1
|
Song Z, Sun Y, Liu P, Ruan H, He Y, Yin J, Xiao C, Ma J, Yu Y, Wang S, Gong Y, Lin ZW, Zhang Z, Chang C, Yang M. Terahertz Wave Alleviates Comorbidity Anxiety in Pain by Reducing the Binding Capacity of Nanostructured Glutamate Molecules to GluA2. RESEARCH (WASHINGTON, D.C.) 2024; 7:0535. [PMID: 39664293 PMCID: PMC11633831 DOI: 10.34133/research.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024]
Abstract
Comorbid anxiety in chronic pain is clinically common, with a comorbidity rate of over 50%. The main treatments are based on pharmacological, interventional, and implantable approaches, which have limited efficacy and carry a risk of side effects. Here, we report a terahertz (THz, 1012 Hz) wave stimulation (THS) technique, which exerts nonthermal, long-term modulatory effects on neuronal activity by reducing the binding between nano-sized glutamate molecules and GluA2, leading to the relief of pain and comorbid anxiety-like behaviors in mice. In mice with co-occurring anxiety and chronic pain induced by complete Freund's adjuvant (CFA) injection, hyperactivity was observed in glutamatergic neurons in the anterior cingulate cortex (ACCGlu). Using whole-cell recording in ACC slices, we demonstrated that THS (34 THz) effectively inhibited the excitability of ACCGlu. Moreover, molecular dynamics simulations showed that THS reduced the number of hydrogen bonds bound between glutamate molecules and GluA2. Furthermore, THS target to the ACC in CFA-treatment mice suppressed ACCGlu hyperactivity and, as a result, alleviated pain and anxiety-like behaviors. Consistently, inhibition of ACCGlu hyperactivity by chemogenetics mimics THS-induced antinociceptive and antianxiety behavior. Together, our study provides evidence for THS as an intervention technique for modulating neuronal activity and a viable clinical treatment strategy for pain and comorbid anxiety.
Collapse
Affiliation(s)
- Zihua Song
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Yuankun Sun
- School of Electronic Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Pan Liu
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Hao Ruan
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Yuanyuan He
- School of Safety Engineering,
North China Institute of Science and Technology, Hebei 065201, China
| | - Junkai Yin
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Chun Xiao
- School of Life Sciences,
Tsinghua University, Beijing 100081, China
| | - Jing Ma
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Yun Yu
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Life Science and Technology and Frontier Institute of Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China
| | - Shaomeng Wang
- School of Electronic Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yubin Gong
- School of Electronic Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Z. W. Lin
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Zhi Zhang
- Division of Life Sciences and Medicine, Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale,
University of Science and Technology of China, Hefei 230026, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics,
Peking University, Beijing 100081, China
| | - Maojun Yang
- School of Life Sciences,
Tsinghua University, Beijing 100081, China
| |
Collapse
|
2
|
Zhang P, Zhang J, Wang M, Feng S, Yuan Y, Ding L. Research hotspots and trends of neuroimaging in social anxiety: a CiteSpace bibliometric analysis based on Web of Science and Scopus database. Front Behav Neurosci 2024; 18:1448412. [PMID: 39713279 PMCID: PMC11659959 DOI: 10.3389/fnbeh.2024.1448412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Background This study focused on the research hotspots and development trends of the neuroimaging of social anxiety (SA) in the past 25 years. Methods We selected 1,305 studies on SA neuroimaging from the Web of Science and Scopus from January 1998 to December 2023. CiteSpace was used to analyze the number of published articles visually, cited references, cooperation among authors and institutions, co-occurrence of keywords, clustering of keywords, burst of keywords, and time zone of co-occurring keywords. Results A total of 1,305 articles were included, and the annual number of articles published over nearly 25 years showed the overall trend is on the rise. The analysis of author and institutional collaboration reveals that most authors collaborate closely. Among them, the team led by Pine, Daniel S published 59 articles, making it the most central team. Harvard University is identified as the most central institution in this network. The research hotspots can be categorized into four areas: research techniques, cognitive processing research areas, core brain regions and brain networks, and the neural predictors of treatment outcomes in SA. The most recent burst keywords are "cognitive behavioral therapy," "systematic review," "machine learning," "major clinical study," "transcranial direct current stimulation," "depression," and "outcome assessment," which provided clues on research frontiers. Based on the burst map and keyword time zone map, it appears that exploring the activity of brain regions involved in cognitive processing, such as face processing and attentional bias, as well as the comorbidity of SA and depression, through brain imaging technology, using brain signals as predictors of treatment outcomes in SA. Conclusion This study conducted a comprehensive, objective, and visual analysis of publications, and revealed hot topics and trends concerning the study of the brain mechanism of SA from 1998 to 2023. This work might assist researchers in identifying new insights on potential collaborators and institutions, hot topics, and research directions.
Collapse
Affiliation(s)
- Peng Zhang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Jianing Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Mingliang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Shuyuan Feng
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yuqing Yuan
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Lin Ding
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| |
Collapse
|
3
|
Hilbert K, Böhnlein J, Meinke C, Chavanne AV, Langhammer T, Stumpe L, Winter N, Leenings R, Adolph D, Arolt V, Bischoff S, Cwik JC, Deckert J, Domschke K, Fydrich T, Gathmann B, Hamm AO, Heinig I, Herrmann MJ, Hollandt M, Hoyer J, Junghöfer M, Kircher T, Koelkebeck K, Lotze M, Margraf J, Mumm JLM, Neudeck P, Pauli P, Pittig A, Plag J, Richter J, Ridderbusch IC, Rief W, Schneider S, Schwarzmeier H, Seeger FR, Siminski N, Straube B, Straube T, Ströhle A, Wittchen HU, Wroblewski A, Yang Y, Roesmann K, Leehr EJ, Dannlowski U, Lueken U. Lack of evidence for predictive utility from resting state fMRI data for individual exposure-based cognitive behavioral therapy outcomes: A machine learning study in two large multi-site samples in anxiety disorders. Neuroimage 2024; 295:120639. [PMID: 38796977 DOI: 10.1016/j.neuroimage.2024.120639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders and non-responders of a given treatment) when using clinical routine data such as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging (rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and independently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions of individual outcomes never significantly differed from chance level, even when conducting a range of exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods to process resting state data for prediction input as well as in the used parameters of the machine learning pipelines, corroborating the external validity of the results. These similar findings in two independent studies, analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuroimaging data from small samples and emphasizes that some of the prediction accuracies from previous studies may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in patients with anxiety disorders remains yet to be delivered.
