1
|
Yu X, He L, Zhang X, Bao G, Zhang R, Jin X, Qin D. Eco-friendly flame-retardant bamboo fiber/polypropylene composite based on the immobilization of halloysite nanotubes by tannic acid-Fe 3+ complex. Int J Biol Macromol 2024; 265:130894. [PMID: 38490388 DOI: 10.1016/j.ijbiomac.2024.130894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Bamboo fibers (BF), as an important sustainable natural material, are becoming a hot alternative to synthetic fibers for the reinforcement of polypropylene (PP)-based composites. However, the weak interfacial compatibility between BF and PP as matrix and their inherent flammability limit the practical application of BF/PP composites (BPC). Here, a fire-safe BPC was fabricated by constructing flame-retardant interfacial layers containing tannic acid (TA)-Fe3+ complex and halloysite nanotubes (HNTs) on the fiber matrix followed by a hot-pressing process. The results showed that the interfacial chelating of TA with Fe3+ improved the dispersion of HNTs on the fibers and the interfacial interactions within the fiber matrix, resulting in the as-fabricated composite with significantly improved mechanical properties and water resistance. In addition, the flame-retardant composite exhibited higher thermal stability and enhanced residual char content. Moreover, the composite possessed significant flame-retardant performances with a reduction of 23.75 % in the total heat release and 32.44 % in the total smoke production, respectively, owing to the flame retarding in gaseous phase and condensed phase of TA-Fe3+@HNTs layers. This work offers a green and eco-friendly strategy to address the inherent problems of BPC material in terms of fire safety and interfacial compatibility, thus broadening their applications in the automotive interior and construction industries.
Collapse
Affiliation(s)
- Xi Yu
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Lu He
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Xiaofeng Zhang
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Gege Bao
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Rong Zhang
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Xiaobei Jin
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
| | - Daochun Qin
- Sanya Research Base, International Centre for Bamboo and Rattan, Sanya 572022, China
| |
Collapse
|
2
|
Cao J, Liu X, Qiu J, Yue Z, Li Y, Xu Q, Chen Y, Chen J, Cheng H, Xing G, Song E, Wang M, Liu Q, Liu M. Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion. Nat Commun 2024; 15:1116. [PMID: 38321072 PMCID: PMC10847152 DOI: 10.1038/s41467-024-45393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Stretchable electronics that prevalently adopt chemically inert metals as sensing layers and interconnect wires have enabled high-fidelity signal acquisition for on-skin applications. However, the weak interfacial interaction between inert metals and elastomers limit the tolerance of the device to external friction interferences. Here, we report an interfacial diffusion-induced cohesion strategy that utilizes hydrophilic polyurethane to wet gold (Au) grains and render them wrapped by strong hydrogen bonding, resulting in a high interfacial binding strength of 1017.6 N/m. By further constructing a nanoscale rough configuration of the polyurethane (RPU), the binding strength of Au-RPU device increases to 1243.4 N/m, which is 100 and 4 times higher than that of conventional polydimethylsiloxane and styrene-ethylene-butylene-styrene-based devices, respectively. The stretchable Au-RPU device can remain good electrical conductivity after 1022 frictions at 130 kPa pressure, and reliably record high-fidelity electrophysiological signals. Furthermore, an anti-friction pressure sensor array is constructed based on Au-RPU interconnect wires, demonstrating a superior mechanical durability for concentrated large pressure acquisition. This chemical modification-free approach of interfacial strengthening for chemically inert metal-based stretchable electronics is promising for three-dimensional integration and on-chip interconnection.
Collapse
Affiliation(s)
- Jie Cao
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Xusheng Liu
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Jie Qiu
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Zhifei Yue
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Yang Li
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Qian Xu
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Yan Chen
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Jiewen Chen
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Hongfei Cheng
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Guozhong Xing
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100029, China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 200433, China
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China.
- Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai, 200232, China.
| | - Qi Liu
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China.
- School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai, 200232, China.
| | - Ming Liu
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai, 200232, China
| |
Collapse
|
3
|
Abdul Sattar M. Surface Activated Pyrolytic Carbon Black: A Dual Functional Sustainable Filler for Natural Rubber Composites. CHEMSUSCHEM 2024; 17:e202301001. [PMID: 37743618 DOI: 10.1002/cssc.202301001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
The significant rise in end-of-life tires (ELTs) globally poses immediate environmental and human health risks. Therefore, to promote ELTs recycling and to reduce tire industry carbon emissions, herein we present a facile approach for fine-tuning the interfacial interactions between pyrolytic carbon black (P-CB) obtained from ELTs and natural rubber (NR) matrix using phosphonium-based ionic liquid (PIL). The reinforcing effect of PIL-activated P-CB was studied by replacing the furnace-grade carbon black (N330-CB) with varying PIL and P-CB loadings. Adding PIL improved the filler dispersion and the cross-linking kinetics with a substantially reduced zinc oxide (ZnO) loading. Considering the cross-linking and viscoelastic properties, it was concluded that the composite, P-CB/N330-CB-PIL (1.5)+ZnO (1) with half substitution of N330-CB with P-CB synergistically works with 1.5 phr PIL and 1 phr of ZnO resulting in improved dynamic-mechanical properties with a minimal loss tangent value at 60 °C (tanδ=0.0689) and improved glass transition temperature (Tg =-38 °C) compared to control composite. The significant drop (~29 % lower) in tanδ could reduce fuel consumption and related CO2 emissions. We envisage that this strategy opens an essential avenue for "Green Tire Technology" towards the substantial pollution abatement from ELTs and reduces the toxic ZnO.
Collapse
Affiliation(s)
- Mohammad Abdul Sattar
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
- R&D Centre, MRF Limited, Chennai, 600019, India
| |
Collapse
|
4
|
Kaur A, Gautrot JE, Akutagawa K, Watson D, Bickley A, Busfield JJC. Thiyl radical induced cis/ trans isomerism in double bond containing elastomers. RSC Adv 2023; 13:23967-23975. [PMID: 37577099 PMCID: PMC10413178 DOI: 10.1039/d3ra04157c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
This report presents an evaluation of thiyl radical-induced cis/trans isomerism in double bond-containing elastomers, such as natural, polychloroprene, and polybutadiene rubbers. The study aims to extensively investigate structural changes in polymers after functionalisation using thiol-ene chemistry, a useful click reaction for modifying polymers and developing materials with new functionalities. The paper reports on the use of different thiols, and cis/trans isomerism was detected through 1H NMR analysis, even at very low alkene/thiol mole ratios. The study finds that the configurational arrangements between non-functionalised elastomer units and thiolated units followed a trans-functionalised-cis units arrangement up to an alkene/thiol mole feed ratio of 0.3, while from 0.4 onward, a combination of trans-functionalised-cis and cis-functionalised-trans configurations are found. Additionally, it is observed that by increasing the level of functionalisation, the glass transition temperature of the resulting modified elastomer also increases. Overall, this study provides valuable insights into the effects of thiol-ene chemistry on the structure and properties of elastomers and could have important implications for the development of new materials with enhanced functionality.
