1
|
Prete G, Rollo B, Palumbo R, Ceccato I, Mammarella N, Di Domenico A, Capotosto P, Tommasi L. Investigating the effect of rTMS over the temporoparietal cortex on the Right Ear Advantage for perceived and imagined voices. Sci Rep 2024; 14:24930. [PMID: 39438571 PMCID: PMC11496506 DOI: 10.1038/s41598-024-75671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
A Right Ear Advantage (REA) is well-established in perceptual tasks but it has been found also during imagery. It is ascribed to the left temporoparietal activity for language, and it can be absent/reversed in some clinical conditions including auditory hallucinations. We applied 1-Hz repetitive TMS over TP3/TP4 (left/right language areas) identified through neuronavigation in 18 healthy participants, before administering a modified white noise (WN) speech illusion paradigm: a voice was presented at one ear, at the same or lower intensities with respect to binaural WN. In some trials the voice was not presented, but participants were anyway instructed to report in which ear they believed perceiving it in all trials. Results confirmed the REA both when the voice was present (perceptual REA) and when it was absent (imaginative REA). Interestingly, results suggested that the correct localization of the voice when the stimulus was ambiguous (presented at low intensity and "masked" by WN) was better when TMS was applied over the right/left hemisphere, in male participants with a low/high proneness to unusual experiences (e.g., auditory hallucinations), respectively. This interaction must be further explored to shed light on the relationship between hemispheric asymmetries and auditory hallucinations, in healthy and clinical samples.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Benedetta Rollo
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Rocco Palumbo
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Irene Ceccato
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Nicola Mammarella
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Alberto Di Domenico
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Paolo Capotosto
- Department of Neuroscience, Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti and Pescara, Via Dei Vestini 29, 66013, Chieti, Italy.
- ITAB Istituto Di Tecnologie Avanzate Biomediche, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy.
| | - Luca Tommasi
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| |
Collapse
|
2
|
Yuanjun X, Guan M, Zhang T, Ma C, Wang L, Lin X, Li C, Wang Z, Zhujing M, Wang H, Peng F. Targeting auditory verbal hallucinations in schizophrenia: effective connectivity changes induced by low-frequency rTMS. Transl Psychiatry 2024; 14:393. [PMID: 39341819 PMCID: PMC11438995 DOI: 10.1038/s41398-024-03106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Low-frequency repetitive transcranial magnetic stimulation (rTMS) has emerged as an effective intervention for alleviating symptoms of psychiatric disorders, particularly schizophrenia characterized by persistent auditory verbal hallucinations (AVH). However, the underlying mechanism of its action remain elusive. This study employed a randomized controlled design to investigate the impact of low-frequency rTMS on the neural connectivity at the stimulate site, specifically left temporoparietal junction (TPJ), in schizophrenia patients with suffering from AVH. Using Dynamic Causal Modeling (DCM), this study assessed changes in directed connectivity patterns and their correlations with clinical symptomatology. The results demonstrated significant improvements in AVH. Notably, significant changes in connectivity were observed, including both abnormal functional connectivity and effective connectivity among multiple brain regions. Particularly, the inhibition effects from the left precentral gyrus and left medial superior frontal gyrus to the left TPJ were closely associated with improvements in AVH. These findings underscore the potential of rTMS to effectively modulate neural pathways implicated in hallucinations in schizophrenia, thereby providing a neurobiological foundation for its therapeutic effects.
Collapse
Affiliation(s)
- Xie Yuanjun
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China.
- Department of Radiology, Fourth Military Medical University, Xi'an, China.
| | - Muzhen Guan
- Deparment of Mental Health, Xi'an Medical College, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Lingling Wang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Xinxin Lin
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Fourth Military Medical University, Xi'an, China
| | - Ma Zhujing
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Fourth Military Medical University, Xi'an, China.
| | - Fang Peng
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China.
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China.
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Braak S, Penninx BW, Su T, Pijnenburg Y, Nijland D, Campos AV, de la Torre-Luque A, Saris IMJ, Reus LM, Beckenstrom AC, Malik A, Dawson GR, Marston H, Alvarez-Linera J, Ayuso-Mateos JLL, Arango C, van der Wee N, Kas MJ, Aghajani M. Social dysfunction relates to shifts within socioaffective brain systems among Schizophrenia and Alzheimer's disease patients. Eur Neuropsychopharmacol 2024; 86:1-10. [PMID: 38909542 DOI: 10.1016/j.euroneuro.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/25/2024]
Abstract
Social dysfunction represents one of the most common signs of neuropsychiatric disorders, such as Schizophrenia (SZ) and Alzheimer's disease (AD). Perturbed socioaffective neural processing is crucially implicated in SZ/AD and generally linked to social dysfunction. Yet, transdiagnostic properties of social dysfunction and its neurobiological underpinnings remain unknown. As part of the European PRISM project, we examined whether social dysfunction maps onto shifts within socioaffective brain systems across SZ and AD patients. We probed coupling of social dysfunction with socioaffective neural processing, as indexed by an implicit facial emotional processing fMRI task, across SZ (N = 46), AD (N = 40) and two age-matched healthy control (HC) groups (N = 26 HC-younger and N = 27 HC-older). Behavioural (i.e., social withdrawal, interpersonal dysfunction, diminished prosocial or recreational activity) and subjective (i.e., feelings of loneliness) aspects of social dysfunction were assessed using the Social Functioning Scale and De Jong-Gierveld loneliness questionnaire, respectively. Across SZ/AD/HC participants, more severe behavioural social dysfunction related to hyperactivity within fronto-parieto-limbic brain systems in response to sad emotions (P = 0.0078), along with hypoactivity of these brain systems in response to happy emotions (P = 0.0418). Such relationships were not found for subjective experiences of social dysfunction. These effects were independent of diagnosis, and not confounded by clinical and sociodemographic factors. In conclusion, behavioural aspects of social dysfunction across SZ/AD/HC participants are associated with shifts within fronto-parieto-limbic brain systems. These findings pinpoint altered socioaffective neural processing as a putative marker for social dysfunction, and could aid personalized care initiatives grounded in social behaviour.
Collapse
Affiliation(s)
- Simon Braak
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress and Neurodegeneration programs, Amsterdam, the Netherlands.
