1
|
Mardani M, Siahtiri S, Besati M, Baghani M, Baniassadi M, Nejad AM. Microencapsulation of natural products using spray drying; an overview. J Microencapsul 2024; 41:649-678. [PMID: 39133055 DOI: 10.1080/02652048.2024.2389136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
AIMS This study examines microencapsulation as a method to enhance the stability of natural compounds, which typically suffer from inherent instability under environmental conditions, aiming to extend their application in the pharmaceutical industry. METHODS We explore and compare various microencapsulation techniques, including spray drying, freeze drying, and coacervation, with a focus on spray drying due to its noted advantages. RESULTS The analysis reveals that microencapsulation, especially via spray drying, significantly improves natural compounds' stability, offering varied morphologies, sizes, and efficiencies in encapsulation. These advancements facilitate controlled release, taste modification, protection from degradation, and extended shelf life of pharmaceutical products. CONCLUSION Microencapsulation, particularly through spray drying, presents a viable solution to the instability of natural compounds, broadening their application in pharmaceuticals by enhancing protection and shelf life.
Collapse
Affiliation(s)
- Mahshid Mardani
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Saeed Siahtiri
- Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Masoud Besati
- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Mahdavi Nejad
- Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, USA
| |
Collapse
|
2
|
Dong H, Wang S, Fu C, Sun Y, Wei T, Ren D, Wang Q. Sodium alginate and chitosan co-modified fucoxanthin liposomes: preparation, bioaccessibility and antioxidant activity. J Microencapsul 2023; 40:649-662. [PMID: 37867421 DOI: 10.1080/02652048.2023.2274057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
To improve the stability of fucoxanthin, fucoxanthin liposomes (L) were prepared by the thin-film ultrasound method, and fucoxanthin liposomes were modified with sodium alginate and chitosan by an electrostatic deposition method. The release characteristics of fucoxanthin in different types of liposomes with in vitro gastrointestinal simulation were studied. Under the optimum conditions, the results showed that the encapsulation efficiency of prepared liposomes could reach 88.56 ± 1.40% (m/m), with an average particle size of 295.27 ± 7.28 nm, a Zeta potential of -21.53 ± 2.00 mV, a polydispersity index (PDI) of 0.323 ± 0.007 and a loading capacity of 33.3 ± 0.03% (m/m). Compared with L and chitosan modified fucoxanthin liposomes (CH), sodium alginate and chitosan modified fucoxanthin liposomes (SA-CH) exhibited higher storage stability, in vitro bioaccessibility and antioxidant activity after gastrointestinal digestion. Sodium alginate and chitosan co-modified liposomes can be developed as formulations for encapsulation and delivery of functional ingredients, providing a theoretical basis for developing new fucoxanthin series products.
Collapse
Affiliation(s)
- Hongchun Dong
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Siyuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Cong Fu
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Yanxiaofan Sun
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Tuantuan Wei
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
- National R & D Branch Center for Seaweed Processing, Dalian, PR China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian, PR China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
- National R & D Branch Center for Seaweed Processing, Dalian, PR China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian, PR China
| |
Collapse
|
3
|
Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091557. [PMID: 37177102 PMCID: PMC10180326 DOI: 10.3390/nano13091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Letícia S Ferreira
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Samantha C Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
4
|
Picos-Corrales LA, Licea-Claverie A, Sarmiento-Sánchez JI, Ruelas-Leyva JP, Osuna-Martínez U, García-Carrasco M. Methods of nanoencapsulation of phytochemicals using organic platforms. PHYTOCHEMICAL NANODELIVERY SYSTEMS AS POTENTIAL BIOPHARMACEUTICALS 2023:123-184. [DOI: 10.1016/b978-0-323-90390-5.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Dehnad D, Emadzadeh B, Ghorani B, Rajabzadeh G, Kharazmi MS, Jafari SM. Nano-vesicular carriers for bioactive compounds and their applications in food formulations. Crit Rev Food Sci Nutr 2022; 64:5583-5602. [PMID: 36519525 DOI: 10.1080/10408398.2022.2156474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The most commonly used vesicular systems in the food industry include liposomes, niosomes, phytosomes, or transfersomes. This review focuses on showing how nano-vesicular carriers (NVCs) amend the properties of bioactive compounds (bioactives), making them suitable for food applications, especially functional foods. In this research, we elaborate on the question of whether bioactive-loaded NVCs affect various food aspects such as their antioxidant capacity, or sensory properties. This review also shows how NVCs improve the long-term release profile of bioactives during storage and at different pH values. Besides, the refinement of digestibility and bioaccessibility of diverse bioactives through NVCs in the gastrointestinal tract is elucidated. NVCs allow for stable vesicle formation (e.g. from anthocyanins) which reduces their cytotoxicity and proliferation of cancer cells, prolongs the release bioactives (e.g. d-limonene) with no critical burst, reduces the biofilm formation capacity of both Gram-positive/negative strains and their biofilm gene expression is down-regulated (in the case of tannic acid), low oxidation (e.g. iron) is endured when exposed to simulated gastric fluid, and unpleasant smell and taste are masked (in case of omega-3 fatty acids). After the incorporation of bioactive-loaded NVCs into food products, their antioxidant capacity is enhanced, maintaining high encapsulation efficiency and enduring pasteurization conditions, and they are not distinguished from control samples in sensory evaluation despite the reverse situation about free bioactives.
