1
|
Suksai M, Romero R, Bosco M, Gotsch F, Jung E, Chaemsaithong P, Tarca AL, Gudicha DW, Gomez-Lopez N, Arenas-Hernandez M, Meyyazhagan A, Grossman LI, Aras S, Chaiworapongsa T. A mitochondrial regulator protein, MNRR1, is elevated in the maternal blood of women with preeclampsia. J Matern Fetal Neonatal Med 2024; 37:2297158. [PMID: 38220225 DOI: 10.1080/14767058.2023.2297158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Preeclampsia, one of the most serious obstetric complications, is a heterogenous disorder resulting from different pathologic processes. However, placental oxidative stress and an anti-angiogenic state play a crucial role. Mitochondria are a major source of cellular reactive oxygen species. Abnormalities in mitochondrial structures, proteins, and functions have been observed in the placentae of patients with preeclampsia, thus mitochondrial dysfunction has been implicated in the mechanism of the disease. Mitochondrial nuclear retrograde regulator 1 (MNRR1) is a newly characterized bi-organellar protein with pleiotropic functions. In the mitochondria, this protein regulates cytochrome c oxidase activity and reactive oxygen species production, whereas in the nucleus, it regulates the transcription of a number of genes including response to tissue hypoxia and inflammatory signals. Since MNRR1 expression changes in response to hypoxia and to an inflammatory signal, MNRR1 could be a part of mitochondrial dysfunction and involved in the pathologic process of preeclampsia. This study aimed to determine whether the plasma MNRR1 concentration of women with preeclampsia differed from that of normal pregnant women. METHODS This retrospective case-control study included 97 women with preeclampsia, stratified by gestational age at delivery into early (<34 weeks, n = 40) and late (≥34 weeks, n = 57) preeclampsia and by the presence or absence of placental lesions consistent with maternal vascular malperfusion (MVM), the histologic counterpart of an anti-angiogenic state. Women with an uncomplicated pregnancy at various gestational ages who delivered at term served as controls (n = 80) and were further stratified into early (n = 25) and late (n = 55) controls according to gestational age at venipuncture. Maternal plasma MNRR1 concentrations were determined by an enzyme-linked immunosorbent assay. RESULTS 1) Women with preeclampsia at the time of diagnosis (either early or late disease) had a significantly higher median (interquartile range, IQR) plasma MNRR1 concentration than the controls [early preeclampsia: 1632 (924-2926) pg/mL vs. 630 (448-4002) pg/mL, p = .026, and late preeclampsia: 1833 (1441-5534) pg/mL vs. 910 (526-6178) pg/mL, p = .021]. Among women with early preeclampsia, those with MVM lesions in the placenta had the highest median (IQR) plasma MNRR1 concentration among the three groups [with MVM: 2066 (1070-3188) pg/mL vs. without MVM: 888 (812-1781) pg/mL, p = .03; and with MVM vs. control: 630 (448-4002) pg/mL, p = .04]. There was no significant difference in the median plasma MNRR1 concentration between women with early preeclampsia without MVM lesions and those with an uncomplicated pregnancy (p = .3). By contrast, women with late preeclampsia, regardless of MVM lesions, had a significantly higher median (IQR) plasma MNRR1 concentration than women in the control group [with MVM: 1609 (1392-3135) pg/mL vs. control: 910 (526-6178), p = .045; and without MVM: 2023 (1578-8936) pg/mL vs. control, p = .01]. CONCLUSIONS MNRR1, a mitochondrial regulator protein, is elevated in the maternal plasma of women with preeclampsia (both early and late) at the time of diagnosis. These findings may reflect some degree of mitochondrial dysfunction, intravascular inflammation, or other unknown pathologic processes that characterize this obstetrical syndrome.
Collapse
Affiliation(s)
- Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Lawrence I Grossman
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Siddhesh Aras
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
2
|
Huang Q, Shire D, Hollis F, Abuaish S, Picard M, Monk C, Duman EA, Trumpff C. Associations between prenatal distress, mitochondrial health, and gestational age: findings from two pregnancy studies in the USA and Turkey. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618719. [PMID: 39464008 PMCID: PMC11507865 DOI: 10.1101/2024.10.16.618719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Pregnancy outcomes are influenced by maternal distress but the pathways underlying these effects are still unknown. Mitochondria, crucial for stress adaptation and energy production, may link psychosocial stress to its biological effects, especially during pregnancy when energy demands significantly increase. This study explores two mitochondrial markers-circulating cell-free mitochondrial DNA (cf-mtDNA) and Growth Differentiation Factor-15 (GDF15)-as potential mitochondrial health indicators linking maternal distress to pregnancy outcomes in two longitudinal studies from the USA and Turkey. Methods We analyzed biological, demographic, and psychological data from women in two pregnancy studies: EPI (N=187, USA, Mean age=29.6(SD=6.2) and BABIP (N=198, Turkey, Mean age=32.4(SD=4.0)). Data were collected at multiple time points during the perinatal period, including late 2nd and 3rd trimester, with EPI also including additional data at early 2nd trimester and 4-14 months postpartum. Prenatal maternal psychological distress was measured as perceived stress, anxiety, and depressive symptoms. Plasma cf-mtDNA and GDF15 levels were assessed using qPCR and ELISA, respectively. Statistical analyses included Wilcoxon signed-rank tests, Spearman correlations, and Mann-Whitney tests. Results Plasma cf-mtDNA levels did not change significantly during pregnancy in either study. Plasma GDF15 levels increased from early to late pregnancy in both studies and significantly decreased postpartum in EPI. Perinatal maternal distress in the late 2nd and 3rd trimesters was not associated with cf-mtDNA or GDF15 in either study. Metabolic distress, measured as higher pre-pregnancy BMI, was negatively correlated with GDF15 in the late 2nd trimester in EPI and showed a similar trend in BABIP. Similarly, higher maternal psychological distress in the early 2nd trimester were associated with lower cf-mtDNA and a trend for lower GDF15 in EPI. Finally, higher pre-pregnancy BMI and maternal distress in late pregnancy were linked to a smaller decline in GDF15 from late pregnancy to postpartum in EPI, suggesting an interaction between metabolic stress, prenatal distress and post-pregnancy physiological recovery. Conclusions This study identified distinct patterns of plasma cf-mtDNA and GDF15 levels during the perinatal period across studies from two countries, revealing unique associations between maternal characteristics, prenatal distress, and pregnancy outcomes, suggesting that maternal distress can interact with energy mobilization during pregnancy.