| | - Brenda Wjh Penninx
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress and Neurodegeneration programs, Amsterdam, the Netherlands
| | - Tanja Su
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress and Neurodegeneration programs, Amsterdam, the Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Daphne Nijland
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress and Neurodegeneration programs, Amsterdam, the Netherlands
| | - Alba Vieira Campos
- Centre of Biomedical Research in Mental Health, CIBERSAM, Spain; Memory Unit, Department of Neurology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Alejandro de la Torre-Luque
- Centre of Biomedical Research in Mental Health, CIBERSAM, Spain; Department of Legal Medicine, Psychiatry and Pathology. Complutense University of Madrid, Madrid, Spain
| | - Ilja M J Saris
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress and Neurodegeneration programs, Amsterdam, the Netherlands
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands; Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California, United States
| | | | - Asad Malik
- P1vital Ltd. Manor House, Howbery Park, Wallingford, United Kingdom
| | - Gerard R Dawson
- P1vital Ltd. Manor House, Howbery Park, Wallingford, United Kingdom
| | | | | | - Jose-Luis L Ayuso-Mateos
- Centre of Biomedical Research in Mental Health, CIBERSAM, Spain; Department of Psychiatry, Universidad Autonoma de Madrid, Instituto de Investigación Sanitaria Princesa, Spain
| | - Celso Arango
- Centre of Biomedical Research in Mental Health, CIBERSAM, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Gregorio Marañon University Hospital, IiSGM, Spain; Universidad Complutense de Madrid, Spain
| | - Nic van der Wee
- Leiden University Medical Centre, Department of Psychiatry, the Netherlands
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Moji Aghajani
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, Boelelaan 1117, Amsterdam, the Netherlands; Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden University, the Netherlands
| |
Collapse
|
4
|
Xie Y, Li C, Guan M, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. The efficacy of low frequency repetitive transcial magnetic stimulation for treating auditory verbal hallucinations in schizophrenia: Insights from functional gradient analyses. Heliyon 2024; 10:e30194. [PMID: 38707410 PMCID: PMC11066630 DOI: 10.1016/j.heliyon.2024.e30194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Background Auditory Verbal Hallucinations (AVH) constitute a prominent feature of schizophrenia. Although low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated therapeutic benefits in ameliorating AVH, the underlying mechanisms of its efficacy necessitate further elucidation. Objective This study investigated the cortical gradient characteristics and their associations with clinical responses in schizophrenia patients with AVH, mediated through 1 Hz rTMS targeting the left temporoparietal junction. Method Functional gradient metrics were employed to examine the hierarchy patterns of cortical organization, capturing whole-brain functional connectivity profiles in patients and controls. Results The 1 Hz rTMS treatment effectively ameliorated the positive symptoms in patients, specifically targeting AVH. Initial evaluations revealed expanded global gradient distribution patterns and specific principal gradient variations in certain brain regions in patients at baseline compared to a control cohort. Following treatment, these divergent global and local patterns showed signs of normalizing. Furthermore, there was observed a closer alignment in between-network dispersion among various networks after treatment, including the somatomotor, attention, and limbic networks, indicating a potential harmonization of brain functionality. Conclusion Low-frequency rTMS induces alternations in principal functional gradient patterns, may serve as imaging markers to elucidate the mechanisms underpinning the therapeutic efficacy of rTMS on AVH in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Mehta DD, Siddiqui S, Ward HB, Steele VR, Pearlson GD, George TP. Functional and structural effects of repetitive transcranial magnetic stimulation (rTMS) for the treatment of auditory verbal hallucinations in schizophrenia: A systematic review. Schizophr Res 2024; 267:86-98. [PMID: 38531161 PMCID: PMC11531343 DOI: 10.1016/j.schres.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) are a disabling symptom for people with schizophrenia (SCZ), and do not always respond to antipsychotics. Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for medication-refractory AVH, though the underlying neural mechanisms by which rTMS produces these effects remain unclear. This systematic review evaluated the structural and functional impact of rTMS for AVH in SCZ, and its association with clinical outcomes. METHODS A systematic search was conducted in Medline, PsychINFO, and PubMed using terms for four key concepts: AVH, SCZ, rTMS, neuroimaging. Using PRISMA guidelines, 18 studies were identified that collected neuroimaging data of an rTMS intervention for AVH in SCZ. Risk of bias assessments was conducted. RESULTS Low frequency (<5 Hz) rTMS targeting left hemispheric language processing regions may normalize brain abnormalities in AVH patients at structural, functional, electrophysiological, and topological levels, with concurrent symptom improvement. Amelioration of aberrant neural activity in frontotemporal networks associated with speech and auditory processing was commonly observed, as well as in cerebellar and emotion regulation regions. Neuroimaging analyses identified neural substrates with direct correlations to post-rTMS AVH severity, propounding their use as therapeutic targets. DISCUSSION Combined rTMS-neuroimaging highlights the multidimensional alterations of rTMS on brain activity and structure in treatment-resistant AVH, which may be used to develop more efficacious therapies. Larger randomized, sham-controlled studies are needed. Future studies should explore alternate stimulation targets, investigate the neural effects of high-frequency rTMS and evaluate long-term neuroimaging outcomes.
Collapse
Affiliation(s)
- Dhvani D Mehta
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Salsabil Siddiqui
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Heather B Ward
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Vaughn R Steele
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Godfrey D Pearlson
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Tony P George
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
6
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
7
|
Mattioli F, Maglianella V, D'Antonio S, Trimarco E, Caligiore D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J Neurol Sci 2024; 456:122825. [PMID: 38103417 DOI: 10.1016/j.jns.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques have a rich historical background, yet their utilization has witnessed significant growth only recently. These techniques encompass transcranial electrical stimulation and transcranial magnetic stimulation, which were initially employed in neuroscience to explore the intricate relationship between the brain and behaviour. However, they are increasingly finding application in research contexts as a means to address various neurological, psychiatric, and neurodegenerative disorders. This article aims to fulfill two primary objectives. Firstly, it seeks to showcase the current state of the art in the clinical application of NIBS, highlighting how it can improve and complement existing treatments. Secondly, it provides a comprehensive overview of the utilization of NIBS in augmenting the brain function of healthy individuals, thereby enhancing their performance. Furthermore, the article delves into the points of convergence and divergence between these two techniques. It also addresses the existing challenges and future prospects associated with NIBS from ethical and research standpoints.
Collapse
Affiliation(s)
- Francesco Mattioli
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; School of Computing, Electronics and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Valerio Maglianella
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Sara D'Antonio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emiliano Trimarco
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Daniele Caligiore
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| |
Collapse
|
8
|
Guan M, Xie Y, Li C, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. Rich-club reorganization of white matter structural network in schizophrenia patients with auditory verbal hallucinations following 1 Hz rTMS treatment. Neuroimage Clin 2023; 40:103546. [PMID: 37988997 PMCID: PMC10701084 DOI: 10.1016/j.nicl.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
The human brain comprises a large-scale structural network of regions and interregional pathways, including a selectively defined set of highly central and interconnected hub regions, often referred to as the "rich club", which may play a pivotal role in the integrative processes of the brain. A quintessential symptom of schizophrenia, auditory verbal hallucinations (AVH) have shown a decrease in severity following low-frequency repetitive transcranial magnetic stimulation (rTMS). However, the underlying mechanism of rTMS in treating AVH remains elusive. This study investigated the effect of low-frequency rTMS on the rich-club organization within the brain in patients diagnosed with schizophrenia who experience AVH using diffusion tensor imaging data. Through by constructing structural connectivity networks, we identified several critical rich hub nodes, which constituted a rich-club subnetwork, predominantly located in the prefrontal cortices. Notably, our findings revealed enhanced connection strength and density within the rich-club subnetwork following rTMS treatment. Furthermore, we found that the decreased connectivity within the subnetwork components, including the rich-club subnetwork, was notably enhanced in patients following rTMS treatment. In particular, the increased connectivity strength of the right median superior frontal gyrus, which functions as a critical local bridge, with the right postcentral gyrus exhibited a significant correlation with improvements in both positive symptoms and AVH. These findings provide valuable insights into the role of rTMS in inducing reorganizational changes within the rich-club structural network in schizophrenia and shed light on potential mechanisms through which rTMS may alleviate AVH.
