1
|
Li H, Watkins LR, Wang X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry 2024; 29:1912-1924. [PMID: 38302560 DOI: 10.1038/s41380-024-02443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.
Collapse
Affiliation(s)
- Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
2
|
Acuña AM, Park C, Leyrer-Jackson JM, Olive MF. Promising immunomodulators for management of substance and alcohol use disorders. Expert Opin Pharmacother 2024; 25:867-884. [PMID: 38803314 PMCID: PMC11216154 DOI: 10.1080/14656566.2024.2360653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The neuroimmune system has emerged as a novel target for the treatment of substance use disorders (SUDs), with immunomodulation producing encouraging therapeutic benefits in both preclinical and clinical settings. AREAS COVERED In this review, we describe the mechanism of action and immune response to methamphetamine, opioids, cocaine, and alcohol. We then discuss off-label use of immunomodulators as adjunctive therapeutics in the treatment of neuropsychiatric disorders, demonstrating their potential efficacy in affective and behavioral disorders. We then discuss in detail the mechanism of action and recent findings regarding the use of ibudilast, minocycline, probenecid, dexmedetomidine, pioglitazone, and cannabidiol to treat (SUDs). These immunomodulators are currently being investigated in clinical trials described herein, specifically for their potential to decrease substance use, withdrawal severity, central and peripheral inflammation, comorbid neuropsychiatric disorder symptomology, as well as their ability to improve cognitive outcomes. EXPERT OPINION We argue that although mixed, findings from recent preclinical and clinical studies underscore the potential benefit of immunomodulation in the treatment of the behavioral, cognitive, and inflammatory processes that underlie compulsive substance use.
Collapse
Affiliation(s)
- Amanda M. Acuña
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, Arizona, USA
| | - Connor Park
- Department of Biomedical Sciences, Creighton University School of Medicine – Phoenix, Phoenix, Arizona, USA
| | - Jonna M. Leyrer-Jackson
- Department of Biomedical Sciences, Creighton University School of Medicine – Phoenix, Phoenix, Arizona, USA
| | - M. Foster Olive
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
da Silva MCM, de Souza Ferreira LP, Giustina AD. Could immunotherapy be a hope for addiction treatment? Clinics (Sao Paulo) 2024; 79:100347. [PMID: 38583393 PMCID: PMC11002847 DOI: 10.1016/j.clinsp.2024.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
| | - Luiz Philipe de Souza Ferreira
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Amanda Della Giustina
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
4
|
Grodin EN. Neuroimmune modulators as novel pharmacotherapies for substance use disorders. Brain Behav Immun Health 2024; 36:100744. [PMID: 38435721 PMCID: PMC10906159 DOI: 10.1016/j.bbih.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
One promising avenue of research is the use of neuroimmune modulators to treat substance use disorders (SUDs). Neuroimmune modulators target the interactions between the nervous system and immune system, which have been found to play a crucial role in the development and maintenance of SUDs. Multiple classes of substances produce alterations to neuroimmune signaling and peripheral immune function, including alcohol, opioids, and psychostimulants Preclinical studies have shown that neuroimmune modulators can reduce drug-seeking behavior and prevent relapse in animal models of SUDs. Additionally, early-phase clinical trials have demonstrated the safety and feasibility of using neuroimmune modulators as a treatment for SUDs in humans. These therapeutics can be used as stand-alone treatments or as adjunctive. This review summarizes the current state of the field and provides future directions with a specific focus on personalized medicine.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Vilca SJ, Margetts AV, Fleites I, Wahlestedt C, Tuesta LM. Microglia contribute to methamphetamine reinforcement and reflect persistent transcriptional and morphological adaptations to the drug. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.19.563168. [PMID: 37961443 PMCID: PMC10634674 DOI: 10.1101/2023.10.19.563168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Methamphetamine use disorder (MUD) is a chronic, relapsing disease that is characterized by repeated drug use despite negative consequences and for which there are currently no FDA-approved cessation therapeutics. Repeated methamphetamine (METH) use induces long-term gene expression changes in brain regions associated with reward processing and drug-seeking behavior, and recent evidence suggests that methamphetamine-induced neuroinflammation may also shape behavioral and molecular responses to the drug. Microglia, the resident immune cells in the brain, are principal drivers of neuroinflammatory responses and contribute to the pathophysiology of substance use disorders. Here, we investigated transcriptional and morphological changes in dorsal striatal microglia in response to methamphetamine-taking and during methamphetamine abstinence, as well as their functional contribution to drug-taking behavior. We show that methamphetamine self-administration induces transcriptional changes associated with protein folding, mRNA processing, immune signaling, and neurotransmission in dorsal striatal microglia. Importantly, many of these transcriptional changes persist through abstinence, a finding supported by morphological analyses. Functionally, we report that microglial ablation increases methamphetamine-taking, possibly involving neuroimmune and neurotransmitter regulation, and that post-methamphetamine microglial repopulation attenuates drug-seeking following a 21-day period of abstinence. In contrast, microglial depletion during abstinence did not alter methamphetamine-seeking. Taken together, these results suggest that methamphetamine induces both short and long-term changes in dorsal striatal microglia that contribute to altered drug-taking behavior and may provide valuable insights into the pathophysiology of MUD.
Collapse
Affiliation(s)
- Samara J. Vilca
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Alexander V. Margetts
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Isabella Fleites
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Luis M. Tuesta
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
6
|
Mirmohammadi M, Eskandari K, Koruji M, Shabani R, Ahadi R, Haghparast A. Intra-Accumbal D1- But not D2-Like Dopamine Receptor Antagonism Reverses the Inhibitory Effects of Cannabidiol on Extinction and Reinstatement of Methamphetamine Seeking Behavior in Rats. Cannabis Cannabinoid Res 2024; 9:89-110. [PMID: 36048545 DOI: 10.1089/can.2022.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Methamphetamine (METH) is an addictive psychostimulant that facilitates dopamine transmission to the nucleus accumbens (NAc), resulting in alterations in the mesocorticolimbic brain regions. Cannabidiol (CBD) is considered the second most abundant component of cannabis and is believed to decrease the METH effects. Reversing psychostimulant-induced abnormalities in the mesolimbic dopamine system is the main mechanism for this effect. Various other mechanisms have been proposed: increasing endocannabinoid system activity and modulating gamma-aminobutyric acid (GABA) and glutamate neurons in NAc. However, the exact CBD action mechanisms in reducing drug addiction and relapse vulnerability remain unclear. Methods and Results: The present study aimed to investigate the effects of intracerebroventricular (ICV) administrating 5, 10, and 50 μg/5 μL CBD solutions on the extinction period and reinstatement phase of a METH-induced conditioned place preference. This research also aimed to examine the NAc D1-like dopamine receptor (D1R) and D2-like dopamine receptor (D2R) roles in the effects of CBD on these phases, as mentioned earlier, using SCH23390 and sulpiride microinjections as an antagonist of D1R and D2R. The obtained results showed that microinjection of CBD (10 and 50 μg/5 μL, ICV) suppressed the METH-induced reinstatement and significantly decreased mean extinction latency in treated groups compared to both vehicles and/or untreated control groups. In addition, the results demonstrated that administrating intra-accumbal SCH23390 (1 and 4 μg/0.5 μL saline) reversed the inhibitory effects of CBD on extinction and reinstatement phases while different doses of sulpiride (0.25, 1, and 4 μg/0.5 μL; dimethyl sulfoxide 12%) could not alter the CBD effects. Conclusions: In summary, this study showed that CBD made shorter extinction latencies and suppressed the METH reinstatement, in part, by interacting with D1R but not D2R in the NAc.
Collapse
Affiliation(s)
- Mahboobeh Mirmohammadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Reverte I, Marchetti C, Pezza S, Zenoni SF, Scaringi G, Ferrucci L, D'Ottavio G, Pignataro A, Andolina D, Raspa M, Scavizzi F, Venniro M, Ramsey LA, Gross C, Caprioli D, Ragozzino D. Microglia-mediated calcium-permeable AMPAR accumulation in the nucleus accumbens drives hyperlocomotion during cocaine withdrawal. Brain Behav Immun 2024; 115:535-542. [PMID: 37967660 PMCID: PMC10915906 DOI: 10.1016/j.bbi.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
During withdrawal from cocaine, calcium permeable-AMPA receptors (CP-AMPAR) progressively accumulate in nucleus accumbens (NAc) synapses, a phenomenon linked to behavioral sensitization and drug-seeking. Recently, it has been suggested that neuroimmune alterations might promote aberrant changes in synaptic plasticity, thus contributing to substance abuse-related behaviors. Here, we investigated the role of microglia in NAc neuroadaptations after withdrawal from cocaine-induced conditioned place preference (CPP). We depleted microglia using PLX5622-supplemented diet during cocaine withdrawal, and after the place preference test, we measured dendritic spine density and the presence of CP-AMPAR in the NAc shell. Microglia depletion prevented cocaine-induced changes in dendritic spines and CP-AMPAR accumulation. Furthermore, microglia depletion prevented conditioned hyperlocomotion without affecting drug-context associative memory. Microglia displayed fewer number of branches, resulting in a reduced arborization area and microglia control domain at late withdrawal. Our results suggest that microglia are necessary for the synaptic adaptations in NAc synapses during cocaine withdrawal and therefore represent a promising therapeutic target for relapse prevention.
