1
|
Ioannou Sartzi M, Drettas D, Stramarkou M, Krokida M. A Comprehensive Review of the Latest Trends in Spray Freeze Drying and Comparative Insights with Conventional Technologies. Pharmaceutics 2024; 16:1533. [PMID: 39771512 PMCID: PMC11679755 DOI: 10.3390/pharmaceutics16121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Spray freeze drying (SFD) represents an emerging drying technique designed to produce a wide range of pharmaceuticals, foods, and active components with high quality and enhanced stability due to their unique structural characteristics. This method combines the advantages of the well-established techniques of freeze drying (FD) and spray drying (SD) while overcoming their challenges related to high process temperatures and durations. This is why SFD has experienced steady growth in recent years regarding not only the research interest, which is reflected by the increasing number of literature articles, but most importantly, the expanded market adoption, particularly in the pharmaceutical sector. Despite its potential, the high initial investment costs and complex operational requirements may hinder its growth. This paper provides a comprehensive review of the SFD technology, highlighting its advantages over conventional drying techniques and presenting its latest applications focused on pharmaceuticals. It also offers a thorough examination of the principles and the various parameters influencing the process for a better understanding and optimization of the process according to the needs of the final product. Finally, the current limitations of SFD are discussed, and future directions for addressing the economic and technical barriers are provided so that SFD can be widely industrialized, unlocking its full potential for diverse applications.
Collapse
Affiliation(s)
| | | | - Marina Stramarkou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece; (M.I.S.); (D.D.); (M.K.)
| | | |
Collapse
|
2
|
Pasero L, Susa F, Limongi T, Pisano R. A Review on Micro and Nanoengineering in Powder-Based Pulmonary Drug Delivery. Int J Pharm 2024; 659:124248. [PMID: 38782150 DOI: 10.1016/j.ijpharm.2024.124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.
Collapse
Affiliation(s)
- Lorena Pasero
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy; Department of Drug Science and Technology, University of Turin, 9 P. Giuria Street, 10125 Torino, Italy.
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| |
Collapse
|
3
|
Spray freeze drying to solidify Nanosuspension of Cefixime into inhalable microparticles. Daru 2022; 30:17-27. [PMID: 34997567 PMCID: PMC9114214 DOI: 10.1007/s40199-021-00426-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/07/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Spray-freeze drying (SFD) incorporating diverse carbohydrates and leucine was employed to obtain dried nanosuspension of cefixime with improved dissolution profile, good dispersibility, and excellent inhalation performance. METHODS Nanoprecipitation was utilized to prepare nanoparticles (NPs). Nanosuspensions of cefixime were solidified via SFD to access inhalable microparticles. The aerosolization efficiencies were evaluated through twin stage impinger (TSI). Laser light scattering and scanning electron microscopy (SEM) provided assistance to determine the particle size/size distribution and morphology, respectively. Amorphous/ crystalline states of materials were examined via differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Release profiles of candidate preparations were evaluated. RESULTS The fine particle fraction (FPF) ranged from 18.96 ± 0.76 to 79.28 ± 0.45%. The highest value resulted from trehalose with NP/carrier ratio of 1:1 and leucine 20%. The particle size varied from 5.24 ± 0.97 to 10.17 ± 1.01 μm. The most and the least size distribution were achieved in mannitol and trehalose containing formulations, respectively. The majority of samples demonstrated ideally spherical morphology with diverse degrees of porosity and without needle-shaped structure. Percentages of release in F7 and F8 were 89.33 ± 0.88% and 93.54 ± 1.02%, respectively, via first 10 min. CONCLUSION SFD of nanosuspensions can be established as a platform for the pulmonary delivery of poorly water-soluble molecules of cefixime. Trehalose and raffinose with a lower ratio of NP to the carrier and higher level of leucine could be introduced as favorable formulations for further respiratory delivery of cefixime.