Collapse
Affiliation(s)
- Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China.
| | - Yuanjun Xie
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Peng Fang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
9
|
Xie Y, Guan M, Wang Z, Ma Z, Wang H, Fang P. Alterations in brain connectivity patterns in schizophrenia patients with auditory verbal hallucinations during low frequency repetitive transcranial magnetic stimulation. Psychiatry Res 2023; 328:115457. [PMID: 37716322 DOI: 10.1016/j.psychres.2023.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Auditory verbal hallucinations (AVH) are a characteristic symptom of schizophrenia. Although low-frequency repetitive transcranial magnetic stimulation (rTMS) has been demonstrated to alleviate the severity of AVH, its exact neurophysiological mechanisms remain unclear. This study aimed to elucidate the alterations in brain connectivity patterns in schizophrenia patients with AVH after low frequency rTMS. Furthermore, the relationship between these alterations and clinical outcomes was examined, thereby identifying potential biomarkers for rTMS treatment efficacy. METHODS A total of 30 schizophrenia patients with AVH and 33 healthy controls were recruited. The patients received 1 Hz rTMS applied to the left temporoparietal junction region over 15 days. Resting-state functional magnetic resonance imaging scans were conducted for all participants. Subsequently, degree centrality (DC) and seed-based functional connectivity (FC) analyses were employed to identify specific alterations in brain connectivity patterns after rTMS treatment. RESULTS At baseline, patients exhibited divergent DC patterns in the frontal, occipital, and limbic lobes compared to healthy controls. In addition, prior to treatment, patients demonstrated altered FC from the superior frontal gyrus seeds that linked to the frontal, temporal, and somatosensory regions. Following rTMS treatment, these abnormalities were notably reversed, correlating with improved clinical outcomes. CONCLUSIONS These findings demonstrate that schizophrenia patients with AVH exhibited atypical interactions within the frontal and temporal lobes. These alterations might be crucial biomarkers for predicting the efficacy of low frequency rTMS.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology School , Fourth Military Medical University, Xi'an, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Military Medical Psychology School , Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Peng Fang
- Military Medical Psychology School , Fourth Military Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China.
| |
Collapse
|
10
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
11
|
Impact of low-frequency repetitive transcranial magnetic stimulation on functional network connectivity in schizophrenia patients with auditory verbal hallucinations. Psychiatry Res 2023; 320:114974. [PMID: 36587467 DOI: 10.1016/j.psychres.2022.114974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022]
Abstract
Auditory verbal hallucinations (AVH) are a key symptom of schizophrenia. Low-frequency repetitive transcranial magnetic stimulation (rTMS) has shown potential in the treatment of AVH. However, the underlying neural mechanismof rTMS in the treatment of AVH remains largely unknown. In this study, we used a static and dynamic functional network connectivity approach to investigate the connectivity changes among the brain functional networks in schizophrenia patients with AVH receiving 1 Hz rTMS treatment. The static functional network connectivity (sFNC) analysis revealed that patients at baseline had significantly decreased connectivity between the default mode network (DMN) and language network (LAN), and within the executive control network (ECN) as well as within the auditory network (AUD) compared to controls. However, the abnormal network connectivity patterns were normalized or restored after rTMS treatment in patients, instead of increased connectivity between the ECN and LAN, as well as within the AUD. Moreover, the dynamic functional network connectivity (dFNC) analysis showed that the patients at baseline spent more time in this state that was characterized by strongly negative connectivity between the ENC and AUD, as well as within the AUD relative to controls. While after rTMS treatment, the patients showed a higher occurrence rate in this state that was characterized by strongly positive connectivity among the LAN, DMN, and ENC, as well as within the ECN. In addition, the altered static and dynamic connectivity properties were associated with reduced severity of clinical symptoms. Both sFNC and dFNC analyses provided complementary information and suggested that low-frequency rTMS treatment could induce intrinsic functional network alternations and contribute to improvements in clinical symptoms in patients with AVH.
Collapse
|
12
|
Xie Y, Guan M, He Y, Wang Z, Ma Z, Fang P, Wang H. The Static and dynamic functional connectivity characteristics of the left temporoparietal junction region in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Front Psychiatry 2023; 14:1071769. [PMID: 36761865 PMCID: PMC9907463 DOI: 10.3389/fpsyt.2023.1071769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) are a core symptom of schizophrenia. Low-frequency (e.g., 1 Hz) repetitive transcranial magnetic stimulation (rTMS) targeting language processing regions (e.g., left TPJ) has been evident as a potential treatment for AVH. However, the underlying neural mechanisms of the rTMS treatment effect remain unclear. The present study aimed to investigate the effects of 1 Hz rTMS on functional connectivity (FC) of the temporoparietal junction area (TPJ) seed with the whole brain in schizophrenia patients with AVH. METHODS Using a single-blind placebo-controlled randomized clinical trial, 55 patients with AVH were randomly divided into active treatment group (n = 30) or placebo group (n = 25). The active treatment group receive 15-day 1 Hz rTMS stimulation to the left TPJ, whereas the placebo group received sham rTMS stimulation to the same site. Resting-state fMRI scans and clinical measures were acquired for all patients before and after treatment. The seed-based (left TPJ) static and DFC was used to assess the connectivity characteristics during rTMS treatment in patients with AVH. RESULTS Overall, symptom improvement following 1 Hz rTMS treatment was found in the active treatment group, whereas no change occurred in the placebo group. Moreover, decreased static FC (SFC) of the left TPJ with the right temporal lobes, as well as increased SFC with the prefrontal cortex and subcortical structure were observed in active rTMS group. Increased dynamic FC (DFC) of the left TPJ with frontoparietal areas was also found in the active rTMS group. However, seed-based SFC and DFC were reduced to a great extent in the placebo group. In addition, these changed FC (SFC) strengths in the active rTMS group were associated with reduced severity of clinical outcomes (e.g., positive symptoms). CONCLUSION The application of 1 Hz rTMS over the left TPJ may affect connectivity characteristics of the targeted region and contribute to clinical improvement, which shed light on the therapeutic effect of rTMS on schizophrenia with AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China.,Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Structural brain abnormalities in schizophrenia patients with a history and presence of auditory verbal hallucination. Transl Psychiatry 2022; 12:511. [PMID: 36543775 PMCID: PMC9772175 DOI: 10.1038/s41398-022-02282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Although many studies have demonstrated structural brain abnormalities associated with auditory verbal hallucinations (AVH) in schizophrenia, the results remain inconsistent because of the small sample sizes and the reliability of clinical interviews. We compared brain morphometries in 204 participants, including 58 schizophrenia patients with a history of AVH (AVH + ), 29 without a history of AVH (AVH-), and 117 healthy controls (HCs) based on a detailed inspection of medical records. We further divided the AVH+ group into 37 patients with and 21 patients without hallucinations at the time of the MRI scans (AVH++ and AVH+-, respectively) via clinical interviews to explore the morphological differences according to the persistence of AVH. The AVH + group had a smaller surface area in the left caudal middle frontal gyrus (F = 7.28, FDR-corrected p = 0.0008) and precentral gyrus (F = 7.68, FDR-corrected p = 0.0006) compared to the AVH- group. The AVH+ patients had a smaller surface area in the left insula (F = 7.06, FDR-corrected p = 0.001) and a smaller subcortical volume in the bilateral hippocampus (right: F = 13.34, FDR-corrected p = 0.00003; left: F = 6.80, FDR-corrected p = 0.001) compared to the HC group. Of these significantly altered areas, the AVH++ group showed significantly smaller bilateral hippocampal volumes compared to the AVH+- group, and a smaller surface area in the left precentral gyrus and caudal middle frontal gyrus compared to the AVH- group. Our findings highlighted the distinct pattern of structural alteration between the history and presence of AVH in schizophrenia, and the importance of integrating multiple criteria to elucidate the neuroanatomical mechanisms.
