1
|
Walton NL, Antonoudiou P, Maguire JL. Neurosteroid influence on affective tone. Neurosci Biobehav Rev 2023; 152:105327. [PMID: 37499891 PMCID: PMC10528596 DOI: 10.1016/j.neubiorev.2023.105327] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Affective disorders such as depression and anxiety are among the most prevalent psychiatric illnesses and causes of disability worldwide. The recent FDA-approval of a novel antidepressant treatment, ZULRESSO® (Brexanolone), a synthetic neurosteroid has fueled interest into the role of neurosteroids in the pathophysiology of depression as well as the mechanisms mediating the antidepressant effects of these compounds. The majority of studies examining the impact of neurosteroids on affective states have relied on the administration of exogenous neurosteroids; however, neurosteroids can also be synthesized endogenously from cholesterol or steroid hormone precursors. Despite the well-established influence of exogenous neurosteroids on affective states, we still lack an understanding of the role of endogenous neurosteroids in modulating affective tone. This review aims to summarize the current literature supporting the influence of neurosteroids on affective states in clinical and preclinical studies, as well as recent evidence suggesting that endogenous neurosteroids may set a baseline affective tone.
Collapse
Affiliation(s)
- Najah L Walton
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Pantelis Antonoudiou
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie L Maguire
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Sherer ML, Malik A, Osborne LM, Rowther AA, Zaidi A, Atif N, Rahman A, Kahloon LE, Salman M, Yenokyan G, Surkan PJ. Biological Mechanisms in Pregnant Women With Anxiety (Happy Mother-Healthy Baby Supplement Study): Protocol for a Longitudinal Mixed Methods Observational Study. JMIR Res Protoc 2023; 12:e43193. [PMID: 37040167 PMCID: PMC10132042 DOI: 10.2196/43193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Anxiety and depression are common in the perinatal period and negatively affect the health of the mother and baby. Our group has developed "Happy Mother-Healthy Baby" (HMHB), a cognitive behavioral therapy-based psychosocial intervention to address risk factors specific to anxiety during pregnancy in low- and middle-income countries (LMICs). OBJECTIVE The purpose of this study is to examine biological mechanisms that may be linked to perinatal anxiety in conjunction with a randomized controlled trial of HMHB in Pakistan. METHODS We are recruiting 120 pregnant women from the Holy Family Hospital, a public facility in Rawalpindi, Pakistan. Participants are assessed for at least mild anxiety symptoms using the Hospital Anxiety and Depression Scale (ie, a score ≥8 on the anxiety scale is necessary for inclusion in the anxiety groups and <8 for inclusion in the healthy control group). Women who meet the criteria for an anxiety group are randomized into either the HMHB intervention group or an enhanced usual care (EUC) control group. Participants receive HMHB or EUC throughout pregnancy and undergo blood draws at 4 time points (baseline, second trimester, third trimester, and 6 weeks post partum). We will assess peripheral cytokine concentrations using a multiplex assay and hormone concentrations using gas chromatography and mass spectrometry. The statistical analysis will use generalized linear models and mixed effects models to assess the relationships across time among anxiety, immune dysregulation, and hormone levels, and to assess whether these biological factors mediate the relationship between anxiety and birth and child development outcomes. RESULTS Recruitment started on October 20, 2020, and data collection was completed on August 31, 2022. The start date for recruitment for this biological supplement study was delayed by approximately half a year due to the COVID-19 pandemic. The trial was registered at ClinicalTrials.gov (NCT03880032) on September 22, 2020. The last blood samples were shipped to the United States on September 24, 2022, where they will be processed for analysis. CONCLUSIONS This study is an important addition to the HMHB randomized controlled trial of an intervention for antenatal anxiety. The intervention itself makes use of nonspecialist providers and, if effective, will represent an important new tool for the treatment of antenatal anxiety in LMICs. Our biological substudy is one of the first attempts to link biological mechanisms to antenatal anxiety in an LMIC in the context of a psychosocial intervention, and our findings have the potential to significantly advance our knowledge of the biological pathways of perinatal mental illness and treatment efficacy. TRIAL REGISTRATION ClinicalTrials.gov NCT03880032; https://clinicaltrials.gov/ct2/show/NCT03880032. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/43193.