Collapse
|
4
|
Rostamnezhad M, Jafari H, Moradikhah F, Bahrainian S, Faghihi H, Khalvati R, Bafkary R, Vatanara A. Spray Freeze-Drying for inhalation application: Process and Formulation Variables. Pharm Dev Technol 2021; 27:251-267. [PMID: 34935582 DOI: 10.1080/10837450.2021.2021941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
High porous particles with specific aerodynamic properties were processed by the spray freeze-drying (SFD) method. Comprehensive knowledge about all aspects of the SFD method is required for particle engineering of various pharmaceutical products with good flow properties. In this review, different types of the SFD method, the most frequently employed excipients, properties of particles prepared by this method, and most recent approaches concerning SFD are summarized. Generally, this technique can prepare spherical-shaped particles with a highly porous interior structure, responsible for the very low density of powders. Increasing the solubility of spray freeze-dried formulations achieves the desired efficacy. Also, due to the high efficiency of SFD, by determining the different features of this method and optimizing the process by model-based studies, desirable results for various inhaled products can be achieved and significant progress can be made in the field of pulmonary drug delivery.
Collapse
Affiliation(s)
- Mostafa Rostamnezhad
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Jafari
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Faghihi
- School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Khalvati
- Food and Drug Administration, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Reza Bafkary
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Bahrainian S, Rouini M, Gilani K. Preparation and evaluation of vancomycin spray-dried powders for pulmonary delivery. Pharm Dev Technol 2021; 26:647-660. [PMID: 33896355 DOI: 10.1080/10837450.2021.1915331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of the current study was to achieve a dry powder formulation of vancomycin by spray drying whilst evaluating the effect of pH and excipient type and percentage used in formulation on particle characteristics and aerosolization performance. A D-optimal design was applied to optimize the formulation comprising vancomycin and two main excipient groups; a carbohydrate bulking agent (lactose, mannitol or trehalose) and a second excipient (hydroxypropyl beta-cyclodextrin or L-leucine) at pH 4 and 7. The physicochemical properties of particles (size, morphology, crystallinity state, residual moisture content), stability, and aerosolization characteristics were investigated. Using the combination of two excipients increased the fine particle fraction of powder emitted from an Aerolizer® device at a flow rate of 60 L/min. Hydroxypropyl beta-cyclodextrin showed more potential than L-leucine in aerosolization capabilities. Stability studies over 3 months of storage in 40 °C and 75% relative humidity suggested a good physical stability of the optimized formulation containing 17.39% hydroxypropyl beta-cyclodextrin along with 29.61% trehalose relative to the amount of drug at pH 4. Use of two excipients including trehalose and hydroxypropyl beta-cyclodextrin with a total weight ratio of 47% relative to the amount of drug is appropriate for the preparation of vancomycin dry powder formulation for inhalation.
Collapse
Affiliation(s)
- Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Surface modification strategies for high-dose dry powder inhalers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Karevan G, Ahmadi K, Taheri RA, Fasihi-Ramandi M. Immunogenicity of glycine nanoparticles containing a chimeric antigen as Brucella vaccine candidate. Clin Exp Vaccine Res 2021; 10:35-43. [PMID: 33628752 PMCID: PMC7892938 DOI: 10.7774/cevr.2021.10.1.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Brucellosis as a worldwide zoonotic illness affect domestic animals and humans doesn't have any vaccine for the prevention of infection in humans yet. The aim of this study was to evaluate the specific immune response following the administration of glycine nanoparticles as adjuvant and delivery system of a chimeric antigen contained trigger factor, Omp31, and Bp26 in murine model. Materials and Methods The chimeric antigen of Brucella was cloned and expressed in Escherichia coli (E. coli) BL21 (DE3). Purification and characterization of recombinant protein was conducted through Ni-NTA (nickel-nitrilotriacetic acid) agarose, SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), and Western blot. Nanoparticle characteristics including morphology, particle size distribution, zeta potential, protein retention rate, and release rate were measured in vitro. Subsequently, nanoparticle contained antigen was administered to mice and blood sample was taken to measured the antibody level. Results The protein retention in the nanoparticles was successfully done and the nanoparticle characteristics were appropriate. The average size of glycine particles containing antigen was about 174 nm, and the absorption of protein was approximately 61.27% of the initial value, with a release rate of approximately 70% after 8 hours. Enzyme-linked immunosorbent assay result proved that the immunized sera of mice which were administered with nano-formula contains high levels of antibodies (immunoglobulin G) against recombinant chimeric antigen and also a high level of mucosal antibody (immunoglobulin A) in the oral group, which showed a desirable immunity against Brucella. Conclusion The results showed that chimeric antigen-loaded glycine nanoparticles can act as a vaccine candidate for inducing the cellular and humoral immune response against brucellosis.