Collapse
|
14
|
Kronick J, Sabesan P, Burhan AM, Palaniyappan L. Assessment of treatment resistance criteria in non-invasive brain stimulation studies of schizophrenia. Schizophr Res 2022; 243:349-360. [PMID: 34183208 DOI: 10.1016/j.schres.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023]
Abstract
Novel treatment modalities, such as non-invasive brain stimulation (NIBS), typically focus on patient groups that have failed multiple treatment interventions. Despite its promise, the clinical translation of NIBS in schizophrenia has been limited. One important obstacle to implementation is the inconsistent reporting of treatment resistance in the clinical trial literature contributing to heterogeneity in reported effects. In response, we develop a numerical approach to synthesize quality of assessment of Treatment-Resistant Schizophrenia (TRS) and apply this to studies investigating therapeutic response to NIBS in patients with schizophrenia. Literature search conducted through PubMed database identified 119 studies investigating Transcranial Magnetic Stimulation and Transcranial Electrical Stimulation in treating resistant schizophrenia symptoms. A quality score out of 11 was assigned to each study based on adherence to the international consensus guidelines for TRS developed by the Treatment Response and Resistance in Psychosis (TRRIP) group. Results revealed an overall paucity of studies with thorough assessment and/or reporting of TRS phenomenon, as evidenced by a mean quality score of 3.38/11 (SD: 1.01) for trials and 5.16/11 (SD: 1.57) for case reports, though this improved minimally since the publication of consensus criteria. Most studies considered treatment-resistance as a single dimensional construct by reporting resistance of a single symptom, and failed to establish treatment adherence, resistance time course and functional impairment. We conclude that the current NIBS literature in schizophrenia do not reflect its true effects on treatment-resistance. There is an urgent need to improve assessment and reporting standards of clinical trials that target TRS.
Collapse
Affiliation(s)
- Jami Kronick
- Schulich School of Medicine & Dentistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada.
| | - Priyadharshini Sabesan
- Department of Psychiatry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.
| | - Amer M Burhan
- Department of Psychiatry, University of Toronto, 250 College Street 8th floor, Toronto, Ontario M5T 1R8, Canada; Ontario Shores Centre for Mental Health Sciences, 700 Gordon Street, Whitby, Ontario L1N 5S9, Canada; Department of Psychiatry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; Robarts Research Institute, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; Lawson Health Research Institute, 750 Base Line Road East Suite 300, London, Ontario N6C 2R5, Canada.
| |
Collapse
|
15
|
Xie Y, He Y, Guan M, Wang Z, Zhou G, Ma Z, Wang H, Yin H. Low-frequency rTMS treatment alters the topographical organization of functional brain networks in schizophrenia patients with auditory verbal hallucination. Psychiatry Res 2022; 309:114393. [PMID: 35042065 DOI: 10.1016/j.psychres.2022.114393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023]
Abstract
Auditory verbal hallucinations (AVH) are an important characteristic of schizophrenia. Repeated transcranial magnetic stimulation (rTMS) has been evidence to be effective in treating AVH. We evaluated the topological properties of resting-state functional brain networks in schizophrenia patients with AVH (n = 32) who received 1-Hz rTMS treatment and matched healthy controls (n = 33). The results showed that the psychotic symptoms and certain neurocognitive performances in patients were improved by rTMS treatment. Furthermore, the pretreatment patients showed abnormal global topological metrics compared with the controls, including lower global efficiency (Eglob, represents the relative quality of information transmission between all nodes in the network) and higher characteristic path length (Lp, characterizes the mean shortest distance between any two nodes in the network). The pretreament patients also showed decreased local topological metrics relative to the controls, including the nodal shortest path (NLp, quantifies the mean distance between the given node and the other nodes in the network) and nodal efficiency (Ne, measures the information interchange among the neighbor nodes when one node is removed), mainly located in the prefrontal cortex, occipital cortex, and subcortical regions. While the abnormal global and local topological patterns were normalized in patients after rTMS treatment. The multiple linear regression analysis indicated that the baseline topological metrics could be associated with the clinical responses after treatment in the patient group. The results suggested that the topological organization of the functional brain network was globally and regionally altered in schizophrenia patients with AVH after rTMS treatment and may be a potential therapeutic effect for AVH in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Zhujing Ma
- Department of Military Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Saris IMJ, Aghajani M, Reus LM, Visser PJ, Pijnenburg Y, van der Wee NJA, Bilderbeck AC, Raslescu A, Malik A, Mennes M, Koops S, Arrango C, Ayuso-Mateos JL, Dawson GR, Marston H, Kas MJ, Penninx BWJH. Social dysfunction is transdiagnostically associated with default mode network dysconnectivity in schizophrenia and Alzheimer's disease. World J Biol Psychiatry 2022; 23:264-277. [PMID: 34378488 DOI: 10.1080/15622975.2021.1966714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Social dysfunction is one of the most common signs of major neuropsychiatric disorders. The Default Mode Network (DMN) is crucially implicated in both psychopathology and social dysfunction, although the transdiagnostic properties of social dysfunction remains unknown. As part of the pan-European PRISM (Psychiatric Ratings using Intermediate Stratified Markers) project, we explored cross-disorder impact of social dysfunction on DMN connectivity. METHODS We studied DMN intrinsic functional connectivity in relation to social dysfunction by applying Independent Component Analysis and Dual Regression on resting-state fMRI data, among schizophrenia (SZ; N = 48), Alzheimer disease (AD; N = 47) patients and healthy controls (HC; N = 55). Social dysfunction was operationalised via the Social Functioning Scale (SFS) and De Jong-Gierveld Loneliness Scale (LON). RESULTS Both SFS and LON were independently associated with diminished DMN connectional integrity within rostromedial prefrontal DMN subterritories (pcorrected range = 0.02-0.04). The combined effect of these indicators (Mean.SFS + LON) on diminished DMN connectivity was even more pronounced (both spatially and statistically), independent of diagnostic status, and not confounded by key clinical or sociodemographic effects, comprising large sections of rostromedial and dorsomedial prefrontal cortex (pcorrected=0.01). CONCLUSIONS These findings pinpoint DMN connectional alterations as putative transdiagnostic endophenotypes for social dysfunction and could aid personalised care initiatives grounded in social behaviour.
Collapse
Affiliation(s)
- Ilja M J Saris
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, VU Medical Centre and GGZ inGeest, Amsterdam, The Netherlands
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, VU Medical Centre and GGZ inGeest, Amsterdam, The Netherlands.,Institute of Education and Child Studies, Section Forensic Family and Youth Care, Leiden University, Leiden, The Netherlands
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pieter-Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Centre, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | | | | | | | | | - Sanne Koops
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neurosciences, University of Groningen, University Medical Center of Groningen, Groningen, The Netherlands
| | - Celso Arrango
- Hospital General Universitario Gregorio Marañón, CIBERSAM, IiSGM, Universidad Complutense, School of Medicine, Madrid, Spain.,Centre of Biomedical Research in Mental Health (CIBERSAM), Madrid, Spain
| | - Jose Luis Ayuso-Mateos
- Centre of Biomedical Research in Mental Health (CIBERSAM), Madrid, Spain.,Department of Psychiatry, La Princesa University Hospital, Universidad Autonoma de Madrid, Marid, Spain
| | | | - Hugh Marston
- Translational Neuroscience, Eli Lilly and Company, Windlesham, UK.,CNS Diseases Research, Boehringer Ingelheim GmbH and Company, Biberach, Germany
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, VU Medical Centre and GGZ inGeest, Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Xie Y, Cai Y, Guan M, Wang Z, Ma Z, Fang P, Wang H. The alternations of nucleus accumbent in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Front Psychiatry 2022; 13:971105. [PMID: 36147981 PMCID: PMC9485869 DOI: 10.3389/fpsyt.2022.971105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023] Open
Abstract
Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce the severity of auditory verbal hallucinations (AVH) and induce beneficial functional and structural alternations of the brain in schizophrenia patients with AVH. The nucleus accumbens (NAcc) as an important component of the ventral striatum is implicated with the pathology in AVH. However, the induced characteristic patterns of NAcc by low-frequency rTMS in schizophrenia with AVH are seldom explored. We investigated the functional and structural characteristic patterns of NAcc by using seed-based functional connectivity (FC) analysis and gray matter volume (GMV) measurement in schizophrenia patients with AVH during 1 Hz rTMS treatment. Although low-frequency rTMS treatment did not affect the volumetric changes of NAcc, the abnormal FC patterns of NAcc, including increased FC of NAcc with the temporal lobes and decreased FC of NAcc with the frontal cortices in the pretreatment patients compared to healthy controls, were normalized or reversed after treatment. These FC changes were associated with improvements in clinical symptoms and neurocognitive functions. Our findings may extend our understanding of the NAcc in the pathology of schizophrenia with AVH and might be a biomarker of clinical effect for low-frequency rTMS treatment in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China.,Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yun Cai
- Department of Neurodevelopment Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Clinical Psychology, Air Force Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
18
|
Marzouk T, Winkelbeiner S, Azizi H, Malhotra AK, Homan P. Transcranial Magnetic Stimulation for Positive Symptoms in Schizophrenia: A Systematic Review. Neuropsychobiology 2021; 79:384-396. [PMID: 31505508 DOI: 10.1159/000502148] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/16/2019] [Indexed: 11/19/2022]
Abstract
Transcranial magnetic stimulation (TMS) has been proposed as a potential treatment add-on for positive symptoms in schizophrenia. To summarize the current evidence for its efficacy, we reviewed clinical trials from the last 20 years that investigated TMS for positive symptoms. We performed a search on the PubMed database for clinical trials that used TMS for the treatment of positive symptoms published in peer-reviewed journals. We excluded reviews, case reports, and opinion papers. Of the 30 studies included, the majority (n = 25) investigated auditory verbal hallucinations. Twelve studies found evidence for a positive treatment effect of TMS on positive symptoms, while 18 did not find enough evidence to conclude that TMS is effective for positive symptoms. However, the small sample size of the majority of studies is a limiting factor for the reliability of previous findings. In conclusion, evidence for an effect of TMS on positive symptoms was mixed. Since most of the studies were performed in patients with auditory verbal hallucinations, further research of TMS for other positive symptoms including thought disorder and delusions is warranted.