Collapse
|
5
|
Sattar MA, Patnaik A. Phosphonium Ionic Liquid-Activated Sulfur Vulcanization: A Way Forward to Reduce Zinc Oxide Levels in Industrial Rubber Formulations. CHEMSUSCHEM 2023; 16:e202202309. [PMID: 36756929 DOI: 10.1002/cssc.202202309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 05/20/2023]
Abstract
Extensive use of zinc oxide and accelerators such as diphenyl guanidine (DPG) in the vulcanization of rubber composites entail potential environmental risks. These are pervasive contaminants of roadway runoff originating from tire wear particles (TWPs). Herein, the effect of phosphonium ionic liquids (PILs) in styrene-butadiene rubber compounds was demonstrated with reduced ZnO loading and no DPG to minimize the environmental footprint of the vulcanization process. The structure and chemistry of PILs were found to be the influencing parameters impelling the cross-linking kinetics, enabling shorter induction times. The generation of active Zn2+ sites by PILs was examined through FTIR spectroscopy, calorimetry, and molecular dynamics simulations. From a tire application perspective, the PILs not only enhanced the cure kinetics but also improved the dynamic-mechanical behavior of the rubber composites. Consequently, the harm caused by TWPs to the atmosphere, fuel intake, and CO2 emissions was minimal, thereby confirming the potential use of PILs in the tire industry.
Collapse
Affiliation(s)
- Mohammad Abdul Sattar
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
- R&D Centre, MRF Limited, Chennai, 600019, India
| | - Archita Patnaik
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
6
|
Kumar L, Deshmukh RK, Hakim L, Gaikwad KK. Halloysite Nanotube as a Functional Material for Active Food Packaging Application: A Review. FOOD BIOPROCESS TECH 2023:1-14. [PMID: 37363381 PMCID: PMC10151217 DOI: 10.1007/s11947-023-03092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Halloysite nanotubes (HNTs) are naturally occurring nanomaterials with a tubular shape and high aspect ratio, a promising functional additive for active food packaging applications. HNTs have been shown to possess unique properties such as high surface area, thermal stability, and biocompatibility, making them attractive for active food packaging materials. This review summarizes recent research on the use of HNTs as functional additives in active food packaging applications, including antimicrobial packaging, ethylene scavenging packaging, moisture, and gas barrier packaging. The potential benefits and challenges associated with the incorporation of HNTs into food packaging materials are discussed. The various modification methods, such as the physical, chemical, biological, and electrostatic methods, along with their impact on the properties of HNTs, are discussed. The advantages and challenges associated with each modification approach are also evaluated. Overall, the modification of HNTs has opened new possibilities for the development of advanced packaging materials with improved performance for various functional food packaging materials with enhanced properties and extended shelf life.
Collapse
Affiliation(s)
- Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Lokman Hakim
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| |
Collapse
|
7
|
Wei L, Wang L, Cui Z, Liu Y, Du A. Multifunctional Applications of Ionic Liquids in Polymer Materials: A Brief Review. Molecules 2023; 28:3836. [PMID: 37175245 PMCID: PMC10180292 DOI: 10.3390/molecules28093836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
As a new generation of green media and functional materials, ionic liquids (ILs) have been extensively investigated in scientific and industrial communities, which have found numerous ap-plications in polymeric materials. On the one hand, much of the research has determined that ILs can be applied to modify polymers which use nanofillers such as carbon black, silica, graphene oxide, multi-walled carbon nanotubes, etc., toward the fabrication of high-performance polymer composites. On the other hand, ILs were extensively reported to be utilized to fabricate polymeric materials with improved thermal stability, thermal and electrical conductivity, etc. Despite substantial progress in these areas, summary and discussion of state-of-the-art functionalities and underlying mechanisms of ILs are still inadequate. In this review, a comprehensive introduction of various fillers modified by ILs precedes a systematic summary of the multifunctional applications of ILs in polymeric materials, emphasizing the effect on vulcanization, thermal stability, electrical and thermal conductivity, selective permeability, electromagnetic shielding, piezoresistive sensitivity and electrochemical activity. Overall, this review in this area is intended to provide a fundamental understanding of ILs within a polymer context based on advantages and disadvantages, to help researchers expand ideas on the promising applications of ILs in polymer fabrication with enormous potential.
Collapse
Affiliation(s)
| | | | | | - Yingjun Liu
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Aihua Du
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
8
|
Wu Z, Stuhrmann G, Dehnen S. Crystalline chalcogenidometalate-based compounds from uncommon reaction media. Chem Commun (Camb) 2022; 58:11609-11624. [PMID: 36134514 DOI: 10.1039/d2cc04061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chalcogenides are one of the most versatile inorganic materials families, further subdivided into a large variety of specific groups of compounds, ranging from neat binary or multinary solids and nanoparticles of the same formal compositions, both in crystalline or non-crystalline form, to complicated open-framework structures and cluster compounds, also including organ(ometall)ic derivates of the latter. The large variety regarding both the compositions and the structures is associated with an enormous variety of properties, ranging from simple or high-tech pigments through a multitude of opto-electronic devices and electrolytes to materials for ion separation or high-sophisticated catalysts. Naturally, this also goes hand in hand with a corrosponding breadth of synthesis strategies. Traditionally, chalcogenides have been accessed via high-temperature methods, which continuously have been replaced by lower-temperature approaches for economical and ecological reasons. Moreover, more recent methods also showed that new types of chalcogenide materials can be obtained under such milder conditions that are not accessible via traditional routes. To shed light onto one of the numerous families of chalcogenides, this feature article summarizes current achievements in the generation of multinary chalcogenidometallate-based clusters and networks via non-classical routes, using ionic liquids, surfactants, or hydrazine as reaction media at moderately elevated termperature.