Collapse
Affiliation(s)
- Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Psychology, HMU Health and Medical University Erfurt, Erfurt, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Germany.
| | - Charlotte Meinke
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alice V Chavanne
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Université Paris-Saclay, INSERM U1299 "Trajectoires développementales et psychiatrie", CNRS UMR 9010 Centre Borelli, Ecole Normale Supérieure Paris-Saclay, France
| | - Till Langhammer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lara Stumpe
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Nils Winter
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Ramona Leenings
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Dirk Adolph
- Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Sophie Bischoff
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan C Cwik
- Department of Clinical Psychology and Psychotherapy, Faculty of Human Sciences, Universität zu Köln, Germany
| | - Jürgen Deckert
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Fydrich
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Germany
| | - Alfons O Hamm
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
| | - Ingmar Heinig
- Institute of Clinical Psychology & Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Martin J Herrmann
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Maike Hollandt
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
| | - Jürgen Hoyer
- Institute of Clinical Psychology & Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katja Koelkebeck
- LVR-University-Hospital Essen, Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| | - Martin Lotze
- Functional Imaging Unit. Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Jennifer L M Mumm
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Neudeck
- Protect-AD Study Site Cologne, Cologne, Germany; Institut für Klinische Psychologie und Psychotherapie, TU Chemnitz, Germany
| | - Paul Pauli
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Andre Pittig
- Translational Psychotherapy, Institute of Psychology, University of Göttingen, Germany
| | - Jens Plag
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Alexianer Krankenhaus Hedwigshoehe, St. Hedwig Kliniken, Berlin, Germany
| | - Jan Richter
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany; Department of Experimental Psychopathology, University of Hildesheim, Hildesheim, Germany
| | | | - Winfried Rief
- Department of Clinical Psychology and Psychotherapy, Faculty of Psychology & Center for Mind, Brain and Behavior - CMBB, Philipps-University of Marburg, Marburg, Germany
| | - Silvia Schneider
- Faculty of Psychology, Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Hanna Schwarzmeier
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Fabian R Seeger
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Niklas Siminski
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Thomas Straube
- Institute of Psychology, Unit of Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrueck, Osnabruck, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Yunbo Yang
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Kati Roesmann
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany; Institute of Psychology, Unit of Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrueck, Osnabruck, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Germany
| |
Collapse
|
4
|
Sohail A, Zhang L. Informing the treatment of social anxiety disorder with computational and neuroimaging data. PSYCHORADIOLOGY 2024; 4:kkae010. [PMID: 38841558 PMCID: PMC11152174 DOI: 10.1093/psyrad/kkae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Aamir Sohail
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lei Zhang
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Fang W, Yin B, Fang Z, Tian M, Ke L, Ma X, Di Q. Heat stroke-induced cerebral cortex nerve injury by mitochondrial dysfunction: A comprehensive multi-omics profiling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170869. [PMID: 38342446 DOI: 10.1016/j.scitotenv.2024.170869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
In recent years, global warming has led to frequent instances of extremely high temperatures during summer, arousing significant concern about the adverse effects of high temperature. Among these, heat stroke is the most serious, which has detrimental effects on the all organs of human body, especially on brain. However, the comprehensive pathogenesis leading to brain damage remains unclear. In this study, we constructed a mouse model of heat stroke and conducted multi-omics profiling to identify relevant pathogenesis induced by heat stroke. The mice were placed in a constant temperature chamber at 42 °C with a humidity of 50 %, and the criteria for success in modeling were that the rectal temperature reached 42 °C and that the mice were trembling. Then the mice were immediately taken out for further experiments. Firstly, we conducted cFos protein localization and identified the cerebral cortex, especially the anterior cingulate cortex as the region exhibiting the most pronounced damage. Secondly, we performed metabolomics, transcriptomics, and proteomics analysis on cerebral cortex. This multi-omics investigation unveiled noteworthy alterations in proteins and metabolites within pathways associated with neurotransmitter systems, heatstroke-induced mitochondrial dysfunction, encompassing histidine and pentose phosphate metabolic pathways, as well as oxidative stress. In addition, the cerebral cortex exhibited pronounced Reactive Oxygen Species (ROS) production, alongside significant downregulation of the mitochondrial outer membrane protein Tomm40 and mitochondrial permeability transition pore, implicating cerebral cortex mitochondrial dysfunction as the primary instigator of neural impairment. This study marks a significant milestone as the first to employ multi-omics analysis in exploring the molecular mechanisms underlying heat stroke-induced damage in cerebral cortex neurons. It comprehensively identifies all potentially impacted pathways by heat stroke, laying a solid foundation for ensuing research endeavors. Consequently, this study introduces a fresh angle to clinical approaches in heatstroke prevention and treatment, as well as establishes an innovative groundwork for shaping future-forward environmental policies.
