1
|
Ndlovu SP, Motaung KSCM, Razwinani M, Alven S, Adeyemi SA, Ubanako PN, Ngema LM, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Capparis sepiaria-Loaded Sodium Alginate Single- and Double-Layer Membrane Composites for Wound Healing. Pharmaceutics 2024; 16:1313. [PMID: 39458642 PMCID: PMC11510319 DOI: 10.3390/pharmaceutics16101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Effective wound dressing is the key solution to combating the increased death rate and prolonged hospital stay common to patients with wounds. Methods: Sodium alginate-based single- and double-layer membranes incorporated with Capparis sepiaria root extract were designed using the solvent-casting method from a combination of polyvinyl alcohol (PVA), Pluronic F127 (PF127), and gum acacia. Results: The successful preparation of the membranes and loading of the extract were confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The prepared membranes were biodegradable and non-toxic to human skin cells (HaCaT), with high biocompatibility of 92 to 112% cell viability and good hemocompatibility with absorbance ranging from 0.17 to 0.30. The membrane's highest water vapor transmission rate was 1654.7333 ± 0.736 g/m2/day and the highest % porosity was 76%. The membranes supported cellular adhesion and migration, with the highest closure being 68% after 4 days compared with the commercial wound dressings. This membrane exhibited enhanced antimicrobial activity against the pathogens responsible for wound infections. Conclusions: The distinct features of the membranes make them promising wound dressings for treating infected wounds.
Collapse
Affiliation(s)
- Sindi P. Ndlovu
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| | | | - Mapula Razwinani
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa;
| | - Sibusiso Alven
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa;
| | - Samson A. Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Philemon N. Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Lindokuhle M. Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Thierry Y. Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa;
| | - Derek T. Ndinteh
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa;
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| |
Collapse
|
2
|
Singh R, Priya H, Kumar SR, Trivedi D, Prasad N, Ahmad F, Chengaiyan JG, Haque S, Rana SS. Gum Ghatti: A Comprehensive Review on Production, Processing, Remarkable Properties, and Diverse Applications. ACS OMEGA 2024; 9:9974-9990. [PMID: 38463282 PMCID: PMC10918680 DOI: 10.1021/acsomega.3c08198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Gum ghatti, popularly known as Indian gum and obtained from Anogeissus latifolia, is a complex high-molecular-weight, water-soluble, and swellable nonstarch polysaccharide comprised of magnesium and calcium salts of ghattic acids and multiple monosugars. Unlike other nontimber forest produce, gums ghatti is a low-volume but high-value product. It has several applications and is widely used as food, in pharmaceuticals, and for wastewater treatment and hydrogel formation, and it has attracted a great deal of attention in the fields of energy, environmental science, and nanotechnology. Industrial applications of gum ghatti are primarily due to its excellent emulsification, stabilization, thickening, heat tolerance, pH stability, carrier, and biodegradable properties. However, utilization of gum ghatti is poorly explored and implemented due to a lack of knowledge of its production, processing, and properties. Nevertheless, there has been interest among investigators in recent times for exploring its production, processing, molecular skeleton, and functional properties. This present review focuses on production scenarios, processing aspects, structural and functional properties, and potential applications in the food, pharmaceuticals, nonfood, and other indigenous and industrial usages.