Collapse
Affiliation(s)
- Zhou Wu
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Gina Stuhrmann
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| |
Collapse
|
9
|
Maciejewska M, Sowińska-Baranowska A. Bromide and Chloride Ionic Liquids Applied to Enhance the Vulcanization and Performance of Natural Rubber Biocomposites Filled with Nanosized Silica. NANOMATERIALS 2022; 12:nano12071209. [PMID: 35407328 PMCID: PMC9000785 DOI: 10.3390/nano12071209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 12/04/2022]
Abstract
In this study, the possibility of using ionic liquids (ILs) as auxiliary substances improving the vulcanization and physicochemical properties of natural rubber (NR) biocomposites filled with nanosized silica was investigated. Hence, the influence of ILs with bromide and chloride anions and various cations, i.e., alkylimidazolium, alkylpyrrolidinium and alkylpiperidinium cation, on the curing characteristics and crosslink density of NR compounds was determined. Furthermore, the effect of nanosized silica and ILs on the functional properties of the obtained vulcanizates, including mechanical properties under static and dynamic conditions, hardness, thermal stability and resistance to thermo-oxidative aging, were explored. Applying nanosized silica improved the processing safety of NR compounds but significantly increased the optimal vulcanization time compared to the unfilled rubber. ILs significantly improved the cure characteristics of NR compounds by increasing the rate of vulcanization and the crosslink density of NR biocomposites. Consequently, the tensile strength and hardness of the vulcanizates significantly increased compared to that without ILs. Moreover, the use of nanosized silica and ILs had a favorable impact on the thermal stability of the vulcanizates and their resistance to prolonged thermo-oxidation.
Collapse
|
10
|
Fang S, Wang J, Wu S, Yu S, Tang Z, Guo B. Heterogeneous network design strategy toward mechanically robust and recyclable elastomers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Surface active SNS-based dicationic ionic liquids containing amphiphilic anions: Experimental and theoretical studies of their structures and organization in solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Soares FA, Steinbüchel A. Enzymatic and Chemical Approaches for Post-Polymerization Modifications of Diene Rubbers: Current state and Perspectives. Macromol Biosci 2021; 21:e2100261. [PMID: 34528407 DOI: 10.1002/mabi.202100261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Indexed: 11/07/2022]
Abstract
Diene rubbers are polymeric materials which present elastic properties and have double bonds in the macromolecular backbone after the polymerization process. Post-polymerization modifications of rubbers can be conducted by enzymatic or chemical methods. Enzymes are environmentally friendly catalysts and with the increasing demand for rubber waste management, biodegradation and biomodifications have become hot topics of research. Some rubbers are renewable materials and are a source of organic molecules, and biodegradation can be conducted to obtain either oligomers or monomers. On the other hand, chemical modifications of rubbers by click-chemistry are important strategies for the creation and combination of new materials. In a way to expand the scope of uses to other non-traditional applications, several and effective modifications can be conducted with diene rubbers. Two groups of efficient tools, enzymatic, and chemical modifications in diene rubbers, are summarized in this review. By analyzing stereochemical and reactivity aspects, the authors also point to some applications perspectives for biodegradation products and to rational modifications of diene rubbers by combining both methodologies.
Collapse
Affiliation(s)
- Franciela Arenhart Soares
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| |
Collapse
|
13
|
Influence of the Silica Specific Surface Area and Ionic Liquids on the Curing Characteristics and Performance of Styrene-Butadiene Rubber Composites. MATERIALS 2021; 14:ma14185302. [PMID: 34576519 PMCID: PMC8471480 DOI: 10.3390/ma14185302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/03/2022]
Abstract
In this work, we present the effect of silica’s specific surface area (180 m2·g−1 and 380 m2·g−1, respectively) on the crosslinking of styrene–butadiene rubber (SBR) composites, as well as their crosslink density and functional properties, such as thermal stability, damping behavior, resistance to thermo-oxidative aging, and tensile properties. Ionic liquids (ILs) with a bromide anion and different cations, i.e., 1-butyl-3-methylimidazolium (Bmi), 1-butyl-3-methylpyrrolidinium (Bmpyr), and 1-butyl-3-methylpiperidinium (Bmpip), were used to enhance the cure characteristics of SBR compounds and the functional properties of SBR vulcanizates. It was proven that apart from the silica’s specific surface area, the filler–polymer and filler–filler physical interactions have a significant impact on the vulcanization kinetics of silica-filled SBR composites. Additionally, the performed studies have shown that ILs positively affected the dispersion of silica’s particles and reduced their ability to form agglomerates in the elastomer matrix, which enhanced the functional properties of the SBR vulcanizates.
Collapse
|
14
|
Wang Z, Wang S, Yu X, Zhang H, Yan S. Study on the Use of CTAB-Treated Illite as an Alternative Filler for Natural Rubber. ACS OMEGA 2021; 6:19017-19025. [PMID: 34337240 PMCID: PMC8320099 DOI: 10.1021/acsomega.1c02304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/01/2021] [Indexed: 05/14/2023]
Abstract
Fillers are indispensable for rubber composites. Carbon black as an efficient reinforcing filler is most widely used in the rubber industry. However, the utilization of nonrenewable feedstock, energy consumption, and footprint for making carbon black lead to the seeking of alternative substitutes for carbon black, which is of great significance. Here in this work, the possibility of illite, a most common mineral in sedimentary rocks, as an alternative filler for natural rubber (NR) is determined. It is found that pristine illite slows the curing rate and decreases the cross-linking density of NR, which results in the inferior performance of NR. This is associated with the weak filler-rubber interaction, which is a vital factor in deciding the performance of rubber composites. Therefore, illite has been modified using hexadecyl trimethyl ammonium bromide (CTAB), a commonly used cation surfactant, for improving the filler-rubber interaction. The thus obtained C-illite is confirmed to be efficient for (i) enhancing the illite-NR interaction, (ii) improving the dispersion of illite in the NR matrix, and (iii) accelerating the curing process of NR with increased cross-linking density. All of these lead to significantly improved mechanical properties and wear resistance of the C-illite/NR composites, e.g., a 71.88% increase of the modulus at 300% strain compared to the pure NR and a 23.79% reduction of the DIN abrasion volume compared to the NR filled with 40 phr pristine illite. This illustrates the high possibility of CTAB-modified illite with an optimal particle size as a promising alternative filler of carbon black for reinforcing rubbers.