Collapse
Affiliation(s)
- Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudia Marchetti
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sara Pezza
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Soami F Zenoni
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giorgia Scaringi
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Laura Ferrucci
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ginevra D'Ottavio
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Annabella Pignataro
- IRCCS Santa Lucia Foundation, Rome, Italy; Institute of Translational Pharmacology, National Research Council, CNR, Rome, Italy
| | - Diego Andolina
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Marcello Raspa
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus "A. Buzzati-Traverso", Monterotondo (Rome), Italy
| | - Ferdinando Scavizzi
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus "A. Buzzati-Traverso", Monterotondo (Rome), Italy
| | - Marco Venniro
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, USA
| | - Leslie A Ramsey
- Behavioral Neuroscience Research Branch, Intramural Research Program, Baltimore NIDA, NIH, USA
| | - Cornelius Gross
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Daniele Caprioli
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
8
|
Brown KT, Levis SC, O'Neill CE, Levy C, Rice KC, Watkins LR, Bachtell RK. Toll-like receptor 4 antagonists reduce cocaine-primed reinstatement of drug seeking. Psychopharmacology (Berl) 2023; 240:1587-1600. [PMID: 37286899 PMCID: PMC10732226 DOI: 10.1007/s00213-023-06392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
RATIONALE Cocaine can increase inflammatory neuroimmune markers, including chemokines and cytokines characteristic of innate inflammatory responding. Prior work indicates that the Toll-like receptor 4 (TLR4) initiates this response, and administration of TLR4 antagonists provides mixed evidence that TLR4 contributes to cocaine reward and reinforcement. OBJECTIVE These studies utilize (+)-naltrexone, the TLR4 antagonist, and mu-opioid inactive enantiomer to examine the role of TLR4 on cocaine self-administration and cocaine seeking in rats. METHODS (+)-Naltrexone was continuously administered via an osmotic mini-pump during the acquisition or maintenance of cocaine self-administration. The motivation to acquire cocaine was assessed using a progressive ratio schedule following either continuous and acute (+)-naltrexone administration. The effects of (+)-naltrexone on cocaine seeking were assessed using both a cue craving model and a drug-primed reinstatement model. The highly selective TLR4 antagonist, lipopolysaccharide from Rhodobacter sphaeroides (LPS-Rs), was administered into the nucleus accumbens to determine the effectiveness of TLR4 blockade on cocaine-primed reinstatement. RESULTS (+)-Naltrexone administration did not alter the acquisition or maintenance of cocaine self-administration. Similarly, (+)-naltrexone was ineffective at altering the progressive ratio responding. Continuous administration of (+)-naltrexone during forced abstinence did not impact cued cocaine seeking. Acute systemic administration of (+)-naltrexone dose-dependently decreased cocaine-primed reinstatement of previously extinguished cocaine seeking, and administration of LPS-Rs into the nucleus accumbens shell also reduced cocaine-primed reinstatement of cocaine seeking. DISCUSSION These results complement previous studies suggesting that the TLR4 plays a role in cocaine-primed reinstatement of cocaine seeking, but may have a more limited role in cocaine reinforcement.
Collapse
Affiliation(s)
- Kyle T Brown
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Sophia C Levis
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Casey E O'Neill
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Catherine Levy
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA.
- Institute for Behavioral Genetics University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
9
|
Vilca SJ, Margetts AV, Pollock TA, Tuesta LM. Transcriptional and epigenetic regulation of microglia in substance use disorders. Mol Cell Neurosci 2023; 125:103838. [PMID: 36893849 PMCID: PMC10247513 DOI: 10.1016/j.mcn.2023.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Microglia are widely known for their role in immune surveillance and for their ability to refine neurocircuitry during development, but a growing body of evidence suggests that microglia may also play a complementary role to neurons in regulating the behavioral aspects of substance use disorders. While many of these efforts have focused on changes in microglial gene expression associated with drug-taking, epigenetic regulation of these changes has yet to be fully understood. This review provides recent evidence supporting the role of microglia in various aspects of substance use disorder, with particular focus on changes to the microglial transcriptome and the potential epigenetic mechanisms driving these changes. Further, this review discusses the latest technical advances in low-input chromatin profiling and highlights the current challenges for studying these novel molecular mechanisms in microglia.
Collapse
Affiliation(s)
- Samara J Vilca
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Alexander V Margetts
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Tate A Pollock
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Luis M Tuesta
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America.
| |
Collapse
|
10
|
Eskandari K, Fattahi M, Riahi E, Khosrowabadi R, Haghparast A. A wide range of Deep Brain Stimulation of the nucleus accumbens shell time independently reduces the extinction period and prevents the reinstatement of methamphetamine-seeking behavior in rats. Life Sci 2023; 319:121503. [PMID: 36804308 DOI: 10.1016/j.lfs.2023.121503] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Methamphetamine (METH) addiction is a significant public health issue, and standard medical therapies are often not curative. Deep Brain Stimulation (DBS) has recently shown the potential to cure addiction by modulating neural activity in specific brain circuits. Recent studies have revealed that the nucleus accumbens shell (NAcSh) could serve as a promising target in treating addiction. Therefore, the present study aimed to investigate the therapeutic effects of NAcSh high- or low-frequency stimulation (HFS or LFS) in the different time points of application on the extinction and reinstatement of the METH-conditioned place preference (CPP). LFS or HFS (10 or 130 Hz, 150-200 μA, 100 μs) was delivered to the NAcSh for 30 min non-simultaneous (in a distinct non-drug environment) or simultaneous (in a drug-paired context) of the drug-free extinction sessions. The obtained results showed that both non-simultaneous and simultaneous treatments by HFS and LFS notably reduced the extinction period of METH-induced CPP. Furthermore, the data indicated that both non-synchronous and synchronous HFS prevented METH-primed reinstatement, while only the LFS synchronized group could block the reinstatement of METH-seeking behavior. The results also demonstrated that HFS was more effective than LFS in attenuating METH-primed reinstatement, and applying HFS synchronous was significantly more effective than HFS non-synchronous in reducing the relapse of drug-seeking. In conclusion, the current study's results suggest that DBS of the NAcSh in a wide range of frequencies (LFS and HFS) could affect addiction-related behaviors. However, it should be considered that the frequency and timing of DBS administration are among the critical determining factors.
Collapse
Affiliation(s)
- Kiarash Eskandari
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Fattahi
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Abbas Haghparast
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Karimi-Haghighi S, Chavoshinezhad S, Mozafari R, Noorbakhsh F, Borhani-Haghighi A, Haghparast A. Neuroinflammatory Response in Reward-Associated Psychostimulants and Opioids: A Review. Cell Mol Neurobiol 2023; 43:649-682. [PMID: 35461410 DOI: 10.1007/s10571-022-01223-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 11/03/2022]
Abstract
Substance abuse is one of the significant problems in social and public health worldwide. Vast numbers of evidence illustrate that motivational and reinforcing impacts of addictive drugs are primarily attributed to their ability to change dopamine signaling in the reward circuit. However, the roles of classic neurotransmitters, especially dopamine and neuromodulators, monoamines, and neuropeptides, in reinforcing characteristics of abused drugs have been extensively investigated. It has recently been revealed that central immune signaling includes cascades of chemokines and proinflammatory cytokines released by neurons and glia via downstream intracellular signaling pathways that play a crucial role in mediating rewarding behavioral effects of drugs. More interestingly, inflammatory responses in the central nervous system modulate the mesolimbic dopamine signaling and glutamate-dependent currents induced by addictive drugs. This review summarized researches in the alterations of inflammatory responses accompanied by rewarding and reinforcing properties of addictive drugs, including cocaine, methamphetamine, and opioids that were evaluated by conditioned place preference and self-administration procedures as highly common behavioral tests to investigate the motivational and reinforcing impacts of addictive drugs. The neuroinflammatory responses affect the rewarding properties of psychostimulants and opioids.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
12
|
Amirteymori H, Karimi-Haghighi S, Mirmohammadi M, Majidinezhad M, Khosrowabadi E, Haghparast A. Hypocretin/orexin system in the nucleus accumbens as a promising player in the extinction and reinstatement of methamphetamine-induced CPP. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110616. [PMID: 35988849 DOI: 10.1016/j.pnpbp.2022.110616] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
One of the main obstacles in treating psychostimulant addiction is relapse even after long-term abstinence. The nucleus accumbens (NAc) is located in the basal forebrain, responsible for regulating several behaviors, specifically reward-related effect of psychostimulants. In the current study, an unbiased place conditioning paradigm was performed to inquire the role of the hypocretin/orexin system in the NAc in the extinction and reinstatement of methamphetamine (Meth)-induced conditioned place preference (CPP). Similar to previous investigations, rats were conditioned with Meth (1 mg/kg; sc) for five consecutive days to elicit CPP. The rats underwent Meth conditioning protocol received SB334867 or TCS OX2 29, an orexin receptor 1 (OXr1) antagonist or orexin receptor 2 (OXr2) antagonist (0, 3, 10, and 30 nmol/0.5 μL DMSO %12) in the NAc during the extinction period to elucidate the role of OXrs on the extinction of Meth-induced CPP. Meanwhile, extinguished rats received SB334867 or TCS OX2 29 (0, 1, 3, 10, and 30 nmol/0.5 μL DMSO %12) in the NAc prior to an effective priming dose of Meth to evaluate the impact of OXr antagonists on the reinstatement of Meth-induced CPP. The current data pointed out intra-NAc microinjection of SB334867 or TCS OX2 29 blocked both extinction and reinstatement of Meth-induced CPP. In addition, the OXr1 antagonist was more potent than the OXr2 antagonist to suppress both extinction and reinstatement phases of Meth-induced CPP. Based on the current data, the OX system in the NAc is extensively implicated in the reward properties of Meth; therefore, modulation of this system has therapeutic potential in treating psychostimulant use disorders.