Collapse
Affiliation(s)
- Ranjit Singh
- ICAR-Indian
Agricultural Research Institute, Gauria Karma, Hazaribagh, Jharkhand 825405, India
- Food
Engineering and Bioprocess Technology, Asian
Institute of Technology, Klong
Luang, Pathum Thani 12120, Thailand
| | - Himani Priya
- ICAR-Indian
Agricultural Research Institute, Gauria Karma, Hazaribagh, Jharkhand 825405, India
| | - Simmi Ranjan Kumar
- Department
of Biotechnology, Faculty of Science, Mahidol
University, Phayathai, Bangkok 10400, Thailand
| | - Dipika Trivedi
- Food
Engineering and Bioprocess Technology, Asian
Institute of Technology, Klong
Luang, Pathum Thani 12120, Thailand
| | - Niranjan Prasad
- Agricultural
Structures and Process Engineering Division (AS&PE), ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand 834010, India
| | - Faraz Ahmad
- School
of Bio Science and Technology (SBST), Vellore
Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Jeevitha Gada Chengaiyan
- School
of Bio Science and Technology (SBST), Vellore
Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and
Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
- Centre of
Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab
Emirates
| | - Sandeep Singh Rana
- School
of Bio Science and Technology (SBST), Vellore
Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
3
|
Kamaliya BP, Dave PN, Chopda LV. Synthesis of GG- g-P(NIPAM- co-AA)/GO and evaluation of adsorption activity for the diclofenac and metformin. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:403-416. [PMID: 37869591 PMCID: PMC10584777 DOI: 10.1007/s40201-023-00867-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/22/2023] [Indexed: 10/24/2023]
Abstract
The grafting of biopolymer gum ghatti (GG) over the PNIPAM and PAA was done and loaded with graphene oxide (GO). Aim of this work is carried out combine adsorption of sodium diclofenac (SD) and metformin (MF) by the prepared hydrogels under influence of various parameters. The adsorbent GG-g-P(NIPAM-co-PAA)/GO(3 mg) chosen for adsorption activity as it displayed highest swelling capacity. The effect of amount of both adsorbents GG-g-P(NIPAM-co-PAA and GG-g-P(NIPAM-co-PAA)/GO(3 mg) showed that highest adsorption capacity found at 40 mg of adsorbents for both drugs at conditions: 100 mg/L concentration, 30 °C, 24 h and pH 6 and subsequently became stable. Both the drugs were removed in greater amount at 25 mg/L concentration, 24 h of contact time, 30 °C, 40 mg amount of both adsorbents and pH 6. Effect of time revealed that as time elevated from 2 h to 12 (100 mg/L concentration,, 30 °C, 40 mg amount of both adsorbents and pH 6) led to increase adsorption efficiency and after that increase time did not much impact on adsorption activity. Adsorption activity of hydrogels declined with increase of temperature (100 mg/L concentration, 12 h, 40 mg amount of both adsorbents and pH 6). The acidic conditions favored adsorption of SD while MF adsorbed under the weak acidic(100 mg/L concentration, 30 °C, 12 h, 40 mg amount of both adsorbents). However, basic conditions did not much influence on adsorption of MF but effected on adsorption activity of SD. Adsorption isotherm and kinetic model suggested that adsorption is homogenous and chemical in nature. The maximum adsorption capacity (qm) found to be 289.01 and 154.55 mg/g for SD and MF respectively. Graphical abstract Supplementary information The online version contains supplementary material available at 10.1007/s40201-023-00867-w.
Collapse
Affiliation(s)
- Bhagvan P. Kamaliya
- Department of Chemistry, Sardar Patel University, Vallabh Vidynagar, Gujarat 388 120 India
| | - Pragnesh N. Dave
- Department of Chemistry, Sardar Patel University, Vallabh Vidynagar, Gujarat 388 120 India
| | - Lakha V. Chopda
- B. N. Patel Institute of Paramedical & Science (Science Division), Sardar Patel Education Trust, Bhalej Road, Anand, Gujarat 370 001 India
| |
Collapse
|
4
|
Mehta P, Sharma M, Devi M. Hydrogels: An overview of its classifications, properties, and applications. J Mech Behav Biomed Mater 2023; 147:106145. [PMID: 37797557 DOI: 10.1016/j.jmbbm.2023.106145] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
The review paper starts with the introduction to hydrogels along with broad literature survey covering different modes of synthesis including high energy radiation methods. After that, paper covered broad classification of the hydrogels depending upon the basis of their source of origin, method of synthesis, type of cross-linking present and ionic charges on bound groups. Another advanced category response triggered hydrogels, which includes pH, temperature, electro, and light and substrate responsive hydrogels was also studied. Presented paper summarises chemical structure, properties, and synthesis of different kinds of hydrogels. Main focus was given to the preparation super absorbents such as: Semi-interpenetrating networks (semi-IPNs), Interpenetrating networks (IPNs) and cross-linked binary graft copolymers (BGCPs). The weak mechanical properties and easy degradation limit the uses of bio-based -hydrogels in biomedical field. Their properties can be improved through different chemical and physical methods. These methods were also discussed in the current research paper. Also, it includes development of hydrogels as controlled drug delivery devices, as implants and biomaterials to replace malfunctioned body parts along with their use in several other applications listed in the literature. Literature survey on the application of hydrogels in different fields like biomedical, nano-biotechnology, tissue engineering, drug delivery and agriculture was also carried out.