Collapse
Affiliation(s)
- Wen Fang
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Bo Yin
- School of Medicine, Tsinghua University, Beijing, China
| | - Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Mengyi Tian
- School of Medicine, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing, China
| | - Xindong Ma
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Leehr EJ, Seeger FR, Böhnlein J, Gathmann B, Straube T, Roesmann K, Junghöfer M, Schwarzmeier H, Siminski N, Herrmann MJ, Langhammer T, Goltermann J, Grotegerd D, Meinert S, Winter NR, Dannlowski U, Lueken U. Association between resting-state connectivity patterns in the defensive system network and treatment response in spider phobia-a replication approach. Transl Psychiatry 2024; 14:137. [PMID: 38453896 PMCID: PMC10920691 DOI: 10.1038/s41398-024-02799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
Although highly effective on average, exposure-based treatments do not work equally well for all patients with anxiety disorders. The identification of pre-treatment response-predicting patient characteristics may enable patient stratification. Preliminary research highlights the relevance of inhibitory fronto-limbic networks as such. We aimed to identify pre-treatment neural signatures differing between exposure treatment responders and non-responders in spider phobia and to validate results through rigorous replication. Data of a bi-centric intervention study comprised clinical phenotyping and pre-treatment resting-state functional connectivity (rsFC) data of n = 79 patients with spider phobia (discovery sample) and n = 69 patients (replication sample). RsFC data analyses were accomplished using the Matlab-based CONN-toolbox with harmonized analyses protocols at both sites. Treatment response was defined by a reduction of >30% symptom severity from pre- to post-treatment (Spider Phobia Questionnaire Score, primary outcome). Secondary outcome was defined by a reduction of >50% in a Behavioral Avoidance Test (BAT). Mean within-session fear reduction functioned as a process measure for exposure. Compared to non-responders and pre-treatment, results in the discovery sample seemed to indicate that responders exhibited stronger negative connectivity between frontal and limbic structures and were characterized by heightened connectivity between the amygdala and ventral visual pathway regions. Patients exhibiting high within-session fear reduction showed stronger excitatory connectivity within the prefrontal cortex than patients with low within-session fear reduction. Whereas these results could be replicated by another team using the same data (cross-team replication), cross-site replication of the discovery sample findings in the independent replication sample was unsuccessful. Results seem to support negative fronto-limbic connectivity as promising ingredient to enhance response rates in specific phobia but lack sufficient replication. Further research is needed to obtain a valid basis for clinical decision-making and the development of individually tailored treatment options. Notably, future studies should regularly include replication approaches in their protocols.
Collapse
Affiliation(s)
- Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| | - Fabian R Seeger
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Kati Roesmann
- Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Siegen, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Institute of Psychology, Unit of Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrück, Osnabrück, Germany
| | - Markus Junghöfer
- Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Hanna Schwarzmeier
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Niklas Siminski
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Till Langhammer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils R Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ulrike Lueken
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| |
Collapse
|
7
|
Zhang X, Zhang L, Yu F, Zhang W. Can Brain Activities of Guided Metaphorical Restructuring Predict Therapeutic Changes? Neuroscience 2023; 531:39-49. [PMID: 37689232 DOI: 10.1016/j.neuroscience.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
The present study examined whether brain activities of metaphorical restructuring could predict improvements in emotion and general self-efficacy (GSES). Sixty-two anxious graduates were randomly assigned to either the metaphor group (n = 31) or the literal group (n = 31). After completing the pretest (T1), the participants were first presented with micro-counseling dialogues (MCD) to guide metaphorical or literal restructuring, and their functional brain activities were simultaneously recorded. They then completed the posttest (T2) and 1 week's follow-up (T3). It was found that (1) compared with the literal group, the metaphor group had more insightful experiences, a greater increase in positive affect and GSES at T2, and a greater decrease in psychological distress at T2 and T3; (2) the metaphor group showed a greater activation in the left inferior frontal gyrus (IFG) and bilateral temporal gyrus, and further activation in the left hippocampus positively predicted T2 GSES scores while that in the IFG and left hippocampus positively predicted the reduction slope of distress over the three time points. One important limitation is that the results should be interpreted with caution when generalizing to clinical anxiety samples due to the participants were graduate students with anxiety symptoms rather than clinical sample. These results indicated that metaphor restructuring produced greater symptom improvements, and activation in the hippocampus and IFG could predict these symptom improvements. This suggests that the activation of the two regions during the restructuring intervention may be a neural marker for symptom improvements.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Lu Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Yu
- Department of Psychology, Hebei Normal University, Shijiazhuang 050010, China
| | - Wencai Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Kashyap H, Mehta UM, Reddy RP, Bharath RD. Role of Cognitive Control in Psychotherapy: An Integrated Review. Indian J Psychol Med 2023; 45:462-470. [PMID: 37772131 PMCID: PMC10523513 DOI: 10.1177/02537176221128611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Background Cognitive control (CC), including shifting, updating, and inhibiting functions, may play an integral role in various aspects of psychotherapy; however, research on this is limited. This review aims to link the disparate lines of evidence on CC as they relate to psychotherapy processes, techniques, and outcomes. Methods A systematic search of the literature on neuropsychological domains relating to psychotherapy in adults with anxiety/depression yielded 18 eligible studies. The review also uses a narrative format to explore other potential links between CC and psychotherapy that are underinvestigated, and highlights the need for research and application to evidence-based practice of psychotherapy. Results and conclusions Findings suggest that CC may predict psychotherapy outcomes and also improve as a function of psychotherapy. Analog sample studies suggest a possible link between CC and techniques for regulation of cognition and emotion, such as reappraisal, mindfulness, and cognitive restructuring. CC may also play an integral role in the regulation of behavior. Study of CC in the context of psychotherapy may potentially explain individual differences in psychotherapy outcomes and mechanisms of action of various psychotherapy techniques and processes. Such an understanding may have possible implications for "best fit" matching clients to therapies and modifying psychological interventions to account for poorer CC abilities. CC may be enhanced through training and further research is warranted on the impact of such training in facilitating better long-term psychotherapy outcomes.