Collapse
Affiliation(s)
- Haleh Amirteymori
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Mirmohammadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Majidinezhad
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Khosrowabadi
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Smiley CE, Wood SK. Stress- and drug-induced neuroimmune signaling as a therapeutic target for comorbid anxiety and substance use disorders. Pharmacol Ther 2022; 239:108212. [PMID: 35580690 DOI: 10.1016/j.pharmthera.2022.108212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Stress and substance use disorders remain two of the most highly prevalent psychiatric conditions and are often comorbid. While individually these conditions have a debilitating impact on the patient and a high cost to society, the symptomology and treatment outcomes are further exacerbated when they occur together. As such, there are few effective treatment options for these patients, and recent investigation has sought to determine the neural processes underlying the co-occurrence of these disorders to identify novel treatment targets. One such mechanism that has been linked to stress- and addiction-related conditions is neuroimmune signaling. Increases in inflammatory factors across the brain have been heavily implicated in the etiology of these disorders, and this review seeks to determine the nature of this relationship. According to the "dual-hit" hypothesis, also referred to as neuroimmune priming, prior exposure to either stress or drugs of abuse can sensitize the neuroimmune system to be hyperresponsive when exposed to these insults in the future. This review completes an examination of the literature surrounding stress-induced increases in inflammation across clinical and preclinical studies along with a summarization of the evidence regarding drug-induced alterations in inflammatory factors. These changes in neuroimmune profiles are also discussed within the context of their impact on the neural circuitry responsible for stress responsiveness and addictive behaviors. Further, this review explores the connection between neuroimmune signaling and susceptibility to these conditions and highlights the anti-inflammatory pharmacotherapies that may be used for the treatment of stress and substance use disorders.
Collapse
Affiliation(s)
- Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| |
Collapse
|
14
|
Leyrer-Jackson JM, Acuña AM, Olive MF. Current and emerging pharmacotherapies for opioid dependence treatments in adults: a comprehensive update. Expert Opin Pharmacother 2022; 23:1819-1830. [PMID: 36278879 PMCID: PMC9764962 DOI: 10.1080/14656566.2022.2140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Opioid use disorder (OUD) is characterized by compulsive opioid seeking and taking, intense drug craving, and intake of opioids despite negative consequences. The prevalence of OUDs has now reached an all-time high, in parallel with peak rates of fatal opioid-related overdoses, where 15 million individuals worldwide meet the criteria for OUD. Further, in 2020, 120,000 opioid-related deaths were reported worldwide with over 75,000 of those deaths occurring within the United States. AREAS COVERED In this review, we highlight pharmacotherapies utilized in patients with OUDs, including opioid replacement therapies, and opioid antagonists utilized for opioid overdoses and deterrent of opioid use. We also highlight newer treatments, such as those targeting the neuroimmune system, which are potential new directions for research given the recently established role of opioids in activating neuroinflammatory pathways, as well as over the counter remedies, including kratom, that may mitigate withdrawal. EXPERT OPINION To effectively treat OUDs, a deeper understanding of the current therapeutics being utilized, their additive effects, and the added involvement of the neuroimmune system are essential. Additionally, a complete understanding of opioid-induced neuronal alterations and therapeutics that target these abnormalities - including the neuroimmune system - is required to develop effective treatments for OUDs.
Collapse
Affiliation(s)
- Jonna M. Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, 85012, USA
| | - Amanda M. Acuña
- Department of Psychology, Arizona State University, Tempe, AZ, 85257, USA
- Interdepartmental Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, 85257, USA
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, 85257, USA
- Interdepartmental Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, 85257, USA
| |
Collapse
|
15
|
Wang Q, Guo X, Yue Q, Zhu S, Guo L, Li G, Zhou Q, Xiang Y, Chen G, Yin W, Sun J. Exploring the role and mechanism of gut microbiota in methamphetamine addiction using antibiotic treatment followed by fecal microbiota transplantation. Anat Rec (Hoboken) 2022; 306:1149-1164. [PMID: 36054423 DOI: 10.1002/ar.25055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/11/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
Recently, the role of the gut microbiota in the context of drug addiction has attracted the attention of researchers; however, the specific effects and underlying mechanisms require further exploration. To accomplish this, C57BL/6 mice were firstly treated with methamphetamine (MA). Conditioned place preference (CPP) behavior changes, gut permeability and function, microglial activation, and inflammatory cytokine expression were systematically analyzed in antibiotics-treated mice with microbiota depletion and in fecal microbiota transplantation mice with microbiota reconstitution. MA treatment altered microbiota composition and caused gut dysbiosis. Depletion of gut microbiota with antibiotics inhibited MA-induced CPP formation, and fecal microbiota transplantation reversed this inhibition. Mechanistic analyses indicated that antibiotic treatment decreased gut permeability and neuroinflammation, while fecal microbiota transplantation offset the impact of antibiotic treatment. Additionally, MA-induced microglial activation was suppressed by antibiotics but restored by microbiota transplantation, and this correlated well with the CPP score. Compared to antibiotic treatment, microbiota transplantation significantly increased 5-HT4 receptor expression in both the nucleus accumbens and the hippocampus. Furthermore, when fecal microbiota from healthy mice was transplanted into MA-treated mice, the CPP scores decreased. Our results provide a novel avenue for understanding MA addiction and suggest a potential future intervention strategy.
Collapse
Affiliation(s)
- Qiuting Wang
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Xiuwen Guo
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Qingwei Yue
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Shaowei Zhu
- Department of Neurology Qilu Hospital of Shandong University Jinan China
| | - Liying Guo
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Guibao Li
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Qidi Zhou
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Yunzhi Xiang
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Ganggang Chen
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Wei Yin
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Jinhao Sun
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| |
Collapse
|
16
|
Montalvo-Martínez L, Cruz-Carrillo G, Maldonado-Ruiz R, Trujillo-Villarreal LA, Cardenas-Tueme M, Viveros-Contreras R, Ortiz-López R, Camacho-Morales A. Transgenerational Susceptibility to Food Addiction-Like Behavior in Rats Associates to a Decrease of the Anti-Inflammatory IL-10 in Plasma. Neurochem Res 2022; 47:3093-3103. [PMID: 35767136 DOI: 10.1007/s11064-022-03660-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Maternal nutritional programming by energy-dense foods leads to the transgenerational heritance of addiction-like behavior. Exposure to energy-dense foods also activates systemic and central inflammation in the offspring. This study aimed to characterize pro- and anti-inflammatory cytokine profiles in blood and their correlation to the transgenerational heritance of the addiction-like behavior in rats. F1 offspring of male Wistar diagnosed with addiction-like behavior were mated with virgin females to generate the F2 and the F3 offspring, respectively. Diagnosis of addiction-like behavior was performed by the operant training schedule (FR1, FR5 and PR) and pro- and anti-inflammatory cytokine profiles in blood were measured by multiplex platform. Multiple linear models between behavior, fetal programming by diet and pro- and anti-inflammatory cytokine profiles were performed. We found that the addiction-like behavior found in the F1 male offspring exposed to energy-dense food (cafeteria, CAF) diet during fetal programing is transgenerational inherited to the F2 and F3 generations. Blood from addiction-like behavior subjects of F2 and F3 generations exposed to CAF diet during maternal programming showed decrease in the anti-inflammatory IL-10 in the plasma. Conversely, decreased levels of the pro-inflammatory MCP-1 was identified in non-addiction-like subjects. No changes were found in plasmatic TNF-α levels in the F2 and F3 offspring of non-addiction-like and addiction-like subjects. Finally, biological modeling between IL-10 or MCP-1 plasma levels and prenatal diet exposure on operant training responses confirmed an association of decreased IL-10 levels on addiction-like behavior in the F2 and F3 generations. Globally, we identified decreased anti-inflammatory IL-10 cytokine in the blood of F2 and F3 offspring subjects diagnosed with addiction-like behavior for food rewards.
Collapse
Affiliation(s)
- Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Luis A Trujillo-Villarreal
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Marcela Cardenas-Tueme
- Institute for Obesity Research. Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico de Estudios Superiores Monterrey, Monterrey, NL, Mexico
| | | | - Rocío Ortiz-López
- Institute for Obesity Research. Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico de Estudios Superiores Monterrey, Monterrey, NL, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico.