Collapse
Affiliation(s)
- Morgan L Sherer
- Johns Hopkins Center for Women's Reproductive Mental Health, Departments of Psychiatry & Behavioral Sciences and Gynecology & Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Abid Malik
- Human Development Research Foundation, Gujar Khan, Pakistan
| | - Lauren M Osborne
- Johns Hopkins Center for Women's Reproductive Mental Health, Departments of Psychiatry & Behavioral Sciences and Gynecology & Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Armaan A Rowther
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ahmed Zaidi
- Human Development Research Foundation, Gujar Khan, Pakistan
| | - Najia Atif
- Human Development Research Foundation, Gujar Khan, Pakistan
| | - Atif Rahman
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lubna E Kahloon
- Department of Obstetrics and Gynecology, Holy Family Hospital, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Muhammad Salman
- Public Health Laboratory Division, National Institute of Health, Islamabad, Pakistan
| | - Gayane Yenokyan
- Johns Hopkins Biostatistics Center, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Pamela J Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
3
|
Matrisciano F, Pinna G. The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:513-535. [PMID: 36949324 DOI: 10.1007/978-981-19-7376-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Wisłowska-Stanek A, Lehner M, Tomczuk F, Gawryluk A, Kołosowska K, Sułek A, Krząśnik P, Sobolewska A, Wawer A, Płaźnik A, Skórzewska A. The effects of the recurrent social isolation stress on fear extinction and dopamine D 2 receptors in the amygdala and the hippocampus. Pharmacol Rep 2023; 75:119-127. [PMID: 36385611 PMCID: PMC9889440 DOI: 10.1007/s43440-022-00430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The present study assessed the influence of recurrent social isolation stress on the aversive memory extinction and dopamine D2 receptors (D2R) expression in the amygdala and the hippocampus subnuclei. We also analyzed the expression of epigenetic factors potentially associated with fear extinction: miRNA-128 and miRNA-142 in the amygdala. METHODS Male adult fear-conditioned rats had three episodes of 48 h social isolation stress before each fear extinction session in weeks intervals. Ninety minutes after the last extinction session, the D2R expression in the nuclei of the amygdala and the hippocampus (immunocytochemical technique), and mRNA levels for D2R in the amygdala were assessed (PCR). Moreover, we evaluated the levels of miRNA-128 and miRNA-142 in the amygdala. RESULTS It was found that recurrent social isolation stress decreased the fear extinction rate. The extinguished isolated rats were characterized by higher expression of D2R in the CA1 area of the hippocampus compared to the extinguished and the control rats. In turn, the isolated group presented higher D2R immunoreactivity in the CA1 area compared to the extinguished, the control, and the extinguished isolated animals. Moreover, the extinguished animals had higher expression of D2R in the central amygdala than the control and the extinguished isolated rats. These changes were accompanied by the increase in miRNA-128 level in the amygdala in the extinguished isolated rats compared to the control, the extinguished, and the isolated rats. Moreover, the extinguished rats had lower expression of miRNA-128 compared to the control and the isolated animals. CONCLUSIONS Our results suggest that social isolation stress impairs aversive memory extinction and coexists with changes in the D2R expression in the amygdala and hippocampus and increased expression of miRNA-128 in the amygdala.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Małgorzata Lehner
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Filip Tomczuk
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Gawryluk
- grid.419305.a0000 0001 1943 2944Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Karolina Kołosowska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Sułek
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Paweł Krząśnik
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Alicja Sobolewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Adriana Wawer
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Adam Płaźnik
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
5
|
Lu K, Hong Y, Tao M, Shen L, Zheng Z, Fang K, Yuan F, Xu M, Wang C, Zhu D, Guo X, Liu Y. Depressive patient-derived GABA interneurons reveal abnormal neural activity associated with HTR2C. EMBO Mol Med 2022; 15:e16364. [PMID: 36373384 PMCID: PMC9832822 DOI: 10.15252/emmm.202216364] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder with suicide behavior (sMDD) is a server mood disorder, bringing tremendous burden to family and society. Although reduced gamma amino butyric acid (GABA) level has been observed in postmortem tissues of sMDD patients, the molecular mechanism by which GABA levels are altered remains elusive. In this study, we generated induced pluripotent stem cells (iPSC) from five sMDD patients and differentiated the iPSCs to GABAergic interneurons (GINs) and ventral forebrain organoids. sMDD GINs exhibited altered neuronal morphology and increased neural firing, as well as weakened calcium signaling propagation, compared with controls. Transcriptomic sequencing revealed that a decreased expression of serotoninergic receptor 2C (5-HT2C) may cause the defected neuronal activity in sMDD. Furthermore, targeting 5-HT2C receptor, using a small molecule agonist or genetic approach, restored neuronal activity deficits in sMDD GINs. Our findings provide a human cellular model for studying the molecular mechanisms and drug discoveries for sMDD.