Collapse
Affiliation(s)
- Preeti Mehta
- Department of Applied Sciences, CEC-Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India.
| | - Monika Sharma
- Department of Applied Sciences, CEC-Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India.
| | - Meena Devi
- Department of Applied Sciences, CEC-Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India.
| |
Collapse
|
5
|
Dave PN, Macwan PM, Kamaliya B. Biodegradable Gg- cl-poly(NIPAm- co-AA)/- o-MWCNT based hydrogel for combined drug delivery system of metformin and sodium diclofenac: in vitro studies. RSC Adv 2023; 13:22875-22885. [PMID: 37520088 PMCID: PMC10375256 DOI: 10.1039/d3ra04728h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
In the present study Gg-cl-poly(NIPA-co-AA) and Gg-cl-poly(NIPA-co-AA)/-o-MWCNT hydrogels were synthesized using free radical polymerization. We looked into whether combining metformin with diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), would be effective in examining complex formation and analysing the types and intensities of complexes that could result from metformin-diclofenac interactions. The interaction of metformin and diclofenac was studied in vitro at various pH levels and body temperatures. The structure and morphology of the produced hydrogel were characterised using FTIR spectra, SEM analysis, and drug loading tests. As a model drug, the hydrogel was loaded with metformin hydrochloride and sodium diclofenac (DS), and the medicines were released pH-dependently. To explore the drug release kinetics and mechanism, the zero order and first order kinetic models, the Korsemeyar-Peppas model, the Higuchi model, and the Hixson-Crowell model have all been employed. Drug release studies revealed notable characteristics in connection to physiologically predicted pH values, with a high release rate at pH = 9.2. At pH = 9.2, however, both metformin and sodium diclofenac exhibited a Fickian mechanism. Combination treatment may reduce the effective dose of a single drug and hinder metabolic rescue mechanisms. More study is needed to detect any negative effects on individuals.
Collapse
Affiliation(s)
- Pragnesh N Dave
- Department of Chemistry, Sardar Patel University Vallabh Vidyangar Gujarat 388 120 India
| | - Pradip M Macwan
- B. N. Patel Institute of Paramedical & Science (Science Division) Sardar Patel Education Trust, Bhalej Road Anand 388001 Gujarat India
| | - Bhagvan Kamaliya
- Department of Chemistry, Sardar Patel University Vallabh Vidyangar Gujarat 388 120 India
| |
Collapse
|
6
|
Benny Mattam L, Bijoy A, Abraham Thadathil D, George L, Varghese A. Conducting Polymers: A Versatile Material for Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202201765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liya Benny Mattam
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Anusha Bijoy
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Louis George
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| |
Collapse
|
7
|
Dalei G, Das S. Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Tran TS, Balu R, Mettu S, Roy Choudhury N, Dutta NK. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals (Basel) 2022; 15:1282. [PMID: 36297394 PMCID: PMC9609121 DOI: 10.3390/ph15101282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Advancements in the material design of smart hydrogels have transformed the way therapeutic agents are encapsulated and released in biological environments. On the other hand, the expeditious development of 3D printing technologies has revolutionized the fabrication of hydrogel systems for biomedical applications. By combining these two aspects, 4D printing (i.e., 3D printing of smart hydrogels) has emerged as a new promising platform for the development of novel controlled drug delivery systems that can adapt and mimic natural physio-mechanical changes over time. This allows printed objects to transform from static to dynamic in response to various physiological and chemical interactions, meeting the needs of the healthcare industry. In this review, we provide an overview of innovation in material design for smart hydrogel systems, current technical approaches toward 4D printing, and emerging 4D printed novel structures for drug delivery applications. Finally, we discuss the existing challenges in 4D printing hydrogels for drug delivery and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Naba Kumar Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Drug release and thermal properties of magnetic cobalt ferrite (CoFe2O4) nanocomposite hydrogels based on poly(acrylic acid-g-N-isopropyl acrylamide) grafted onto gum ghatti. Int J Biol Macromol 2022; 224:358-369. [DOI: 10.1016/j.ijbiomac.2022.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
10
|
Assessing the potential of galactomannan isolated from six varieties of Cyamopsis tetragonoloba L. for hydrogel formation and controlled drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Liu Y, Zhu Y, Wang Y, Mu B, Wang X, Wang A. Eco-friendly superabsorbent composites based on calcined semicoke and polydimethylourea phosphate: Synthesis, swelling behavior, degradability and their impact on cabbage growth. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Kamaliya B, Dave PN, Macwan PM. Oxidized multiwalled carbon nanotube reinforced rheological examination on Gum ghatti‐