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, S/N, C.P. 64460, Monterrey, NL, Mexico.
| |
Collapse
|
17
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
18
|
Barnett A, David E, Rohlman A, Nikolova VD, Moy SS, Vetreno RP, Coleman LG. Adolescent Binge Alcohol Enhances Early Alzheimer's Disease Pathology in Adulthood Through Proinflammatory Neuroimmune Activation. Front Pharmacol 2022; 13:884170. [PMID: 35559229 PMCID: PMC9086457 DOI: 10.3389/fphar.2022.884170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Epidemiological studies suggest that heavy alcohol use early in life is associated with increased risk for Alzheimer's disease (AD). However, mechanisms connecting AD with alcohol use have not been identified. Both heavy alcohol use and AD feature increased proinflammatory signaling. Therefore, we hypothesized that adolescent binge ethanol would increase AD molecular and behavioral pathology in adulthood through proinflammatory signaling. The 3xTg-AD mouse model (APPSwe, tauP301, Psen1tm1Mpm) which features amyloid (Aβ) and tau pathology beginning at 6-12 months underwent adolescent intermittent ethanol (AIE, 5 g/kg/d, i.g., P25-55) with assessment of AD pathologic mediators at P200. A second group of mice received AIE +/- minocycline (30 mg/kg/d, IP) followed by behavioral testing in adulthood. Behavioral testing and age of testing included: locomotor activity and exploration (27-28 weeks), novel object recognition (NORT, 28-30 weeks), 3-chamber sociability and social memory (29-31 weeks), prepulse inhibition (PPI, 30-32 weeks), Morris Water Maze with reversal (MWM, 31-35 weeks), and Piezo sleep monitoring (35-37 weeks). We found that AIE increased levels of neurotoxic Aβ1-42 in adult female hippocampus as well as intraneuronal Aβ1-42 in amygdala and entorhinal cortex. Phosphorylated tau at residue Thr181 (p-tau-181) was also increased in female hippocampus by AIE. Several proinflammatory genes were persistently increased by AIE in the female hippocampus, including IL-1β, MCP-1, IL-6, and IFNα. Expression of these genes was strongly correlated with the levels of Aβ1-42 and p-tau-181 in hippocampus. AIE caused persistent decreases in locomotor activity (open-field and NORT habituation) and increased anxiety-like behavior (thigmotaxis) while reducing memory retention. Treatment with the anti-inflammatory compound minocycline during AIE blocked persistent increases in Aβ1-42 in amygdala and p-tau-181 in hippocampus, and prevented AIE-induced thigmotaxis and memory loss. Together, these data find that adolescent binge ethanol enhances AD molecular and behavioral pathology in adulthood through proinflammatory signaling. Blockade of proinflammatory signaling during ethanol exposure prevents ethanol-induced effects on pathologic accumulation of AD-associated proteins and persistent behavior changes relevant to human AD.
Collapse
Affiliation(s)
- Alexandra Barnett
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Emeraghi David
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Aaron Rohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Viktoriya D. Nikolova
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Carolina Institute for Developmental Disorders, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Sheryl S. Moy
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Carolina Institute for Developmental Disorders, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Leon G. Coleman
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States,*Correspondence: Leon G. Coleman Jr,
| |
Collapse
|
19
|
Karatoprak S, Uzun N, Akıncı MA, Dönmez YE. Neutrophil-lymphocyte and Platelet-lymphocyte Ratios among Adolescents with Substance Use Disorder: A Preliminary Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:669-676. [PMID: 34690121 PMCID: PMC8553541 DOI: 10.9758/cpn.2021.19.4.669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/25/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022]
Abstract
Objective Substance use disorder (SUD) is a serious public health problem affecting both the individual and the society, and substance use-related deaths and disability have been shown to increase gradually. Recent etiologic studies have reported that there is a relation between inflammatory parameters and psychiatric disorders. The neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) used as an indicator of inflammation have been shown to be increased in various psychiatric disorders. In this study, we aimed to investigate the NLR and PLR in adolescents with SUD. Methods This study was conducted by retrospectively examining the records of 55 male adolescents who were followed up with SUD in a child and adolescent psychiatry outpatient clinic between November 2019−June 2020. Patients who had comorbid psychiatric disorder were included, and those who received any psychotropic medication were excluded. A total of 61 healthy male adolescents in the same age range without any psychiatric disorders were recruited as a control group. Neutrophil-lymphocyte-platelet counts were noted retrospectively from complete blood tests, and NLR-PLR were calculated. Results The NLR and PLR of adolescents with SUD were significantly higher than the healthy adolescents (p < 0.01, p < 0.01, respectively). In addition, conduct disorder, depression, and attention deficit/hyperactivity disorder, which were determined as the most common comorbid psychiatric disorders had no effects on NLR (p = 0.513, p = 0.584, p = 0.394, respectively) and PLR (p = 0.210, p = 0.346, p = 0.359, respectively). Conclusion The results of current study indicate that inflammatory processes may have a key role in the pathophysiology of SUD.
Collapse
Affiliation(s)
- Serdar Karatoprak
- Department of Child and Adolescent Psychiatry, Elazıg Fethi Sekin City Hospital, Elazıg, Turkey
| | - Necati Uzun
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Akif Akıncı
- Department of Child and Adolescent Psychiatry, Dr. Ali Kemal Belviranlı Maternity and Children’s Hospital, Konya, Turkey
| | - Yunus Emre Dönmez
- Department of Child and Adolescent Psychiatry, School of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
20
|
Nouri K, Anooshe M, Karimi-Haghighi S, Mousavi Z, Haghparast A. Involvement of Hippocampal D1-Like Dopamine Receptors in the Inhibitory Effect of Cannabidiol on Acquisition and Expression of Methamphetamine-Induced Conditioned Place Preference. Neurochem Res 2021; 46:2008-2018. [PMID: 33993443 DOI: 10.1007/s11064-021-03350-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022]
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound with strong potential to decrease the psychostimulant's rewarding effect with unclear receptors. Furthermore, as a part of the reward circuit, the hippocampus plays a crucial role in regulating the reward properties of drugs as determined by conditioned place preference (CPP). In the current research, CPP was used to evaluate the role of intra-CA1 microinjection of D1-like dopamine receptor antagonists in CBD's inhibitory effect on the acquisition and expression phases of methamphetamine (METH). Animals were treated by METH (1 mg/kg; sc) in a five-day schedule to induce CPP. To find out the impact of D1-like dopamine receptor antagonist, SCH23390, in the CA1 on the inhibitory influence of CBD on the acquisition of METH, the rats received intra-CA1 administration of SCH23390 (0.25, 1, and 4 µg/0.5 µl) following ICV treatment of CBD (10 µg/5 µl) over conditioning phase of METH. Furthermore, animals were given SCH23390 in the CA1 ensuing ICV microinjection of CBD (50 µg/5 µl) in the expression phase of METH to rule out the influence of SCH23390 on the suppressive effect of CBD on the expression of METH CPP. Intra-CA1 microinjection of SCH23390 abolished CBD's suppressive impact on both METH-induced CPP phases without any side effect on the locomotion. The current research disclosed that CBD inhibited the rewarding characteristic of METH via D1-like dopamine receptors in the CA1 region of the hippocampus.
Collapse
Affiliation(s)
- Kiana Nouri
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Anooshe
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, 19615-1178, Tehran, Iran.
| |
Collapse
|
21
|
Successful Use of Minocycline for the Treatment of Methamphetamine-Induced Psychosis and Cognitive Impairments: An Open-Label Case Series. Clin Neuropharmacol 2021; 44:126-131. [PMID: 34241980 DOI: 10.1097/wnf.0000000000000460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Methamphetamine-induced psychosis and neuropsychological impairments are common among patients with methamphetamine use disorder. Given some preclinical and clinical studies reporting potential effects of minocycline, a second-generation tetracycline, on correcting manifestations of drug addiction, this study aimed to examine the effectiveness of minocycline in attenuating psychotic symptoms and neuropsychological impairments in chronic methamphetamine users. METHOD Five men with treatment-resistant methamphetamine use disorder and psychotic symptoms were selected using a convenience sampling method, and they were administered a daily dose of 200-mg minocycline for 8 weeks; within this period, psychiatric and neuropsychological assessments (including memory and executive functions) were carried out at the baseline, week 2, week 4, week 8, and 2-month follow-up. RESULTS The findings showed that minocycline attenuated both positive (Cohen d = 0.63) and negative (Cohen d = 0.53) methamphetamine-induced psychotic symptoms and also improved patients' neuropsychological functions, particularly their auditory working memory (Cohen d = 0.45). CONCLUSIONS These results provide promising evidence regarding the positive effects of minocycline as adjunctive pharmacotherapy for patients with methamphetamine use disorder. However, given that this was an open-label study, further research is warranted to draw a firm conclusion about the effectiveness of minocycline for methamphetamine-induced psychosis and neuropsychological deficits.
Collapse
|
22
|
Lucerne KE, Osman A, Meckel KR, Kiraly DD. Contributions of neuroimmune and gut-brain signaling to vulnerability of developing substance use disorders. Neuropharmacology 2021; 192:108598. [PMID: 33965398 PMCID: PMC8220934 DOI: 10.1016/j.neuropharm.2021.108598] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Epidemiology and clinical research indicate that only a subset of people who are exposed to drugs of abuse will go on to develop a substance use disorder. Numerous factors impact individual susceptibility to developing a substance use disorder, including intrinsic biological factors, environmental factors, and interpersonal/social factors. Given the extensive morbidity and mortality that is wrought as a consequence of substance use disorders, a substantial body of research has focused on understanding the risk factors that mediate the shift from initial drug use to pathological drug use. Understanding these risk factors provides a clear path for the development of risk mitigation strategies to help reduce the burden of substance use disorders in the population. Here we will review the rapidly growing body of literature that examines the importance of interactions between the peripheral immune system, the gut microbiome, and the central nervous system (CNS) in mediating the transition to pathological drug use. While these systems had long been viewed as distinct, there is growing evidence that there is bidirectional communication between both the immune system and the gut microbiome that drive changes in neural and behavioral plasticity relevant to substance use disorders. Further, both of these systems are highly sensitive to environmental perturbations and are implicated in numerous neuropsychiatric conditions. While the field of study examining these interactions in substance use disorders is in its relative infancy, clarifying the relationship between gut-immune-brain signaling and substance use disorders has potential to improve our understanding of individual propensity to developing addiction and yield important insight into potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aya Osman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine R Meckel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
24
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
25
|
Qin C, Hu J, Wan Y, Cai M, Wang Z, Peng Z, Liao Y, Li D, Yao P, Liu L, Rong S, Bao W, Xu G, Yang W. Narrative review on potential role of gut microbiota in certain substance addiction. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110093. [PMID: 32898589 DOI: 10.1016/j.pnpbp.2020.110093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
As a neuropsychiatric disorder, substance addiction represents a major public health issue with high prevalence and mortality in many countries. Recently, gut microbiota has been certified to play a part in substance addiction through various mechanisms. Hence, we mainly focused on three substance including alcohol, cocaine and methamphetamine in this review, and summarized their relationships with gut microbiota, respectively. Besides, we also concluded the possible treatments for substance addiction from the perspective of applying gut microbiota. This review aims to build a bridge between substance addiction and gut microbiota according to existing evidences, so as to excavate the possible bi-directional function of microbiota-gut-brain axis in substance addiction for developing therapeutic strategies in the future.