Collapse
Affiliation(s)
- Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - David Shire
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Fiona Hollis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Neuromuscular Medicine Division, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Catherine Monk
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elif Aysimi Duman
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Istanbul, Turkey
- Institute of Natural and Applied Sciences, Acibadem University, Istanbul, Turkey
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Zeiner S, Wohlrab P, Rosicky I, Schukro RP, Klein KU, Wojta J, Speidl W, Kiss H, Muin DA. Circulating Cell-Free Mitochondrial DNA as a Novel Biomarker for Intra-Amniotic Infection in Obstetrics: A Pilot Trial. J Clin Med 2024; 13:4616. [PMID: 39200758 PMCID: PMC11354521 DOI: 10.3390/jcm13164616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Intra-amniotic infection (IAI) is a rare but serious condition with potential complications such as preterm labor and intrauterine fetal death. Diagnosing IAI is challenging due to varied clinical signs. Oxidative stress and mitochondrial dysfunction have been hypothesized to evolve around IAI. This study focused on measuring circulating mtDNA levels, a proposed biomarker for mitochondrial dysfunction, in maternal serum and placenta of women with confirmed IAI and healthy controls. Methods: 12 women with confirmed IAI (IAI group) were enrolled following premature preterm rupture of the membranes (PPROM) and compared to 21 healthy women (control group). Maternal blood was obtained two weeks pre-partum and peripartum; furthermore, postpartum placental blood was taken. In the IAI group, maternal blood was taken once weekly until delivery as well as peripartum, as was placental blood. Circulating cell-free mtDNA was quantified by real-time quantitative PCR. Results: Upon admission, in the IAI group, mean plasma mtDNA levels were 735.8 fg/μL compared to 134.0 fg/μL in the control group (p < 0.05). After delivery, in the IAI group, mean mtDNA levels in the placenta were 3010 fg/μL versus 652.4 fg/μL (p < 0.05). Conclusions: Circulating cell-free mtDNA could serve as a valuable biomarker for IAI prediction and diagnosis. Future research should establish reference values for sensitivity in predicting IAI.
Collapse
Affiliation(s)
- Sebastian Zeiner
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Wohlrab
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Ingo Rosicky
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090 Vienna, Austria (D.A.M.)
| | - Regina Patricia Schukro
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine 2, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Speidl
- Department of Internal Medicine 2, Medical University of Vienna, 1090 Vienna, Austria
| | - Herbert Kiss
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090 Vienna, Austria (D.A.M.)
| | - Dana Anaïs Muin
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090 Vienna, Austria (D.A.M.)
| |
Collapse
|
4
|
Ricci CA, Crysup B, Phillips NR, Ray WC, Santillan MK, Trask AJ, Woerner AE, Goulopoulou S. Machine learning: a new era for cardiovascular pregnancy physiology and cardio-obstetrics research. Am J Physiol Heart Circ Physiol 2024; 327:H417-H432. [PMID: 38847756 PMCID: PMC11442027 DOI: 10.1152/ajpheart.00149.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The maternal cardiovascular system undergoes functional and structural adaptations during pregnancy and postpartum to support increased metabolic demands of offspring and placental growth, labor, and delivery, as well as recovery from childbirth. Thus, pregnancy imposes physiological stress upon the maternal cardiovascular system, and in the absence of an appropriate response it imparts potential risks for cardiovascular complications and adverse outcomes. The proportion of pregnancy-related maternal deaths from cardiovascular events has been steadily increasing, contributing to high rates of maternal mortality. Despite advances in cardiovascular physiology research, there is still no comprehensive understanding of maternal cardiovascular adaptations in healthy pregnancies. Furthermore, current approaches for the prognosis of cardiovascular complications during pregnancy are limited. Machine learning (ML) offers new and effective tools for investigating mechanisms involved in pregnancy-related cardiovascular complications as well as the development of potential therapies. The main goal of this review is to summarize existing research that uses ML to understand mechanisms of cardiovascular physiology during pregnancy and develop prediction models for clinical application in pregnant patients. We also provide an overview of ML platforms that can be used to comprehensively understand cardiovascular adaptations to pregnancy and discuss the interpretability of ML outcomes, the consequences of model bias, and the importance of ethical consideration in ML use.