Collapse
|
15
|
Zhang C, Tang Z, An X, Fang S, Wu S, Guo B. Generic Method to Create Segregated Structures toward Robust, Flexible, Highly Conductive Elastomer Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24154-24163. [PMID: 33978407 DOI: 10.1021/acsami.1c04802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrically and thermally conductive polymer composites are extensively used in our daily life. It is of great significance to fulfill the conductivity requirement while maintaining desirable mechanical performance. An efficient solution to achieve this goal is to construct segregated structures in polymer composites by confining fillers into the interstitial areas among polymer domains. Thus far, it still remains a challenge to create segregated structures in cross-linked polymeric networks. Herein, we report a facile methodology to construct segregated structures in sulfur-cured rubbers using an industrially accessible process toward robust, flexible, highly conductive elastomer composites. Specifically, natural rubber granules (NR-RGs) with reactive di- and polysulfides on the surface are fabricated and then mixed with NR gum, carbon nanotubes (CNTs), and curing additives, followed by compression molding to yield two-phase separate composites. In the composites, CNTs are selectively dispersed in the continuous NR phase due to the volume exclusion effect caused by the separate NR-RG phase, leading to overwhelming electrical conductivity compared to the counterparts with randomly dispersed CNTs. In addition, NR-RGs can serve as novel reinforcement for NR, imparting the composites with remarkably improved modulus and retained stretchability. The simultaneously improved electrical conductivity and mechanical properties are due to the strong interfacial adhesion between the NR matrix and NR-RGs, as the di- and polysulfides on the surface of NR-RGs can participate in the cross-linking reactions of NR gum and enable the establishment of covalent bonding across the interfaces. The universality of this approach in preparing segregated composites with a combination of high conductivities and robust mechanical properties is demonstrated using other diene rubbers as the matrix and boron nitride as the filler.
Collapse
Affiliation(s)
- Chengfeng Zhang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhenghai Tang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xinglong An
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shifeng Fang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Siwu Wu
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Baochun Guo
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
16
|
Maciejewska M, Sowińska A. Influence of Fillers and Ionic Liquids on the Crosslinking and Performance of Natural Rubber Biocomposites. Polymers (Basel) 2021; 13:polym13101656. [PMID: 34069680 PMCID: PMC8160702 DOI: 10.3390/polym13101656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
This work concerns the effect of fillers and ionic liquids on the cure characteristics of natural rubber (NR) compounds, as well as the mechanical and thermal properties of the vulcanizates. Three types of white filler were applied, such as cellulose, nanosized silica and hydrotalcite, to modify the performance of NR composites. Additionally, ionic liquids (ILs) with bromide anion and different cations, i.e., 1-butyl-3-methylimidazolium (Bmi) and 1-butyl-3-methylpyrrolidinium (Bmpyr), were used to improve the cure characteristics of NR compounds and functional properties of the vulcanizates. The type of filler and the structure of ILs were proved to affect the rheometric properties and cure characteristics of NR compounds as well as the performance of the NR vulcanizates. Owing to the adsorption of curatives onto the surface, silica reduced the activity of the crosslinking system, prolonging the optimal vulcanization time of NR compounds and reducing the crosslinking degree of the elastomer. However, silica-filled NR exhibited the highest thermal stability. Hydrotalcite increased the crosslink density and, consequently, the mechanical properties of the vulcanizates, but deteriorated their thermal stability. ILs beneficially influenced the cure characteristics of NR compounds, as well as the crosslink density and mechanical performance of the vulcanizates, particularly those filled with silica. Cellulose did not significantly affect the vulcanization of NR compounds and crosslink density of the vulcanizates compared to the unfilled elastomer, but deteriorated their tensile strength. On the other hand, cellulose improved the thermal stability and did not considerably alter the damping properties of the vulcanizates.
Collapse
|
17
|
Yasin S, Hussain M, Zheng Q, Song Y. Effects of ionic liquid on cellulosic nanofiller filled natural rubber bionanocomposites. J Colloid Interface Sci 2021; 591:409-417. [PMID: 33631528 DOI: 10.1016/j.jcis.2021.02.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Cellulosic nanofillers are sustainable replacements of synthetic fillers while the agglomeration limits their potentials in high-performance rubber bionanocomposites. Herein, we investigate the effects of ionic liquid (IL) on cellulose nanocrystal and cellulose nanofibril filled natural rubber (NR) compounds and vulcanizates. The results indicate that IL improves the dispersion of cellulosic nanofillers, crosslinking density of NR matrix and mechanical strength of the vulcanizates. Invesigations of viscoelastic rheological behaviors show amplitude of Payne effect faints in compounds and raises relatively in vulcanizates with the increment of cellulosic nanofillers and IL.
Collapse
Affiliation(s)
- Sohail Yasin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Munir Hussain
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
18
|
Wang K, Shen L, Zhou G. Controlled individual and partial polyethylene nanofibers with high Tm2 prepared by PPM-supported Cp 2TiCl 2 catalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj01378e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled individual and partial nanofibrous polyethylenes with high second melting point (Tm2) were obtained through ethylene-confined polymerization using a porous polymer microsphere (PPM)-supported Cp2TiCl2 catalyst.
Collapse
Affiliation(s)
- Kui Wang
- Yancheng Institute of Technology
- School of Materials Science and Engineering
- Yancheng
- China
| | - Lu Shen
- Yancheng Institute of Technology
- School of Materials Science and Engineering
- Yancheng
- China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics (DICP)
- Chinese Academy of Sciences (CAS)
- Dalian
- China
| |
Collapse
|
19
|
Fang S, Wu S, Huang J, Wang D, Tang Z, Guo B, Zhang L. Notably Improved Dispersion of Carbon Black for High-Performance Natural Rubber Composites via Triazolinedione Click Chemistry. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shifeng Fang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Siwu Wu
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jing Huang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenghai Tang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Baochun Guo
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liqun Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Yang Z, Huang Y, Xiong Y. A functional modified graphene oxide/nanodiamond/nano zinc oxide composite for excellent vulcanization properties of natural rubber. RSC Adv 2020; 10:41857-41870. [PMID: 35516552 PMCID: PMC9057914 DOI: 10.1039/d0ra07404g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 11/21/2022] Open
Abstract
A modified graphene oxide/nanodiamond/nanozinc oxide (MGO/ND/nanoZnO) functional hybrid filler is designed and prepared to improve the vulcanization efficiency of a rubber composite and to reduce the use of ZnO. ND was grafted onto graphite oxide with the aid of 4,4'-methylene diphenyl diisocyanate (MDI). NanoZnO, with high surface activity, was then loaded onto the MGO/ND complex through the wet chemical method, in order to synthesize the MGO/ND/nanoZnO functional hybrid filler. Rubber composites were prepared using the rubber latex composite method and their vulcanization behaviors were investigated. Our results show that the MGO/ND/nanoZnO functional hybrid filler can remarkably improve the vulcanization behaviors of the rubber composite. Compared with that of pure natural rubber (NR), the vulcanization activation energy of the rubber composite was reduced by approximately 16%. Moreover, the vulcanization efficiency can be improved by 63% (i.e., the optimum cure time is shortened from the original 405 s to 150 s) after the same amount of traditional ZnO was replaced by the functional hybrid filler loaded with 1 wt% nanoZnO. The prepared MGO/ND/nanoZnO functional hybrid filler thus provides a promising alternative to improve the vulcanization efficiency of rubber composites.