Collapse
Affiliation(s)
- Himani Kashyap
- Dept. of Clinical Psychology & Cognite
Clinic, National Institute of Mental Health And Neuro Sciences, Bengaluru, Karnataka,
India
| | - Urvakhsh Meherwan Mehta
- Dept. of Psychiatry, National Institute of
Mental Health And Neuro Sciences, Bengaluru, Karnataka, India
| | - Rajakumari P. Reddy
- Dept. of Clinical Psychology & Cognite
Clinic, National Institute of Mental Health And Neuro Sciences, Bengaluru, Karnataka,
India
| | - Rose Dawn Bharath
- Dept. of Neuroimaging and Interventional
Radiology, National Institute of Mental Health And Neuro Sciences, Bengaluru, Karnataka,
India
| |
Collapse
|
9
|
Bach EC, Ewin SE, Heaney CF, Carlson HN, Ortelli OA, Almonte AG, Chappell AM, Raab-Graham KF, Weiner JL. Chemogenetic inhibition of a monosynaptic projection from the basolateral amygdala to the ventral hippocampus selectively reduces appetitive, but not consummatory, alcohol drinking-related behaviours. Eur J Neurosci 2023; 57:1241-1259. [PMID: 36840503 PMCID: PMC10931538 DOI: 10.1111/ejn.15944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Alcohol use disorder (AUD) and anxiety/stressor disorders frequently co-occur and this dual diagnosis represents a major health and economic problem worldwide. The basolateral amygdala (BLA) is a key brain region that is known to contribute to the aetiology of both disorders. Although many studies have implicated BLA hyperexcitability in the pathogenesis of AUD and comorbid conditions, relatively little is known about the specific efferent projections from this brain region that contribute to these disorders. Recent optogenetic studies have shown that the BLA sends a strong monosynaptic excitatory projection to the ventral hippocampus (vHC) and that this circuit modulates anxiety- and fear-related behaviours. However, it is not known if this pathway influences alcohol drinking-related behaviours. Here, we employed a rodent operant self-administration regimen that procedurally separates appetitive (e.g. seeking) and consummatory (e.g., drinking) behaviours, chemogenetics and brain region-specific microinjections, to determine if BLA-vHC circuitry influences alcohol and sucrose drinking-related measures. We first confirmed prior optogenetic findings that silencing this circuit reduced anxiety-like behaviours on the elevated plus maze. We then demonstrated that inhibiting the BLA-vHC pathway significantly reduced appetitive drinking-related behaviours for both alcohol and sucrose while having no effect on consummatory measures. Taken together, these findings provide the first indication that the BLA-vHC circuit may regulate appetitive reward seeking directed at alcohol and natural rewards and add to a growing body of evidence suggesting that dysregulation of this pathway may contribute to the pathophysiology of AUD and anxiety/stressor-related disorders.
Collapse
Affiliation(s)
- Eva C Bach
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah E Ewin
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chelcie F Heaney
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Olivia A Ortelli
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Antoine G Almonte
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ann M Chappell
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
Zhang JL, Zhou N, Song KR, Zou BW, Xu LX, Fu Y, Geng XM, Wang ZL, Li X, Potenza MN, Nan Y, Zhang JT. Neural activations to loss anticipation mediates the association between difficulties in emotion regulation and screen media activities among early adolescent youth: A moderating role for depression. Dev Cogn Neurosci 2022; 58:101186. [PMID: 36516611 PMCID: PMC9764194 DOI: 10.1016/j.dcn.2022.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Screen media activities (SMAs; e.g., watching videos, playing videogames) have become increasingly prevalent among youth as ways to alleviate or escape from negative emotional states. However, neural mechanisms underlying these processes in youth are incompletely understood. METHOD Seventy-nine youth aged 11-15 years completed a monetary incentive delay task during fMRI scanning. Neural correlates of reward/loss processing and their associations with SMAs were explored. Next, brain activations during reward/loss processing in regions implicated in the processing of emotions were examined as potential mediating factors between difficulties in emotion regulation (DER) and engagement in SMAs. Finally, a moderated mediation model tested the effects of depressive symptoms in such relationships. RESULT The emotional components associated with SMAs in reward/loss processing included activations in the left anterior insula (AI) and right dorsolateral prefrontal cortex (DLPFC) during anticipation of working to avoid losses. Activations in both the AI and DLPFC mediated the relationship between DER and SMAs. Moreover, depressive symptoms moderated the relationship between AI activation in response to loss anticipation and SMAs. CONCLUSION The current findings suggest that DER link to SMAs through loss-related brain activations implicated in the processing of emotions and motivational avoidance, particularly in youth with greater levels of depressive symptoms. The findings suggest the importance of enhancing emotion-regulation tendencies/abilities in youth and, in particular, their regulatory responses to negative emotional situations in order to guide moderate engagement in SMAs.
Collapse
Affiliation(s)
- Jia-Lin Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Nan Zhou
- Faculty of Education, University of Macau, Macau, China
| | - Kun-Ru Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bo-Wen Zou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Lin-Xuan Xu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yu Fu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiao-Min Geng
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zi-Liang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA; Department of Neuroscience and Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Yun Nan
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
11
|
Holt-Gosselin B, Keller AS, Chesnut M, Ling R, Grisanzio KA, Williams LM. Greater baseline connectivity of the salience and negative affect circuits are associated with natural improvements in anxiety over time in untreated participants. J Affect Disord 2021; 295:366-376. [PMID: 34492429 DOI: 10.1016/j.jad.2021.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND There is limited research examining the natural trajectories of depression and anxiety, how these trajectories relate to baseline neural circuit function, and how symptom trajectory-circuit relationships are impacted by engagement in lifestyle activities including exercise, hobbies, and social interactions. To address these gaps, we assessed these relations over three months in untreated participants. METHODS 262 adults (59.5% female, mean age 35) with symptoms of anxiety and depression, untreated with pharmacotherapy or behavioral therapy, completed the DASS-42, WHOQOL, and custom surveys at baseline and follow-up to assess symptoms, psychosocial function, and lifestyle activity engagement. At baseline, participants underwent fMRI under task-free and task-evoked conditions. We quantified six circuits implicated in these symptoms: default mode, salience, negative and positive affect, attention, and cognitive control. RESULTS From baseline to 3 months, some participants demonstrated a natural improvement in anxiety (24%) and depression (26%) symptoms. Greater baseline salience circuit connectivity (pFDR=0.045), specifically between the left and right insula (pFDR=0.045), and greater negative affect circuit connectivity elicited by sad faces (pFDR=0.030) were associated with anxiety symptom improvement. While engagement in lifestyle activities were not associated with anxiety improvements, engagement in hobbies moderated the association between negative affect circuit connectivity and anxiety symptom improvement (p = 0.048). LIMITATIONS The observational design limits causal inference. CONCLUSIONS Our findings highlight the role of the salience and negative affect circuits as potential circuit markers of natural anxiety symptom improvements over time. Future studies that identify biomarkers associated with symptom improvements are critical for the development of personalized treatment targets.