Collapse
Affiliation(s)
- Contessa A Ricci
- College of Nursing, Washington State University, Spokane, Washington, United States
- IREACH: Institute for Research and Education to Advance Community Health, Washington State University, Seattle, Washington, United States
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States
| | - Benjamin Crysup
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
| | - William C Ray
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - August E Woerner
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo Center for Perinatal Biology, Departments of Basic Sciences, Gynecology and Obstetrics, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
5
|
Gardner JJ, Cushen SC, Oliveira da Silva RDN, Bradshaw JL, Hula N, Gorham IK, Tucker SM, Zhou Z, Cunningham RL, Phillips NR, Goulopoulou S. Oxidative stress induces release of mitochondrial DNA into the extracellular space in human placental villous trophoblast BeWo cells. Am J Physiol Cell Physiol 2024; 326:C1776-C1788. [PMID: 38738304 PMCID: PMC11371324 DOI: 10.1152/ajpcell.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) is an indicator of cell death, inflammation, and oxidative stress. ccf-mtDNA in pregnancies with placental dysfunction differs from that in healthy pregnancies, and the direction of this difference depends on gestational age and method of mtDNA quantification. Reactive oxygen species (ROS) trigger release of mtDNA, yet it is unknown whether trophoblast cells release mtDNA in response to oxidative stress, a common feature of pregnancies with placental pathology. We hypothesized that oxidative stress would induce cell death and release of mtDNA from trophoblast cells. BeWo cells were treated with antimycin A (10-320 µM) or rotenone (0.2-50 µM) to induce oxidative stress. A multiplex real-time quantitative PCR (qPCR) assay was used to quantify mtDNA and nuclear DNA in membrane-bound, non-membrane-bound, and vesicle-bound forms in cell culture supernatants and cell lysates. Treatment with antimycin A increased ROS (P < 0.0001), induced cell necrosis (P = 0.0004) but not apoptosis (P = 0.6471), and was positively associated with release of membrane-bound and non-membrane-bound mtDNA (P < 0.0001). Antimycin A increased mtDNA content in exosome-like extracellular vesicles (vesicle-bound form; P = 0.0019) and reduced autophagy marker expression (LC3A/B, P = 0.0002; p62, P < 0.001). Rotenone treatment did not influence mtDNA release or cell death (P > 0.05). Oxidative stress induces release of mtDNA into the extracellular space and causes nonapoptotic cell death and a reduction in autophagy markers in BeWo cells, an established in vitro model of human trophoblast cells. Intersection between autophagy and necrosis may mediate the release of mtDNA from the placenta in pregnancies exposed to oxidative stress.NEW & NOTEWORTHY This is the first study to test whether trophoblast cells release mitochondrial (mt)DNA in response to oxidative stress and to identify mechanisms of release and biological forms of mtDNA from this cellular type. This research identifies potential cellular mechanisms that can be used in future investigations to establish the source and biomarker potential of circulating mtDNA in preclinical experimental models and humans.
Collapse
Affiliation(s)
- Jennifer J Gardner
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Reneé de Nazaré Oliveira da Silva
- Lawrence D. Longo, MD Center for Perinatal Biology, Departments of Basic Sciences, Gynecology, and Obstetrics, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nataliia Hula
- Lawrence D. Longo, MD Center for Perinatal Biology, Departments of Basic Sciences, Gynecology, and Obstetrics, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Isabelle K Gorham
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Zhengyang Zhou
- Department of Population & Community Health, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nicole R Phillips
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Departments of Basic Sciences, Gynecology, and Obstetrics, Loma Linda University School of Medicine, Loma Linda, California, United States
| |
Collapse
|
6
|
Hafner C, Windpassinger M, Tretter EV, Rebernig KA, Reindl SM, Hochreiter B, Dekan S, Haider P, Kiss H, Klein KU, Wohlrab P. Role of mitochondrial DNA level in epidural-related maternal fever: a single-centre, observational, pilot study. BMC Pregnancy Childbirth 2024; 24:341. [PMID: 38702618 PMCID: PMC11067090 DOI: 10.1186/s12884-024-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Epidural analgesia has been associated with intrapartum maternal fever development. Epidural-related maternal fever (ERMF) is believed to be based on a non-infectious inflammatory reaction. Circulating cell-free mitochondrial deoxyribonucleic acid (mtDNA) is one of the possible triggers of sterile inflammatory processes; however, a connection has not been investigated so far. Therefore, this study aimed to investigate cell-free mtDNA alterations in women in labour with ERMF in comparison with non-febrile women. MATERIAL AND METHODS A total of 60 women in labour were assessed for maternal temperature every 4 h and blood samples were obtained at the beginning and after delivery. Depending on the analgesia and the development of fever (axillary temperature ≥ 37.5 °C), the women were allocated either to the group of no epidural analgesia (n = 17), to epidural analgesia no fever (n = 34) or to ERMF (n = 9). Circulating cell-free mtDNA was analysed in the maternal plasma for the primary outcome whereas secondary outcomes include the evaluation of inflammatory cytokine release, as well as placental inflammatory signs. RESULTS Of the women with epidural analgesia, 20% (n = 9) developed ERMF and demonstrated a decrease of circulating mtDNA levels during labour (p = 0.04), but a trend towards higher free nuclear DNA. Furthermore, women with maternal pyrexia showed a 1.5 fold increased level of Interleukin-6 during labour. A correlation was found between premature rupture of membranes and ERMF. CONCLUSIONS The pilot trial revealed an evident obstetric anaesthesia phenomenon of maternal fever due to epidural analgesia in 20% of women in labour, demonstrating counterregulated free mtDNA and nDNA. Further work is urgently required to understand the connections between the ERMF occurrence and circulating cell-free mtDNA as a potential source of sterile inflammation. TRIAL REGISTRATION NCT0405223 on clinicaltrials.gov (registered on 25/07/2019).
Collapse
Affiliation(s)
- Christina Hafner
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Marita Windpassinger
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Verena Tretter
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Katharina Anna Rebernig
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Sophie Marie Reindl
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Beatrix Hochreiter
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Sabine Dekan
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Herbert Kiss
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Wohlrab
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.