cl‐poly
(acrylic acid) hydrogels. J Appl Polym Sci 2022. [DOI: 10.1002/app.52888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bhagvan Kamaliya
- Department of Chemistry Sardar Patel University Vallabh Vidyangar India
| | - Pragnesh N. Dave
- Department of Chemistry Sardar Patel University Vallabh Vidyangar India
| | - Pradip M. Macwan
- B. N. Patel Institute of Paramedical & Science (Science Division), Sardar Patel Education Trust Anand India
| |
Collapse
|
13
|
Mir A, Kumar A, Riaz U. A short review on the synthesis and advance applications of polyaniline hydrogels. RSC Adv 2022; 12:19122-19132. [PMID: 35865573 PMCID: PMC9244896 DOI: 10.1039/d2ra02674k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Conductive polymeric hydrogels (CPHs) exhibit remarkable properties such as high toughness, self-recoverability, electrical conductivity, transparency, freezing resistance, stimulus responsiveness, stretch ability, self-healing, and strain sensitivity. Due to their exceptional physicochemical and physio-mechanical properties, among the widely studied CPHs, polyaniline (PANI) has been the subject of immense interest due to its stability, tunable electrical conductivity, low cost, and good biocompatibility. The current state of research on PANI hydrogel is discussed in this short review, along with the properties, preparation methods, and common characterization techniques as well as their applications in a variety of fields such as sensor and actuator manufacturing, biomedicine, and soft electronics. Furthermore, the future development and applications of PANI hydrogels are also mentioned.
Collapse
Affiliation(s)
- Aleena Mir
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Amit Kumar
- Theory & Simulation Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| |
Collapse
|
14
|
Synthesis of pH-Sensitive Cross-Linked Basil Seed Gum/Acrylic Acid Hydrogels by Free Radical Copolymerization Technique for Sustained Delivery of Captopril. Gels 2022; 8:gels8050291. [PMID: 35621589 PMCID: PMC9140626 DOI: 10.3390/gels8050291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
The pH-sensitive polymeric matrix of basil seed gum (BSG), with two different monomers, such as acrylic acid (AA) and N, N-Methylene-bis-acrylamide (MBA), was selected to use in hydrogels preparation through a free radical copolymerization technique using potassium per sulfate (KPS) as a cross linker. BSG, AA and MBA were used in multiple ratios to investigate the polymer, monomer and initiator effects on swelling properties and release pattern of captopril. Characterization of formulated hydrogels was done by FTIR, DSC/TGA, XRD and SEM techniques to confirm the stability. The hydrogels were subjected to a variety of tests, including dynamic swelling investigations, drug loading, in vitro drug release, sol–gel analyses and rheological studies. FTIR analysis confirmed that after the polymeric reaction of BSG with the AA monomer, AA chains grafted onto the backbone of BSG. The SEM micrographs illustrated an irregular, rough, and porous form of surface. Gel content was increased by increasing the contents of polymeric gum (BSG) with monomers (AA and MBA). Acidic and basic pH effects highlighted the difference between the swelling properties with BSG and AA on increasing concentration. Kinetic modelling suggested that Korsmeyer Peppas model release pattern was followed by the drug with the non-Fickian diffusion mechanism.
Collapse
|
15
|
Quantum chemical studies to functionalization of boron nitride nanotube (BNNT) as effective nanocarriers. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-021-00219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Dan S, Kalantari M, Kamyabi A, Soltani M. Synthesis of chitosan-g-itaconic acid hydrogel as an antibacterial drug carrier: optimization through RSM-CCD. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03903-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Shi H, Dai Z, Sheng X, Xia D, Shao P, Yang L, Luo X. Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147430. [PMID: 33964778 DOI: 10.1016/j.scitotenv.2021.147430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Environmentally friendly polymeric materials and derivative technologies play increasingly important roles in the sustainable development of our modern society. Conducting polymer hydrogels (CPHs) synergizing the advantageous characteristics of conventional hydrogels and conducting polymers are promising to satisfy the requirements of environmental sustainability. Beyond their use in energy and biomedical applications that require exceptional mechanical and electrical properties, CPHs are emerging as promising contaminant adsorbents owing to their porous network structure and regulable functional groups. Here, we review the currently available strategies for synthesizing CPHs, focusing primarily on multifunctional applications in energy storage/conversion, biomedical engineering and environmental remediation, and discuss future perspectives and challenges for CPHs in terms of their synthesis and applications. It is envisioned to stimulate new thinking and innovation in the development of next-generation sustainable materials.