Collapse
Affiliation(s)
- Kaiqin Lu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Luping Shen
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Zhilong Zheng
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Kaiheng Fang
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Fang Yuan
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Dongya Zhu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Xing Guo
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina,Co‐innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Kukuia KK, Appiah F, Dugbartey GJ, Takyi YF, Amoateng P, Amponsah SK, Adi-Dako O, Koomson AE, Ayertey F, Adutwum-Ofosu KK. Extract of Mallotus oppositifolius (Geiseler) Müll. Arg. increased prefrontal cortex dendritic spine density and serotonin and attenuated para-chlorophenylalanine-aggravated aggressive and depressive behaviors in mice. Front Pharmacol 2022; 13:962549. [PMID: 36386158 PMCID: PMC9649488 DOI: 10.3389/fphar.2022.962549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background/Aim: Depression-related aggression is linked to serotonin (5-HT) and dendritic spine alterations. Although Mallotus oppositifolius extract (MOE) has potential for reducing this effect, its specific role remains uncertain. Herein, we evaluated this potential and associated alterations in the brain. Methods: A standard resident-intruder model of para-chlorophenylalanine (pCPA)-induced depression-associated aggression in male ICR mice was used. The resident mice received pCPA (300 mg/kg, i. p.) for 3 consecutive days while saline-treated mice served as negative control. The pCPA aggressive mice were subsequently treated orally with either MOE (30, 100, 300 mg/kg), fluoxetine (20 mg/kg), tryptophan (20 mg/kg) or saline (untreated pCPA group) for 28 days. Locomotor activity was assessed using open field test. Serotonin (5-HT) levels in mice brain and phytochemical fingerprint of MOE were determined by high performance liquid chromatography (HPLC) while gas chromatography-mass spectrometry (GC-MS) was used to identify constituents of MOE. Dendritic spine density and morphology were evaluated using Golgi-Cox staining technique and analyzed with ImageJ and Reconstruct software. Results: Administration of pCPA induced aggressive behavior in mice, evidenced by increased attack behaviors (increased number and duration of attacks), which positively correlated with squeaking and tail rattling. MOE treatment significantly reduced these characteristics of aggression in comparison with vehicle (non-aggressive) and untreated pCPA groups (p < 0.001), and also reduced social exploration behavior. Although the behavioral effects of MOE were comparable to those of fluoxetine and tryptophan, these effects were quicker compared to fluoxetine and tryptophan. Additionally, MOE also markedly increased 5-HT concentration and dendritic spine density in the prefrontal cortex relative to vehicle and untreated pCPA groups (p < 0.05). Interestingly, these behavioral effects were produced without compromising locomotor activity. GC-MS analysis of the MOE identified 17 known compounds from different chemical classes with anti-inflammatory, antioxidant, neuroprotective and antidepressant activities, which may have contributed to its anti-aggressive effect. Conclusion: MOE decreased depression-associated aggressive behavior in mice via increased 5-HT concentration and dendritic spine density in the prefrontal cortex. The MOE-mediated effects were faster than those of fluoxetine and tryptophan. Our finding suggests that MOE may have clinical promise in decreasing aggressive and depressive behaviors.