| |
Collapse
|
7
|
Gardner JJ, Cushen SC, Oliveira da Silva RDN, Bradshaw JL, Hula N, Gorham IK, Tucker SM, Zhou Z, Cunningham RL, Phillips NR, Goulopoulou S. Oxidative stress induces release of mitochondrial DNA into the extracellular space in human placental villous trophoblast BeWo cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578433. [PMID: 38352590 PMCID: PMC10862877 DOI: 10.1101/2024.02.02.578433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) is an indicator of cell death, inflammation, and oxidative stress. ccf-mtDNA differs in pregnancies with placental dysfunction from healthy pregnancies and the direction of this difference depends on gestational age and method of mtDNA quantification. Reactive oxygen species (ROS) trigger release of mtDNA from non-placental cells; yet it is unknown whether trophoblast cells release mtDNA in response to oxidative stress, a common feature of pregnancies with placental pathology. We hypothesized that oxidative stress would induce cell death and release of mtDNA from trophoblast cells. BeWo cells were treated with antimycin A (10-320 μM) or rotenone (0.2-50 μM) to induce oxidative stress. A multiplex real-time quantitative PCR (qPCR) assay was used to quantify mtDNA and nuclear DNA in membrane bound, non-membrane bound, and vesicular-bound forms in cell culture supernatants and cell lysates. Treatment with antimycin A increased ROS (p<0.0001), induced cell necrosis (p=0.0004) but not apoptosis (p=0.6471) and was positively associated with release of membrane-bound and non-membrane bound mtDNA (p<0.0001). Antimycin A increased mtDNA content in exosome-like extracellular vesicles (vesicular-bound form; p=0.0019) and reduced autophagy marker expression (LC3A/B, p=0.0002; p62, p<0.001). Rotenone treatment did not influence mtDNA release or cell death (p>0.05). Oxidative stress induces release of mtDNA into the extracellular space and causes non-apoptotic cell death and a reduction in autophagy markers in BeWo cells, an established in vitro model of human trophoblast cells. Intersection between autophagy and necrosis may mediate the release of mtDNA from the placenta in pregnancies exposed to oxidative stress. NEW & NOTEWORTHY This is the first study to test whether trophoblast cells release mitochondrial DNA in response to oxidative stress and to identify mechanisms of release and biological forms of mtDNA from this cellular type. This research identifies potential cellular mechanisms that can be used in future investigations to establish the source and biomarker potential of circulating mitochondrial DNA in preclinical experimental models and humans.
Collapse
|
8
|
Byappanahalli AM, Omoniyi V, Noren Hooten N, Smith JT, Mode NA, Ezike N, Zonderman AB, Evans MK. Extracellular vesicle mitochondrial DNA levels are associated with race and mitochondrial DNA haplogroup. iScience 2024; 27:108724. [PMID: 38226163 PMCID: PMC10788249 DOI: 10.1016/j.isci.2023.108724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) acts as a damage-associated molecular pattern molecule and may be cargo within extracellular vesicles (EVs). ccf-mtDNA and select mitochondrial DNA (mtDNA) haplogroups are associated with cardiovascular disease. We hypothesized that ccf-mtDNA and plasma EV mtDNA would be associated with hypertension, sex, self-identified race, and mtDNA haplogroup ancestry. Participants were normotensive (n = 107) and hypertensive (n = 108) African American and White adults from the Healthy Aging in Neighborhoods of Diversity across the Life Span study. ccf-mtDNA levels were higher in African American participants compared with White participants in both plasma and EVs, but ccf-mtDNA levels were not related to hypertension. EV mtDNA levels were highest in African American participants with African mtDNA haplogroup. Circulating inflammatory protein levels were altered with mtDNA haplogroup, race, and EV mtDNA. Our findings highlight that race is a social construct and that ancestry is crucial when examining health and biomarker differences between groups.
Collapse
Affiliation(s)
- Anjali M. Byappanahalli
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Victor Omoniyi
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jessica T. Smith
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Nicolle A. Mode
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Ngozi Ezike
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Placental Mitochondrial Function and Dysfunction in Preeclampsia. Int J Mol Sci 2023; 24:ijms24044177. [PMID: 36835587 PMCID: PMC9963167 DOI: 10.3390/ijms24044177] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The placenta is a vital organ of pregnancy, regulating adaptation to pregnancy, gestational parent/fetal exchange, and ultimately, fetal development and growth. Not surprisingly, in cases of placental dysfunction-where aspects of placental development or function become compromised-adverse pregnancy outcomes can result. One common placenta-mediated disorder of pregnancy is preeclampsia (PE), a hypertensive disorder of pregnancy with a highly heterogeneous clinical presentation. The wide array of clinical characteristics observed in pregnant individuals and neonates of a PE pregnancy are likely the result of distinct forms of placental pathology underlying the PE diagnosis, explaining why no one common intervention has proven effective in the prevention or treatment of PE. The historical paradigm of placental pathology in PE highlights an important role for utero-placental malperfusion, placental hypoxia and oxidative stress, and a critical role for placental mitochondrial dysfunction in the pathogenesis and progression of the disease. In the current review, the evidence of placental mitochondrial dysfunction in the context of PE will be summarized, highlighting how altered mitochondrial function may be a common feature across distinct PE subtypes. Further, advances in this field of study and therapeutic targeting of mitochondria as a promising intervention for PE will be discussed.
Collapse
|
10
|
Trophoblastic mitochondrial DNA induces endothelial dysfunction and NLRP3 inflammasome activation: Implications for preeclampsia. Int Immunopharmacol 2023; 114:109523. [PMID: 36508916 DOI: 10.1016/j.intimp.2022.109523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
AIMS Preeclampsia (PE) is characterised by systemic vascular endothelium dysfunction. Circulating trophoblastic secretions contribute to endothelial dysfunction, resulting in PE; however, the underlying mechanisms remain unclear. Herein, we aimed to determine the potential correlation between the release of trophoblastic mitochondrial deoxyribonucleic acid (DNA) (mtDNA) and endothelium damage in PE. MATERIALS AND METHODS Umbilical cord sera and tissues from patients with PE were investigated for inflammasome activation. Following this, trophoblastic mitochondria were isolated from HTR-8/SVneo trophoblasts under 21 % oxygen (O2) or hypoxic conditions (1 % O2 for 48 h) for subsequent treatments. Primary human umbilical veinendothelial cells (HUVECs) were isolated from the human umbilical cord and then exposed to a vehicle (phosphate-buffered saline [PBS]), mtDNA, hypo-mtDNA, or hypo-mtDNA with INF39 (nucleotide oligomerisation domain-like receptor family pyrin domain containing 3 [NLRP3]-specific inhibitor) for 12 h before flow cytometry and immunoblotting. The effects of trophoblastic mtDNA on the endothelium were further analysed in vivo using enzyme-linked immunosorbent assay (ELISA) and vascular reactivity assay. The effects of mtDNA on vascular phenotypes were also tested on NLRP3 knockout mice. RESULTS Elevated interleukin (IL)-1β in PE sera was accompanied by NLRP3 inflammasome activation in cord tissues. In vitro and in vivo experiments revealed that the release of trophoblastic mtDNA could damage the endothelium via NLRP3 activation, resulting in the overexpression of NLRP3, caspase-1 p20, IL-1β p17, and gasdermin D (GSDMD); reduced endothelial nitric oxide synthase (eNOS) levels; and impaired vascular relaxation. Flow cytometric analysis confirmed that extensive cell death was induced by mtDNA, and simultaneously, a more pronounced pro-apoptotic effect was caused by hypoxia-treated trophoblastic mtDNA. The NLRP3 knockout or pharmacologic NLRP3 inhibition partially reversed tumour necrosis factor-α (TNF-α) and IL-1β levels and endothelium-dependent vasodilation in mice. CONCLUSION These findings demonstrate that trophoblastic mtDNA induced NLRP3/caspase-1/IL-1β signalling activation, eNOS-related endothelial injury, and vasodilation dysfunction in PE.