Collapse
Affiliation(s)
- Danial Dehnad
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Ha ES, Kang HT, Park H, Kim S, Kim MS. Advanced technology using supercritical fluid for particle production in pharmaceutical continuous manufacturing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Murakami Y, Inoue K, Akiyama R, Orita Y, Shimoyama Y. LipTube: Liposome Formation in the Tube Process Using Supercritical CO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuya Murakami
- Department of Industrial Chemistry, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo125-8585, Japan
| | - Keita Inoue
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Ryunosuke Akiyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Yasuhiko Orita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Yusuke Shimoyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| |
Collapse
|
8
|
Pilot-Scale Processing and Functional Properties of Antifungal EVOH-Based Films Containing Methyl Anthranilate Intended for Food Packaging Applications. Polymers (Basel) 2022; 14:polym14163405. [PMID: 36015660 PMCID: PMC9416094 DOI: 10.3390/polym14163405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial packaging has emerged as an efficient technology to improve the stability of food products. In this study, new formulations based on ethylene vinyl alcohol (EVOH) copolymer were developed by incorporating the volatile methyl anthranilate (MA) at different concentrations as antifungal compound to obtain active films for food packaging. To this end, a twin-screw extruder with a specifically designed screw configuration was employed to produce films at pilot scale. The quantification analyses of MA in the films showed a high retention capacity. Then, the morphological, optical, thermal, mechanical and water vapour barrier performance, as well as the antifungal activity in vitro of the active films, were evaluated. The presence of MA did not affect the transparency or the thermal stability of EVOH-based films, but decreased the glass transition temperature of the copolymer, indicating a plasticizing effect, which was confirmed by an increase in the elongation at break values of the films. Because of the additive-induced plasticization over EVOH, the water vapour permeability slightly increased at 33% and 75% relative humidity values. Finally, the evaluation of the antifungal activity in vitro of the active films containing methyl anthranilate showed a great effectiveness against P. expansum and B. cinerea, demonstrating the potential applicability of the developed films for active food packaging.
Collapse
|
9
|
Development of liposomal formulations of the eggplant glycoalkaloids solasonine and solamargine. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Reis DR, Ambrosi A, Luccio MD. Encapsulated essential oils: a perspective in food preservation. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031424] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of natural food ingredients has been increased in recent years due to the negative health implications of synthetic ingredients. Natural bioactive compounds are important for the development of health-oriented functional food products with better quality attributes. The natural bioactive compounds possess different types of bioactivities, e.g., antioxidative, antimicrobial, antihypertensive, and antiobesity activities. The most common method for the development of functional food is the fortification of these bioactive compounds during food product manufacturing. However, many of these natural bioactive compounds are heat-labile and less stable. Therefore, the industry and researchers proposed the microencapsulation of natural bioactive compounds, which may improve the stability of these compounds during processing and storage conditions. It may also help in controlling and sustaining the release of natural compounds in the food product matrices, thus, providing bioactivity for a longer duration. In this regard, several advanced techniques have been explored in recent years for microencapsulation of bioactive compounds, e.g., essential oils, healthy oils, phenolic compounds, flavonoids, flavoring compounds, enzymes, and vitamins. The efficiency of microencapsulation depends on various factors which are related to natural compounds, encapsulating materials, and encapsulation process. This review provides an in-depth discussion on recent advances in microencapsulation processes as well as their application in food systems.