Collapse
Affiliation(s)
- Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhenxi Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xin Sheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Xia
- School of Space and Environment, Beihang University, Beijing 100083, PR China.
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
18
|
Formulation, In Vitro Evaluation, and Toxicity Studies of A. vulgaris-co-AAm Carrier for Vildagliptin. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/6634780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the use of Artemisia vulgaris L. seed mucilage as a new excipient for sustained delivery of Vildagliptin. Copolymeric carrier of A. vulgaris seed mucilage-co-AAm was devised by using acrylamide (AAm) as a monomer, methylene-bis-acrylamide (MBA) as a crosslinker, and potassium persulfate (KPS) as an initiator through free radical polymerization. Different formulations of A. vulgaris-co-AAm were devised by varying contents of polymer, monomer, crosslinking agent, initiator, and reaction temperature. Copolymeric structures were characterized through XRD analysis, Fourier transform infrared (FTIR) spectroscopy, TGA and DSC analysis, and scanning electron microscopy. Porosity, gel fraction, and Vildagliptin loading capacity of copolymers were also established. Swelling and in vitro drug release studies were conducted. XRD evaluation showed the alteration of the crystalline structure of Vildagliptin into an amorphous form. FTIR analysis confirmed the successful grafting of AAm to A. vulgaris seed mucilage backbone. Porosity was increased with increasing polymer concentration and reaction temperature while it was decreased with an increasing amount of AAm, MBA, and KPS. Gel content was decreased with increasing polymer concentration and reaction temperature while it was increased with an increasing amount of AAm, MBA, and KPS. Acute oral toxicity of copolymeric network was done in animal models to evaluate the safety. Copolymers showed the same swelling behavior at all pH 1.2, 4.5, 6.8, and 7.4. Vildagliptin release from copolymer showed a cumulative trend by increasing polymer content and reaction temperature, while a declining trend was observed with increasing contents of monomer, crosslinking agent, and initiator. Sustained release of Vildagliptin was observed from copolymers and release followed the Korsmeyer-Peppas model. From the acute oral toxicity studies, it is evident that newly synthesized copolymeric carriers are potentially safe for eyes, skin, and vital organs.
Collapse
|
19
|
Kenawy ER, Seggiani M, Hosny A, Rashad M, Cinelli P, Saad-Allah KM, El-Sharnouby M, Shendy S, Azaam MM. Superabsorbent composites based on rice husk for agricultural applications: Swelling behavior, biodegradability in soil and drought alleviation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Rodrigues Sousa H, Lima IS, Neris LML, Silva AS, Santos Nascimento AMS, Araújo FP, Ratke RF, Silva DA, Osajima JA, Bezerra LR, Silva-Filho EC. Superabsorbent Hydrogels Based to Polyacrylamide/Cashew Tree Gum for the Controlled Release of Water and Plant Nutrients. Molecules 2021; 26:2680. [PMID: 34063701 PMCID: PMC8125684 DOI: 10.3390/molecules26092680] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/27/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Agricultural production is influenced by the water content in the soil and availability of fertilizers. Thus, superabsorbent hydrogels, based on polyacrylamide, natural cashew tree gum (CG) and potassium hydrogen phosphate (PHP), as fertilizer and water releaser were developed. The structure, morphology, thermal stability and chemical composition of samples of polyacrylamide and cashew tree gum hydrogels with the presence of fertilizer (HCGP) and without fertilizer (HCG) were investigated, using X-ray diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA/DTG) and Energy Dispersive Spectroscopy (EDS). Swelling/reswelling tests, textural analysis, effect of pH, release of nutrients and kinetics were determined; the ecotoxicity of the hydrogels was investigated by the Artemia salina test. The results showed that PHP incorporation in the hydrogel favored the crosslinking of chains. This increased the thermal stability in HCGP but decreased the hardness and adhesion properties. The HCGP demonstrated good swelling capacity (~15,000 times) and an excellent potential for reuse after fifty-five consecutive cycles. The swelling was favored in an alkaline pH due to the ionization of hydrophilic groups. The sustained release of phosphorus in HCGP was described by the Korsmeyer-Peppas model, and Fickian diffusion is the main fertilizer release mechanism. Finally, the hydrogels do not demonstrate toxicity, and HCGP has potential for application in agriculture.