Collapse
Affiliation(s)
- Zhen Yang
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
| | - Yan Huang
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
| | - Yuzhu Xiong
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China .,Guizhou Provincial Rubber Composite Material Engineering Laboratory China
| |
Collapse
|
21
|
Xiao Y, Dai X, Wang K, Zhou G. High Melting Point of Linear, Spiral Polyethylene Nanofibers and Polyethylene Microspheres Obtained Through Confined Polymerization by a PPM-Supported Ziegler-Natta Catalyst. ChemistryOpen 2020; 9:1173-1180. [PMID: 33209565 PMCID: PMC7658954 DOI: 10.1002/open.202000290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Indexed: 11/20/2022] Open
Abstract
In this work, different types of polyethylene (linear, spiral nanofibers and microspheres) were obtained via confined polymerization by a PPM-supported Ziegler-Natta catalyst. Firstly, the Ziegler-Natta catalyst was chemical bonded inside the porous polymer microspheres (PPMs) supports with different pore diameter and supports size through chemical reaction. Then slightly and highly confined polymerization occurred in the PPM-supported Ziegler-Natta catalysts. SEM results illustrated that the slightly confined polymerization was easy to obtain linear and spiral nanofibers, and the nanofibers were observed in polyethylene catalyzed by PPMs-1#/cat and PPMs-2#/cat with low pore diameter (about 23 nm). Furthermore, the highly confined polymerization produced polyethylene microspheres, which obtained through other PPM-supported Ziegler-Natta catalysts with high pore diameter. In addition, high second melting point (Tm2: up to 143.3 °C) is a unique property of the polyethylene obtained by the PPM-supported Ziegler-Natta catalyst after removing the residue through physical treatment. The high Tm2 was ascribed to low surface free energy (σe), which was owing to the entanglement of polyethylene polymerized in the PPMs supports with interconnected multi-modal pore structure.
Collapse
Affiliation(s)
- Yu Xiao
- State Key Laboratory of Advanced Power Transmission TechnologyGlobal Energy Interconnection Research InstituteNo.18 Binhe AvenueChangping DistrictBeijing102209P. R. China
| | - Xiying Dai
- State Key Laboratory of Advanced Power Transmission TechnologyGlobal Energy Interconnection Research InstituteNo.18 Binhe AvenueChangping DistrictBeijing102209P. R. China
| | - Kui Wang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry (CIAC)Chinese Academy of Sciences (CAS)No. 5625 Renmin Rd.ChangchunJilin130022P. R. China
| | - Guangyuan Zhou
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry (CIAC)Chinese Academy of Sciences (CAS)No. 5625 Renmin Rd.ChangchunJilin130022P. R. China
| |
Collapse
|
22
|
Massaro M, Noto R, Riela S. Past, Present and Future Perspectives on Halloysite Clay Minerals. Molecules 2020; 25:E4863. [PMID: 33096852 PMCID: PMC7587942 DOI: 10.3390/molecules25204863] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Halloysite nanotubes (HNTs), clay minerals belonging to the kaolin groups, are emerging nanomaterials which have attracted the attention of the scientific community due to their interesting features, such as low-cost, availability and biocompatibility. In addition, their large surface area and tubular structure have led to HNTs' application in different industrial purposes. This review reports a comprehensive overview of the historical background of HNT utilization in the last 20 years. In particular it will focus on the functionalization of the surfaces, both supramolecular and covalent, following applications in several fields, including biomedicine, environmental science and catalysis.
Collapse
Affiliation(s)
- Marina Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo Viale delle Scienze, Ed. 17, 90128 Palermo, Italy;
| | | | - Serena Riela
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo Viale delle Scienze, Ed. 17, 90128 Palermo, Italy;
| |
Collapse
|
23
|
Maciejewska M. Ionic Liquids and Calcium Oxide Grafted with Allylmalonic Acid Applied to Support the Peroxide Crosslinking of an Ethylene-Propylene Copolymer. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13153260. [PMID: 32708031 PMCID: PMC7436076 DOI: 10.3390/ma13153260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 05/27/2023]
Abstract
Nanosized calcium oxide (CaO) featuring a surface grafted with allylmalonic acid (ALA) was used to increase the efficiency of the peroxide crosslinking of an ethylene-propylene copolymer (EPM) filled with silica nanoparticles. In this study, 1-butyl-3-methylimidazolium ionic liquids (ILs) with different anions were applied to improve the dispersion of CaO/ALA and silica nanoparticles in the EPM copolymer, as well as to catalyze the interfacial crosslinking reactions. In this article, we discuss the effects of CaO/ALA and ILs on the curing characteristics, vulcanization temperature, crosslink density, mechanical properties, and thermal stability of EPM, as well as the resistance of EPM to weather aging. The CaO/ALA with ILs reduced the vulcanization time of the rubber compounds without a significant effect on the vulcanization temperature. Their application resulted in an increased vulcanizate crosslink density, as well as improved tensile strength compared to the pure peroxide system. The influence of 1-butyl-3-methylimidazolium ILs on EPM vulcanization and performance depends on the anion present in the molecules of the ionic liquid. The most active IL seems to be that with the tetrafluoroborate anion.
Collapse
Affiliation(s)
- Magdalena Maciejewska
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Street 12/16, 90-924 Lodz, Poland
| |
Collapse
|
24
|
Zhu K, Pan Y, Wu J, Li K, Guo X, Liu Y, Wang Z, Zhang Y. FUNCTIONALIZED SILICA AS AN ECO-FRIENDLY VULCANIZATION ACCELERATOR TO ENHANCE THE INTERFACIAL INTERACTION IN NR/SILICA COMPOSITES. RUBBER CHEMISTRY AND TECHNOLOGY 2020. [DOI: 10.5254/rct.20.80386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Xanthate is a class of non-toxic, rapid, and eco-friendly rubber vulcanization accelerator, but it is seldom used in the rubber industry because of its poor thermostability and ease of decomposition. To overcome these drawbacks, silica supported sodium isobutyl xanthate (silica-s-SIBX) was prepared by chemically bonding SIBX onto the silica surface. After loading, the initial degradation temperature (T0), maximum degradation temperature (Tp), and final decomposition temperature (Tf) of silica-s-SIBX were increased by 85.8, 118.9, and 146.9 °C, respectively. Meanwhile, silica-s-SIBX could not only improve the dispersion of fillers in the rubber but also enhance the interfacial interaction between silica and the rubber matrix. Therefore, it may offer new scientific and technological opportunities for preparation of green additives in the rubber industry.