Collapse
|
11
|
Analysis of cellular and cell free mitochondrial DNA content and reactive oxygen species levels in maternal blood during normal pregnancy: a pilot study. BMC Pregnancy Childbirth 2022; 22:845. [DOI: 10.1186/s12884-022-05156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Alterations in mitochondrial signatures such as mitochondrial DNA (mtDNA) content in maternal blood have been linked to pregnancy-related complications. However, changes in maternal mtDNA content, their distribution and associated signaling during normal pregnancies are not clear; which could suggest their physiological role in maternal adaptation to pregnancy related changes and a reference threshold. The aim of this study: to assess the distribution of mtDNA in peripheral blood and their association with circulatory ROS levels across different trimesters of healthy pregnancy.
Methods
In this pilot cross sectional study, blood samples of normal pregnant women from each trimester (total = 60) and age-matched non-pregnant (NP) women as control group (n = 20) were analyzed for a) the relative distribution of mtDNA content in cellular and cell free (plasma) fractions using relative quantitative polymerase chain reaction (qPCR) and b) the levels of circulating reactive oxygen species (ROS) by measurement of plasma H2O2. The results were compared between pregnant and NP groups and within trimesters for significant differences, and were also analyzed for their correlation between groups using statistical methods.
Results
While, we observed a significant decline in cellular mtDNA; plasma mtDNA was significant increased across all trimesters compared to NP. However, from comparisons within trimesters; only cellular mtDNA content in 3rd trimester was significantly reduced compared to 1st trimester, and plasma mtDNA did not differ significantly among different trimesters. A significantly higher level of plasma H2O2 was also observed during 3rd trimester compared to NP and to 1st trimester. Correlation analysis showed that, while cellular mtDNA content was negatively correlated to plasma mtDNA and to plasma H2O2 levels; plasma mtDNA was positively correlated with plasma H2O2 content.
Conclusions
This study suggested that normal pregnancy is associated with an opposing trend of reduced cellular mtDNA with increased circulatory mtDNA and H2O2 levels, which may contribute to maternal adaptation, required during different stages of pregnancy. Estimation of mtDNA distribution and ROS level in maternal blood could show mitochondrial functionality during normal pregnancy, and could be exploited to identify their prognostic/ diagnostic potential in pregnancy complications.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Preeclampsia complicates 5-10% of all pregnancies and is a leading cause of maternal and perinatal mortality and morbidity. The placenta plays a pivotal role in determining pregnancy outcome by supplying the fetus with oxygen and nutrients and by synthesizing hormones. Placental function is highly dependent on energy supplied by mitochondria. It is well-known that preeclampsia is originated from placental dysfunction, although the etiology of it remains elusive. RECENT FINDINGS During the last three decades, substantial evidence suggests that mitochondrial abnormality is a major contributor to placental dysfunction. In addition, mitochondrial damage caused by circulating bioactive factors released from the placenta may cause endothelial dysfunction and subsequent elevation in maternal blood pressure. In this review, we summarize the current knowledge of mitochondrial abnormality in the pathogenesis of preeclampsia and discuss therapeutic approaches targeting mitochondria for treatment of preeclampsia.
Collapse
|
13
|
Is Mitochondrial Oxidative Stress a Viable Therapeutic Target in Preeclampsia? Antioxidants (Basel) 2022; 11:antiox11020210. [PMID: 35204094 PMCID: PMC8868187 DOI: 10.3390/antiox11020210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/31/2023] Open
Abstract
Despite considerable research efforts over the past few decades, the pathology of preeclampsia (PE) remains poorly understood with no new FDA-approved treatments. There is a substantial amount of work being conducted by investigators around the world to identify targets to develop therapies for PE. Oxidative stress has been identified as one of the crucial players in pathogenesis of PE and has garnered a great deal of attention by several research groups including ours. While antioxidants have shown therapeutic benefit in preclinical models of PE, the clinical trials evaluating antioxidants (vitamin E and vitamin C) were found to be disappointing. Although the idea behind contribution of mitochondrial oxidative stress in PE is not new, recent years have seen an enormous interest in exploring mitochondrial oxidative stress as an important pathological mediator in PE. We and others using animals, cell models, and preeclamptic patient samples have shown the evidence for placental, renal, and endothelial cell mitochondrial oxidative stress, and its significance in PE. These studies offer promising results; however, the important and relevant question is can we translate these results into clinical efficacy in treating PE. Hence, the purpose of this review is to review the existing literature and offer our insights on the potential of mitochondrial antioxidants in treating PE.