Collapse
|
12
|
|
13
|
Han J, Li L, Pang Z, Su M, He X, Qian S, Zhang J, Gao Y, Wei Y. Mechanistic insight into gel-induced aggregation of amorphous curcumin during dissolution process. Eur J Pharm Sci 2021; 170:106083. [PMID: 34973361 DOI: 10.1016/j.ejps.2021.106083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 01/11/2023]
Abstract
Amorphous curcumin (CUR) exhibited a decreased dissolution rate in comparison with the crystalline counterpart due to its gel formation during dissolution. The main purpose of the present study is to explore the mechanism of such gelation phenomenon. It was found that the dissolution of amorphous CUR and gel properties were influenced by the temperature and pH of the media. The formed gels were characterized by TPA, SEM, DSC, XRPD, FTIR and PLM. The results indicated that the gelation process led to the formation of a porous structure in which water molecules infiltrate, and entered into its supercooled liquid state with high viscosity when contacting aqueous media, accompanied by decreased Tg and crystalline transformation. In addition, mixing with hydrophilic excipients (such as hydrophilic silica) accelerated the gel formation of amorphous CUR, while the addition of hydrophobic excipients (such as hydrophobic silica and magnesium stearate) could effectively weaken and even eliminate the gelation, hence significantly improving its dissolution. Furthermore, according to contact angle measurement and fluorescence microscope observation, hydrophilic excipients were found to be able to accelerate water entering into the interior of amorphous CUR, hence facilitating the gelation, while hydrophobic excipients would hinder water infiltration into the powder and thus achieve degelation. In conclusion, it is important to recognize that the gelation potential of some amorphous materials should be considered in developing robust amorphous drug product of high quality and performance.
Collapse
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R., China
| | - Luyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R., China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R., China
| | - Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R., China
| | - Xiaoshuang He
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R., China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R., China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R., China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R., China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R., China.
| |
Collapse
|
14
|
Rehman A, Feng J, Qunyi T, Korma SA, Assadpour E, Usman M, Han W, Jafari SM. Pesticide-loaded colloidal nanodelivery systems; preparation, characterization, and applications. Adv Colloid Interface Sci 2021; 298:102552. [PMID: 34717205 DOI: 10.1016/j.cis.2021.102552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/08/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022]
Abstract
The fast developments in pesticide-loaded nanodelivery systems over the last decade have inspired many companies and research organizations to highlight potential applications by employing encapsulation approaches in order to protect the agricultural crops. This approach is being used to retard the indiscriminate application of conventional pesticides, as well as, to make ensure the environmental safety. This article shed light on the potential of colloidal delivery systems, particularly controlled releasing profiles of several pesticides with enhanced stability and improved solubility. Colloidal nanodelivery systems, being efficient nanoformulations, have the ability to boost up the pest-control competence for prolonged intervals thru averting the early degradation of active ingredients under severe ecofriendly circumstances. This work is thus aimed to provide critical information on the meaningful role of nanocarriers for loading of pesticides. The smart art of pesticide-loaded nanocarriers can be more fruitful owing to the use of lower amount of active ingredients with improved efficiency along with minimizing the pesticide loss. Also, the future research gaps regarding nano-pesticide formulations, such as role of nanomaterials as active ingredients are discussed briefly. In addition, this article can deliver valuable information to the readers while establishing novel pesticide-loaded nanocarriers for a wide range of applications in the agriculture sectors.