Collapse
Affiliation(s)
- Taylor Marzouk
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, New York, USA.,Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York, USA
| | - Stephanie Winkelbeiner
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York, USA, .,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, New York, USA, .,Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York, USA, .,Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland,
| | - Heela Azizi
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, New York, USA.,Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York, USA
| | - Anil K Malhotra
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, New York, USA.,Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York, USA
| | - Philipp Homan
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, New York, USA.,Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York, USA
| |
Collapse
|
19
|
Xie Y, Guan M, Wang Z, Ma Z, Wang H, Fang P, Yin H. rTMS Induces Brain Functional and Structural Alternations in Schizophrenia Patient With Auditory Verbal Hallucination. Front Neurosci 2021; 15:722894. [PMID: 34539338 PMCID: PMC8441019 DOI: 10.3389/fnins.2021.722894] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Low-frequency transcranial magnetic stimulation (rTMS) over the left temporoparietal cortex reduces the auditory verbal hallucination (AVH) in schizophrenia. However, the underlying neural basis of the rTMS treatment effect for schizophrenia remains not well understood. This study investigates the rTMS induced brain functional and structural alternations and their associations with clinical as well as neurocognitive profiles in schizophrenia patients with AVH. METHODS Thirty schizophrenia patients with AVH and thirty-three matched healthy controls were enrolled. The patients were administered by 15 days of 1 Hz rTMS delivering to the left temporoparietal junction (TPJ) area. Clinical symptoms and neurocognitive measurements were assessed at pre- and post-rTMS treatment. The functional (amplitude of low-frequency fluctuation, ALFF) and structural (gray matter volume, GMV) alternations were compared, and they were then used to related to the clinical and neurocognitive measurements after rTMS treatment. RESULTS The results showed that the positive symptoms, including AVH, were relieved, and certain neurocognitive measurements, including visual learning (VisLearn) and verbal learning (VerbLearn), were improved after the rTMS treatment in the patient group. Furthermore, the rTMS treatment induced brain functional and structural alternations in patients, such as enhanced ALFF in the left superior frontal gyrus and larger GMV in the right inferior temporal cortex. The baseline ALFF and GMV values in certain brain areas (e.g., the inferior parietal lobule and superior temporal gyrus) could be associated with the clinical symptoms (e.g., positive symptoms) and neurocognitive performances (e.g., VerbLearn and VisLearn) after rTMS treatment in patients. CONCLUSION The low-frequency rTMS over the left TPJ area is an efficacious treatment for schizophrenia patients with AVH and could selectively modulate the neural basis underlying psychiatric symptoms and neurocognitive domains in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Muzhen Guan
- Department of Mental Health, Xi’an Medical University, Xi’an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhujing Ma
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Fang
- Department of Military Medical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi’an, China,*Correspondence: Peng Fang,
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China,Hong Yin,
| |
Collapse
|
20
|
Koike S, Uematsu A, Sasabayashi D, Maikusa N, Takahashi T, Ohi K, Nakajima S, Noda Y, Hirano Y. Recent Advances and Future Directions in Brain MR Imaging Studies in Schizophrenia: Toward Elucidating Brain Pathology and Developing Clinical Tools. Magn Reson Med Sci 2021; 21:539-552. [PMID: 34408115 DOI: 10.2463/mrms.rev.2021-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a common severe psychiatric disorder that affects approximately 1% of general population through the life course. Historically, in Kraepelin's time, schizophrenia was a disease unit conceptualized as dementia praecox; however, since then, the disease concept has changed. Recent MRI studies had shown that the neuropathology of the brain in this disorder was characterized by mild progression before and after the onset of the disease, and that the brain alterations were relatively smaller than assumed. Although genetic factors contribute to the brain alterations in schizophrenia, which are thought to be trait differences, other changes include factors that are common in psychiatric diseases. Furthermore, it has been shown that the brain differences specific to schizophrenia were relatively small compared to other changes, such as those caused by brain development, aging, and gender. In addition, compared to the disease and participant factors, machine and imaging protocol differences could affect MRI signals, which should be addressed in multi-site studies. Recent advances in MRI modalities, such as multi-shell diffusion-weighted imaging, magnetic resonance spectroscopy, and multimodal brain imaging analysis, may be candidates to sharpen the characterization of schizophrenia-specific factors and provide new insights. The Brain/MINDS Beyond Human Brain MRI (BMB-HBM) project has been launched considering the differences and noises irrespective of the disease pathologies and includes the future perspectives of MRI studies for various psychiatric and neurological disorders. The sites use restricted MRI machines and harmonized multi-modal protocols, standardized image preprocessing, and traveling subject harmonization. Data sharing to the public will be planned in FY 2024. In the future, we believe that combining a high-quality human MRI dataset with genetic data, randomized controlled trials, and MRI for non-human primates and animal models will enable us to understand schizophrenia, elucidate its neural bases and therapeutic targets, and provide tools for clinical application at bedside.
Collapse
Affiliation(s)
- Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM).,University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB).,The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), The University of Tokyo
| | - Akiko Uematsu
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences.,Research Center for Idling Brain Science (RCIBS), University of Toyama
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences.,Research Center for Idling Brain Science (RCIBS), University of Toyama
| | - Kazutaka Ohi
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine
| | | | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University.,Institute of Industrial Science, The University of Tokyo
| |
Collapse
|
21
|
Baliga SP, Mehta UM. A Review of Studies Leveraging Multimodal TMS-fMRI Applications in the Pathophysiology and Treatment of Schizophrenia. Front Hum Neurosci 2021; 15:662976. [PMID: 34421559 PMCID: PMC8372850 DOI: 10.3389/fnhum.2021.662976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The current review provides an overview of the existing literature on multimodal transcranial magnetic stimulation, and functional magnetic resonance imaging (TMS/fMRI) studies in individuals with schizophrenia and discusses potential future avenues related to the same. Multimodal studies investigating pathophysiology have explored the role of abnormal thalamic reactivity and have provided further evidence supporting the hypothesis of schizophrenia as a disorder of aberrant connectivity and cortical plasticity. Among studies examining treatment, low-frequency rTMS for the management of persistent auditory verbal hallucinations (AVH) was the most studied. While multimodal TMS/fMRI studies have provided evidence of involvement of local speech-related and distal networks on stimulation of the left temporoparietal cortex, current evidence does not suggest the superiority of fMRI based neuronavigation over conventional methods or of active rTMS over sham for treatment of AVH. Apart from these, preliminary findings suggest a role of rTMS in treating deficits in neurocognition, social cognition, and self-agency. However, most of these studies have only examined medication-resistant symptoms and have methodological concerns arising from small sample sizes and short treatment protocols. That being said, combining TMS with fMRI appears to be a promising approach toward elucidating the pathophysiology of schizophrenia and could also open up a possibility toward developing personalized treatment for its persistent and debilitating symptoms.