Collapse
Affiliation(s)
- Chenyuan Qin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Jiawei Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yiming Wan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Mengyao Cai
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhenting Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA
| | - Guifeng Xu
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
26
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
27
|
Rathitharan G, Truong J, Tong J, McCluskey T, Meyer JH, Mizrahi R, Warsh J, Rusjan P, Kennedy JL, Houle S, Kish SJ, Boileau I. Microglia imaging in methamphetamine use disorder: a positron emission tomography study with the 18 kDa translocator protein radioligand [F-18]FEPPA. Addict Biol 2021; 26:e12876. [PMID: 32017280 DOI: 10.1111/adb.12876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 01/19/2023]
Abstract
Activation of brain microglial cells, microgliosis, has been linked to methamphetamine (MA)-seeking behavior, suggesting that microglia could be a new therapeutic target for MA use disorder. Animal data show marked brain microglial activation following acute high-dose MA, but microglial status in human MA users is uncertain, with one positron emission tomography (PET) investigation reporting massively and globally increased translocator protein 18 kDa (TSPO; [C-11](R)-PK11195) binding, a biomarker for microgliosis, in MA users. Our aim was to measure binding of a second-generation TSPO radioligand, [F-18]FEPPA, in brain of human chronic MA users. Regional total volume of distribution (VT ) of [F-18]FEPPA was estimated with a two-tissue compartment model with arterial plasma input function for 10 regions of interest in 11 actively using MA users and 26 controls. A RM-ANOVA corrected for TSPO rs6971 polymorphism was employed to test significance. There was no main effect of group on [F-18]FEPPA VT (P = .81). No significant correlations between [F-18]FEPPA VT and MA use duration, weekly dosage, blood MA concentrations, regional brain volumes, and self-reported craving were observed. Our preliminary findings, consistent with our earlier postmortem data, do not suggest substantial brain microgliosis in MA use disorder but do not rule out microglia as a therapeutic target in MA addiction. Absence of increased [F-18]FEPPA TSPO binding might be related to insufficient MA dose or blunting of microglial response following repeated MA exposure, as suggested by some animal data.
Collapse
Affiliation(s)
- Gausiha Rathitharan
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Jennifer Truong
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Junchao Tong
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| | - Tina McCluskey
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Jeffrey H. Meyer
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Romina Mizrahi
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Jerry Warsh
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Pablo Rusjan
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - James L. Kennedy
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Sylvain Houle
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| | - Stephen J. Kish
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Isabelle Boileau
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| |
Collapse
|
28
|
Romero-Miguel D, Lamanna-Rama N, Casquero-Veiga M, Gómez-Rangel V, Desco M, Soto-Montenegro ML. Minocycline in neurodegenerative and psychiatric diseases: An update. Eur J Neurol 2020; 28:1056-1081. [PMID: 33180965 DOI: 10.1111/ene.14642] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Minocycline is a broad-spectrum antibiotic, effective as a chronic treatment for recurrent bacterial infections. Beyond its antibiotic action, minocycline also has important anti-inflammatory, antioxidant and antiapoptotic properties. Its efficacy has therefore been evaluated in many neurodegenerative and psychiatric diseases that have an inflammatory basis. Our aim was to review preclinical and clinical studies performed in neurological and psychiatric diseases whose treatment involved the use of minocycline and thereby to discern the possible beneficial effect of minocycline in these disorders. METHODS Completed and ongoing preclinical studies and clinical trials of minocycline for both neurodegenerative diseases and psychiatric disorders, published from January 1995 to January 2020, were identified through searching relevant databases (https://www.ncbi.nlm.nih.gov/pubmed/, https://clinicaltrials.gov/). A total of 74 preclinical studies and 44 clinical trials and open-label studies were selected. RESULTS The results of the nearly 20 years of research identified are diverse. While minocycline mostly proved to be effective in animal models, clinical results showed divergent outcomes, with positive results in some studies counterbalanced by a number of cases with no significant improvements. Specific data for each disease are further individually described in this review. CONCLUSIONS Despite minocycline demonstrating antioxidant and anti-inflammatory effects, discrepancies between preclinical and clinical data indicate that we should be cautious in analyzing the outcomes. Improving and standardizing protocols and refining animal models could help us to determine if minocycline really is a useful drug in the treatment of these pathologies.
Collapse
Affiliation(s)
| | | | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER de Salud Mental (CIBERSAM), Madrid
| | | | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER de Salud Mental (CIBERSAM), Madrid.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER de Salud Mental (CIBERSAM), Madrid
| |
Collapse
|
29
|
Kashefi A, Tomaz C, Jamali S, Rashidy-Pour A, Vafaei AA, Haghparast A. Cannabidiol attenuated the maintenance and reinstatement of extinguished methylphenidate-induced conditioned place preference in rats. Brain Res Bull 2020; 166:118-127. [PMID: 33264654 DOI: 10.1016/j.brainresbull.2020.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
Methylphenidate (MPH) is a mild CNS stimulant that has been used in hyperactive children, and patients with neurodegenerative and major depressive disorders. Exposure to MPH-associated cues enhances craving and arousal in drug users. On the other hand, cannabidiol (CBD) has antipsychotic potential that might be useful in alleviating symptoms of drug addiction. The aim of this study was to investigate the effect of CBD administration on extinction and reinstatement of MPH-induced conditioning place preference (CPP) in rats. Male rats received MPH (1, 2.5 or 5 mg/kg, i.p) or morphine (5 or 10 mg/kg, s.c.) during the conditioning phase. Following the establishment of CPP, during extinction training, 60 min prior to every CPP session, animals were given daily ICV CBD (10 or 50 μg/5 μL), vehicle alone (DMSO) 10 % or were treatment-naïve. On the reinstatement day animals after receiving the initial dose of MPH, 0.5 mg/kg, and were placed into the CPP box to evaluate the CPP scoring for 10-min. Our findings indicated that morphine (5 and 10 mg/kg; s.c.) and MPH (1 and 2.5 mg/kg; i.p.) induced a CPP. The ICV administration of both doses of CBD (10 and 50 μg/5 μL) prevented the reinstatement of MPH-induced CPP, which displayed shorter extinction latency compared to treatment-naïve or DMSO 10 % groups. Therefore, CBD's site of action is a potential target for reducing the risk of MPH relapse; however, more investigation is required.
Collapse
Affiliation(s)
- Adel Kashefi
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, University of Brasilia, Brasília, Brazil; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Carlos Tomaz
- Laboratory of Neuroscience and Behavior, University CEUMA, São Luís, Maranhão, Brazil
| | - Shole Jamali
- Neuroscience Research Center, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Lucerne KE, Kiraly DD. The role of gut-immune-brain signaling in substance use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:311-370. [PMID: 33648673 DOI: 10.1016/bs.irn.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Substance use disorders (SUDs) are debilitating neuropsychiatric conditions that exact enormous costs in terms of loss of life and individual suffering. While much progress has been made defining the neurocircuitry and intracellular signaling cascades that contribute to SUDs, these studies have yielded limited effective treatment options. This has prompted greater exploration of non-traditional targets in addiction. Emerging data suggest inputs from peripheral systems, such as the immune system and the gut microbiome, impact multiple neuropsychiatric diseases, including SUDs. Until recently the gut microbiome, peripheral immune system, and the CNS have been studied independently; however, current work shows the gut microbiome and immune system critically interact to modulate brain function. Additionally, the gut microbiome and immune system intimately regulate one another via extensive bidirectional communication. Accumulating evidence suggests an important role for gut-immune-brain communication in the pathogenesis of substance use disorders. Thus, a better understanding of gut-immune-brain signaling could yield important insight to addiction pathology and potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
31
|
Burkovetskaya ME, Liu Q, Vadukoot AK, Gautam N, Alnouti Y, Kumar S, Miczek K, Buch S, Hopkins CR, Guo M. KVA-D-88, a Novel Preferable Phosphodiesterase 4B Inhibitor, Decreases Cocaine-Mediated Reward Properties in Vivo. ACS Chem Neurosci 2020; 11:2231-2242. [PMID: 32609488 DOI: 10.1021/acschemneuro.0c00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cocaine addiction remains a major public concern throughout the world especially in developed countries. In the last three decades, significant achievements have led to a greater understanding of the signaling pathways involved in the development of cocaine addiction; however, there are no FDA-approved treatments available to reverse or block this brain disease due to either the unsatisfactory therapeutic efficacy or severe side effects. Previous studies have demonstrated that chronic exposure to cocaine elevates levels of cyclic AMP (cAMP) as a neuroadaptative response in reward-related brain regions. Phosphodiesterase 4 (PDE4) inhibitors, which elevate cAMP levels, have been shown to block cocaine-mediated behavioral changes related to psychoactive and reinforcing properties. Unfortunately, previously studied PDE4 inhibitors induce severe side-effects, which limit their clinical usage. In this study, we identified a novel PDE4B inhibitor, KVA-D-88, with an improved selectivity profile compared to previous compounds (e.g., rolipram). Pharmacokinetic studies have shown that this compound is brain penetrant and preferably acts on PDE4B compared to PDE4D in vitro, alluding to less unwanted side effects with KVA-D-88 in vivo. Interestingly, pretreatment with KVA-D-88 significantly inhibited cocaine-induced hyperlocomotor activity. In cocaine self-administering mice with differential schedules, KVA-D-88 strikingly decreased the number of active nose-pokes and cocaine infusions and reduced the break point. Taken together, our findings demonstrate that this novel PDE4 inhibitor, KVA-D-88, could inhibit cocaine-mediated rewarding effects implying its potential clinical usage for cocaine addiction.