Collapse
Affiliation(s)
- Ghazal Karevan
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Iran
| | - Kazem Ahmadi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Particle Size Reduction Techniques of Pharmaceutical Compounds for the Enhancement of Their Dissolution Rate and Bioavailability. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09530-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Recent advances in the development of microparticles for pulmonary administration. Drug Discov Today 2020; 25:1865-1872. [PMID: 32712311 DOI: 10.1016/j.drudis.2020.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary drug delivery offers several benefits for the management of various conditions over other conventional routes. Inhalation of drugs can also be useful for targeting alveolar macrophages and for maintaining a higher drug concentration in the lung tissues to improve the efficacy of drugs and shorten the duration of treatment, thereby reducing drug toxicities. Thus, such an approach is useful in the treatment of various pulmonary and nonpulmonary diseases. Newer techniques and delivery devices have been used for the formulation of inhalable microparticles. Here. we not only focus on advances in inhalation therapy and in the preparation of microparticles, but also address the clinical development and regulatory aspects of such therapies.
Collapse
|
10
|
Spray Freeze-Drying as a Solution to Continuous Manufacturing of Pharmaceutical Products in Bulk. Processes (Basel) 2020. [DOI: 10.3390/pr8060709] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pharmaceutical manufacturing is evolving from traditional batch processes to continuous ones. The new global competition focused on throughput and quality of drug products is certainly the driving force behind this transition which, thus, represents the new challenge of pharmaceutical manufacturing and hence of lyophilization as a downstream operation. In this direction, the present review deals with the most recent technologies, based on spray freeze-drying, that can achieve this objective. It provides a comprehensive overview of the physics behind this process and of the most recent equipment design.
Collapse
|
11
|
Lin X, Kankala RK, Tang N, Xu P, Hao L, Yang D, Wang S, Zhang YS, Chen A. Supercritical Fluid-Assisted Porous Microspheres for Efficient Delivery of Insulin and Inhalation Therapy of Diabetes. Adv Healthc Mater 2019; 8:e1800910. [PMID: 30284409 DOI: 10.1002/adhm.201800910] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/31/2018] [Indexed: 12/16/2022]
Abstract
Pulmonary delivery of drugs has attracted increasing attention in healthcare, as the lungs are an easily accessible site for noninvasive systemic delivery of drugs. Although pulmonary inhalation of porous microparticles has been shown to sustain drug delivery, there are limited reports on efficient delivery of insulin and inhalation therapy of diabetes based on supercritical carbon dioxide (SC-CO2 ) technology. Herein, this study reports the fabrication of insulin-loaded poly-l-lactide porous microspheres (INS-PLLA PMs) by using the SC-CO2 technology, and their use as an inhalation delivery system potentially for diabetes therapy. Biocompatibility and delivery efficiency of the PLLA PMs in the lungs are investigated. The PLLA PMs show negligible toxicity to lung-derived cells, resulting in no significant reduction in cell viability, as well as levels of various inflammatory mediators such as interleukin (IL)-6, IL-8, and tumor necrosis factor-α, compared with the negative control group. INS-PLLA PMs are further efficiently deposited in the trachea and the bronchi of superior lobes of the lungs, which exhibit pronounced hypoglycemic activity in induced diabetic rats. Together, the results demonstrate that the INS-PLLA PMs have a strong potential as an effective strategy for inhalation treatment of diabetes.