Collapse
Affiliation(s)
- Sachin Pradeep Baliga
- Department of Psychiatry, TN Medical College and BYL Nair Charitable Hospital, Mumbai, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
22
|
Brandt SJ, Oral HY, Arellano-Bravo C, Plawecki MH, Hummer TA, Francis MM. Repetitive Transcranial Magnetic Stimulation as a Therapeutic and Probe in Schizophrenia: Examining the Role of Neuroimaging and Future Directions. Neurotherapeutics 2021; 18:827-844. [PMID: 33844154 PMCID: PMC8423934 DOI: 10.1007/s13311-021-01046-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia is a complex condition associated with perceptual disturbances, decreased motivation and affect, and disrupted cognition. Individuals living with schizophrenia may experience myriad poor outcomes, including impairment in independent living and function as well as decreased life expectancy. Though existing treatments may offer benefit, many individuals still experience treatment resistant and disabling symptoms. In light of the negative outcomes associated with schizophrenia and the limitations in currently available treatments, there is a significant need for novel therapeutic interventions. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that can modulate the activity of discrete cortical regions, allowing direct manipulation of local brain activation and indirect manipulation of the target's associated neural networks. rTMS has been studied in schizophrenia for the treatment of auditory hallucinations, negative symptoms, and cognitive deficits, with mixed results. The field's inability to arrive at a consensus on the use rTMS in schizophrenia has stemmed from a variety of issues, perhaps most notably the significant heterogeneity amongst existing trials. In addition, it is likely that factors specific to schizophrenia, rather than the rTMS itself, have presented barriers to the interpretation of existing results. However, advances in approaches to rTMS as a biologic probe and therapeutic, many of which include the integration of neuroimaging with rTMS, offer hope that this technology may still play a role in improving the understanding and treatment of schizophrenia.
Collapse
Affiliation(s)
- Stephen J Brandt
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Halimah Y Oral
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Carla Arellano-Bravo
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Martin H Plawecki
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Tom A Hummer
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Michael M Francis
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA.
| |
Collapse
|
23
|
Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC. Effects of rTMS on the brain: is there value in variability? Cortex 2021; 139:43-59. [PMID: 33827037 DOI: 10.1016/j.cortex.2021.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
The ability of repetitive transcranial magnetic stimulation (rTMS) to non-invasively induce neuroplasticity in the human cortex has opened exciting possibilities for its application in both basic and clinical research. Changes in the amplitude of motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation has so far provided a convenient model for exploring the neurophysiology of rTMS effects on the brain, influencing the ways in which these stimulation protocols have been applied therapeutically. However, a growing number of studies have reported large inter-individual variability in the mean MEP response to rTMS, raising legitimate questions about the usefulness of this model for guiding therapy. Although the increasing application of different neuroimaging approaches has made it possible to probe rTMS-induced neuroplasticity outside the motor cortex to measure changes in neural activity that impact other aspects of human behaviour, the high variability of rTMS effects on these measurements remains an important issue for the field to address. In this review, we seek to move away from the conventional facilitation/inhibition dichotomy that permeates much of the rTMS literature, presenting a non-standard approach for measuring rTMS-induced neuroplasticity. We consider the evidence that rTMS is able to modulate an individual's moment-to-moment variability of neural activity, and whether this could have implications for guiding the therapeutic application of rTMS.
Collapse
Affiliation(s)
- Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael C Ridding
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| |
Collapse
|
24
|
Zhuo C, Fang T, Chen C, Chen M, Sun Y, Ma X, Li R, Tian H, Ping J. Brain imaging features in schizophrenia with co-occurring auditory verbal hallucinations and depressive symptoms-Implication for novel therapeutic strategies to alleviate the reciprocal deterioration. Brain Behav 2021; 11:e01991. [PMID: 33305913 PMCID: PMC7882177 DOI: 10.1002/brb3.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Auditory verbal hallucinations (AVHs) and depressive symptoms are highly prevalent in schizophrenia, and recent progress has been made in understanding the reciprocal deterioration of both symptoms through structural and functional brain imaging studies. To date, there is limited literature on this topic. In this review, we synthesized the recent literature on the neuroimaging features of schizophrenia patients with concurrent AVHs and depressive symptoms. METHODS A literature search was conducted with the major databases using the keywords, mainly including schizophrenia, AVHs, depression, neuropsychiatric disorders, brain imaging, and magnetic resonance imaging. RESULTS The existing studies have shown that AVHs and depressive symptoms reciprocally deteriorate in patients with schizophrenia, which has challenged the conventional treatment of the disease. Interestingly, repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) therapies have emerged as two efficacious brain stimulation treatments that can normalize the brain regions associated with the symptoms, as shown through functional and structural brain imaging studies. In light of these important findings, there is an urgent need to conduct in-depth neuronal mechanistic studies to identify targets for stimulation therapy. CONCLUSIONS These new findings may elucidate the pathological mechanisms underlying schizophrenia with concurrent AVHs and depressive symptoms. Furthermore, this review has important clinical implications for developing novel therapeutic strategies to alleviate the reciprocal deterioration AVHs and depressive symptoms of schizophrenia patients.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab)Tianjin Fourth Center HospitalTianjin Medical Affiliated Tianjin Fourth Central HospitalNankai University Affiliated Tianjin Fourth Center HospitalTianjinChina
- Department of PsychiatryWenzhou Seventh People’s HospitalWenzhouChina
- Psychiatric‐Neuroimaging‐Genetics‐Comorbidity (PNGC) LaboratoryTianjin Mental Health CenterTianjin Anding HospitalNankai University Affiliated Anding HospitalTianjinChina
| | - Tao Fang
- Key Laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab)Tianjin Fourth Center HospitalTianjin Medical Affiliated Tianjin Fourth Central HospitalNankai University Affiliated Tianjin Fourth Center HospitalTianjinChina
| | - Ce Chen
- Department of PsychiatryWenzhou Seventh People’s HospitalWenzhouChina
| | - Min Chen
- Department of PsychiatrySchool of Mental HealthyJining Medical UniversityJiningChina
| | - Yun Sun
- Psychiatric‐Neuroimaging‐Genetics‐Comorbidity (PNGC) LaboratoryTianjin Mental Health CenterTianjin Anding HospitalNankai University Affiliated Anding HospitalTianjinChina
| | - Xiaoyan Ma
- Psychiatric‐Neuroimaging‐Genetics‐Comorbidity (PNGC) LaboratoryTianjin Mental Health CenterTianjin Anding HospitalNankai University Affiliated Anding HospitalTianjinChina
| | - Ranli Li
- Psychiatric‐Neuroimaging‐Genetics‐Comorbidity (PNGC) LaboratoryTianjin Mental Health CenterTianjin Anding HospitalNankai University Affiliated Anding HospitalTianjinChina
| | - Hongjun Tian
- Key Laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab)Tianjin Fourth Center HospitalTianjin Medical Affiliated Tianjin Fourth Central HospitalNankai University Affiliated Tianjin Fourth Center HospitalTianjinChina
| | - Jing Ping
- Department of PsychiatryWenzhou Seventh People’s HospitalWenzhouChina
| |
Collapse
|
25
|
Colella M, Paffi A, De Santis V, Apollonio F, Liberti M. Effect of skin conductivity on the electric field induced by transcranial stimulation techniques in different head models. Phys Med Biol 2021; 66:035010. [PMID: 33496268 DOI: 10.1088/1361-6560/abcde7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study aims at quantifying the effect that using different skin conductivity values has on the estimation of the electric (E)-field distribution induced by transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in the brain of two anatomical models. The induced E-field was calculated with numerical simulations inside MIDA and Duke models, assigning to the skin a conductivity value estimated from a multi-layered skin model and three values taken from literature. The effect of skin conductivity variations on the local E-field induced by tDCS in the brain was up to 70%. In TMS, minor local differences, in the order of 20%, were obtained in regions of interest for the onset of possible side effects. Results suggested that an accurate model of the skin is necessary in all numerical studies that aim at precisely estimating the E-field induced during TMS and tDCS applications. This also highlights the importance of further experimental studies on human skin characterization, especially at low frequencies.