Collapse
Affiliation(s)
- Maria E. Burkovetskaya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Qiaoling Liu
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Anish K. Vadukoot
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Klaus Miczek
- Department of Psychology, Tufts University, 530 Boston Ave, Medford, Massachusetts 02155, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Corey R. Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Minglei Guo
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| |
Collapse
|
32
|
Khosrowabadi E, Karimi-Haghighi S, Jamali S, Haghparast A. Differential Roles of Intra-accumbal Orexin Receptors in Acquisition and Expression of Methamphetamine-Induced Conditioned Place Preference in the Rats. Neurochem Res 2020; 45:2230-2241. [DOI: 10.1007/s11064-020-03084-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
|
33
|
Abstract
The pervasive and devastating nature of substance use disorders underlies the need for the continued development of novel pharmacotherapies. We now know that glia play a much greater role in neuronal processes than once believed. The various types of glial cells (e.g., astrocytes, microglial, oligodendrocytes) participate in numerous functions that are crucial to healthy central nervous system function. Drugs of abuse have been shown to interact with glia in ways that directly contribute to the pharmacodynamic effects responsible for their abuse potential. Through their effect upon glia, drugs of abuse also alter brain function resulting in behavioral changes associated with substance use disorders. Therefore, drug-induced changes in glia and inflammation within the central nervous system (neuroinflammation) have been investigated to treat various aspects of drug abuse and dependence. This article presents a brief overview of the effects of each of the major classes of addictive drugs on glia. Next, the paper reviews the pre-clinical and clinical studies assessing the effects that glial modulators have on abuse-related behavioral effects, such as pleasure, withdrawal, and motivation. There is a strong body of pre-clinical literature demonstrating the general effectiveness of several glia-modulating drugs in models of reward and relapse. Clinical studies have also yielded promising results, though not as robust. There is still much to disentangle regarding the integration between addictive drugs and glial cells. Improved understanding of the relationship between glia and the pathophysiology of drug abuse should allow for more precise exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
34
|
Cruz-Carrillo G, Montalvo-Martínez L, Cárdenas-Tueme M, Bernal-Vega S, Maldonado-Ruiz R, Reséndez-Pérez D, Rodríguez-Ríos D, Lund G, Garza-Ocañas L, Camacho-Morales A. Fetal Programming by Methyl Donors Modulates Central Inflammation and Prevents Food Addiction-Like Behavior in Rats. Front Neurosci 2020; 14:452. [PMID: 32581665 PMCID: PMC7283929 DOI: 10.3389/fnins.2020.00452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Fetal programming by hypercaloric intake leads to food addiction-like behavior and brain pro-inflammatory gene expression in offspring. The role of methylome modulation during programming on central immune activation and addiction-like behavior has not been characterized. We employed a nutritional programming model exposing female Wistar rats to chow diet, cafeteria (CAF), or CAF-methyl donor’s diet from pre-pregnancy to weaning. Addiction-like behavior in offspring was characterized by the operant training response using Skinner boxes. Food intake in offspring was determined after fasting–refeeding schedule and subcutaneous injection of ghrelin. Genome-wide DNA methylation in the nucleus accumbens (NAc) shell was performed by fluorescence polarization, and brain immune activation was evaluated using real-time PCR for pro-inflammatory cytokines (IL-1β, TNF-1α, and IL-6). Molecular effects of methyl modulators [S-adenosylmethionine (SAM) or 5-azatidine (5-AZA)] on pro-inflammatory cytokine expression and phagocytosis were identified in the cultures of immortalized SIM-A9 microglia cells following palmitic acid (100 μM) or LPS (100 nM) stimulation for 6 or 24 h. Our results show that fetal programming by CAF exposure increases the number of offspring subjects and reinforcers under the operant training response schedule, which correlates with an increase in the NAc shell global methylation. Notably, methyl donor’s diet selectively decreases lever-pressing responses for reinforcers and unexpectedly decreases the NAc shell global methylation. Also, programmed offspring by CAF diet shows a selective IL-6 gene expression in the NAc shell, which is reverted to control values by methyl diet exposure. In vitro analysis identified that LPS and palmitic acid activate IL-1β, TNF-1α, and IL-6 gene expression, which is repressed by the methyl donor SAM. Finally, methylation actively represses phagocytosis activity of SIM-A9 microglia cells induced by LPS and palmitic acid stimulation. Our in vivo and in vitro data suggest that fetal programming by methyl donors actively decreases addiction-like behavior to palatable food in the offspring, which correlates with a decrease in NAc shell methylome, expression of pro-inflammatory cytokine genes, and activity of phagocytic microglia. These results support the role of fetal programming in brain methylome on immune activation and food addiction-like behavior in the offspring.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marcela Cárdenas-Tueme
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Sofia Bernal-Vega
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | - Lourdes Garza-Ocañas
- Department of Pharmacology and Toxicology, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
35
|
Neuroprotective effect of chronic administration of cannabidiol during the abstinence period on methamphetamine-induced impairment of recognition memory in the rats. Behav Pharmacol 2020; 31:385-396. [DOI: 10.1097/fbp.0000000000000544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Karimi‐Haghighi S, Dargahi L, Haghparast A. Cannabidiol modulates the expression of neuroinflammatory factors in stress- and drug-induced reinstatement of methamphetamine in extinguished rats. Addict Biol 2020; 25:e12740. [PMID: 30793820 DOI: 10.1111/adb.12740] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine (METH) is a highly potent and addictive psychostimulant that is frequently abused worldwide. Although the biggest challenge to the efficient treatment of drug dependence is relapse, its mechanism is completely unclear. Plenty of evidence suggests that inflammation contributes to drug-induced reward especially in brain regions that are involved in the reward system, but there is no document about relapse. Cannabidiol (CBD) is a nonpsychoactive cannabinoid that has powerful anti-inflammatory and immunosuppressive properties. A previous research in our laboratory has demonstrated that CBD prevents reinstatement of METH even in 24-hour rapid eye movement (REM) sleep-deprived (RSD) rats. The aim of this study was to assess whether CBD prevents reinstatement of METH through change of gene expression of cytokines such as interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor α (TNF-α) in extinguished rats. Real-time polymerase chain reaction (PCR) was used in this research to assay gene expression of cytokines. We found that stress- and drug-induced reinstatement of METH enhanced mRNA expression of cytokines in the prefrontal cortex (PFC) and hippocampus. Furthermore, CBD treatment significantly reduced the mRNA expression of cytokines in the PFC and hippocampus, but CBD treatment in RSD rats increased expression of cytokines in the hippocampus. It seems that enhancement of cytokines leads to change in neurotransmission and so triggers reinstatement of METH.
Collapse
Affiliation(s)
- Saeideh Karimi‐Haghighi
- Neuroscience Research Center, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| | - Leila Dargahi
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences Tehran Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
37
|
Girardi BA, Fabbrin S, Wendel AL, Mello CF, Rubin MA. Spermidine, a positive modulator of the NMDA receptor, facilitates extinction and prevents the reinstatement of morphine-induced conditioned place preference in mice. Psychopharmacology (Berl) 2020; 237:681-693. [PMID: 31828395 DOI: 10.1007/s00213-019-05403-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
RATIONALE Individuals with opioid use disorders often relapse into drug-seeking behavior after recalling memories linked to the drug use experience. Improving extinction efficacy has been used as a strategy to treat substance use disorders and suppress relapse. Although N-methyl-D-aspartate receptor (NMDAr) agonists facilitate acquisition, consolidation, and extinction, no study has addressed whether spermidine (SPD), a natural polyamine ligand of the NMDA receptor, facilitates the extinction and reinstatement of morphine-induced conditioned place preference (CPP). OBJECTIVES AND METHODS The aim of the present study was to investigate the effect of SPD, an NMDAr agonist, on the extinction and reinstatement of morphine-induced CPP in mice. Adult male albino Swiss mice received saline (0.9% NaCl) or morphine (5 mg/kg) intraperitoneally (i.p.) and were respectively confined to a black or a white compartment for 30 min for four consecutive days for CPP induction. SPD (10-30 mg/kg, i.p.) or ifenprodil (NMDAr antagonist, 0.1-1 mg/kg, i.p.) were injected 15 min before extinction training. RESULTS SPD and ifenprodil facilitated the extinction of morphine-induced CPP. SPD treatment during the extinction period impaired reinstatement induced by a priming dose of morphine (1.25 mg/kg). Ifenprodil (0.1 mg/kg) prevented the facilitatory effect of spermidine on the extinction of morphine-induced CPP but did not prevent reinstatement induced by morphine. CONCLUSIONS These results suggest that SPD facilitated the extinction of morphine-induced CPP by modulating the polyamine binding site of the NMDA receptor. Our findings reveal important effects of SPD and ifenprodil on the re-exposure-induced decrease in morphine-induced CPP, which may be promising for developing novel pharmacological strategies to treat opioid use disorder.