Collapse
Affiliation(s)
- Kennedy K.E. Kukuia
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Kennedy K.E. Kukuia, ; Kevin K. Adutwum-Ofosu,
| | - Frimpong Appiah
- Department of Community Health and Medicine, School of Food and Health Sciences, Anglican University College of Technology, Nkoranza, Ghana
| | - George J. Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Yaw F. Takyi
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Patrick Amoateng
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Seth K. Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ofosua Adi-Dako
- Department of Pharmaceutics and Microbiology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Awo E. Koomson
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frederick Ayertey
- Department of Phytochemistry, Center for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Kevin K. Adutwum-Ofosu
- Department of Anatomy, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Kennedy K.E. Kukuia, ; Kevin K. Adutwum-Ofosu,
| |
Collapse
|
7
|
Pisu MG, Concas L, Siddi C, Serra M, Porcu P. The Allopregnanolone Response to Acute Stress in Females: Preclinical and Clinical Studies. Biomolecules 2022; 12:biom12091262. [PMID: 36139100 PMCID: PMC9496329 DOI: 10.3390/biom12091262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
The neuroactive steroid allopregnanolone ((3α,5α)-3-hydroxypregnan-20-one or 3α,5α-THP) plays a key role in the response to stress, by normalizing hypothalamic-pituitary-adrenal (HPA) axis function to restore homeostasis. Most studies have been conducted on male rats, and little is known about the allopregnanolone response to stress in females, despite that women are more susceptible than men to develop emotional and stress-related disorders. Here, we provide an overview of animal and human studies examining the allopregnanolone responses to acute stress in females in the context of stress-related neuropsychiatric diseases and under the different conditions that characterize the female lifespan associated with the reproductive function. The blunted allopregnanolone response to acute stress, often observed in female rats and women, may represent one of the mechanisms that contribute to the increased vulnerability to stress and affective disorders in women under the different hormonal fluctuations that occur throughout their lifespan. These studies highlight the importance of targeting neuroactive steroids as a therapeutic approach for stress-related disorders in women.
Collapse
Affiliation(s)
- Maria Giuseppina Pisu
- Neuroscience Institute, National Research Council of Italy (CNR), 09042 Cagliari, Italy
| | - Luca Concas
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042 Cagliari, Italy
| | - Carlotta Siddi
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042 Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042 Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), 09042 Cagliari, Italy
- Correspondence:
| |
Collapse
|
8
|
Aswar U, Shende H, Aswar M. Buspirone, a 5-HT1A agonist attenuates social isolation-induced behavior deficits in rats: a comparative study with fluoxetine. Behav Pharmacol 2022; 33:309-321. [PMID: 35438678 DOI: 10.1097/fbp.0000000000000679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Social isolation is a potent stressor in both humans and animals that results in increased anger-like emotion, (anger in humans), aggression and suicidal ideation in humans [suicidal trait-related behavior in rats (STRB)]. The study's purpose was to compare the effects of buspirone (BUS) and fluoxetine (Flx) on social isolation-induced behavior deficits in rats. The male Wistar rats were randomized into six groups and caged individually for 14 days except for the non stress control (nSC) group. They were then divided into the following groups, stress control (SC), Flx (30), BUS (10), BUS (20) and BUS (40) and treated from day 14 to day 28. On the last day of treatment behavior parameters were recorded. Serum cortisol, blood pressure (BP) measurement, magnetic resonance imaging (MRI) of the rat's brain and brain-derived neurotrophic factor (BDNF) expression were performed. SC group showed a significant increase in anger-like emotion, aggression, irritability score, learned helplessness, increased cortisol level and reduced BDNF. These behavioral deficits were attenuated by BUS and Flx, Both were found to be equally beneficial in preventing anger-like emotions and aggression. Flx, which has been found to promote suicidal thoughts in people, did not reduce irritability in rats, showing that it did not affect it. BUS significantly improved all behavioral traits also reduced cortisol levels, significantly increased BDNF and normalized BP. Neuroimaging studies in SC brains showed a reduction in amygdala size compared to nSC, BUS treatment mitigated this reduction. Buspirone is effective in preventing social isolation induced behavioural-deficits.