Collapse
Affiliation(s)
- Micol Colella
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| | - Valerio De Santis
- Department of Industrial and Information Engineering and Economics (DIIEE), University of L'Aquila, L'Aquila, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| |
Collapse
|
26
|
van der Stouwe ECD, Pijnenborg GHM, Opmeer EM, de Vries B, Marsman JBC, Aleman A, van Busschbach JT. Neural changes following a body-oriented resilience therapy with elements of kickboxing for individuals with a psychotic disorder: a randomized controlled trial. Eur Arch Psychiatry Clin Neurosci 2021; 271:355-366. [PMID: 31980899 PMCID: PMC7960594 DOI: 10.1007/s00406-020-01097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/13/2020] [Indexed: 11/27/2022]
Abstract
Individuals with a psychotic disorder are at an increased risk of becoming the victim of a crime. A body-oriented resilience therapy (BEATVIC) aimed at preventing victimization by addressing putatively underlying factors was developed. One of these factors is social cognition, particularly facial affect processing. The current study investigated neural effects of BEATVIC on facial affect processing using two face processing tasks. Participants were randomized to either BEATVIC or a 'Befriending' control group. Twenty-seven patients completed an Emotional Faces task and the Wall of Faces task during fMRI, pre- and post-intervention. General linear model analyses yielded no differences between groups over time. Independent component analyses revealed increased activation of the salience network to angry and fearful faces in BEATVIC compared to Befriending. Increased activation of the salience network may suggest an increased alertness for potentially dangerous faces.
Collapse
Affiliation(s)
- Elisabeth C D van der Stouwe
- University of Groningen, University Medical Center Groningen, University Center of Psychiatry, Rob Giel Onderzoekcentrum, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Department of Neuroscience, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 2, 9713 AW, Groningen, The Netherlands.
| | - Gerdina H M Pijnenborg
- Department of Clinical Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
- Department of Psychotic Disorders, GGZ-Drenthe, Dennenweg 9, 9404 LA, Assen, The Netherlands
| | - Esther M Opmeer
- Department of Neuroscience, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 2, 9713 AW, Groningen, The Netherlands
- Department of Health and Social Work, Windesheim University of Applied Sciences, Campus 2-6, 8017 CA, Zwolle, The Netherlands
| | - Bertine de Vries
- Department of Clinical Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - Jan-Bernard C Marsman
- Department of Neuroscience, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 2, 9713 AW, Groningen, The Netherlands
| | - André Aleman
- Department of Neuroscience, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 2, 9713 AW, Groningen, The Netherlands
- Department of Clinical Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - Jooske T van Busschbach
- University of Groningen, University Medical Center Groningen, University Center of Psychiatry, Rob Giel Onderzoekcentrum, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Movement and Education, Windesheim University of Applied Sciences, Campus 2-6, 8017 CA, Zwolle, The Netherlands
| |
Collapse
|
27
|
Zhong S, Hu Y, Fu Y, Cao L, Zhang B. Functional MRI in the effect of transcranial magnetic stimulation therapy for patients with schizophrenia: a meta-analysis protocol. BMJ Open 2020; 10:e038557. [PMID: 33268405 PMCID: PMC7713205 DOI: 10.1136/bmjopen-2020-038557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Schizophrenia is a psychiatric illness associated with brain function alterations and varying degree of treatment resistance, often leading to severe social malfunctioning. In recent decades, numerous studies have been investigating the therapeutic potential of transcranial magnetic stimulation (TMS) as a non-invasive therapy for schizophrenia. However, its clinical efficacy remains controversial, as a number of clinical trials indicated moderate therapeutic effect while others failed to reproduce the positive result. Moreover, the neurobiological mechanism of action remains unclear, possibly constricting the application of TMS in clinical practice. The present protocol of meta-analysis aims to investigate the TMS-related functional neuroimaging (ie, functional MRI) features and alterations in subjects with schizophrenia, and to discuss the potential of functional MRI in TMS researches. METHODS AND ANALYSIS The study selection process will follow the Preferred Reporting Items for Meta-Analyses guideline and quality assessment will be conducted with a customised checklist. We plan to search in the following databases: PubMed, Embase, OVID, China National Knowledge Infrastructure and Wanfang Data, from their respective dates of inception to 1 May 2020, with language restricted to English and Chinese. Studies focusing on the brain functional alterations in patients with schizophrenia treated by TMS will be retrieved. ETHICS AND DISSEMINATION This work does not require ethics approval as it will be based on published studies. This systematic review will be publicly disseminated in peer-reviewed journals. PROSPERO REGISTRATION NUMBER CRD42020166288.