Collapse
|
14
|
Cushen SC, Ricci CA, Bradshaw JL, Silzer T, Blessing A, Sun J, Zhou Z, Scroggins SM, Santillan MK, Santillan DA, Phillips NR, Goulopoulou S. Reduced Maternal Circulating Cell-Free Mitochondrial DNA Is Associated With the Development of Preeclampsia. J Am Heart Assoc 2022; 11:e021726. [PMID: 35014857 PMCID: PMC9238514 DOI: 10.1161/jaha.121.021726] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background Circulating cell-free mitochondrial DNA (ccf-mtDNA) is a damage-associated molecular pattern that reflects cell stress responses and tissue damage, but little is known about ccf-mtDNA in preeclampsia. The main objectives of this study were to determine (1) absolute concentrations of ccf-mtDNA in plasma and mitochondrial DNA content in peripheral blood mononuclear cells and (2) forms of ccf-mtDNA transport in blood from women with preeclampsia and healthy controls. In addition, we sought to establish the association between aberrance in circulating DNA-related metrics, including ccf-mtDNA and DNA clearance mechanisms, and the clinical diagnosis of preeclampsia using bootstrapped penalized logistic regression. Methods and Results Absolute concentrations of ccf-mtDNA were reduced in plasma from women with preeclampsia compared with healthy controls (P≤0.02), while mtDNA copy number in peripheral blood mononuclear cells did not differ between groups (P>0.05). While the pattern of reduced ccf-mtDNA in patients with preeclampsia remained, DNA isolation from plasma using membrane lysis buffer resulted in 1000-fold higher ccf-mtDNA concentrations in the preeclampsia group (P=0.0014) and 430-fold higher ccf-mtDNA concentrations in the control group (P<0.0001). Plasma from women with preeclampsia did not induce greater Toll-like receptor-9-induced nuclear factor kappa-light-chain enhancer of activated B cells-dependent responses in human embryonic kidney 293 cells overexpressing the human TLR-9 gene (P>0.05). Penalized regression analysis showed that women with preeclampsia were more likely to have lower concentrations of ccf-mtDNA as well as higher concentrations of nuclear DNA and DNase I compared with their matched controls. Conclusions Women with preeclampsia have aberrant circulating DNA dynamics, including reduced ccf-mtDNA concentrations and DNA clearance mechanisms, compared with gestational age-matched healthy pregnant women.
Collapse
Affiliation(s)
- Spencer C Cushen
- Department of Physiology and Anatomy University of North Texas Health Science Center Fort Worth TX.,Texas College of Osteopathic Medicine University of North Texas Health Science Center Fort Worth TX
| | - Contessa A Ricci
- Department of Physiology and Anatomy University of North Texas Health Science Center Fort Worth TX
| | - Jessica L Bradshaw
- Department of Physiology and Anatomy University of North Texas Health Science Center Fort Worth TX
| | - Talisa Silzer
- Department of Microbiology, Immunology and Genetics University of North Texas Health Science Center Fort Worth TX
| | - Alexandra Blessing
- Department of Microbiology, Immunology and Genetics University of North Texas Health Science Center Fort Worth TX
| | - Jie Sun
- Department of Microbiology, Immunology and Genetics University of North Texas Health Science Center Fort Worth TX
| | - Zhengyang Zhou
- Department of Biostatistics and Epidemiology University of North Texas Health Science Center Fort Worth TX
| | - Sabrina M Scroggins
- Department of Obstetrics and Gynecology University of Iowa Carver College of Medicine Iowa City IA
| | - Mark K Santillan
- Department of Obstetrics and Gynecology University of Iowa Carver College of Medicine Iowa City IA
| | - Donna A Santillan
- Department of Obstetrics and Gynecology University of Iowa Carver College of Medicine Iowa City IA
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics University of North Texas Health Science Center Fort Worth TX
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy University of North Texas Health Science Center Fort Worth TX
| |
Collapse
|
15
|
Bradshaw JL, Cushen SC, Phillips NR, Goulopoulou S. Circulating cell-free mitochondrial DNA in pregnancy. Physiology (Bethesda) 2022; 37:0. [PMID: 35001655 DOI: 10.1152/physiol.00037.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) released upon cell injury or death stimulates diverse pattern recognition receptors to activate innate immune responses and initiate systemic inflammation. In this review, we discuss the temporal changes of ccf-mtDNA during pregnancy and its potential contribution to adverse pregnancy outcomes in pregnancy complications.
Collapse
Affiliation(s)
- Jessica L Bradshaw
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States.,Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, United States
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
16
|
Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ. Vascular Dysfunction in Preeclampsia. Cells 2021; 10:3055. [PMID: 34831277 PMCID: PMC8616535 DOI: 10.3390/cells10113055] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Preeclampsia is a life-threatening pregnancy-associated cardiovascular disorder characterized by hypertension and proteinuria at 20 weeks of gestation. Though its exact underlying cause is not precisely defined and likely heterogenous, a plethora of research indicates that in some women with preeclampsia, both maternal and placental vascular dysfunction plays a role in the pathogenesis and can persist into the postpartum period. Potential abnormalities include impaired placentation, incomplete spiral artery remodeling, and endothelial damage, which are further propagated by immune factors, mitochondrial stress, and an imbalance of pro- and antiangiogenic substances. While the field has progressed, current gaps in knowledge include detailed initial molecular mechanisms and effective treatment options. Newfound evidence indicates that vasopressin is an early mediator and biomarker of the disorder, and promising future therapeutic avenues include mitigating mitochondrial dysfunction, excess oxidative stress, and the resulting inflammatory state. In this review, we provide a detailed overview of vascular defects present during preeclampsia and connect well-established notions to newer discoveries at the molecular, cellular, and whole-organism levels.
