first part, we will review the most relevant sensory abnormalities detected in ASD, and then focus on tactile processing deficits through the discussion of recent clinical and experimental studies. In the search for the neurobiological bases of ASD, several mouse models have been generated with knockout and humanized knockin mutations in many ASD-associated genes. Here, we will therefore give a brief overview of the anatomical structure of the mouse somatosensory system, and describe the somatosensory abnormalities so far reported in different mouse models of ASD. Understanding the neurobiological bases of sensory processing in ASD mouse models may represent an opportunity for a better comprehension of the mechanisms underlying sensory abnormalities, and for the development of novel effective therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Balasco
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- CNR Neuroscience Institute, Pisa, Italy
| |
Collapse
|
47
|
Fradkin SI, Erickson MA, Demmin DL, Silverstein SM. Absence of Excess Intra-Individual Variability in Retinal Function in People With Schizophrenia. Front Psychiatry 2020; 11:543963. [PMID: 33329084 PMCID: PMC7714716 DOI: 10.3389/fpsyt.2020.543963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/27/2020] [Indexed: 01/26/2023] Open
Abstract
People with schizophrenia exhibit increased intra-individual variability in both behavioral and neural signatures of cognition. Examination of intra-individual variability may uncover a unique functionally relevant aspect of impairment that is not captured by typical between-group comparisons of mean or median values. We and others have observed that retinal activity measured using electroretinography (ERG) is significantly reduced in people with schizophrenia; however, it is currently unclear whether greater intra-individual variability in the retinal response can also be observed. To investigate this, we examined intra-individual variability from 25 individuals with schizophrenia and 24 healthy controls under two fERG conditions: (1) a light-adapted condition in which schizophrenia patients demonstrated reduced amplitudes; and (2) a dark-adapted condition in which the groups did not differ in amplitudes. Intraclass correlation coefficients (ICC) were generated to measure intra-individual variability for each subject, reflecting the consistency of activation values (in μv) across all sampling points (at a 2 kHz sampling rate) within all trials within a condition. Contrary to our predictions, results indicated that the schizophrenia and healthy control groups did not differ in intra-individual variability in fERG responses in either the light- or dark-adapted conditions. This finding remained consistent when variability was calculated as the standard deviation (SD) and coefficient of variation (CV) of maximum positive and negative microvolt values within the a- and b-wave time windows. This suggests that although elevated variability in schizophrenia may be observed at perceptual and cognitive levels of processing, it is not present in the earliest stages of sensory processing in vision.
Collapse
Affiliation(s)
- Samantha I Fradkin
- Department of Psychology, Rutgers University, Piscataway, NJ, United States.,University Behavioral Health Care, Rutgers University, Piscataway, NJ, United States.,Department of Psychology, University of Rochester, Rochester, NY, United States
| | - Molly A Erickson
- Department of Psychiatry, University of Chicago, Chicago, IL, United States
| | - Docia L Demmin
- Department of Psychology, Rutgers University, Piscataway, NJ, United States.,University Behavioral Health Care, Rutgers University, Piscataway, NJ, United States
| | - Steven M Silverstein
- University Behavioral Health Care, Rutgers University, Piscataway, NJ, United States.,Departments of Psychiatry and Ophthalmology, Rutgers University, Piscataway, NJ, United States.,Departments of Psychiatry, Neuroscience, and Ophthalmology, and Center for Visual Science, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
48
|
Youssef P, Nath S, Chaimowitz GA, Prat SS. Electroretinography in psychiatry: A systematic literature review. Eur Psychiatry 2019; 62:97-106. [PMID: 31553929 DOI: 10.1016/j.eurpsy.2019.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/07/2019] [Indexed: 02/01/2023] Open
Abstract
This review aims to consolidate the available information on use of electroretinography as a diagnostic tool in psychiatry. The electroretinogram (ERG) has been found to have diagnostic utility in cocaine withdrawal (reduced light-adapted b-wave response), major depressive disorder (reduced contrast gain in pattern ERG), and schizophrenia (reduced a- and b-wave amplitudes). This review examines these findings as well as the applicability of ERG to substance use disorder, Alzheimer's disease, autism spectrum disorder, panic disorder, eating disorders, attention deficit hyperactivity disorder, and medication use. While there have been promising results, current research suffers from a lack of specificity. Further research that quantifies anomalies in ERG present in psychiatric illness is needed.
Collapse
Affiliation(s)
- Peter Youssef
- Bachelor of Health Sciences Program, McMaster University, Hamilton, Ontario, Canada
| | - Siddharth Nath
- MD/PhD Program, McMaster University, Hamilton, Ontario, Canada
| | - Gary A Chaimowitz
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Forensic Psychiatry Program, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Sebastien S Prat
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Forensic Psychiatry Program, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.
| |
Collapse
|
49
|
Zhang X, Piano I, Messina A, D'Antongiovanni V, Crò F, Provenzano G, Bozzi Y, Gargini C, Casarosa S. Retinal defects in mice lacking the autism-associated gene Engrailed-2. Neuroscience 2019; 408:177-190. [DOI: 10.1016/j.neuroscience.2019.03.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
|
50
|
Schwitzer T, Schwan R, Angioi-Duprez K, Lalanne L, Giersch A, Laprevote V. Cannabis use and human retina: The path for the study of brain synaptic transmission dysfunctions in cannabis users. Neurosci Biobehav Rev 2019; 106:11-22. [PMID: 30773228 DOI: 10.1016/j.neubiorev.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/08/2018] [Accepted: 12/02/2018] [Indexed: 01/01/2023]
Abstract
Owing to the difficulty of obtaining direct access to the functioning brain, new approaches are needed for the indirect exploration of brain disorders in neuroscience research. Due to its embryonic origin, the retina is part of the central nervous system and is well suited to the investigation of neurological functions in psychiatric and addictive disorders. In this review, we focus on cannabis use, which is a crucial public health challenge, since cannabis is one of the most widely used addictive drugs in industrialized countries. We first explain why studying retinal function is relevant when exploring the effects of cannabis use on brain function. Next, we describe both the retinal electrophysiological measurements and retinal dysfunctions observed after acute and regular cannabis use. We then discuss how these retinal dysfunctions may inform brain synaptic transmission abnormalities. Finally, we present various directions for future research on the neurotoxic effects of cannabis use.
Collapse
Affiliation(s)
- Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Maison des Addictions, CHRU Nancy, Nancy, France
| | | | - Laurence Lalanne
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Pôle de Psychiatrie Santé Mentale et Addictologie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Anne Giersch
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Vincent Laprevote
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| |
Collapse
|