Collapse
Affiliation(s)
- Kaizheng Zhu
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yang Pan
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jie Wu
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Kuncai Li
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiwei Guo
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yu Liu
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhifen Wang
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
- College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yucang Zhang
- College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
- Key Laboratory of Advanced Materials of Tropical Island Resources of the Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
25
|
Jia S, Yu D, Zhu Y, Su X, Wang Z, Chen L. A feasible strategy to constructing hybrid conductive networks in PLA‐based composites modified by CNT‐d‐RGO particles and PEG for mechanical and electrical properties. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shikui Jia
- School of ScienceXi'an Jiaotong University Xi'an 710049 China
- School of Materials Science and EngineeringShaanxi University of Technology Hanzhong 723000 China
| | - Demei Yu
- School of ScienceXi'an Jiaotong University Xi'an 710049 China
| | - Yan Zhu
- School of Materials Science and EngineeringShaanxi University of Technology Hanzhong 723000 China
| | - Xiaolong Su
- School of ScienceXi'an Jiaotong University Xi'an 710049 China
| | - Zhong Wang
- School of Materials Science and EngineeringShaanxi University of Technology Hanzhong 723000 China
| | - Ligui Chen
- School of Materials Science and EngineeringShaanxi University of Technology Hanzhong 723000 China
| |
Collapse
|
26
|
|
27
|
Mezzetta A, Poderelli L, D'Andrea F, Pomelli CS, Chiappe C, Guazzelli L. Unexpected Intrinsic Lability of Thiol-Functionalized Carboxylate Imidazolium Ionic Liquids. Molecules 2019; 24:E3571. [PMID: 31623295 PMCID: PMC6804084 DOI: 10.3390/molecules24193571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
New thiol-functionalized carboxylate ionic liquids (ILs), varying both for the cation and for the anion structures, have been prepared as new potential redox switching systems by reacting either 3-mercapto propionic acid (3-MPA) or N-acetyl-cysteine (NAC) with commercially available methyl carbonate ILs. Different ratios of thiol/disulfide ILs were obtained depending both on the acid employed in the neutralization reaction and on the reaction conditions used. Surprisingly, the imidazolium ILs displayed limited thermal stability which resulted in the formation of an imidazole 2-thione and a new sulfide ionic liquid. Conversely, the formation of the imidazole 2-thione was not observed when phosphonium disulfide ILs were heated, thus confirming the involvement of the imidazolium ring in an unexpected side reaction. An insight into the mechanism of the decomposition has been provided by means of DFT calculations.
Collapse
Affiliation(s)
- Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Lorenzo Poderelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Felicia D'Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | | | - Cinzia Chiappe
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| |
Collapse
|
28
|
Hussain M, Yasin S, Adnan Akram M, Xu H, Song Y, Zheng Q. Influence of Ionic Liquids on Structure and Rheological Behaviors of Silica-Filled Butadiene Rubber. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03494] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Munir Hussain
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sohail Yasin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Muhammad Adnan Akram
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huilong Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Weng P, Tang Z, Huang J, Wu S, Guo B. Promoted dispersion of silica and interfacial strength in rubber/silica composites by grafting with oniums. J Appl Polym Sci 2019. [DOI: 10.1002/app.48243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peijin Weng
- Department of Polymer Materials and Engineering, State Key Laboratory of Pulp and Paper EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Zhenghai Tang
- Department of Polymer Materials and Engineering, State Key Laboratory of Pulp and Paper EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Jing Huang
- Department of Polymer Materials and Engineering, State Key Laboratory of Pulp and Paper EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Siwu Wu
- Department of Polymer Materials and Engineering, State Key Laboratory of Pulp and Paper EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Baochun Guo
- Department of Polymer Materials and Engineering, State Key Laboratory of Pulp and Paper EngineeringSouth China University of Technology Guangzhou 510640 People's Republic of China
| |
Collapse
|
30
|
Jia S, Yu D, Wang Z, Zhang X, Chen L, Fu L. Morphologies, crystallization, and mechanical properties of PLA-based nanocomposites: Synergistic effects of PEG/HNTs. J Appl Polym Sci 2019. [DOI: 10.1002/app.47385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shikui Jia
- School of Science; Xi'an Jiaotong University; Xi'an 710049 China
- School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723000 China
| | - Demei Yu
- School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Zhong Wang
- School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723000 China
| | - Xianyong Zhang
- School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723000 China
| | - Ligui Chen
- School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723000 China
| | - Lei Fu
- School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723000 China
| |
Collapse
|
31
|
Du A, Wang Z, Shang Y, Sun X. Interactions Between an Ionic Liquid and Silica, Silica and Silica, and Rubber and Silica and Their Effects on the Properties of Styrene-Butadiene Rubber Composites. J MACROMOL SCI B 2019. [DOI: 10.1080/00222348.2018.1546266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Aihua Du
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao, China
| | - Zhepeng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao, China
| | - Yuanyuan Shang
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao, China
| | - Xueyang Sun
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Arslan M, Acik G, Tasdelen MA. The emerging applications of click chemistry reactions in the modification of industrial polymers. Polym Chem 2019. [DOI: 10.1039/c9py00510b] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click chemistry reactions have been applied to the modification of major industrial polymers by analysing the synthetic approaches and the resulting material properties.