Collapse
Affiliation(s)
- Megan A. Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
| | - Matthew W. Rappelt
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - David D. Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer J. McIntosh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
17
|
Affiliation(s)
- Ana C Palei
- Department of Surgery, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.,Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
18
|
Barron A, McCarthy CM, O'Keeffe GW. Preeclampsia and Neurodevelopmental Outcomes: Potential Pathogenic Roles for Inflammation and Oxidative Stress? Mol Neurobiol 2021; 58:2734-2756. [PMID: 33492643 DOI: 10.1007/s12035-021-02290-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PE) is a common and serious hypertensive disorder of pregnancy that occurs in approximately 3-5% of first-time pregnancies and is a well-known leading cause of maternal and neonatal mortality and morbidity. In recent years, there has been accumulating evidence that in utero exposure to PE acts as an environmental risk factor for various neurodevelopmental disorders, particularly autism spectrum disorder and ADHD. At present, the mechanism(s) mediating this relationship are uncertain. In this review, we outline the most recent evidence implicating a causal role for PE exposure in the aetiology of various neurodevelopmental disorders and provide a novel interpretation of neuroanatomical alterations in PE-exposed offspring and how these relate to their sub-optimal neurodevelopmental trajectory. We then postulate that inflammation and oxidative stress, two prominent features of the pathophysiology of PE, are likely to play a major role in mediating this association. The increased inflammation in the maternal circulation, placenta and fetal circulation in PE expose the offspring to both prenatal maternal immune activation-a risk factor for neurodevelopmental disorders, which has been well-characterised in animal models-and directly higher concentrations of pro-inflammatory cytokines, which adversely affect neuronal development. Similarly, the exaggerated oxidative stress in the mother, placenta and foetus induces the placenta to secrete factors deleterious to neurons, and exposes the fetal brain to directly elevated oxidative stress and thus adversely affects neurodevelopmental processes. Finally, we describe the interplay between inflammation and oxidative stress in PE, and how both systems interact to potentially alter neurodevelopmental trajectory in exposed offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland.,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland. .,Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
19
|
Bartho LA, Fisher JJ, Cuffe JSM, Perkins AV. Mitochondrial transformations in the aging human placenta. Am J Physiol Endocrinol Metab 2020; 319:E981-E994. [PMID: 32954826 DOI: 10.1152/ajpendo.00354.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria play a key role in homeostasis and are central to one of the leading hypotheses of aging, the free radical theory. Mitochondria function as a reticulated network, constantly adapting to the cellular environment through fusion (joining), biogenesis (formation of new mitochondria), and fission (separation). This adaptive response is particularly important in response to oxidative stress, cellular damage, and aging, when mitochondria are selectively removed through mitophagy, a mitochondrial equivalent of autophagy. During this complex process, mitochondria influence surrounding cell biology and organelles through the release of signaling molecules. Given that the human placenta is a unique organ having a transient and somewhat defined life span of ∼280 days, any adaption or dysfunction associated with mitochondrial physiology as a result of aging will have a dramatic impact on the health and function of both the placenta and the fetus. Additionally, a defective placenta during gestation, resulting in reduced fetal growth, has been shown to influence the development of chronic disease in later life. In this review we focus on the mitochondrial adaptions and transformations that accompany gestational length and share similarities with age-related diseases. In addition, we discuss the role of such changes in regulating placental function throughout gestation, the etiology of gestational complications, and the development of chronic diseases later in life.
Collapse
Affiliation(s)
- Lucy A Bartho
- School of Medical Science, Griffith University Gold Coast Campus, Southport, Queensland, Australia
| | - Joshua J Fisher
- Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
20
|
Pandey D, Yevale A, Naha R, Kuthethur R, Chakrabarty S, Satyamoorthy K. Mitochondrial DNA copy number variation - A potential biomarker for early onset preeclampsia. Pregnancy Hypertens 2020; 23:1-4. [PMID: 33160129 DOI: 10.1016/j.preghy.2020.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Oxidative stress has been hypothesized as a central component of both placental and endothelial dysfunction, leading to PE. This oxidative stress leading to mitochondrial dysfunction may be due to variations in mtDNA copy numbers as an adaptive response. In the present study we aimed to analyse mtDNA copy numbers in the placenta obtained after delivery from the women with PE as compared to the controls. STUDY DESIGN It was a prospective case control study. A total of 32 placental samples were analyzed (Cases: 17; Controls: 15). Samples were collected ex vivo, after childbirth. MtDNA content was determined useing real-time quantitative PCR qRT-PCR) using TaqMan probes designed for two genes: MT-ND1 and a mitochondrial gene encoding for the NADH dehydrogenase 1 protein. RESULTS We found that the median (IQR) mtDNA copy number was higher in PE cases 24.32 (9.260-33.51) as compared with controls 20.32 (13.33-26.22). On subgroup analysis, the median (IQR) mtDNA copy number was higher in early onset PE 28.06 (20.80-36.87) as compared to late onset PE 9.215 (4.150-56.45) as well as the controls 20.32 (13.33-26.22). CONCLUSION Our findings support a higher mtDNA copy number in early onset PE as compared to late onset PE and control population. Although, mtDNA may only be increased in very severe cases of early onset preeclampsia. Future research may be directed to ascertain if mtDNA copy numbers can be a novel biomarker to predict or prognosticate early onset preeclampsia.
Collapse
|
21
|
Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165961. [PMID: 32916282 DOI: 10.1016/j.bbadis.2020.165961] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is a pregnancy-specific syndrome with multisystem involvement which leads to foetal, neonatal, and maternal morbidity and mortality. This syndrome is characterized by the onset of clinical signs and symptoms and delivery before (early-onset preeclampsia, eoPE), or after (late-onset preeclampsia, loPE), the 34 weeks of gestation. Preeclampsia is a mitochondrial disorder where its differential involvement in eoPE and loPE is unclear. Mitochondria regulate cell metabolism and are a significant source of reactive oxygen species (ROS). The syncytiotrophoblast in eoPE and loPE show altered mitochondrial structure and function resulting in ROS overproduction, oxidative stress, and cell damage and death. Mitochondrial dysfunction in eoPE may result from altered expression of several molecules, including dynamin-related protein 1 and mitofusins, compared with loPE where these factors are either reduced or unaltered. Equally, mitochondrial fusion/fission dynamics seem differentially modulated in eoPE and loPE. It is unclear whether the electron transport chain and oxidative phosphorylation are differentially altered in these two subgroups of preeclampsia. However, the activity of complex IV (cytochrome c oxidase) and the expression of essential proteins involved in the electron transport chain are reduced, leading to lower oxidative phosphorylation and mitochondrial respiration in the preeclamptic placenta. Interventional studies in patients with preeclampsia using the coenzyme Q10, a key molecule in the electron transport chain, suggest that agents that increase the antioxidative capacity of the placenta may be protective against preeclampsia development. In this review, the mitochondrial dysfunction in both eoPE and loPE is summarized. Therapeutic approaches are discussed in the context of contributing to the understanding of mitochondrial dysfunction in eoPE and loPE.