Collapse
Affiliation(s)
- Siqian Zhong
- PsyNI Lab, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiru Hu
- PsyNI Lab, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Fu
- PsyNI Lab, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liping Cao
- PsyNI Lab, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- PsyNI Lab, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Zhuo C, Zhou C, Lin X, Tian H, Wang L, Chen C, Ji F, Xu Y, Jian D. Common and distinct global functional connectivity density alterations in drug-naïve patients with first-episode major depressive disorder with and without auditory verbal hallucination. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109738. [PMID: 31442554 DOI: 10.1016/j.pnpbp.2019.109738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/12/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023]
Abstract
Auditory verbal hallucination (AVH), defined as the auditory perception of speech in the absence of a real external stimulus, occurs in individuals with and without mental illness. The distribution of functional abnormalities in patients with AVH suggests aberrant brain network connectivity. However, no study has measured the global functional connectivity density (gFCD) associated with AVH in patients with major depressive disorder (MDD); gFCD is used widely to examine the density distribution of whole-brain resting-state functional connectivity and can serve as an index reflecting brain metabolism disturbance. In this study, we involved drug-naïve patients with first-episode MDD with (n = 35) and without (n = 40) AVH and healthy controls (n = 50).Whole-brain resting-state functional magnetic resonance imaging data were acquired and gFCD was calculated and compared among groups. We found the following gFCD alterations that were shared by both MDD groups: (1) decreased gFCD in the bilateral postcentral gyrus, precentral gyrus, insular cortices and occipital lobe; and (2) increased gFCD in the left middle cingulate cortex. More importantly, we found AVH-specific gFCD changes in patients with MDD: increased gFCD in the left Wernicke's brain regions and bilateral hippocampus and thalamus, and decreased gFCD in the bilateral lateral prefrontal lobule. These findings reflect the disturbance of brain information communication and metabolism in patients with MDD and AVH, related mainly to the language and memory processing circuits, and to some extent provide further support for the "VOICE" model of AVH.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, School of Mental Health, Jining University, Jining, Shandong Province 272191, China; Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China; Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory, Tianjin Mental Health Center, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin 300222, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Chunhua Zhou
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China
| | - Hongjun Tian
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory, Tianjin Mental Health Center, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin 300222, China
| | - Lina Wang
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory, Tianjin Mental Health Center, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin 300222, China
| | - Ce Chen
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China
| | - Feng Ji
- Department of Psychiatry, School of Mental Health, Jining University, Jining, Shandong Province 272191, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Deguo Jian
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China
| |
Collapse
|
29
|
Abstract
One of the fundamental questions in neuroscience is how brain activity relates to conscious experience. Even though self-consciousness is considered an emergent property of the brain network, a quantum physics-based theory assigns a momentum of consciousness to the single neuron level. In this work, we present a brain self theory from an evolutionary biological perspective by analogy with the immune self. In this scheme, perinatal reactivity to self inputs would guide the selection of neocortical neurons within the subplate, similarly to T lymphocytes in the thymus. Such self-driven neuronal selection would enable effective discrimination of external inputs and avoid harmful "autoreactive" responses. Multiple experimental and clinical evidences for this model are provided. Based on this self tenet, we outline the postulates of the so-called autophrenic diseases, to then make the case for schizophrenia, an archetypic disease with rupture of the self. Implications of this model are discussed, along with potential experimental verification.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, ENT and Ophthalmology, Complutense University School of Medicine, Madrid, Spain
| | - Florence Faure
- INSERM U932, PSL Research University, Institut Curie, Paris, France
| |
Collapse
|
30
|
Zöllner R, Hübener AF, Dannlowski U, Kircher T, Sommer J, Zavorotnyy M. Theta-Burst Stimulation for Auditory-Verbal Hallucination in Very-Late-Onset Schizophrenia-Like Psychosis-A Functional Magnetic Resonance Imaging Case Study. Front Psychiatry 2020; 11:294. [PMID: 32425822 PMCID: PMC7212466 DOI: 10.3389/fpsyt.2020.00294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/25/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Treating very-late-onset (>60 years) schizophrenia-like psychosis (VLOSLP) is challenging. Age-related factors in elderly individuals (e.g., metabolism, medication side effects, drug-interaction, somatic morbidity) may adversely affect treatment. Novel therapeutic approaches are needed to ensure the favorable therapeutic outcome in geriatric patients. Previously, theta-burst stimulation (TBS), a novel form of repetitive transcranial magnetic stimulation, was reported being beneficial in the treatment for auditory-verbal hallucination (AVH) in young and middle-aged schizophrenia (SZ) patients. CASE PRESENTATION Here we present a case of a male patient aged 73. His first psychotic episode manifested with paranoid delusions, auditory-verbal and tactile hallucinations at the age of 66, and first remitted following a second-generation antipsychotics (SGA). Years later, after a relapse the AVH did not respond to previously effective olanzapine, whereas its augmentation with an inhibitory TBS over the left temporal lobe led to a stable remission. During his second relapse, TBS was again capable of facilitating therapeutic action of SGA in the same patient. Extending to our clinical observation, a series of functional MRI scans employing a tonal activation paradigm depicted altered auditory processing during AVH as well as brain activation change during remission. CONCLUSIONS The current case might indicate to favorable effects of combining conventional medicament therapy and non-invasive brain stimulation techniques for elderly patients. Also, we speculate that despite obviously distinct etiologies, the present functional imaging and clinical observation may also demonstrate a possible common pathophysiological pathway underlying AVH in VLOSLP and SZ.
Collapse
Affiliation(s)
- Rebecca Zöllner
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior - MCMBB, University of Marburg, Marburg, Germany.,Health Protection Authority, Frankfurt am Main, Germany
| | - Anne-Friederike Hübener
- Department of Social Psychiatry, University of Applied Science Niederrhein, Krefeld, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Jens Sommer
- Marburg Center for Mind, Brain and Behavior - MCMBB, University of Marburg, Marburg, Germany.,Core-Unit Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Maxim Zavorotnyy
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior - MCMBB, University of Marburg, Marburg, Germany.,Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Academic Hospital of the University of Zurich, Brugg, Switzerland
| |
Collapse
|
31
|
Huang J, Zhuo C, Xu Y, Lin X. Auditory verbal hallucination and the auditory network: From molecules to connectivity. Neuroscience 2019; 410:59-67. [PMID: 31082536 DOI: 10.1016/j.neuroscience.2019.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
Auditory verbal hallucinations (AVHs) frequently occur across multiple psychiatric diseases especially in schizophrenia (SCZ) patients. Functional imaging studies have revealed the hyperactivity of the auditory cortex and disrupted auditory-verbal network activity underlying AVH etiology. This review will firstly summarize major findings from both human AVH patients and animal models, with focuses on the auditory cortex and associated cortical/sub-cortical areas. Besides mesoscale connectivity or activity data, structure and functions at synaptic level will be discussed, in conjunction with molecular mechanisms. We have summarized major findings for the pathogenesis of AVH in SCZ patients, with focuses in the auditory cortex and prefrontal cortex (PFC). Those discoveries provide explanations for AVH from different perspectives including inter-regional connectivity, local activity in specific areas, structure and functions of synapse, and potentially molecular targets. Due to the uniqueness of AVH in humans, full replica using animals seems impossible. However, we can still extract useful information from animal SCZ models based on the disruption of auditory pathway during AVH episodes. Therefore, we will further interpolate the synaptic structures and molecular targets, whose dysregulation in SCZ models may be highly related with AVH episodes. As the last part, implications for future development of treatment strategies will be discussed.
Collapse
Affiliation(s)
- Jianjie Huang
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China; Department of Psychiatry, Institute of Mental Health, Jining University, Jining Shandong Province, 272191, China; Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin, 300222, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Lin
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
32
|
Jang KI, Shim M, Lee S, Hwang HJ, Chae JH. Changes in Global and Nodal Networks in Patients With Unipolar Depression After 3-Week Repeated Transcranial Magnetic Stimulation Treatment. Front Psychiatry 2019; 10:686. [PMID: 31649561 PMCID: PMC6794380 DOI: 10.3389/fpsyt.2019.00686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: Repeated transcranial magnetic stimulation (rTMS) therapy has been applied in depressive disorders, but its neurobiological effect has not been well understood. Changes in cortical source network after treatment need to be confirmed. The present study investigated the effect of 3-week rTMS therapy on the symptom severity and cortical source network in patients with unipolar depression. Methods: Thirty-five patients with unipolar major depressive disorder participated in the study. High-frequency (10 Hz) rTMS was applied at the left dorsolateral prefrontal cortex during 3 weeks (five consecutive weekdays every week). Clinical symptoms were examined using the Hamilton Rating Scale for Depression and Anxiety. The resting state electroencephalography was recorded with 62 scalp channels before and after rTMS treatment. Results: Clinical symptoms significantly improved after rTMS treatment in both the active (p = 0.001) and sham groups (p = 0.002). However, an increased cortical source network in global and nodal levels was observed only in the active group after a 3-week treatment. Conclusions: The present study indicates that rTMS treatment leads to improved symptoms in patients with unipolar depression. Furthermore, treatment outcome of real effect was assured in changes of cortical source network.
Collapse
Affiliation(s)
- Kuk-In Jang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Emotion Laboratory, Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Miseon Shim
- Department of Psychiatry, University of Missouri-Kansas City, Center for Behavioral Medicine, Kansas, MO, United States.,Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Sangmin Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Emotion Laboratory, Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Han-Jeong Hwang
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Jeong-Ho Chae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Emotion Laboratory, Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|