Collapse
Affiliation(s)
- Urmila Aswar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane
| | - Hrudaya Shende
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra, India
| | - Manoj Aswar
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra, India
| |
Collapse
|
9
|
Belardo C, Alessio N, Pagano M, De Dominicis E, Infantino R, Perrone M, Iannotta M, Galderisi U, Rinaldi B, Scuteri D, Bagetta G, Palazzo E, Maione S, Luongo L. PEA-OXA ameliorates allodynia, neuropsychiatric and adipose tissue remodeling induced by social isolation. Neuropharmacology 2022; 208:108978. [DOI: 10.1016/j.neuropharm.2022.108978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/30/2022] [Indexed: 12/28/2022]
|
10
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
11
|
Matrisciano F, Pinna G. PPAR-α Hypermethylation in the Hippocampus of Mice Exposed to Social Isolation Stress Is Associated with Enhanced Neuroinflammation and Aggressive Behavior. Int J Mol Sci 2021; 22:ijms221910678. [PMID: 34639019 PMCID: PMC8509148 DOI: 10.3390/ijms221910678] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
Social behavioral changes, including social isolation or loneliness, increase the risk for stress-related disorders, such as major depressive disorder, posttraumatic stress disorder (PTSD), and suicide, which share a strong neuroinflammatory etiopathogenetic component. The peroxisome-proliferator activated receptor (PPAR)-α, a newly discovered target involved in emotional behavior regulation, is a ligand-activated nuclear receptor and a transcription factor that, following stimulation by endogenous or synthetic ligands, may induce neuroprotective effects by modulating neuroinflammation, and improve anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. How stress affects epigenetic mechanisms with downstream effects on inflammation and emotional behavior remains poorly understood. We studied the effects of 4-week social isolation, using a mouse model of PTSD/suicide-like behavior, on hippocampal PPAR-α epigenetic modification. Decreased PPAR-α expression in the hippocampus of socially isolated mice was associated with increased levels of methylated cytosines of PPAR-α gene CpG-rich fragments and deficient neurosteroid biosynthesis. This effect was associated with increased histone deacetylases (HDAC)1, methyl-cytosine binding protein (MeCP)2 and decreased ten-eleven translocator (TET)2 expression, which favor hypermethylation. These alterations were associated with increased TLR-4 and pro-inflammatory markers (e.g., TNF-α,), mediated by NF-κB signaling in the hippocampus of aggressive mice. This study contributes the first evidence of stress-induced brain PPAR-α epigenetic regulation. Social isolation stress may constitute a risk factor for inflammatory-based psychiatric disorders associated with neurosteroid deficits, and targeting epigenetic marks linked to PPAR-α downregulation may offer a valid therapeutic approach.
Collapse
|
12
|
Brugnatelli V, Facco E, Zanette G. Lifestyle Interventions Improving Cannabinoid Tone During COVID-19 Lockdowns May Enhance Compliance With Preventive Regulations and Decrease Psychophysical Health Complications. Front Psychiatry 2021; 12:565633. [PMID: 34335317 PMCID: PMC8322115 DOI: 10.3389/fpsyt.2021.565633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/18/2021] [Indexed: 01/20/2023] Open
Abstract
Studies investigating the psychosomatic effects of social isolation in animals have shown that one of the physiologic system that gets disrupted by this environment-affective change is the Endocannabinoid System. As the levels of endocannabinoids change in limbic areas and prefrontal cortex during stressful times, so is the subject more prone to fearful and negative thoughts and aggressive behavior. The interplay of social isolation on the hypothalamic-pituitary-adrenal axis and cannabinoid tone triggers a vicious cycle which further impairs the natural body's homeostatic neuroendocrine levels and provokes a series of risk factors for developing health complications. In this paper, we explore the psychosomatic impact of prolonged quarantine in healthy individuals, and propose management and coping strategies that may improve endocannabinoid tone, such as integration of probiotics, cannabidiol, meditation, and physical exercise interventions with the aim of supporting interpersonal, individual, and professional adherence with COVID-19 emergency public measures whilst minimizing their psycho-physical impact.
Collapse
|
13
|
Carlson HN, Weiner JL. The neural, behavioral, and epidemiological underpinnings of comorbid alcohol use disorder and post-traumatic stress disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:69-142. [PMID: 33648676 DOI: 10.1016/bs.irn.2020.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and (PTSD) frequently co-occur and individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Although there have been significant advances in our understanding of the neurobiological mechanisms underlying each of these disorders, the neural underpinnings of the comorbid condition remain poorly understood. This chapter summarizes recent epidemiological findings on comorbid AUD and PTSD, with a focus on vulnerable populations, the temporal relationship between these disorders, and the clinical consequences associated with the dual diagnosis. We then review animal models of the comorbid condition and emerging human and non-human animal research that is beginning to identify maladaptive neural changes common to both disorders, primarily involving functional changes in brain reward and stress networks. We end by proposing a neural framework, based on the emerging field of affective valence encoding, that may better explain the epidemiological and neural findings on AUD and PTSD.