Collapse
Affiliation(s)
- Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Tong Qunyi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, 114 El-Zeraa Road, Zagazig 44511, Sharkia, Egypt; School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, China
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense E-32004, Spain
| | - Muhammad Usman
- Beijing Advance Innovation center for Food Nutrition and Human Health, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Wen Han
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
15
|
Chaudhary V, Thakur N, Kajla P, Thakur S, Punia S. Application of Encapsulation Technology in Edible Films: Carrier of Bioactive Compounds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.734921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nutraceuticals, functional foods, immunity boosters, microcapsules, nanoemulsions, edible packaging, and safe food are the new progressive terms, adopted to describe the food industry. Also, the rising awareness among the consumers regarding these has created an opportunity for the food manufacturers and scientists worldwide to use food as a delivery vehicle. Packaging performs a very imminent role in the food supply chain as well as it is a consequential part of the process of food manufacturing. Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc. and other consumable constituents extracted from various non-conventional sources like microorganisms are used alone or imbibed together. These edible packaging are indispensable and are meant to be consumed with the food. This shift in paradigm from traditional food packaging to edible, environment friendly, delivery vehicles for bioactive compounds have opened new avenues for the packaging industry. Bioactive compounds imbibed in food systems are gradually degenerated, or may change their properties due to internal or external factors like oxidation reactions, or they may react with each other thus reducing their bioavailability and ultimately may result in unacceptable color or flavor. A combination of novel edible food-packaging material and innovative technologies can serve as an excellent medium to control the bioavailability of these compounds in food matrices. One promising technology for overcoming the aforesaid problems is encapsulation. It can be used as a method for entrapment of desirable flavors, probiotics, or other additives in order to apprehend the impediments of the conventional edible packaging. This review explains the concept of encapsulation by exploring various encapsulating materials and their potential role in augmenting the performance of edible coatings/films. The techniques, characteristics, applications, scope, and thrust areas for research in encapsulation are discussed in detail with focus on development of sustainable edible packaging.
Collapse
|
16
|
Kanda H, Katsube T, Wahyudiono, Goto M. Preparation of Liposomes from Soy Lecithin Using Liquefied Dimethyl Ether. Foods 2021; 10:1789. [PMID: 34441566 PMCID: PMC8393803 DOI: 10.3390/foods10081789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
We investigated a method to prepare liposomes; soy lecithin was dissolved in liquefied dimethyl ether (DME) at 0.56 MPa, which was then injected into warm water. Liposomes can be successfully prepared at warm water temperatures above 45 °C. The transmission electron microscopy (TEM) images of the obtained liposomes, size distribution, ζ-potential measurements by dynamic light scattering and the amount of residual medium were compared by gas chromatography using the conventional medium, diethyl ether. The size of the obtained liposomes was approximately 60-300 nm and the ζ-potential was approximately -57 mV, which was almost the same as that of the conventional medium. Additionally, for the conventional media, a large amount remained in the liposome dispersion even after removal by depressurization and dialysis membrane treatment; however, liquefied DME, owing to its considerably low boiling point, was completely removed by depressurization. Liquefied DME is a very attractive medium for the preparation of liposomes because it does not have the toxicity and residue problems of conventional solvents or the hazards of ethanol addition and high pressure of supercritical carbon dioxide; it is also environmentally friendly.
Collapse
Affiliation(s)
- Hideki Kanda
- Department of Materials Process Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan; (T.K.); (W.); (M.G.)
| | | | | | | |
Collapse
|
17
|
Maraveas C, Bayer IS, Bartzanas T. Recent Advances in Antioxidant Polymers: From Sustainable and Natural Monomers to Synthesis and Applications. Polymers (Basel) 2021; 13:polym13152465. [PMID: 34372069 PMCID: PMC8347842 DOI: 10.3390/polym13152465] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Advances in technology have led to the production of sustainable antioxidants and natural monomers for food packaging and targeted drug delivery applications. Of particular importance is the synthesis of lignin polymers, and graft polymers, dopamine, and polydopamine, inulin, quercetin, limonene, and vitamins, due to their free radical scavenging ability, chemical potency, ideal functional groups for polymerization, abundance in the natural environment, ease of production, and activation of biological mechanisms such as the inhibition of the cellular activation of various signaling pathways, including NF-κB and MAPK. The radical oxygen species are responsible for oxidative damage and increased susceptibility to cancer, cardiovascular, degenerative musculoskeletal, and neurodegenerative conditions and diabetes; such biological mechanisms are inhibited by both synthetic and naturally occurring antioxidants. The orientation of macromolecules in the presence of the plasticizing agent increases the suitability of quercetin in food packaging, while the commercial viability of terpenes in the replacement of existing non-renewable polymers is reinforced by the recyclability of the precursors (thyme, cannabis, and lemon, orange, mandarin) and marginal ecological effect and antioxidant properties. Emerging antioxidant nanoparticle polymers have a broad range of applications in tumor-targeted drug delivery, food fortification, biodegradation of synthetic polymers, and antimicrobial treatment and corrosion inhibition. The aim of the review is to present state-of-the-art polymers with intrinsic antioxidant properties, including synthesis scavenging activity, potential applications, and future directions. This review is distinct from other works given that it integrates different advances in antioxidant polymer synthesis and applications such as inulin, quercetin polymers, their conjugates, antioxidant-graft-polysaccharides, and polymerization vitamins and essential oils. One of the most comprehensive reviews of antioxidant polymers was published by Cirillo and Iemma in 2012. Since then, significant progress has been made in improving the synthesis, techniques, properties, and applications. The review builds upon existing research by presenting new findings that were excluded from previous reviews.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
- Correspondence: (C.M.); (I.S.B.)