Collapse
Affiliation(s)
- Bailey Holt-Gosselin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Interdepartmental Neuroscience Graduate Program, Yale University, New Haven, CT, United States
| | - Arielle S Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Neurosciences PhD Program, Stanford University, Stanford CA, United States
| | - Megan Chesnut
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Ruth Ling
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Katherine A Grisanzio
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Mental Illness Research, Education and Clinical Center, Palo Alto VA Healthcare System, Palo Alto, CA, United States.
| |
Collapse
|
12
|
Lages YV, Maisonnette SS, Marinho B, Rosseti FP, Krahe TE, Landeira-Fernandez J. Behavioral effects of chronic stress in Carioca high- and low-conditioned freezing rats. Stress 2021; 24:602-611. [PMID: 34030584 DOI: 10.1080/10253890.2021.1934445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic unpredictable mild stress (CUMS) is a widely used model to study stress-coping strategies in rodents. Different factors have been shown to influence whether animals adopt passive or active coping responses to CUMS. Individual adaptation and susceptibility to the environment seem to play a critical role in this process. To further investigate this relationship, we examined the effects of CUMS on Carioca high- and low-conditioned freezing rats (CHF and CLF, respectively), bidirectional lines of animals selected for high and low freezing in response to contextual cues that were previously associated with footshocks. For this purpose, the behavior of CHF and CLF animals was evaluated in the contextual fear conditioning, open field, elevated T maze, and forced swimming tests before and after 21 days of CUMS. For all tests, CHF rats were more susceptible to the effects of CUMS compared to CLF. CHF animals exposed to CUMS displayed a reduction in freezing behavior, decreased number of entries and time spent in the center of the open field, greater latencies to become immobile, and increased avoidance and escaping behaviors in the elevated T maze. Overall, these findings support the hypothesis that a heightened susceptibility to the environment exerts a strong influence on coping responses to chronic stress.
Collapse
Affiliation(s)
- Yury V Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia S Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Marinho
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia P Rosseti
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Germann J, Elias GJB, Neudorfer C, Boutet A, Chow CT, Wong EHY, Parmar R, Gouveia FV, Loh A, Giacobbe P, Kim SJ, Jung HH, Bhat V, Kucharczyk W, Chang JW, Lozano AM. Potential optimization of focused ultrasound capsulotomy for obsessive compulsive disorder. Brain 2021; 144:3529-3540. [PMID: 34145884 DOI: 10.1093/brain/awab232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Obsessive-compulsive disorder is a debilitating and often refractory psychiatric disorder. Magnetic resonance-guided focused ultrasound is a novel, minimally invasive neuromodulatory technique that has shown promise in treating this condition. We investigated the relationship between lesion location and long-term outcome in obsessive-compulsive disorder patients treated with focused ultrasound to discern the optimal lesion location and elucidate the efficacious network underlying symptom alleviation. Postoperative images of eleven patients who underwent focused ultrasound capsulotomy were used to correlate lesion characteristics with symptom improvement at one year follow-up. Normative resting-state functional MRI and normative diffusion MRI-based tractography analyses were used to determine the networks associated with successful lesions. Obsessive-compulsive disorder patients treated with inferior thalamic peduncle deep brain stimulation (n = 5) and lesions from the literature implicated in obsessive-compulsive disorder (n = 18) were used for external validation. Successful long-term relief of obsessive-compulsive disorder was associated with lesions that included a specific area in the dorsal anterior limb of the internal capsule. Normative resting-state functional MRI analysis showed that lesion engagement of areas 24 and 46 was significantly associated with clinical outcomes (R = 0.79, p = 0.004). The key role of areas 24 and 46 was confirmed by (1) normative diffusion MRI-based tractography analysis showing that streamlines associated with better outcome projected to these areas, (2) association of these areas with inferior thalamic peduncle deep brain stimulation patients' outcome (R = 0.83, p = 0.003); (3) the connectedness of these areas to obsessive-compulsive disorder-causing lesions, as identified using literature-based lesion network mapping. These results provide considerations for target improvement, outlining the specific area of the internal capsule critical for successful magnetic resonance-guided focused ultrasound outcome and demonstrating that discrete frontal areas are involved in symptom relief. This could help refine focused ultrasound treatment for obsessive-compulsive disorder and provide a network-based rationale for potential alternative targets.
Collapse
Affiliation(s)
- Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Emily H Y Wong
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Roohie Parmar
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Flavia Venetucci Gouveia
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Se Joo Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Venkat Bhat
- Centre for Mental Health and Krembil Research Centre, University Health Network, Toronto, Canada
| | - Walter Kucharczyk
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Baeken C, Wu GR, Rogiers R, Remue J, Lemmens GM, Raedt RD. Cognitive behavioral based group psychotherapy focusing on repetitive negative thinking: Decreased uncontrollability of rumination is related to brain perfusion increases in the left dorsolateral prefrontal cortex. J Psychiatr Res 2021; 136:281-287. [PMID: 33621914 DOI: 10.1016/j.jpsychires.2021.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 01/22/2023]
Abstract
Repetitive negative thinking (RNT) is a core process underlying various psychiatric disorders. 'Uncontrollability of rumination (UOR)' is one the most maladaptive factors of rumination, but little is known on how cognitive behavioral focused RNT psychotherapy may alter brain activity. In a subsample of 47 patients suffering from RNT who also underwent brain imaging (registered RCT trial NCT01983033), we evaluated the effect of cognitive behavioral based group psychotherapy (CBGP) (n = 25) as compared to a delayed treatment control group (DTCG) (n = 22) on frontolimbic brain perfusion with a focus on UOR. This RNT construct was measured using the subscale 'uncontrollability' of the Dutch version of the Rumination on Sadness Scale (LARSS-U). Brain perfusion was assessed with arterial spin labeling (ASL)-fMRI. LARSS-U scale scores significantly decreased in the CBGP cohort whereas no significant changes emerged in the DTCG group. Compared to the DTCG, this decrease on UOR in the CBGP group was related to significant perfusion increases in the left (dorsolateral) prefrontal cortex, part of the executive network. Besides the fact that CBGP significantly reduced RNT, this attenuation of uncontrollable ruminative thoughts was related to brain perfusion increases areas documented to be involved in the top down control of adaptive emotion regulation and the inhibition of ruminative processes.