Collapse
Affiliation(s)
- Heldeney Rodrigues Sousa
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Idglan Sá Lima
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Lucas Matheus Lima Neris
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Albert Santos Silva
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Ariane Maria Silva Santos Nascimento
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Francisca Pereira Araújo
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Rafael Felippe Ratke
- Graduate Studies in Agronomy, Mato Grosso of Soulth Federal University, Chapadão do Sul 76560-000, Mato Grosso do Sul, Brazil;
| | - Durcilene Alves Silva
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
- Research Center on Biodiversity and Biotechnolog, Delta do Parnaíba Federal University, Parnaíba 64202-020, Piaui, Brazil
| | - Josy Anteveli Osajima
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| | - Leilson Rocha Bezerra
- Veterinary Medicine Academic Unit, Campina Grande Federal University, Patos 58708-110, Paraíba, Brazil;
| | - Edson Cavalcanti Silva-Filho
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil; (H.R.S.); (I.S.L.); (L.M.L.N.); (A.S.S.); (A.M.S.S.N.); (F.P.A.); (D.A.S.); (J.A.O.)
| |
Collapse
|
21
|
Milakin KA, Morávková Z, Acharya U, Kašparová M, Breitenbach S, Taboubi O, Hodan J, Hromádková J, Unterweger C, Humpolíček P, Bober P. Enhancement of conductivity, mechanical and biological properties of polyaniline-poly(N-vinylpyrrolidone) cryogels by phytic acid. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Stimuli-responsive natural gums-based drug delivery systems for cancer treatment. Carbohydr Polym 2021; 254:117422. [PMID: 33357903 DOI: 10.1016/j.carbpol.2020.117422] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
Chemotherapy as the main cancer treatment method has non-specific effects and various side-effects. Accordingly, significant attempts have been conducted to enhance its efficacy through design and development of "smart" drug delivery systems (DDSs). In this context, natural gums, as a nice gift by the nature, can be exploited as stimuli-responsive DDSs for cancer treatment in part due to their renewability, availability, low cost, bioactivity, biocompatibility, low immunogenicity, biodegradability, and acceptable stability in both in vitro and in vivo conditions. However, some shortcomings (e.g., poor mechanical properties and high hydration rate) restrict their biomedical application ranges that can be circumvented through modification process (e.g., grafting of stimuli-responsive polymers or small molecules) to obtain tailored biomaterials. This review article aimed to compile the stimuli-responsive DDSs based on natural gums. In addition, different types of stimuli, the fundamental features of natural gums, as well as their chemical modification approaches are also shortly highlighted.