| | - Ilker S. Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Correspondence: (C.M.); (I.S.B.)
| | - Thomas Bartzanas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
18
|
Martino M, Mouahid A, Trucillo P, Badens E. Elaboration of Lutein‐Loaded Nanoliposomes Using Supercritical CO
2. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mathieu Martino
- CNRS, Centrale Marseille Aix Marseille Univ M2P2 Marseille 13451 France
| | - Adil Mouahid
- CNRS, Centrale Marseille Aix Marseille Univ M2P2 Marseille 13451 France
| | - Paolo Trucillo
- Department of Industrial Engineering University of Salerno Via Giovanni Paolo II, 132 Fisciano Salerno 84084 Italy
- Department of Chemical Material and Industrial Production Engineering University of Naples Federico II Piazzale V. Tecchio Napoli 80‐80125 Italy
| | - Elisabeth Badens
- CNRS, Centrale Marseille Aix Marseille Univ M2P2 Marseille 13451 France
| |
Collapse
|
19
|
Trucillo P, Reverchon E. Production of PEG-coated liposomes using a continuous supercritical assisted process. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Economic Analysis of a New Business for Liposome Manufacturing Using a High-Pressure System. Processes (Basel) 2020. [DOI: 10.3390/pr8121604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Supercritical assisted Liposome formation (SuperLip) is a lab-scale process for the production of liposomes. SuperLip was recognized as being a versatile supercritical assisted technique for the encapsulation of molecules for different industrial applications, such as pharmaceutic, cosmetic, textile, and nutraceutic purposes. The aim of this work was to perform an economic analysis to assess the profitability of the SuperLip process. The liposomes market was analyzed and the SuperLip process was compared to other techniques in terms of manufacturing advantages using the Canvas and Strengths, Weaknesses, Opportunities, and Treats (S.W.O.T.) models. SuperLip Plant Capital Expenditures (CAPEX) were estimated, and plant Operating Expenditures (OPEX) were also evaluated and integrated with personnel cost and other plant goods and services. A profit and loss statement was generated, together with a cash flow analysis. According to the market average selling price, liposome price is 1.8 €/mL; in order to join the market rapidly, the selling price of liposomes produced using SuperLip was set at 1.1 €/mL. A payback time has been identified at the fourth year of business. Economic indexes such as ROI and ROS were calculated on a 10-year business prospect, obtaining about a 230% return on investment and a 26.7% return on sales.
Collapse
|
21
|
Ozkan G, Kostka T, Esatbeyoglu T, Capanoglu E. Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds. Molecules 2020; 25:E5545. [PMID: 33256012 PMCID: PMC7731217 DOI: 10.3390/molecules25235545] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Phenolic compounds (quercetin, rutin, cyanidin, tangeretin, hesperetin, curcumin, resveratrol, etc.) are known to have health-promoting effects and they are accepted as one of the main proposed nutraceutical group. However, their application is limited owing to the problems related with their stability and water solubility as well as their low bioaccessibility and bioavailability. These limitations can be overcome by encapsulating phenolic compounds by physical, physicochemical and chemical encapsulation techniques. This review focuses on the effects of encapsulation, especially lipid-based techniques (emulsion/nanoemulsion, solid lipid nanoparticles, liposomes/nanoliposomes, etc.), on the digestibility characteristics of phenolic compounds in terms of bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (G.O.); (E.C.)
| | - Tina Kostka
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (G.O.); (E.C.)