Collapse
Affiliation(s)
- Chris Baeken
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium; Department of Psychiatry, Ghent University Hospital, Ghent, Belgium; Department of Psychiatry, University Hospital UZBrussel, Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Roland Rogiers
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University, Ghent, Belgium
| | - Jonathan Remue
- Department of Psychiatry, Ghent University Hospital, Ghent, Belgium
| | - Gilbert Md Lemmens
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University, Ghent, Belgium; Department of Psychiatry, Ghent University Hospital, Ghent, Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
van den End A, Dekker J, Beekman ATF, Aarts I, Snoek A, Blankers M, Vriend C, van den Heuvel OA, Thomaes K. Clinical Efficacy and Cost-Effectiveness of Imagery Rescripting Only Compared to Imagery Rescripting and Schema Therapy in Adult Patients With PTSD and Comorbid Cluster C Personality Disorder: Study Design of a Randomized Controlled Trial. Front Psychiatry 2021; 12:633614. [PMID: 33868050 PMCID: PMC8044980 DOI: 10.3389/fpsyt.2021.633614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is a serious and relatively common mental disorder causing a high burden of suffering. Whereas evidence-based treatments are available, dropout and non-response rates remain high. PTSD and Cluster C personality disorders (avoidant, dependent or obsessive-compulsive personality disorder; CPD) are highly comorbid and there is evidence for suboptimal treatment effects in this subgroup of patients. An integrated PTSD and CPD treatment may be needed to increase treatment efficacy. However, no studies directly comparing the efficacy of regular PTSD treatment and treatment tailored to PTSD and comorbid CPD are available. Whether integrated treatment is more effective than treatment focused on PTSD alone is important, since (1) no evidence-based guideline for PTSD and comorbid CPD treatment exists, and (2) treatment approaches to CPD are costly and time consuming. Present study design describes a randomized controlled trial (RCT) directly comparing trauma focused treatment with integrated trauma focused and personality focused treatment. Methods: An RCT with two parallel groups design will be used to compare the clinical efficacy and cost-effectiveness of "standalone" imagery rescripting (n = 63) with integrated imagery rescripting and schema therapy (n = 63). This trial is part of a larger research project on PTSD and personality disorders. Predictors, mediators and outcome variables are measured at regular intervals over the course of 18 months. The main outcome is PTSD severity at 12 months. Additionally, machine-learning techniques will be used to predict treatment outcome using biopsychosocial variables. Discussion: This study protocol outlines the first RCT aimed at directly comparing the clinical efficacy and cost-effectiveness of imagery rescripting and integrated imagery rescripting and schema therapy for treatment seeking adult patients with PTSD and comorbid cluster C personality pathology. Additionally, biopsychosocial variables will be used to predict treatment outcome. As such, the trial adds to the development of an empirically informed and individualized treatment indication process. Clinical Trial registration: ClinicalTrials.gov, NCT03833531.
Collapse
Affiliation(s)
- Arne van den End
- Sinai Centrum, Amstelveen, Netherlands.,Department of Psychiatry, Academic Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Jack Dekker
- Arkin Mental Health Care, Amsterdam, Netherlands.,Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, Netherlands
| | - Aartjan T F Beekman
- Department of Psychiatry, Academic Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, Netherlands.,GGZ inGeest, Amsterdam, Netherlands
| | - Inga Aarts
- Sinai Centrum, Amstelveen, Netherlands.,Department of Psychiatry, Academic Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Aishah Snoek
- Sinai Centrum, Amstelveen, Netherlands.,Department of Psychiatry, Academic Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Matthijs Blankers
- Arkin Mental Health Care, Amsterdam, Netherlands.,Netherlands Institute of Mental Health and Addiction (Trimbos Institute), Utrecht, Netherlands
| | - Chris Vriend
- Amsterdam Neuroscience, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, Netherlands.,Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Odile A van den Heuvel
- Amsterdam Neuroscience, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, Netherlands.,Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Kathleen Thomaes
- Sinai Centrum, Amstelveen, Netherlands.,Department of Psychiatry, Academic Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, Netherlands.,Arkin Mental Health Care, Amsterdam, Netherlands
| |
Collapse
|
16
|
Shen Z, Zhu J, Ren L, Qian M, Shao Y, Yuan Y, Shen X. Aberrant amplitude low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) in generalized anxiety disorder (GAD) and their roles in predicting treatment remission. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1319. [PMID: 33209899 PMCID: PMC7661887 DOI: 10.21037/atm-20-6448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Generalized anxiety disorder (GAD) is a common affective disorder characterized by comprehensive anxiety with dysregulation of brain activity which can be reflected by functional magnetic resonance imaging (f-MRI). We aimed to examine abnormal aberrant amplitude low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) in GAD and evaluate their ability to predict treatment remission. Methods Using resting-state fMRI (Rs-fMRI), we examined ALFF and ReHo in 30 GAD patients and 30 healthy control (HC) participants. Using on DEPASF4.3 Advanced Edition, voxel-based two-sample t-test analysis was performed on the ALFF and ReHo maps to compare GAD to HC groups, and to compare remitters (n=9) and non-remitters (n=21). Pearson's correlation analysis was used to explore the relationship between baseline Hamilton Anxiety Rating Scale (HAM-A) scores/illness duration and mean ALFF/ReHo values. The severity of GAD symptoms was rated with HAM-A. Remission was defined as HAM-A ≤7 by week 8. Results Compared to the HC group, GAD patients showed lower ALFF in the right postcentral and right precentral gyrus; lower ReHo in the right precentral, right postcentral, and left precentral gyrus; and higher ReHo in the left posterior cingulate cortex. ALFF values for left postcentral gyrus was negatively correlated with baseline HAM-A, while that of the middle frontal gyrus was positively correlated with baseline HAM-A scores. ReHo value of the left postcentral gyrus was negatively correlated with baseline HAM-A, while that of the right middle frontal gyrus was positively correlated with baseline HAM-A scores. ALFF of the right frontal_superior_orbital and right frontal-medial-orbital cortex was positively correlated with illness duration. ReHo of the left supplementary motor area cortex was negatively correlated with illness duration. Remitters showed higher ALFF in the left hippocampus and higher ReHo value in the right postcentral cortex compared to nonremitters. Conclusions These results suggest that altered regional brain activity and local synchronization may be related to the pathophysiology of GAD and have certain value in predicting remission in treatment.