Collapse
Affiliation(s)
- Bruna A Girardi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Shaiana Fabbrin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Arithane L Wendel
- School of Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Carlos F Mello
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Maribel A Rubin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil. .,Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
38
|
Angoa-Pérez M, Zagorac B, Winters AD, Greenberg JM, Ahmad M, Theis KR, Kuhn DM. Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLoS One 2020; 15:e0227774. [PMID: 31978078 PMCID: PMC6980639 DOI: 10.1371/journal.pone.0227774] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The list of pharmacological agents that can modify the gut microbiome or be modified by it continues to grow at a high rate. The greatest amount of attention on drug-gut microbiome interactions has been directed primarily at pharmaceuticals used to treat infection, diabetes, cardiovascular conditions and cancer. By comparison, drugs of abuse and addiction, which can powerfully and chronically worsen human health, have received relatively little attention in this regard. Therefore, the main objective of this study was to characterize how selected synthetic psychoactive cathinones (aka “Bath Salts”) and amphetamine stimulants modify the gut microbiome. Mice were treated with mephedrone (40 mg/kg), methcathinone (80 mg/kg), methamphetamine (5 mg/kg) or 4-methyl-methamphetamine (40 mg/kg), following a binge regimen consisting of 4 injections at 2h intervals. These drugs were selected for study because they are structural analogs that contain a β-keto substituent (methcathinone), a 4-methyl group (4-methyl-methamphetamine), both substituents (mephedrone) or neither (methamphetamine). Mice were sacrificed 1, 2 or 7 days after treatment and DNA from caecum contents was subjected to 16S rRNA sequencing. We found that all drugs caused significant time- and structure-dependent alterations in the diversity and taxonomic structure of the gut microbiome. The two phyla most changed by drug treatments were Firmicutes (methcathinone, 4-methyl-methamphetamine) and Bacteriodetes (methcathinone, 4-methyl-methamphetamine, methamphetamine, mephedrone). Across time, broad microbiome changes from the phylum to genus levels were characteristic of all drugs. The present results signify that these selected psychoactive drugs, which are thought to exert their primary effects within the CNS, can have profound effects on the gut microbiome. They also suggest new avenues of investigation into the possibility that gut-derived signals could modulate drug abuse and addiction via altered communication along the gut-brain axis.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Andrew D. Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jonathan M. Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Madison Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Donald M. Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
39
|
Arezoomandan R, Aliaghaei A, Khodagholi F, Haghparast A. Minocycline induces the expression of intra-accumbal glutamate transporter-1 in the morphine-dependent rats. Asian J Psychiatr 2019; 46:70-73. [PMID: 31630007 DOI: 10.1016/j.ajp.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
Glial glutamate transporters (GLT-1) is responsible for glutamate homeostasis. GLT-1 expression and glutamate uptake can be affected by addictive drugs and can be used as a target in addiction pharmacotherapy. It has been shown that minocycline, an antibiotic with anti-inflammatory, and neuroprotective properties, can upregulate the expression of GLT-1. In the present study, in morphine-dependent rats, the effect of minocycline on expression of GLT-1 in nucleus accumbens was investigated by immunohistochemistry. The expression of GLT-1 significantly increased in minocycline treated animals. In line with other studies, our findings showed that restoring GLT-1 expression with minocycline might be considered as a potential target for correcting pre-clinical and clinical manifestations of drug addiction.
Collapse
Affiliation(s)
- Reza Arezoomandan
- Addiction Department, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Neuroscience Lab, Biology and Anatomical Sciences Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Hofford RS, Russo SJ, Kiraly DD. Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur J Neurosci 2019; 50:2562-2573. [PMID: 30179286 PMCID: PMC6531363 DOI: 10.1111/ejn.14143] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/20/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Substance use disorders are global health problems with few effective treatment options. Unfortunately, most potential pharmacological treatments are hindered by abuse potential of their own, limited efficacy, or adverse side effects. As a consequence, there is a pressing need for the development of addiction treatments with limited abuse potential and fewer off target effects. Given the difficulties in developing new pharmacotherapies for substance use disorders, there has been growing interest in medications that act on non-traditional targets. Recent evidence suggests a role for dysregulated immune signaling in the pathophysiology of multiple psychiatric diseases. While there is evidence that immune responses in the periphery and the central nervous system are altered by exposure to drugs of abuse, the contributions of neuroimmune interactions to addictive behaviors are just beginning to be appreciated. In this review, we discuss the data on immunological changes seen in clinical populations with substance use disorders, as well as in translational animal models of addiction. Importantly, we highlight those mechanistic findings showing causal roles for central or peripheral immune mediators in substance use disorder and appropriate animal models. Based on the literature reviewed here, it is clear that brain-immune system interactions in substance use disorders are much more complex and important than previously understood. While much work remains to be done, there are tremendous potential therapeutic implications for immunomodulatory treatments in substance use disorders.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott J Russo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Drew D Kiraly
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
41
|
Methamphetamine exacerbates neuroinflammatory response to lipopolysaccharide by activating dopamine D1-like receptors. Int Immunopharmacol 2019; 73:1-9. [DOI: 10.1016/j.intimp.2019.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 01/11/2023]
|
42
|
Abstract
Innate immune signaling is an important feature in the pathology of alcohol use disorders. Alcohol abuse causes persistent innate immune activation in the brain. This is seen in postmortem human alcoholic brain specimens, as well as in primate and rodent models of alcohol consumption. Further, in vitro models of alcohol exposure in neurons and glia also demonstrate innate immune activation. The activation of the innate immune system seems to be important in the development of alcohol use pathology, as anti-immune therapies reduce pathology and ethanol self-administration in rodent models. Further, innate immune activation has been identified in each of the stages of addiction: binge/intoxication, withdrawal/negative affect, and preoccupation/craving. This suggests that innate immune activation may play a role both in the development and maintenance of alcoholic pathology. In this chapter, we discuss the known contributions of innate immune signaling in the pathology of alcohol use disorders, and present potential therapeutic interventions that may be beneficial for alcohol use disorders.
Collapse
Affiliation(s)
- Leon G Coleman
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Catale C, Bussone S, Lo Iacono L, Carola V. Microglial alterations induced by psychoactive drugs: A possible mechanism in substance use disorder? Semin Cell Dev Biol 2019; 94:164-175. [PMID: 31004753 DOI: 10.1016/j.semcdb.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Recently, the xenobiotic hypothesis has implicated the immune system in targeting substances of abuse as foreign molecules and stimulating inflammatory responses. Microglial cells are the resident immune cells of the central nervous system and function in homeostatic surveillance. Microglial changes that are induced by exposure to substances of abuse appear to mediate in part the establishment of addiction and the persistence of drug-mediated biological and behavioral changes. In this context, interest in the study of drug-microglia interactions has increased recently. This review summarizes the most recent preclinical rodent and clinical studies on the interaction between microglia and various classes of drugs of abuse, such as ethanol, psychostimulants, and opioids. The principal biological mechanisms of the communication between substances of abuse and microglia will be described to consider putative mechanisms of the establishment of drug addiction and future potential targets for treating substance use disorder.
Collapse
Affiliation(s)
- Clarissa Catale
- Department of Psychology, University of Rome "La Sapienza", Via dei Marsi, 78, 00185 Rome, Italy
| | - Silvia Bussone
- Department of Dynamic and Clinical Psychology, University of Rome "La Sapienza", Via degli Apuli 1, 00185 Rome, Italy
| | - Luisa Lo Iacono
- Department of Psychology, University of Rome "La Sapienza", Via dei Marsi, 78, 00185 Rome, Italy; IRCCS Santa Lucia Foundation, Via Fosso di Fiorano 64, 00143 Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology, University of Rome "La Sapienza", Via degli Apuli 1, 00185 Rome, Italy; IRCCS Santa Lucia Foundation, Via Fosso di Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
44
|
Shahidi S, Komaki A, Sadeghian R, Asl SS. Different doses of methamphetamine alter long-term potentiation, level of BDNF and neuronal apoptosis in the hippocampus of reinstated rats. J Physiol Sci 2019; 69:409-419. [PMID: 30680641 PMCID: PMC10717877 DOI: 10.1007/s12576-019-00660-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/05/2019] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH) is a psychostimulant. The precise mechanisms of its effects remain unknown and current relapse treatments have low efficacy. However, brain-derived neurotrophic factor (BDNF) and neuronal plasticity are essential contributors, despite paradoxical reports and a lack of comprehensive studies. Therefore, we investigated the effects of different doses of METH on long-term potentiation (LTP), BDNF expression and neuronal apoptosis in the hippocampus of reinstated rats. Rats were injected intraperitoneally with METH (1, 5, or 10 mg/kg) or saline, and trained in a conditioned place preference paradigm. Following implementation of the reinstatement model, electrophysiology, western blotting and TUNEL assay were performed to assess behavior, LTP components, BDNF expression, and neuronal apoptosis, respectively. The results demonstrated that the preference scores, population spike amplitude and BDNF expression markedly decreased in the METH (10 mg/kg) group compared with the other groups. In contrast, METH (5 mg/kg) significantly increased these factors more than the control group. There was no change in variables between METH (1 mg/kg) and the control group. Also, apoptosis of the hippocampus was increased in the METH (10 mg/kg) group compared with the METH (5 mg/kg) group. These results suggest that alterations in synaptic plasticity, expression of BDNF and neuronal apoptosis in the hippocampus has a vital role in the context-induced reinstatement of METH seeking.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
45
|
Rivera PD, Hanamsagar R, Kan MJ, Tran PK, Stewart D, Jo YC, Gunn M, Bilbo SD. Removal of microglial-specific MyD88 signaling alters dentate gyrus doublecortin and enhances opioid addiction-like behaviors. Brain Behav Immun 2019; 76:104-115. [PMID: 30447281 PMCID: PMC6348129 DOI: 10.1016/j.bbi.2018.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
Drugs of abuse promote a potent immune response in central nervous system (CNS) via the activation of microglia and astrocytes. However, the molecular mechanisms underlying microglial activation during addiction are not well known. We developed and functionally characterized a novel transgenic mouse (Cx3cr1-CreBTtg/0:MyD88f/f [Cretg/0]) wherein the immune signaling adaptor gene, MyD88, was specifically deleted in microglia. To test the downstream effects of loss of microglia-specific MyD88 signaling in morphine addiction, Cretg/0 and Cre0/0 mice were tested for reward learning, extinction, and reinstatement using a conditioned place preference (CPP) paradigm. There were no differences in drug acquisition, but Cretg/0 mice had prolonged extinction and enhanced reinstatement compared to Cre0/0 controls. Furthermore, morphine-treated Cretg/0 mice showed increased doublecortin (DCX) signal relative to Cre0/0 control mice in the hippocampus, indicative of increased number of immature neurons. Additionally, there was an increase in colocalization of microglial lysosomal marker CD68 with DCX+cells in morphine-treated Cretg/0 mice but not in Cre0/0 or drug-naїve mice, suggesting a specific role for microglial MyD88 signaling in neuronal phagocytosis in the hippocampus. Our results show that MyD88 deletion in microglia may negatively impact maturing neurons within the adult hippocampus and thus reward memories, suggesting a novel protective role for microglia in opioid addiction.