Collapse
Affiliation(s)
- Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
14
|
Kelly AM, Wilson LC. Aggression: Perspectives from social and systems neuroscience. Horm Behav 2020; 123:104523. [PMID: 31002771 DOI: 10.1016/j.yhbeh.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023]
Abstract
Exhibiting behavioral plasticity in order to mount appropriate responses to dynamic and novel social environments is crucial to the survival of all animals. Thus, how animals regulate flexibility in the timing, duration, and intensity of specific behaviors is of great interest to biologists. In this review, we discuss how animals rapidly respond to social challenges, with a particular focus on aggression. We utilize a conceptual framework to understand the neural mechanisms of aggression that is grounded in Wingfield and colleagues' Challenge Hypothesis, which has profoundly influenced how scientists think about aggression and the mechanisms that allow animals to exhibit flexible responses to social instability. Because aggressive behavior is rooted in social interactions, we propose that mechanisms modulating prosocial behavior may be intricately tied to mechanisms of aggression. Therefore, in order to better understand how aggressive behavior is mediated, we draw on perspectives from social neuroscience and discuss how social context, species-typical behavioral phenotype, and neural systems commonly studied in relation to prosocial behavior (i.e., neuropeptides) contribute to organizing rapid responses to social challenges. Because complex behaviors are not the result of one mechanism or a single neural system, we consider how multiple neural systems important for prosocial and aggressive behavior (i.e., neuropeptides and neurosteroids) interact in the brain to produce behavior in a rapid, context-appropriate manner. Applying a systems neuroscience perspective and seeking to understand how multiple systems functionally integrate to rapidly modulate behavior holds great promise for expanding our knowledge of the mechanisms underlying social behavioral plasticity.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | - Leah C Wilson
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
15
|
Tufano M, Pinna G. Is There a Future for PPARs in the Treatment of Neuropsychiatric Disorders? Molecules 2020; 25:molecules25051062. [PMID: 32120979 PMCID: PMC7179196 DOI: 10.3390/molecules25051062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, peroxisome proliferator-activated receptor (PPAR)-α and γ isoforms have been gaining consistent interest in neuropathology and treatment of neuropsychiatric disorders. Several studies have provided evidence that either the receptor expression or the levels of their endogenously-produced modulators are downregulated in several neurological and psychiatric disorders and in their respective animal models. Remarkably, administration of these endogenous or synthetic ligands improves mood and cognition, suggesting that PPARs may offer a significant pharmacological target to improve several neuropathologies. Furthermore, various neurological and psychiatric disorders reflect sustained levels of systemic inflammation. Hence, the strategy of targeting PPARs for their anti-inflammatory role to improve these disorders is attracting attention. Traditionally, classical antidepressants fail to be effective, specifically in patients with inflammation. Non-steroidal anti-inflammatory drugs exert potent antidepressant effects by acting along with PPARs, thereby strongly substantiating the involvement of these receptors in the mechanisms that lead to development of several neuropathologies. We reviewed running findings in support of a role for PPARs in the treatment of neurological diseases, including Alzheimer's disease or psychiatric disorders, such as major depression. We discuss the opportunity of targeting PPARs as a future pharmacological approach to decrease neuropsychiatric symptoms at the same time that PPAR ligands resolve neuroinflammatory processes.