Collapse
Affiliation(s)
- Mehmet Arslan
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| | - Gokhan Acik
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| |
Collapse
|
33
|
Wang K, Lei J, Nie H, Shen L, Chen P, Zhou G. Effects of Interconnected Polymer Nanopores Leading to Different Degrees of Confined Polymerization. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kui Wang
- Ningbo Key Laboratory of Polymer Materials; Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
| | - Jinhua Lei
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Heran Nie
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Lu Shen
- Ningbo Key Laboratory of Polymer Materials; Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
| | - Peng Chen
- Ningbo Key Laboratory of Polymer Materials; Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
| | - Guangyuan Zhou
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| |
Collapse
|
34
|
Jiang B, Ye J, Liao Z, Shi X, Huang Z, Wang J, Yang Y. Experimental investigation on mechanisms of fine particles generation for the Borealis Borstar multistage olefin polymerization process. J Appl Polym Sci 2018. [DOI: 10.1002/app.46589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Binbo Jiang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Jian Ye
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Zuwei Liao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Xiaomei Shi
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Zhengliang Huang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Jingdai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Yongrong Yang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
35
|
Pingot M, Szadkowski B, Zaborski M. Experimental investigation on activity of cumene hydroperoxide and selected ionic liquids in butadiene rubber vulcanization. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martyna Pingot
- Institute of Polymer and Dye Technology; Lodz University of Technology; Lodz Poland
| | - Bolesław Szadkowski
- Institute of Polymer and Dye Technology; Lodz University of Technology; Lodz Poland
| | - Marian Zaborski
- Institute of Polymer and Dye Technology; Lodz University of Technology; Lodz Poland
| |
Collapse
|
36
|
Wang D, Ren F, Zhu C, Feng J, Cheng Q, Chen S, Shen G, Wang F. HYBRID SILANE TECHNOLOGY IN SILICA-REINFORCED TREAD COMPOUND. RUBBER CHEMISTRY AND TECHNOLOGY 2018. [DOI: 10.5254/rct.18.81563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
The use of a silane coupling agent in silica-reinforced tread can effectively improve silica dispersion in the rubber matrix and strengthen the interfacial interaction between the rubber and filler; this is beneficial to the enhancement of tire grip under wet conditions and reduces tire rolling resistance. The monofunctional silane n-octyltriethoxysilane (OTES) can react with the silanol group of the silica surface and hence improve silica dispersion. It can also suppress silica reaggregation during tire processing. Two hybrid silanes, OTES and 3-mercaptopropylethoxy-bis(tridecyl-pentaethoxy-siloxane) (Si747) or OTES and bis(triethoxysilylpropyl)tetrasulfide (TESPT), were filled in silica-reinforced tread compounds. The effect of the two hybrid silanes on the silica was investigated via Fourier transform infrared spectroscopy and thermogravimetric analysis. The processing ability of the silica-filled compounds and the performance of the vulcanizates were also investigated. Our experimental results show that OTES is able to further react with the silica following reaction between the TESPT and silica and that it should be added when the molar amount of TESPT or Si747 is constant, to prevent reduction of the cross-link density. Furthermore, the addition of OTES can extend the scorch time, especially in Si747 and OTES compounds. In addition, OTES can improve silica dispersion and only has a slightly negative effect on the physical properties of vulcanizates.
Collapse
Affiliation(s)
- Danling Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310018, PR China
- Zhongce Rubber Group Co., Ltd., Hangzhou, 310018, PR China
| | - Fujun Ren
- Zhongce Rubber Group Co., Ltd., Hangzhou, 310018, PR China
| | - Chenxi Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310018, PR China
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310018, PR China
| | - Qiming Cheng
- Zhongce Rubber Group Co., Ltd., Hangzhou, 310018, PR China
| | - Sheng Chen
- Zhongce Rubber Group Co., Ltd., Hangzhou, 310018, PR China
| | - Guoli Shen
- Zhongce Rubber Group Co., Ltd., Hangzhou, 310018, PR China
| | - Feifei Wang
- Zhongce Rubber Group Co., Ltd., Hangzhou, 310018, PR China
| |
Collapse
|
37
|
He F, Yuan T, Li C, Sun L, Liao S. Interfacial interactions and properties of natural rubber-silica composites with liquid natural rubber as a compatibilizer and prepared by a wet-compounding method. J Appl Polym Sci 2018. [DOI: 10.1002/app.46457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fan He
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Materials and Chemical Engineering, Hainan University; Haikou 570228 People's Republic of China
| | - Tianyuan Yuan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Materials and Chemical Engineering, Hainan University; Haikou 570228 People's Republic of China
| | - Chaoqun Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Materials and Chemical Engineering, Hainan University; Haikou 570228 People's Republic of China
| | - Long Sun
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Materials and Chemical Engineering, Hainan University; Haikou 570228 People's Republic of China
| | - Shuangquan Liao
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Materials and Chemical Engineering, Hainan University; Haikou 570228 People's Republic of China
| |
Collapse
|
38
|
Li T, Zhang W, Chen W, Miras HN, Song YF. Layered double hydroxide anchored ionic liquids as amphiphilic heterogeneous catalysts for the Knoevenagel condensation reaction. Dalton Trans 2018; 47:3059-3067. [DOI: 10.1039/c7dt03665e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper, three solid base catalysts of LDH-IL-Cn (n = 4, 8, 12) were synthesized by adopting an exfoliation/assembly approach. The as-prepared catalyst showed excellent activity and selectivity for the Knoevenagel reaction in aqueous solution.
Collapse
Affiliation(s)
- Tengfei Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- P. R. China
| | - Wei Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- P. R. China
| | | | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| |
Collapse
|
39
|
Recent Advances on Surface Modification of Halloysite Nanotubes for Multifunctional Applications. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7121215] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Halloysite nanotubes (HNTs) are natural occurring mineral clay nanotubes that have excellent application potential in different fields. However, HNTs are heterogeneous in size, surface charge, and formation of surfacial hydrogen bond, which lead to weak affinity and aggregation at a certain extent. It is very important to modify the HNTs’ surface to expand its applications. In this review, the structural characteristics, performance, and the related applications of surface-modified HNTs are reviewed. We focus on the surface-modified variation of HNTs, the effects of surface modification on the materials and related applications in various regions. In addition, future prospects and the meaning of surface modification were also discussed in HNTs studies. This review provides a reference for the application of HNTs modifications in the field of new nanomaterials.