Collapse
|
23
|
Rizzarelli P, Rapisarda M, Valenti G. Mass spectrometry in bioresorbable polymer development, degradation and drug-release tracking. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8697. [PMID: 31834664 DOI: 10.1002/rcm.8697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A detailed characterization of polymeric matrices and appropriate degradation monitoring techniques are required to sustain the development of new materials as well as to enlarge the applications of the old ones. In fact, polymer analysis is essential for the clarification of the intrinsic relationship between structure and properties that ascertains the industrial applications in diverse fields. In bioresorbable and biodegradable polymers, the role of analytical methods is dual since it is pointed both at the polymeric matrices and at degradation tracking. The structural architectures, the mechanical and morphological properties, and the degradation rate, are of outstanding importance for a specific application. In some cases, the complexity of the polymer structure, the processes of decomposition or the low concentration of the degradation products need the concurrent use of different complementary analytical techniques to give detailed information of the reactions taking place. Several analytical methods are used in bioresorbable polymer development and degradation tracking. Among them, mass spectrometry (MS) plays an essential role and it is used to refine polymer syntheses, for its high sensitivity, to highlight degradation mechanism by detecting compounds present in trace amounts, or to track the degradation product profile and to study drug release. In fact, elucidation of reaction mechanisms and polymer structure, attesting to the purity and detecting defects as well as residual catalysts, in biodegradable and bioresorbable polymers, requires sensitive analytical characterization methods that are essential in providing an assurance of safety, efficacy and quality. This review aims to provide an overview of the MS strategies used to support research and development of resorbable polymers as well as to investigate their degradation mechanisms. It is focused on the most significant studies concerning synthetic bioresorbable matrices (polylactide, polyglycolide and their copolymers, polyhydroxybutyrate, etc.), published in the last ten years.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Marco Rapisarda
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Graziella Valenti
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| |
Collapse
|
24
|
Akhlaq M, Idrees N, Nawaz A, Jalil A, Zafar N, Adeel M, Ullah I, Mukhtiar M, Afridi HH. HPMC-co-acrylic acid dexibuprofen once-daily oral hydrogels. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1756319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Nadia Idrees
- Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Aamir Jalil
- Department of Pharmaceutical Technology, University of Innsbruck, Innsbruck, Austria
| | - Nadiah Zafar
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University, D.I. Khan, Pakistan
| | - Izahr Ullah
- Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
- Department of Pharmacy, The University of Poonch, Rawalakot, Pakistan
| | - Muhammad Mukhtiar
- Department of Pharmacy, The University of Poonch, Rawalakot, Pakistan
| | - Hamid Hussain Afridi
- Department of Pharmacy, Shaheed Benazir Bhutu University, Sheringal Dir, Pakistan
| |
Collapse
|
25
|
Milakin KA, Trchová M, Acharya U, Breitenbach S, Unterweger C, Hodan J, Hromádková J, Pfleger J, Stejskal J, Bober P. Effect of initial freezing temperature and comonomer concentration on the properties of poly(aniline-co-m-phenylenediamine) cryogels supported by poly(vinyl alcohol). Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04608-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Sethi S, Kaith BS, Kaur M, Sharma N, Khullar S. Study of a cross-linked hydrogel of Karaya gum and Starch as a controlled drug delivery system. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1687-1708. [DOI: 10.1080/09205063.2019.1659710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sapna Sethi
- Department of Chemistry, DAV University Jalandhar, Punjab, India
| | - Balbir Singh Kaith
- Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Mandeep Kaur
- Department of Chemistry, DAV University Jalandhar, Punjab, India
| | - Neeraj Sharma
- Department of Chemistry, DAV University Jalandhar, Punjab, India
| | - Sadhika Khullar
- Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
27
|
A review on latest innovations in natural gums based hydrogels: Preparations & applications. Int J Biol Macromol 2019; 136:870-890. [DOI: 10.1016/j.ijbiomac.2019.06.113] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 02/03/2023]
|
28
|
Mohammadinejad R, Maleki H, Larrañeta E, Fajardo AR, Nik AB, Shavandi A, Sheikhi A, Ghorbanpour M, Farokhi M, Govindh P, Cabane E, Azizi S, Aref AR, Mozafari M, Mehrali M, Thomas S, Mano JF, Mishra YK, Thakur VK. Status and future scope of plant-based green hydrogels in biomedical engineering. APPLIED MATERIALS TODAY 2019; 16:213-246. [DOI: 10.1016/j.apmt.2019.04.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
29
|
KARAKUŞ S. A Novel ZnO Nanoparticle as Drug Nanocarrier in Therapeutic applications: Kinetic Models and Error Analysis. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.405505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
30
|
Piao M, Zou D, Yang Y, Ren X, Qin C, Piao Y. Multi-Functional Laccase Immobilized Hydrogel Microparticles for Efficient Removal of Bisphenol A. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E704. [PMID: 30818844 PMCID: PMC6427804 DOI: 10.3390/ma12050704] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Hghly stable, reusable, and multi-functional biocatalytic microparticles with Laccase (Lac) enzyme (Lac/particles) were synthesized for bisphenol A (BPA) removal from aqueous solution. The Lac/particles were prepared by encapsulating Lac enzymes into poly ethylene glycol (PEG) hydrogel via the UV assisted emulsion polymerization method followed by cross linking with glutaraldehyde (GA). The obtained Lac/particles were spherical and micron sized (137⁻535 μm), presenting high enzyme entrapment efficiency of 100%, high activity recovery of 18.9%, and great stability at various pHs (3⁻7) than the free Lac. The Lac/particles could adsorb the BPA into the catalytic particles in a short time, promoting contact between BPA and enzyme, and further enzymatically degrade them without the shaking process and independent surrounding buffer solution. The Lac/particles could be reused for another round BPA adsorption and biotranformation by maintaining over 90% of BPA removal efficiency after seven times reuse. The synergistic effects of adsorption and biocatalytical reaction of Lac/particles have significant values in high efficient and cost-effective BPA removal.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
- College of Environmental Science and Engineering, Jilin Normoal University, 1301 Haifeng Road, Siping 136000, China.