Collapse
Affiliation(s)
- Zhongxia Shen
- School of Medicine, Southeast University, Nanjing, China.,Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, China
| | - Jianying Zhu
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, China
| | - Lie Ren
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, China
| | - Mingcai Qian
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, China
| | - Yongliang Shao
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, China
| | - Yonggui Yuan
- School of Medicine, Southeast University, Nanjing, China.,Department of Psychiatry, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Xinhua Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
17
|
Cui H, Zhang B, Li W, Li H, Pang J, Hu Q, Zhang L, Tang Y, Yang Z, Wang J, Li C, Northoff G. Insula shows abnormal task-evoked and resting-state activity in first-episode drug-naïve generalized anxiety disorder. Depress Anxiety 2020; 37:632-644. [PMID: 32196828 DOI: 10.1002/da.23009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Interoception is associated with neural activity in the insula of healthy humans. On the basis of the somatic symptoms in generalized anxiety disorder (GAD), especially abnormal heartbeat perception, we hypothesized that abnormal activity in the insula was associated with interoceptive awareness in patients with GAD. METHODS We investigated the psychological correlates of interoceptive awareness in a sample of 34 patients with first-onset, drug-naïve GAD and 30 healthy controls (HCs). Furthermore, we compared blood oxygenation level-dependent responses between the two groups during a heartbeat perception task to assess task-evoked activity and its relationship with psychological measures. We also examined between-group differences in insular subregions resting-state functional connectivity (rsFC), and its relationship with anxiety severity. RESULTS Patients with GAD had significantly higher body perception scores than HCs. They also exhibited greater task-evoked activity in the left anterior insula, left posterior insula, and right anterior insula during interoceptive awareness than HCs. Left anterior insula activity was positively correlated with body awareness in patients with GAD, and rsFC between the left anterior insula and left medial prefrontal gyrus was negatively correlated with somatic anxiety severity. CONCLUSIONS Investigating a sample of first-episode, drug-naïve patients, our study demonstrated abnormal interoceptive awareness in patients with GAD and that this was related to abnormal anterior insular activity during both rest and task. These results shed new light on the psychological and neural substrates of somatic symptoms in GAD, and they may serve to establish abnormal interoceptive awareness as a neural and psychological marker of GAD.
Collapse
Affiliation(s)
- Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Wei Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaoyan Pang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Schwarzmeier H, Leehr EJ, Böhnlein J, Seeger FR, Roesmann K, Gathmann B, Herrmann MJ, Siminski N, Junghöfer M, Straube T, Grotegerd D, Dannlowski U. Theranostic markers for personalized therapy of spider phobia: Methods of a bicentric external cross-validation machine learning approach. Int J Methods Psychiatr Res 2020; 29:e1812. [PMID: 31814209 PMCID: PMC7301283 DOI: 10.1002/mpr.1812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Embedded in the Collaborative Research Center "Fear, Anxiety, Anxiety Disorders" (CRC-TRR58), this bicentric clinical study aims at identifying biobehavioral markers of treatment (non-)response by applying machine learning methodology with an external cross-validation protocol. We hypothesize that a priori prediction of treatment (non-)response is possible in a second, independent sample based on multimodal markers. METHODS One-session virtual reality exposure treatment (VRET) with patients with spider phobia was conducted on two sites. Clinical, neuroimaging, and genetic data were assessed at baseline, post-treatment and after 6 months. The primary and secondary outcomes defining treatment response are as follows: 30% reduction regarding the individual score in the Spider Phobia Questionnaire and 50% reduction regarding the individual distance in the behavioral avoidance test. RESULTS N = 204 patients have been included (n = 100 in Würzburg, n = 104 in Münster). Sample characteristics for both sites are comparable. DISCUSSION This study will offer cross-validated theranostic markers for predicting the individual success of exposure-based therapy. Findings will support clinical decision-making on personalized therapy, bridge the gap between basic and clinical research, and bring stratified therapy into reach. The study is registered at ClinicalTrials.gov (ID: NCT03208400).