Collapse
Affiliation(s)
| | - Graziano Pinna
- Correspondence: or ; Tel.: +1-312-355-1464; Fax: +1-312-413-4569
| |
Collapse
|
16
|
Social experience and sex-dependent regulation of aggression in the lateral septum by extrasynaptic δGABA A receptors. Psychopharmacology (Berl) 2020; 237:329-344. [PMID: 31691846 PMCID: PMC7024004 DOI: 10.1007/s00213-019-05368-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022]
Abstract
RATIONALE Understanding the neurobiological mechanisms mediating dominance and competitive aggression is essential to understanding the development and treatment of various psychiatric disorders. Previous research suggests that these mechanisms are both sexually differentiated and influenced substantially by social experience. In numerous species, GABAA receptors in the lateral septum have been shown to play a significant role in aggression in males. However, very little is known about the role of these GABAA receptors in female aggression, the role of social experience on GABAA receptor-mediated aggression, or the roles of different GABAA subtypes in regulating aggression. OBJECTIVES Thus, in the following set of experiments, we determined the role of social experience in modulating GABAA receptor-induced aggression in both male and female Syrian hamsters, with a particular focus on the GABAA receptor subtype mediating these effects. RESULTS Activation of GABAA receptors in the dorsal lateral septum increased aggression in both males and females. Social housing, however, significantly decreased the ability of GABAA receptor activation to induce aggression in males but not females. No significant differences were observed in the effects of GABAA receptor activation in dominant versus subordinate group-housed hamsters. Finally, examination of potential GABAA receptor subtype specificity revealed that social housing decreased the ratio of δ extrasynaptic to γ2 synaptic subunit GABAA receptor mRNA expression in the anterior dorsal lateral septum, while activation of δ extrasynaptic, but not γ2 synaptic, GABAA receptors in the dorsal lateral septum increased aggression. CONCLUSIONS These data suggest that social experience can have profound effects on the neuronal mechanisms mediating aggression, especially in males, and that δ extrasynaptic GABAA receptors may be an important therapeutic target in disorders characterized by high levels of aggression.
Collapse
|
17
|
Abstract
Understanding the neurobiological basis of post-traumatic stress disorder (PTSD) is fundamental to accurately diagnose this neuropathology and offer appropriate treatment options to patients. The lack of pharmacological effects, too often observed with the most currently used drugs, the selective serotonin reuptake inhibitors (SSRIs), makes even more urgent the discovery of new pharmacological approaches. Reliable animal models of PTSD are difficult to establish because of the present limited understanding of the PTSD heterogeneity and of the influence of various environmental factors that trigger the disorder in humans. We summarize knowledge on the most frequently investigated animal models of PTSD, focusing on both their behavioral and neurobiological features. Most of them can reproduce not only behavioral endophenotypes, including anxiety-like behaviors or fear-related avoidance, but also neurobiological alterations, such as glucocorticoid receptor hypersensitivity or amygdala hyperactivity. Among the various models analyzed, we focus on the social isolation mouse model, which reproduces some deficits observed in humans with PTSD, such as abnormal neurosteroid biosynthesis, changes in GABAA receptor subunit expression and lack of pharmacological response to benzodiazepines. Neurosteroid biosynthesis and its interaction with the endocannabinoid system are altered in PTSD and are promising neuronal targets to discover novel PTSD agents. In this regard, we discuss pharmacological interventions and we highlight exciting new developments in the fields of research for novel reliable PTSD biomarkers that may enable precise diagnosis of the disorder and more successful pharmacological treatments for PTSD patients.
Collapse
|
18
|
Locci A, Pinna G. Stimulation of Peroxisome Proliferator-Activated Receptor-α by N-Palmitoylethanolamine Engages Allopregnanolone Biosynthesis to Modulate Emotional Behavior. Biol Psychiatry 2019; 85:1036-1045. [PMID: 30955840 DOI: 10.1016/j.biopsych.2019.