| | - Donglei Zou
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Yuesuo Yang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China.
| | - Xianghao Ren
- Key Laboratory of Urban Storm water System and Water Environment, Ministry of Education, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Yunxian Piao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
31
|
Nath J, Chowdhury A, Ali I, Dolui SK. Development of a gelatin‐
g
‐poly(acrylic acid‐
co
‐acrylamide)–montmorillonite superabsorbent hydrogels for
in vitro
controlled release of vitamin B
12. J Appl Polym Sci 2019. [DOI: 10.1002/app.47596] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Abdel‐Bary EM, Elbedwehy AM. Graft copolymerization of polyacrylic acid onto Acacia gum using erythrosine–thiourea as a visible light photoinitiator: application for dye removal. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2205-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Shabir F, Erum A, Tulain UR, Hussain MA, Ahmad M, Akhter F. Preparation and characterization of pH sensitive crosslinked Linseed polysaccharides-co-acrylic acid/methacrylic acid hydrogels for controlled delivery of ketoprofen. Des Monomers Polym 2017; 20:485-495. [PMID: 29491820 PMCID: PMC5784885 DOI: 10.1080/15685551.2017.1368116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/29/2017] [Indexed: 11/01/2022] Open
Abstract
Some pH responsive polymeric matrix of Linseed (Linum usitatissimum), L. hydrogel (LSH) was prepared by free radical polymerization using potassium persulfate (KPS) as an initiator, N,N-methylene bisacrylamide (MBA) as a crosslinker, acrylic acid (AA) and methacrylic acid (MAA) as monomers; while ketoprofen was used as a model drug. Different formulations of LSH-co-AA and LSH-co-MAA were formulated by varying the concentration of crosslinker and monomers. Structures obtained were thoroughly characterized using Fourier transforms infrared (FTIR) spectroscopy, XRD analysis and Scanning electron microscopy. Sol-gel fractions, porosity of the materials and ketoprofen loading capacity were also measured. Swelling and in vitro drug release studies were conducted at simulated gastric fluids, i.e., pH 1.2 and 7.4. FTIR evaluation confirmed successful grafting of AA and MAA to LSH backbone. XRD studies showed retention of crystalline structure of ketoprofen in LSH-co-AA and its amorphous dispersion in LSH-co-MAA. Gel content was increased by increasing MBA and monomer content; whereas porosity of hydrogel was increased by increasing monomer concentration and decreased by increasing MBA content. Swelling of copolymer hydrogels was high at pH 7.4 and low at pH 1.2. Ketoprofen release showed an increasing trend by increasing monomer content; however it was decreased with increasing MBA content. Sustained release of ketoprofen was noted from copolymers and release followed Korsmeyer-Peppas model.
Collapse
Affiliation(s)
- Farya Shabir
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Alia Erum
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Ajaz Hussain
- Ibn-e-Sina Block, Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faiza Akhter
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
34
|
Sharma K, Kumar V, Kaith BS, Kalia S, Swart HC. Conducting Polymer Hydrogels and Their Applications. SPRINGER SERIES ON POLYMER AND COMPOSITE MATERIALS 2017. [DOI: 10.1007/978-3-319-46458-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
|
36
|
Liu W, Zhang W, Yu X, Zhang G, Su Z. Synthesis and biomedical applications of fluorescent nanogels. Polym Chem 2016. [DOI: 10.1039/c6py01021k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent nanogel is an innovative biomedical material with hydroscopicity, degradability, and responsiveness.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Wensi Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xiaoqing Yu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Guanghua Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|