Collapse
Affiliation(s)
- Xiao‐Fen Lin
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University) Xiamen 361021 P. R. China
| | - Na Tang
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
| | - Pei‐Yao Xu
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
| | - Liu‐Zhi Hao
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
| | - Da‐Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative DiseasesInstitute for Translational MedicineSchool of Basic Medical SciencesFujian Medical University Fuzhou Fujian 350108 P. R. China
| | - Shi‐Bin Wang
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University) Xiamen 361021 P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women’s HospitalHarvard Medical School Cambridge MA 02139 USA
| | - Ai‐Zheng Chen
- Institute of Biomaterials and Tissue EngineeringHuaqiao University Xiamen 361021 P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University) Xiamen 361021 P. R. China
| |
Collapse
|
12
|
Kamel NM, Helmy MW, Abdelfattah EZ, Khattab SN, Ragab D, Samaha MW, Fang JY, Elzoghby AO. Inhalable Dual-Targeted Hybrid Lipid Nanocore–Protein Shell Composites for Combined Delivery of Genistein and All-Trans Retinoic Acid to Lung Cancer Cells. ACS Biomater Sci Eng 2019; 6:71-87. [DOI: 10.1021/acsbiomaterials.8b01374] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nayra M. Kamel
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Maged W. Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | | | - Sherine N. Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Magda W. Samaha
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
| | - Ahmed O. Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Kankala RK, Lin XF, Song HF, Wang SB, Yang DY, Zhang YS, Chen AZ. Supercritical Fluid-Assisted Decoration of Nanoparticles on Porous Microcontainers for Codelivery of Therapeutics and Inhalation Therapy of Diabetes. ACS Biomater Sci Eng 2018; 4:4225-4235. [PMID: 33418821 DOI: 10.1021/acsbiomaterials.8b00992] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The impact of nanotechnology and its advancements have allowed us to explore new therapeutic modalities. To this end, we designed nanoparticles-inlaid porous microparticles (NIPMs) coloaded with small interfering RNA (siRNA) and glucagon-like peptide-1 (GLP-1) using the supercritical carbon dioxide (SC-CO2) technology as an inhalation delivery system for diabetes therapy. siRNA-encapsulating chitosan (CS) nanoparticles were first synthesized by an ionic gelation method, which resulted in particles with small sizes (100-150 nm), high encapsulation efficiency (∼94.8%), and sustained release performance (∼60% in 32 h). These CS nanoparticles were then loaded with GLP-1-dispersed poly-l-lactide (PLLA) porous microparticles (PMs) by SC-CO2-assisted precipitation with the compressed antisolvent (PCA) process. The hypoglycemic efficacy of NIPMs administered via pulmonary route in mice persisted longer due to sustained release of siRNA from CS nanoparticles and the synergistic effects of GLP-1 in PMs, which significantly inhibited the expression of dipeptidyl peptidase-4 mRNA (DPP-4-mRNA). This ecofriendly technology provides a convenient way to fabricate nanoparticle-microparticle composites for codelivery of a gene and a therapeutic peptide, which will potentially find widespread applications in the field of pharmaceutics.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiao-Fen Lin
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Hu-Fan Song
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
14
|
Emami F, Vatanara A, Park EJ, Na DH. Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals. Pharmaceutics 2018; 10:E131. [PMID: 30126135 PMCID: PMC6161129 DOI: 10.3390/pharmaceutics10030131] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/29/2023] Open
Abstract
Solid dosage forms of biopharmaceuticals such as therapeutic proteins could provide enhanced bioavailability, improved storage stability, as well as expanded alternatives to parenteral administration. Although numerous drying methods have been used for preparing dried protein powders, choosing a suitable drying technique remains a challenge. In this review, the most frequent drying methods, such as freeze drying, spray drying, spray freeze drying, and supercritical fluid drying, for improving the stability and bioavailability of therapeutic proteins, are discussed. These technologies can prepare protein formulations for different applications as they produce particles with different sizes and morphologies. Proper drying methods are chosen, and the critical process parameters are optimized based on the proposed route of drug administration and the required pharmacokinetics. In an optimized drying procedure, the screening of formulations according to their protein properties is performed to prepare a stable protein formulation for various delivery systems, including pulmonary, nasal, and sustained-release applications.
Collapse
Affiliation(s)
- Fakhrossadat Emami
- College of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Alireza Vatanara
- College of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Eun Ji Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
15
|
Abstract
This review discusses recent developments in the manufacture of inhalable dry powder formulations. Pulmonary drugs have distinct advantages compared with other drug administration routes. However, requirements of drugs properties complicate the manufacture. Control over crystallization to make particles with the desired properties in a single step is often infeasible, which calls for micronization techniques. Although spray drying produces particles in the desired size range, a stable solid state may not be attainable. Supercritical fluids may be used as a solvent or antisolvent, which significantly reduces solvent waste. Future directions include application areas such as biopharmaceuticals for dry powder inhalers and new processing strategies to improve the control over particle formation such as continuous manufacturing with in-line process analytical technologies.