| |
Collapse
|
22
|
|
23
|
Klettenhammer S, Ferrentino G, Morozova K, Scampicchio M. Novel Technologies Based on Supercritical Fluids for the Encapsulation of Food Grade Bioactive Compounds. Foods 2020; 9:E1395. [PMID: 33023107 PMCID: PMC7601192 DOI: 10.3390/foods9101395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, the demand for nutritive, functional and healthy foods has increased. This trend has induced the food industry to investigate novel technologies able to produce ingredients with enhanced functional and physicochemical properties. Among these technologies, one of the most promising is the encapsulation based on supercritical fluids. Thanks to the inherent absence of organic solvent, the low temperature of the process to reach a supercritical state and the capacity to dissolve lipid soluble bioactives, the encapsulation with supercritical carbon dioxide represents a green technology to produce several functional ingredients, with enhanced stability, high load and tailored protection from environmental factors. Furthermore, from the fine-tuning of the process parameters like temperature, pressure and flow rate, the resulting functional ingredient can be easily designed to tailor the controlled release of the bioactive, or to reach specific levels of taste, odor and color. Accordingly, the aim of the present review is to summarize the state of the art of the techniques based on supercritical carbon dioxide for the encapsulation of bioactive compounds of food interest. Pros and cons of such techniques will be highlighted, giving emphasis to their innovative aspects that could be of interest to the food industry.
Collapse
Affiliation(s)
| | - Giovanna Ferrentino
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (S.K.); (K.M.); (M.S.)
| | | | | |
Collapse
|
24
|
A supercritical assisted process for the production of amoxicillin-loaded liposomes for antimicrobial applications. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Abstract
Liposomes are spherical vesicles made up of an aqueous core surrounded by phospholipids. These delivery systems (DS) are largely employed as drug carriers in several industrial fields, such as pharmaceutical and nutraceutical fields. The aim of this short review is to provide a fast overview on the main fundamentals of liposomes, thought as a compact guide for researchers and students that want to approach this topic for the first time. The mini-review will focus on the definitions, production methods and characterization protocols of the liposomes produced, making a critical comparison of the main conventional and supercritical based manufacturing methods available. The literature was analyzed deeply from the first works by Dr. Bangham in 1965 to the most recent supercritical fluid applications. The advantages and disadvantages of conventional and high-pressure processes will be described in terms of solvent elimination, production at the nanometric (50–300 nm) and micrometric level (1–100 μm) and encapsulation efficiency (20–90%). The first proposed methods were characterized by a low encapsulation efficiency (20–40%), resulting in drug loss, a high solvent residue and high operating cost. The repeatability of conventional processes was also low, due to the prevalent batch mode. Supercritical-assisted methods were developed in semi-continuous layouts, resulting in an easy process scale-up, better control of liposome dimensions (polydispersity index, PDI) and also higher encapsulation efficiencies (up to 90%).
Collapse
|
26
|
Trucillo P, Cardea S, Baldino L, Reverchon E. Production of liposomes loaded alginate aerogels using two supercritical CO2 assisted techniques. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Tanaka Y, Uemori C, Kon T, Honda M, Wahyudiono, Machmudah S, Kanda H, Goto M. Preparation of liposomes encapsulating β–carotene using supercritical carbon dioxide with ultrasonication. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Tokunaga S, Tashiro H, Ono K, Sharmin T, Kato T, Irie K, Mishima K, Satho T, Aida TM, Mishima K. Rapid production of liposomes using high pressure carbon dioxide and direct ultrasonication. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Osorio M, Martinez E, Naranjo T, Castro C. Recent Advances in Polymer Nanomaterials for Drug Delivery of Adjuvants in Colorectal Cancer Treatment: A Scientific-Technological Analysis and Review. Molecules 2020; 25:E2270. [PMID: 32408538 PMCID: PMC7288015 DOI: 10.3390/molecules25102270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the type with the second highest morbidity. Recently, a great number of bioactive compounds and encapsulation techniques have been developed. Thus, this paper aims to review the drug delivery strategies for chemotherapy adjuvant treatments for CRC, including an initial scientific-technological analysis of the papers and patents related to cancer, CRC, and adjuvant treatments. For 2018, a total of 167,366 cancer-related papers and 306,240 patents were found. Adjuvant treatments represented 39.3% of the total CRC patents, indicating the importance of adjuvants in the prognosis of patients. Chemotherapy adjuvants can be divided into two groups, natural and synthetic (5-fluorouracil and derivatives). Both groups can be encapsulated using polymers. Polymer-based drug delivery systems can be classified according to polymer nature. From those, anionic polymers have garnered the most attention, because they are pH responsive. The use of polymers tailors the desorption profile, improving drug bioavailability and enhancing the local treatment of CRC via oral administration. Finally, it can be concluded that antioxidants are emerging compounds that can complement today's chemotherapy treatments. In the long term, encapsulated antioxidants will replace synthetic drugs and will play an important role in curing CRC.