Collapse
|
40
|
Raiati M, Kalaee M, Mazinani S. EFFECT OF FILLER TYPE AND CONTENT ON PHYSICAL AND MECHANICAL PROPERTIES OF NR/SBR NANOCOMPOSITE BLEND. RUBBER CHEMISTRY AND TECHNOLOGY 2017. [DOI: 10.5254/rct.18.82695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
The effect of type and content of nanofiller on the cure behavior, cure characteristics, and mechanical and dynamic mechanical thermal properties of the vulcanized SBR/NR (30/70) blend nanocomposites containing carbon black were investigated. Halloysite nanotube (HNT) and calcium carbonate (CaCO3) nanoparticles were used as reinforcing agents at different levels ranging from 0 to 5 phr. Two nanofillers affected the cure characteristics of the blended vulcanizates in opposite ways. While the gradual incorporation of HNT into the elastomer blend shortened the scorch time along with an increase in the effective torque of resulting nanocomposite compared to the unfilled blend, the progressive addition of CaCO3 into the blend monotonically prolonged the scorch time in conjunction with a decrease in the effective torque of vulcanizate sample. Mechanical tests showed enhanced elastic modulus and tensile strength of HNT-filled nanocomposites as the HNT content was increased. Nanocomposites reinforced with HNT exhibited significantly higher extensibility than the unfilled blend. In the case of CaCO3-filled nanocomposites, the elastic modulus and ultimate strength decreased upon the addition of CaCO3 nanoparticles, whereas the strain at break showed a substantial increase compared to unfilled compound. Dynamic mechanical thermal analysis results revealed a monotonic shift of damping peak's temperature toward higher temperatures with HNT loading in HNT-filled vulcanizate nanocomposites. For CaCO3-filled nanocomposites, the damping peak's temperature shifted to higher temperatures at first and then shifted back to lower temperatures at higher loadings of CaCO3. The damping peak's intensity of the CaCO3-filled nanocomposites was considerably higher than the unfilled blend, indicating higher damping capability in these systems.
Collapse
Affiliation(s)
- Maryam Raiati
- Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Kalaee
- Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saeedeh Mazinani
- Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
41
|
Zhang Z, Qi M, Yang P, Fu Z, Xu J, Fan Z. Particle morphology and morphogenesis of nascent polyethylene produced with a spherical MgCl 2
-supported Ziegler-Natta catalyst in slurry process. J Appl Polym Sci 2017. [DOI: 10.1002/app.45679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Meizhou Qi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Pengjia Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhisheng Fu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Junting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhiqiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
42
|
Gaaz TS, Sulong AB, Kadhum AAH, Al-Amiery AA, Nassir MH, Jaaz AH. The Impact of Halloysite on the Thermo-Mechanical Properties of Polymer Composites. Molecules 2017; 22:E838. [PMID: 28531126 PMCID: PMC6154593 DOI: 10.3390/molecules22050838] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/02/2022] Open
Abstract
Nanotubular clay minerals, composed of aluminosilicate naturally structured in layers known as halloysite nanotubes (HNTs), have a significant reinforcing impact on polymer matrixes. HNTs have broad applications in biomedical applications, the medicine sector, implant alloys with corrosion protection and manipulated transportation of medicines. In polymer engineering, different research studies utilize HNTs that exhibit a beneficial enhancement in the properties of polymer-based nanocomposites. The dispersion of HNTs is improved as a result of pre-treating HNTs with acids. The HNTs' percentage additive up to 7% shows the highest improvement of tensile strength. The degradation of the polymer can be also significantly improved by doping a low percentage of HNTs. Both the mechanical and thermal properties of polymers were remarkably improved when mixed with HNTs. The effects of HNTs on the mechanical and thermal properties of polymers, such as ultimate strength, elastic modulus, impact strength and thermal stability, are emphasized in this study.
Collapse
Affiliation(s)
- Tayser Sumer Gaaz
- Department of Mechanical & Materials Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia.
- Department of Machinery Equipment Engineering Techniques, Technical College Al-Musaib, Al-Furat Al-Awsat Technical University, Al-Musaib, Babil 51009, Iraq.
| | - Abu Bakar Sulong
- Department of Mechanical & Materials Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia.
| | - Abdul Amir H Kadhum
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia.
| | - Ahmed A Al-Amiery
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia.
| | - Mohamed H Nassir
- Program of Chemical Engineering, Taylor's University-Lakeside Campus, Subang Jaya, Selangor 47500, Malaysia.
| | - Ahed Hameed Jaaz
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia.
| |
Collapse
|
43
|
Ionic liquid tailored interfaces in halloysite nanotube/heterophasic ethylene–propylene copolymer nanocomposites with enhanced mechanical properties. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Rabiei S, Shojaei A. Vulcanization kinetics and reversion behavior of natural rubber/styrene-butadiene rubber blend filled with nanodiamond – the role of sulfur curing system. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.05.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Chen Y, Lin Y, Luo Y, Jia D, Liu L. Morphology and performance of styrene butadiene rubber filled with modified graphite nanoplatelet and carbon black. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yizhong Chen
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials; South China University of Technology; Guangzhou 510640 China
| | - Yong Lin
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials; South China University of Technology; Guangzhou 510640 China
| | - Yuanfang Luo
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials; South China University of Technology; Guangzhou 510640 China
| | - Demin Jia
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials; South China University of Technology; Guangzhou 510640 China
| | - Lan Liu
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
46
|
Yu B, Luo Y, Cong H, Gu C, Wang W, Tian C, Zhai J, Usman M. Preparation of crosslinked porous polyurea microspheres in one-step precipitation polymerization and its application for water treatment. RSC Adv 2016. [DOI: 10.1039/c6ra21013a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Porous polyurea microspheres (PPUMs) were simply prepared in one-step by the precipitation polymerization of isophorone diisocyanate with triethylenetetramine and SiO2 particles.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yongli Luo
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Chuantao Gu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Wenlin Wang
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Chao Tian
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Jiexiu Zhai
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Muhammad Usman
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
47
|
Tang Z, Huang J, Wu X, Guo B, Zhang L, Liu F. Interface Engineering toward Promoting Silanization by Ionic Liquid for High-Performance Rubber/Silica Composites. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03146] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenghai Tang
- Department
of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key
Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jing Huang
- Department
of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaohui Wu
- State
Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Baochun Guo
- Department
of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key
Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| | - Liqun Zhang
- State
Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fang Liu
- Department
of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
48
|
Greaves TL, Drummond CJ. Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications. Chem Rev 2015; 115:11379-448. [PMID: 26426209 DOI: 10.1021/acs.chemrev.5b00158] [Citation(s) in RCA: 513] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tamar L Greaves
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Calum J Drummond
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
49
|
Wang J, Jia H, Ding L, Xiong X. Impacts of filler covalent and non-covalent modification on the network structure and mechanical properties of carbon-silica dual phase filler/natural rubber. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingyi Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Hongbing Jia
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Lifeng Ding
- Department of Chemistry; Xi'an Jiaotong-Liverpool University; 111 Ren'ai Road Suzhou Jiangsu Province 215123 China
| | - Xin Xiong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| |
Collapse
|
50
|
Wang S, Cen L, Wu Q. Maleated glycidyl 3-pentadecenyl phenyl ether with styrene: synthesis and application as compatibilizer in SBR/silica composite. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shuting Wang
- School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Lan Cen
- School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Qihao Wu
- School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| |
Collapse
|