Collapse
|
16
|
Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Control Release 2017; 260:202-212. [PMID: 28603030 DOI: 10.1016/j.jconrel.2017.06.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 11/25/2022]
Abstract
The poor solubility of significant number of Active Pharmaceutical Ingredients (APIs) has become a major challenge in the drug development process. Drugs with poor solubility are difficult to formulate by conventional methods and often show poor bioavailability. In the last decade, attention has been focused on developing nanocrystals for poorly water soluble drugs using nanosizing techniques. Nanosizing is a pharmaceutical process that changes the size of a drug to the sub-micron range in an attempt to increase its surface area and consequently its dissolution rate and bioavailability. The effectiveness of nanocrystal drugs is evidenced by the fact that six FDA approved nanocrystal drugs are already on the market. The bioavailabilities of these preparations have been significantly improved compared to their conventional dosage forms. There are two main approaches for preparation of drug nanocrystals; these are the top-down and bottom-up techniques. Top-down techniques have been successfully used in both lab scale and commercial scale manufacture. Bottom-up approaches have not yet been used at a commercial level, however, these techniques have been found to produce narrow sized distribution nanocrystals using simple methods. Bottom-up techniques have been also used in combination with top-down processes to produce drug nanoparticles. The main aim of this review article is to discuss the various methods for nanosizing drugs to improve their bioavailabilities.
Collapse
Affiliation(s)
- Raida Al-Kassas
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Mahima Bansal
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - John Shaw
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
17
|
Ogienko AG, Bogdanova EG, Trofimov NA, Myz SA, Ogienko AA, Kolesov BA, Yunoshev AS, Zubikov NV, Manakov AY, Boldyrev VV, Boldyreva EV. Large porous particles for respiratory drug delivery. Glycine-based formulations. Eur J Pharm Sci 2017; 110:148-156. [PMID: 28479348 DOI: 10.1016/j.ejps.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Large porous particles are becoming increasingly popular as carriers for pulmonary drug delivery with both local and systemic applications. These particles have high geometric diameters (5-30μm) but low bulk density (~0.1g/cm3 or less) such that the aerodynamic diameter remains low (1-5μm). In this study salbutamol and budesonide serve as model inhalable drugs with poor water solubility. A novel method is proposed for the production of dry powder inhaler formulations with enhanced aerosol performance (e.g. for salbutamol-glycine formulation the fine particle fraction (FPF≤4.7μm) value is 67.0±1.3%) from substances that are poorly soluble in water. To overcome the problems related to extremely poor aqueous solubility of the APIs, not individual solvents are used for spray freeze-drying of API solutions, but organic-water mixtures, which can form clathrate hydrates at low temperatures and release APIs or their complexes as fine powders, which form large porous particles after the clathrates are removed by sublimation. Zwitterionic glycine has been used as an additive to API directly in solutions prior to spray freeze-drying, in order to prevent aggregation of powders, to enhance their dispersibility and improve air-flow properties. The clathrate-forming spray freeze-drying process in the multi-component system was optimized using low-temperature powder X-ray diffraction and thermal analysis.
Collapse
Affiliation(s)
- A G Ogienko
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| | | | | | - S A Myz
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk, Russia
| | - A A Ogienko
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - B A Kolesov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - A S Yunoshev
- Novosibirsk State University, Novosibirsk, Russia; Lavrentiev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia
| | | | - A Yu Manakov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - V V Boldyrev
- Novosibirsk State University, Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk, Russia
| | - E V Boldyreva
- Novosibirsk State University, Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk, Russia.
| |
Collapse
|
18
|
Zhou M, Shen L, Lin X, Hong Y, Feng Y. Design and pharmaceutical applications of porous particles. RSC Adv 2017. [DOI: 10.1039/c7ra06829h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Porous particles have been developed as a novel carrier to improve drug delivery, dissolution, tableting, and so on, which can be prepared by many methods.