Collapse
Affiliation(s)
- Marlon Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Estefanía Martinez
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Tonny Naranjo
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín 050034, Colombia;
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín 050034, Colombia
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| |
Collapse
|
30
|
Abstract
AbstractSupercritical fluid (SCF) technologies have emerged as a real alternative to various natural product extraction processes and pharmaceutical production to obtain micronized particles, coprecipitates, nanocomposite polymer structures and liposomes, in addition to other increasingly larger applications described in literature. In the present work, a brief literature review of the application of supercritical fluid extraction (SFE) is presented. This is evidenced by several publications and patents, contributions from several countries and the increase of industries around the world dedicated to this technique. Next, we aim to focus the analysis of SFE on a review of the literature applied to microalgae as a substitute primitive feedstock due to its high growth rate, valuable biologically active lipophilic substances, and photosynthetic efficiency without competition with food sources or needs of arable lands. We finally discussing an SCF bioprocess with a very new perspective for liposome production focalized on its potential at industrial scale.
Collapse
|
31
|
Rehman A, Tong Q, Jafari SM, Assadpour E, Shehzad Q, Aadil RM, Iqbal MW, Rashed MM, Mushtaq BS, Ashraf W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv Colloid Interface Sci 2020; 275:102048. [PMID: 31757387 DOI: 10.1016/j.cis.2019.102048] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Carotenoids retain plenty of health benefits and attracting much attention recently, but they have less resistance to processing stresses, easily oxidized and chemically unstable. Additionally, their application in food and pharmaceuticals are restricted due to some limitations such as poor bioavailability, less solubility and quick release. Nanoencapsulation techniques can be used to protect the carotenoids and to uphold their original characteristics during processing, storage and digestion, improve their physiochemical properties and enhance their health promoting effects. The importance of nanocarriers in foods and pharmaceuticals cannot be denied. This review comprehensively covers recent advances in nanoencapsulation of carotenoids with biopolymeric nanocarriers (polysaccharides and proteins), and lipid-based nanocarriers, their functionalities, aptness and innovative developments in preparation strategies. Furthermore, the present state of the art encapsulation of different carotenoids via biopolymeric and lipid-based nanocarriers have been enclosed and tabulated well. Nanoencapsulation has a vast range of applications for protection of carotenoids. Polysaccharides in combination with different proteins can offer a great avenue to achieve the desired formulation for encapsulation of carotenoids by using different nanoencapsulation strategies. In terms of lipid based nanocarriers, solid lipid nanoparticles and nanostructure lipid carriers are proving as the encouraging candidates for entrapment of carotenoids. Additionally, nanoliposomes and nanoemulsion are also promising and novel-vehicles for the protection of carotenoids against challenging aspects as well as offering an effectual controlled release on the targeted sites. In the future, further studies could be conducted for exploring the application of nanoencapsulated systems in food and gastrointestinal tract (GIT) for industrial applications.
Collapse
|
32
|
Trucillo P, Campardelli R, Reverchon E. Antioxidant loaded emulsions entrapped in liposomes produced using a supercritical assisted technique. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Chakravarty P, Famili A, Nagapudi K, Al-Sayah MA. Using Supercritical Fluid Technology as a Green Alternative During the Preparation of Drug Delivery Systems. Pharmaceutics 2019; 11:E629. [PMID: 31775292 PMCID: PMC6956038 DOI: 10.3390/pharmaceutics11120629] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Micro- and nano-carrier formulations have been developed as drug delivery systems for active pharmaceutical ingredients (APIs) that suffer from poor physico-chemical, pharmacokinetic, and pharmacodynamic properties. Encapsulating the APIs in such systems can help improve their stability by protecting them from harsh conditions such as light, oxygen, temperature, pH, enzymes, and others. Consequently, the API's dissolution rate and bioavailability are tremendously improved. Conventional techniques used in the production of these drug carrier formulations have several drawbacks, including thermal and chemical stability of the APIs, excessive use of organic solvents, high residual solvent levels, difficult particle size control and distributions, drug loading-related challenges, and time and energy consumption. This review illustrates how supercritical fluid (SCF) technologies can be superior in controlling the morphology of API particles and in the production of drug carriers due to SCF's non-toxic, inert, economical, and environmentally friendly properties. The SCF's advantages, benefits, and various preparation methods are discussed. Drug carrier formulations discussed in this review include microparticles, nanoparticles, polymeric membranes, aerogels, microporous foams, solid lipid nanoparticles, and liposomes.