Collapse
Affiliation(s)
- Phillip D Rivera
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA; Department of Biology, Hope College, Holland, MI, USA
| | - Richa Hanamsagar
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Matthew J Kan
- Department of Immunology, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Phuong K Tran
- Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - David Stewart
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Young Chan Jo
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA
| | - Michael Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Staci D Bilbo
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Lurie Center for Autism, MassGeneral Hospital for Children, Boston, MA, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
46
|
Kohno M, Link J, Dennis LE, McCready H, Huckans M, Hoffman WF, Loftis JM. Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav 2019; 179:34-42. [PMID: 30695700 DOI: 10.1016/j.pbb.2019.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
Addiction is a worldwide public health problem and this article reviews scientific advances in identifying the role of neuroinflammation in the genesis, maintenance, and treatment of substance use disorders. With an emphasis on neuroimaging techniques, this review examines human studies of addiction using positron emission tomography to identify binding of translocator protein (TSPO), which is upregulated in reactive glial cells and activated microglia during pathological states. High TSPO levels have been shown in methamphetamine use but exhibits variable patterns in cocaine use. Alcohol and nicotine use, however, are associated with lower TSPO levels. We discuss how mechanistic differences at the neurotransmitter and circuit level in the neural effects of these agents and subsequent immune response may explain these observations. Finally, we review the potential of anti-inflammatory drugs, including ibudilast, minocycline, and pioglitazone, to ameliorate the behavioral and cognitive consequences of addiction.
Collapse
Affiliation(s)
- Milky Kohno
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Jeanne Link
- Center for Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - Laura E Dennis
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Holly McCready
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Marilyn Huckans
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - William F Hoffman
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
47
|
Taslimi Z, Komaki A, Sarihi A, Haghparast A. Effect of acute and chronic restraint stress on electrical activity of prefrontal cortex neurons in the reinstatement of extinguished methamphetamine-induced conditioned place preference: An electrophysiological study. Brain Res Bull 2019; 146:237-243. [PMID: 30660715 DOI: 10.1016/j.brainresbull.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022]
Abstract
Increased vulnerability to drug abuse has been observed after exposure to stress and the prefrontal cortex (PFC) plays a major role in the control of the stress response and reward pathway. The current study was conducted to clarify the effects of acute and chronic restraint stress on PFC neural activity during the reinstatement of methamphetamine (METH)-induced conditioned place preference (CPP) in rats. Following the establishment of CPP (METH 0.5 mg/kg; s.c. for 3 days) and the extinction phase, male Wistar rats were divided into threshold (0.25 mg/kg; s.c.) and sub-threshold (0.125 mg/kg; s.c.) METH-treated super groups to induce reinstatement. Each super group contained control (non-stressed), acute restraint stress (ARS) and chronic restraint stress (CRS) groups. in vivo single unit recordings were performed on the urethane-anesthetized rats in these groups. After baseline recordings (10-min period) of the neurons in the PFC, their firing activity was recorded for 50 min during the reinstatement phase after injection of METH. The results showed that the threshold dose, but not the sub-threshold dose, of METH significantly increased PFC neural activity in the non-stressed animals. The sub-threshold dose of METH notably changed this activity in both the ARS and CRS groups. These changes in the excited neurons after the sub-threshold dose in the ARS and CRS groups were significantly higher than those in the non-stressed group. It appears that the PFC is implicated in the associated reward pathway and stress functions. METH affected the firing rate of PFC neurons and stress amplified the effect of METH on changes in the neuronal firing rate in the PFC.
Collapse
Affiliation(s)
- Zahra Taslimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, 19615-1178, Tehran, Iran.
| |
Collapse
|
48
|
Arezoomandan R, Riahi E, Haghparast A. Minocycline increases firing rates of accumbal neurons and modifies the effects of morphine on neuronal activity. Addict Biol 2018; 23:1055-1066. [PMID: 28961365 DOI: 10.1111/adb.12557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/02/2023]
Abstract
Accumulating evidence indicated that minocycline, a glial cell modulator, is able to modify a variety of morphine effects. Here, we investigated minocycline effects on electrical activity of nucleus accumbens (NAc) neurons using single unit recording in urethane-anesthetized rats. In addition, we investigated whether minocycline can modify the effects of morphine on NAc neural activity during reinstatement of morphine-seeking behavior. Minocycline increased the NAc firing activity in intact animals. Electrophysiological recording in morphine-treated animals was performed, following the acquisition of morphine-induced conditioned place preference (5 mg/kg, s.c., 3 days) and a drug-free extinction period. In acutely minocycline- treated animals, the neurons were recorded for 40 minutes following a single injection of either minocycline (50 μg/5 μl, i.c.v.) or saline. Then a priming dose of morphine (1 mg/kg, s.c.) was injected while the recording was continued for an additional 40 minutes. Minocycline significantly increased the firing rates of neurons and significantly modified morphine inhibitory effects on NAc neurons. In subchronically minocycline-treated groups, the rats were given daily injections of minocycline (50 μg/5 μl, i.c.v) during the extinction period. Then, on the reinstatement day, NAc neurons were recorded for 10 minutes, the priming dose of morphine was administered and the recording was continued for 45 minutes. Our results showed the failure of minocycline to significantly modify the inhibitory effects of morphine. In conclusion, our findings indicated that minocycline modifies morphine-induced decreases in the firing rates of NAc neurons in the reinstatement phase.
Collapse
Affiliation(s)
- Reza Arezoomandan
- Addiction Department, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry); Iran University of Medical Sciences; Tehran Iran
| | - Esmail Riahi
- Physiology Department, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
49
|
Seyedaghamiri F, Heysieattalab S, Hosseinmardi N, Janahmadi M, Elahi-Mahani A, Salari F, Golpayegani M, Khoshbouei H. Hippocampal glial cells modulate morphine-induced behavioral responses. Physiol Behav 2018; 191:37-46. [DOI: 10.1016/j.physbeh.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/01/2018] [Accepted: 04/02/2018] [Indexed: 11/28/2022]
|
50
|
Karimi-Haghighi S, Haghparast A. Cannabidiol inhibits priming-induced reinstatement of methamphetamine in REM sleep deprived rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:307-313. [PMID: 28870635 DOI: 10.1016/j.pnpbp.2017.08.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022]
Abstract
Methamphetamine (METH) is a widely abused and a severely addictive psychostimulant. Relapse is the main cause of concern when treating addiction. It could manifest after a long period of abstinence. Previous studies showed that there is a strong connection between sleep impairment and relapse. Also, it has been reported that cannabidiol might be a potential treatment for drug craving and relapse. In this study, we used conditioned place preference (CPP) to investigate whether Cannabidiol (CBD), a phytocannabinoid, can prevent METH-induced reinstatement in Rapid Eye Movement Sleep Deprived (RSD) rats. In order to induce CPP, the animals were given METH (1mg/kg; sc) for five days. The effective priming dose of METH (0.5mg/kg, sc) reinstated the extinguished METH-induced CPP. In order to investigate the effect of RSD on METH-induced reinstatement, we used the inverted flowerpot technique to deprive the rats of REM sleep. We found that 24h-RSD could facilitate priming-induced reinstatement of METH. In addition to this, the ICV administration of CBD 10μg/5μl could suppress the METH-induced reinstatement even in RSD rats. In conclusion, the administration of CBD 10μg/5μl effectively prevents METH-induced CPP, even in a condition of stress. CBD can be considered an agent that reduces the risk of the relapse; however, this requires more investigation.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|