Collapse
Affiliation(s)
- Miaomiao Zhou
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
| | - Lan Shen
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Xiao Lin
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yanlong Hong
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|
19
|
Wei S, Ma Y, Luo J, He X, Yue P, Guan Z, Yang M. Hydroxypropylcellulose as matrix carrier for novel cage-like microparticles prepared by spray-freeze-drying technology. Carbohydr Polym 2016; 157:953-961. [PMID: 27988014 DOI: 10.1016/j.carbpol.2016.10.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 01/15/2023]
Abstract
The objective of this study is to design novel dissolution-enhanced microparticles loaded poorly soluble drug nanocrystals used a low viscosity of hydroxypropylcellulose (HPC) as matrix carrier. An interesting approach combined homogenization and the spray-freeze-drying technique was developed. The results demonstrated that the ratio of HPC to drug played an important role in size-reduction efficiency of drug during homogenization. And the formation of cage-like structure of the composite particles depended on ratio of HPC to drug. The spray-freeze-dried composite particles with HPC ratio of 1:2, 1:1 and 2:1 possessed excellent redispersibility, which attributed to its porous matrix and large surface area (3000m2/g). The dissolution of spray-freeze-dried composite particles with higher ratios of HPC (1:2 and 1:1) was significantly enhanced, which attributed to the particle size reduction of drug. The HPC could immobilize drug nanocrystals in its cage-like structure and prevent it from the subsequent agglomeration during storage. In conclusion, the prepared cage-like microparticles is a promising basis for further formulation development.
Collapse
Affiliation(s)
- Shaofeng Wei
- Jiangxi University of Traditional Chinese Medicine, 818 MEILINGDADAO Road, Nanchang 330004, China
| | - Yueqin Ma
- Department of Pharmaceutics, 94th Hospital of People's Liberation Army, Nanchang 330000, China
| | - Jing Luo
- Jiangxi University of Traditional Chinese Medicine, 818 MEILINGDADAO Road, Nanchang 330004, China
| | - Xiaoru He
- Jiangxi University of Traditional Chinese Medicine, 818 MEILINGDADAO Road, Nanchang 330004, China
| | - Pengfei Yue
- Jiangxi University of Traditional Chinese Medicine, 818 MEILINGDADAO Road, Nanchang 330004, China.
| | - Zhiyu Guan
- Jiangxi University of Traditional Chinese Medicine, 818 MEILINGDADAO Road, Nanchang 330004, China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, 818 MEILINGDADAO Road, Nanchang 330004, China
| |
Collapse
|
20
|
Chen L, Okuda T, Lu XY, Chan HK. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev 2016; 100:102-15. [PMID: 26780404 DOI: 10.1016/j.addr.2016.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/23/2015] [Accepted: 01/02/2016] [Indexed: 11/25/2022]
Abstract
For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles.
Collapse
|
21
|
Poursina N, Vatanara A, Rouini MR, Gilani K, Rouholamini Najafabadi A. Systemic delivery of parathyroid hormone (1–34) using spray freeze-dried inhalable particles. Pharm Dev Technol 2015; 22:733-739. [DOI: 10.3109/10837450.2015.1125924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Narges Poursina
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
22
|
Elsayed I, AbouGhaly MHH. Inhalable nanocomposite microparticles: preparation, characterization and factors affecting formulation. Expert Opin Drug Deliv 2015; 13:207-22. [DOI: 10.1517/17425247.2016.1102224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Insulin-loaded poly-l-lactide porous microspheres prepared in supercritical CO2 for pulmonary drug delivery. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Baldelli A, Boraey MA, Nobes DS, Vehring R. Analysis of the Particle Formation Process of Structured Microparticles. Mol Pharm 2015; 12:2562-73. [DOI: 10.1021/mp500758s] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alberto Baldelli
- Department
of Mechanical
Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, AB, T6G 2G8, Canada
| | - Mohammed A. Boraey
- Department
of Mechanical
Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, AB, T6G 2G8, Canada
| | - David S. Nobes
- Department
of Mechanical
Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, AB, T6G 2G8, Canada
| | - Reinhard Vehring
- Department
of Mechanical
Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, AB, T6G 2G8, Canada
| |
Collapse
|