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/31/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The endocannabinoid and neurosteroid systems regulate emotions and stress responses. Activation of peroxisome proliferator-activated receptor (PPAR)-α by the endocannabinoid congener N-palmitoylethanolamine (PEA) regulates pathophysiological systems (e.g., inflammation, oxidative stress) and induces peripheral biosynthesis of allopregnanolone, a gamma-aminobutyric acidergic neurosteroid implicated in mood disorders. However, effects of PPAR-α on emotional behavior are poorly understood. METHODS We studied the impact of PPAR-α activation on emotional behavior in a mouse model of posttraumatic stress disorder. Neurosteroid levels before and after PEA treatment were measured by gas chromatography-mass spectrometry in relevant brain regions of socially isolated versus group-housed mice exposed to the contextual fear conditioning test, elevated plus maze test, forced swim test, and tail suspension test. Neurosteroidogenic enzyme levels were quantified in hippocampus by Western blot. RESULTS PEA administered in a model of conditioned contextual fear reconsolidation blockade facilitated fear extinction and fear extinction retention and induced marked antidepressive- and anxiolytic-like effects in socially isolated mice with reduced brain allopregnanolone levels. These effects were mimicked by the PPAR-α synthetic agonists, fenofibrate and GW7647, and were prevented by PPAR-α deletion, PPAR-α antagonists, and neurosteroid-enzyme inhibitors. Behavioral improvements correlated with PEA-induced upregulation of PPAR-α, neurosteroidogenic enzyme expression, and normalization of corticolimbic allopregnanolone levels. CONCLUSIONS This evidence supports a previously unknown role for PPAR-α in behavior regulation and suggests new strategies for the treatment of neuropsychopathologies characterized by deficient neurosteroidogenesis, including posttraumatic stress disorder and major depressive disorder.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
19
|
Pinna G. Animal Models of PTSD: The Socially Isolated Mouse and the Biomarker Role of Allopregnanolone. Front Behav Neurosci 2019; 13:114. [PMID: 31244621 PMCID: PMC6579844 DOI: 10.3389/fnbeh.2019.00114] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating undertreated condition that affects 8%-13% of the general population and 20%-30% of military personnel. Currently, there are no specific medications that reduce PTSD symptoms or biomarkers that facilitate diagnosis, inform treatment selection or allow monitoring drug efficacy. PTSD animal models rely on stress-induced behavioral deficits that only partially reproduce PTSD neurobiology. PTSD heterogeneity, including comorbidity and symptoms overlap with other mental disorders, makes this attempt even more complicated. Allopregnanolone, a neurosteroid that positively, potently and allosterically modulates GABAA receptors and, by this mechanism, regulates emotional behaviors, is mainly synthesized in brain corticolimbic glutamatergic neurons. In PTSD patients, allopregnanolone down-regulation correlates with increased PTSD re-experiencing and comorbid depressive symptoms, CAPS-IV scores and Simms dysphoria cluster scores. In PTSD rodent models, including the socially isolated mouse, decrease in corticolimbic allopregnanolone biosynthesis is associated with enhanced contextual fear memory and impaired fear extinction. Allopregnanolone, its analogs or agents that stimulate its synthesis offer treatment approaches for facilitating fear extinction and, in general, for neuropsychopathologies characterized by a neurosteroid biosynthesis downregulation. The socially isolated mouse model reproduces several other deficits previously observed in PTSD patients, including altered GABAA receptor subunit subtypes and lack of benzodiazepines pharmacological efficacy. Transdiagnostic behavioral features, including expression of anxiety-like behavior, increased aggression, a behavioral component to reproduce behavioral traits of suicidal behavior in humans, as well as alcohol consumption are heightened in socially isolated rodents. Potentials for assessing novel biomarkers to predict, diagnose, and treat PTSD more efficiently are discussed in view of developing a precision medicine for improved PTSD pharmacological treatments.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Pivac N. Theranostic approach to PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:260-262. [PMID: 30707987 DOI: 10.1016/j.pnpbp.2019.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
21
|
Davis MP, Behm B, Mehta Z, Fernandez C. The Potential Benefits of Palmitoylethanolamide in Palliation: A Qualitative Systematic Review. Am J Hosp Palliat Care 2019; 36:1134-1154. [PMID: 31113223 DOI: 10.1177/1049909119850807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Palmitoylethanolamide (PEA) is a nutraceutical endocannabinoid that was retrospectively discovered in egg yolks. Feeding poor children with known streptococcal infections prevented rheumatic fever. Subsequently, it was found to alter the course of influenza. Unfortunately, there is little known about its pharmacokinetics. Palmitoylethanolamide targets nonclassical cannabinoid receptors rather than CB1 and CB2 receptors. Palmitoylethanolamide will only indirectly activate classical cannabinoid receptors by an entourage effect. There are a significant number of prospective and randomized trials demonstrating the pain-relieving effects of PEA. There is lesser evidence of benefit in patients with nonpain symptoms related to depression, Parkinson disease, strokes, and autism. There are no reported drug-drug interactions and very few reported adverse effects from PEA. Further research is needed to define the palliative benefits to PEA.
Collapse
|