Collapse
Affiliation(s)
- Hanna Schwarzmeier
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | | | - Joscha Böhnlein
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
| | - Fabian Reinhard Seeger
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Kati Roesmann
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems NeuroscienceUniversity of MünsterMünsterGermany
| | - Martin J. Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Niklas Siminski
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Markus Junghöfer
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Thomas Straube
- Institute of Medical Psychology and Systems NeuroscienceUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Dominik Grotegerd
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
| | - Udo Dannlowski
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| |
Collapse
|
19
|
Chen G, Wang X, Zhang S, Xu X, Liang J, Xu Y. In vivo investigation on bio-markers of perimenopausal panic disorder and catgut embedding acupoints mechanism. Medicine (Baltimore) 2020; 99:e19909. [PMID: 32384434 PMCID: PMC7220090 DOI: 10.1097/md.0000000000019909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Panic disorder (PD), defined by repeated and unexpected panic attacks, severely affects patients' living quality and social function. Perimenopausal women are high-risk group of PD and suffer greatly from it. Modern medicine therapies for this disorder have many side reactions and poor effects, so nonpharmacological modality is an urgent need. Although acupoint catgut embedding is widely used in clinical practice, there is no persuasive evidence of its effect for perimenopausal PD. The aim of this study is to investigate the effectiveness and safety of acupoint catgut embedding for perimenopausal PD and to elucidate the correlations among brain neural activation, bio-markers (amino acids) and clinical outcomes with radiographic evidence, thus to explore its neural mechanism. METHODS The parallel designed, exploratory randomized controlled trial will include 70 outpatients with perimenopausal PD recruited from two hospitals of Chinese Medicine. These subjects will be randomly allocated to an intervention group (Group Embedding) and a control group (Group Medication) in a 1:1 ratio. The subjects in the intervention group will receive acupoint catgut embedding treatment two weeks a time in the following predefined acupuncture points: Shenshu (BL23), Sanyinjiao (SP6), Guanyuan (RN4), Ganshu (BL18), Zusanli (ST36) and Pishu (BL20). The included women of the control group will take 0.4 mg Alprazolam tablet orally, 1 tablet a time, 3 times a day. There is a study period of 3 months and a follow-up period of 1 month for each group. The primary outcomes will be the following therapeutic indexes: the frequency of panic attack, Panic Disorder Severity Score (PDSS), and Panic-associated Symptoms Score (PASS) during the observation period and follow-up period. The changes in Hamilton Anxiety Scale (HAMA) Score and Symptom Checklist 90 (SCL-90) Score will also be compared between these two groups. Additionally, functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy (1H-MRS) scans will be done before and after the observation period to show cranial neuroimaging changes. DISCUSSION We present a study design and rationale to explore the effectiveness and neural mechanism of acupoint catgut embedding for perimenopausal PD. There are still several factors restrict our research such as no unified standard of diagnostic criteria and curative effect evaluation. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR-INR-16009724, registered in November 2016.
Collapse
Affiliation(s)
- Guizhen Chen
- The Bao’an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen
| | - Xue Wang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuo Zhang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaokang Xu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junquan Liang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Personalized Clinical Approaches to Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:489-521. [DOI: 10.1007/978-981-32-9705-0_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Santiago J, Akeman E, Kirlic N, Clausen AN, Cosgrove KT, McDermott TJ, Mathis B, Paulus M, Craske MG, Abelson J, Martell C, Wolitzky-Taylor K, Bodurka J, Thompson WK, Aupperle RL. Protocol for a randomized controlled trial examining multilevel prediction of response to behavioral activation and exposure-based therapy for generalized anxiety disorder. Trials 2020; 21:17. [PMID: 31907032 PMCID: PMC6943897 DOI: 10.1186/s13063-019-3802-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Only 40-60% of patients with generalized anxiety disorder experience long-lasting improvement with gold standard psychosocial interventions. Identifying neurobehavioral factors that predict treatment success might provide specific targets for more individualized interventions, fostering more optimal outcomes and bringing us closer to the goal of "personalized medicine." Research suggests that reward and threat processing (approach/avoidance behavior) and cognitive control may be important for understanding anxiety and comorbid depressive disorders and may have relevance to treatment outcomes. This study was designed to determine whether approach-avoidance behaviors and associated neural responses moderate treatment response to exposure-based versus behavioral activation therapy for generalized anxiety disorder. METHODS/DESIGN We are conducting a randomized controlled trial involving two 10-week group-based interventions: exposure-based therapy or behavioral activation therapy. These interventions focus on specific and unique aspects of threat and reward processing, respectively. Prior to and after treatment, participants are interviewed and undergo behavioral, biomarker, and neuroimaging assessments, with a focus on approach and avoidance processing and decision-making. Primary analyses will use mixed models to examine whether hypothesized approach, avoidance, and conflict arbitration behaviors and associated neural responses at baseline moderate symptom change with treatment, as assessed using the Generalized Anxiety Disorder-7 item scale. Exploratory analyses will examine additional potential treatment moderators and use data reduction and machine learning methods. DISCUSSION This protocol provides a framework for how studies may be designed to move the field toward neuroscience-informed and personalized psychosocial treatments. The results of this trial will have implications for approach-avoidance processing in generalized anxiety disorder, relationships between levels of analysis (i.e., behavioral, neural), and predictors of behavioral therapy outcome. TRIAL REGISTRATION The study was retrospectively registered within 21 days of first participant enrollment in accordance with FDAAA 801 with ClinicalTrials.gov, NCT02807480. Registered on June 21, 2016, before results.
Collapse
Affiliation(s)
- J Santiago
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK, 74136, USA
| | - E Akeman
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK, 74136, USA
| | - N Kirlic
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK, 74136, USA
| | - A N Clausen
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Duke University Brain Imaging and Analysis Center, Durham, NC, USA
| | - K T Cosgrove
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK, 74136, USA
- Department of Psychology, University of Tulsa, Tulsa, OK, USA
| | - T J McDermott
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK, 74136, USA
- Department of Psychology, University of Tulsa, Tulsa, OK, USA
| | - B Mathis
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK, 74136, USA
| | - M Paulus
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK, 74136, USA
- School of Community Medicine, University of Tulsa, Tulsa, OK, USA
| | - M G Craske
- Psychology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Abelson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - C Martell
- Department of Psychological and Brain Sciences, University of Massachusetts-Amherst, Amherst, MA, USA
| | - K Wolitzky-Taylor
- Psychology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Bodurka
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK, 74136, USA
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, USA
| | - W K Thompson
- Family Medicine and Public Health, University of California, San Diego, San Diego, CA, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK, 74136, USA.
- School of Community Medicine, University of Tulsa, Tulsa, OK, USA.
| |
Collapse
|