Collapse
Affiliation(s)
- Paroma Chakravarty
- Small Molecule Pharmaceutics, Genentech, Inc. So. San Francisco, CA 94080, USA; (P.C.); (K.N.)
| | - Amin Famili
- Small Molecule Analytical Chemistry, Genentech, Inc. So. San Francisco, CA 94080, USA;
| | - Karthik Nagapudi
- Small Molecule Pharmaceutics, Genentech, Inc. So. San Francisco, CA 94080, USA; (P.C.); (K.N.)
| | - Mohammad A. Al-Sayah
- Small Molecule Analytical Chemistry, Genentech, Inc. So. San Francisco, CA 94080, USA;
| |
Collapse
|
34
|
Palazzo I, Campardelli R, Scognamiglio M, Reverchon E. Zein/luteolin microparticles formation using a supercritical fluids assisted technique. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.09.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Trucillo P, Campardelli R, Scognamiglio M, Reverchon E. Control of liposomes diameter at micrometric and nanometric level using a supercritical assisted technique. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Khatib N, Varidi MJ, Mohebbi M, Varidi M, Hosseini SMH. Co‐encapsulation of lupulon and xanthohumol in lecithin‐based nanoliposomes developed by sonication method. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Neda Khatib
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| | - Mohammad Javad Varidi
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| | - Mehdi Varidi
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| | | |
Collapse
|
37
|
Trucillo P, Campardelli R, Reverchon E. A versatile supercritical assisted process for the one-shot production of liposomes. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
De Marco I, Riemma S, Iannone R. Life cycle assessment of supercritical impregnation: Starch aerogel + α-tocopherol tablets. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Trucillo P, Campardelli R. Production of solid lipid nanoparticles with a supercritical fluid assisted process. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem 2019; 272:494-506. [PMID: 30309574 DOI: 10.1016/j.foodchem.2018.07.205] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
41
|
Ahmed KS, Hussein SA, Ali AH, Korma SA, Lipeng Q, Jinghua C. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target 2018; 27:742-761. [PMID: 30239255 DOI: 10.1080/1061186x.2018.1527337] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last decades, pharmaceutical interested researches aimed to develop novel and innovative drug delivery techniques in the medical and pharmaceutical fields. Recently, phospholipid vesicles (Liposomes) are the most known versatile assemblies in the drug delivery systems. The discovery of liposomes arises from self-forming enclosed phospholipid bilayer upon coming in contact with the aqueous solution. Liposomes are uni or multilamellar vesicles consisting of phospholipids produced naturally or synthetically, which are readily non-toxic, biodegradable, and are readily produced on a large scale. Various phospholipids, for instance, soybean, egg yolk, synthetic, and hydrogenated phosphatidylcholine consider the most popular types used in different kinds of formulations. This review summarises liposomes composition, characterisation, methods of preparation, and their applications in different medical fields including cancer therapy, vaccine, ocular delivery, wound healing, and some dermatological applications.
Collapse
Affiliation(s)
- Kamel S Ahmed
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Jiangnan University , Wuxi , PR China.,b Department of Pharmaceutics , Faculty of Pharmacy, Minia University , Minia , Egypt
| | - Saied A Hussein
- c Department of Biomedical Engineering , College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan , PR China
| | - Abdelmoneim H Ali
- d State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Sameh A Korma
- d State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Qiu Lipeng
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Jiangnan University , Wuxi , PR China
| | - Chen Jinghua
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Jiangnan University , Wuxi , PR China
| |
Collapse
|
42
|
Niaz T, Shabbir S, Noor T, Rahman A, Bokhari H, Imran M. Potential of polymer stabilized nano-liposomes to enhance antimicrobial activity of nisin Z against foodborne pathogens. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Trucillo P, Campardelli R, Aliakbarian B, Perego P, Reverchon E. Supercritical assisted process for the encapsulation of olive pomace extract into liposomes. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Supercritical assisted process for the efficient production of liposomes containing antibiotics for ocular delivery. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
|