Collapse
|
22
|
Mitochondrial function in immune cells in health and disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165845. [PMID: 32473386 DOI: 10.1016/j.bbadis.2020.165845] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
One of the main functions of mitochondria is production of ATP for cellular energy needs, however, it becomes more recognized that mitochondria are involved in differentiation and activation processes of immune cells. Upon activation, immune cells have a high need for energy. Immune cells have different strategies to generate this energy. In pro-inflammatory cells, such as activated monocytes and activated T and B cells, the energy is generated by increasing glycolysis, while in regulatory cells, such as regulatory T cells or M2 macrophages, energy is generated by increasing mitochondrial function and beta-oxidation. Except for being important for energy supply during activation, mitochondria also induce immune responses. During an infection, they release mitochondrial danger associated molecules (DAMPs) that resemble structures of bacterial derived pathogen associated molecular patterns (PAMPs). Such mitochondrial DAMPS are for instance mitochondrial DNA with hypomethylated CpG motifs or a specific lipid that is only present in prokaryotic bacteria and mitochondria, i.e. cardiolipin. Via release of such DAMPs, mitochondria guide the immune response towards an inflammatory response against pathogens. This is an important mechanism in early detection of an infection and in stimulating and sustaining immune responses to fight infections. However, mitochondrial DAMPs may also have a negative impact. If mitochondrial DAMPs are released by damaged cells, without the presence of an infection, such as after a trauma, mitochondrial DAMPs may induce an undesired inflammatory response, resulting in tissue damage and organ dysfunction. Thus, immune cells have developed mechanisms to prevent such undesired immune activation by mitochondrial components. In the present narrative review, we will describe the current view of mitochondria in regulation of immune responses. We will also discuss the current knowledge on disturbed mitochondrial function in immune cells in various immunological diseases.
Collapse
|
23
|
Cushen SC, Sprouse ML, Blessing A, Sun J, Jarvis SS, Okada Y, Fu Q, Romero SA, Phillips NR, Goulopoulou S. Cell-free mitochondrial DNA increases in maternal circulation during healthy pregnancy: a prospective, longitudinal study. Am J Physiol Regul Integr Comp Physiol 2020; 318:R445-R452. [PMID: 31913687 PMCID: PMC7052592 DOI: 10.1152/ajpregu.00324.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial DNA (mtDNA) exposed to the extracellular space due to cell death has immunostimulatory properties. Case-control studies reported a positive association between odds of developing preeclampsia and circulating mtDNA. These findings are based on relative quantification protocols that do not allow determination of absolute concentrations of mtDNA and are highly sensitive to nuclear DNA contamination. Furthermore, circulating mtDNA concentrations in response to normal pregnancy, which is an inflammatory state characterized by continuous placental cell apoptosis, have not been established. The main objective of this study was to determine longitudinal changes in circulating mtDNA from preconception to first trimester, third trimester, and postpartum in healthy pregnant women. Absolute real-time PCR quantification of mtDNA and nuclear DNA (nDNA) was performed on whole genomic extracts from serum using TaqMan probes and chemistry. Serum cell-free mtDNA and nDNA concentrations were greater in late pregnancy as compared with early pregnancy and postpartum. Pregnant women carrying neonates at the upper quartile of birth length distribution had higher concentrations of mtDNA in late pregnancy compared with pregnancies carrying neonates at the lower quartile. The correlation between circulating mtDNA and nDNA concentrations varied by sex (i.e., pregnancies carrying female vs. male fetuses). This study is the first to establish temporal patterns of circulating cell-free mtDNA concentrations in normal human pregnancy using absolute DNA quantification techniques. Concentrations of circulating mtDNA in normal pregnancy may be used as reference values for the development of clinical prognostic or diagnostic tests in pregnant women with, or at risk of developing, gestational complications.
Collapse
Affiliation(s)
- Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas
| | - Marc L Sprouse
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| | - Alexandra Blessing
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| | - Jie Sun
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sara S Jarvis
- Division of Cardiology, Internal Medicine, University of Texas Southwestern Medical Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Yoshiyuki Okada
- Division of Cardiology, Internal Medicine, University of Texas Southwestern Medical Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Qi Fu
- Division of Cardiology, Internal Medicine, University of Texas Southwestern Medical Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Steven A Romero
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
24
|
Wu M, Shu Y, Song L, Liu B, Zhang L, Wang L, Liu Y, Bi J, Xiong C, Cao Z, Xu S, Xia W, Li Y, Wang Y. Prenatal exposure to thallium is associated with decreased mitochondrial DNA copy number in newborns: Evidence from a birth cohort study. ENVIRONMENT INTERNATIONAL 2019; 129:470-477. [PMID: 31158593 DOI: 10.1016/j.envint.2019.05.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Prenatal exposure to thallium is related to adverse birth outcomes. However, little is known about the effects of prenatal exposure to thallium on the mitochondrial DNA copy number (mtDNAcn) in newborns; such knowledge might reveal a potential mechanism linking maternal thallium exposure and adverse birth outcomes. OBJECTIVE To investigate the trimester-specific associations of maternal thallium exposure with cord blood leukocyte mtDNAcn. METHODS A total of 746 pregnant women with trimester-specific urinary samples and cord blood samples were recruited from Wuhan Children Hospital between November 2013 and March 2015 in Wuhan City, China. The concentration of thallium in maternal urine was quantified using inductively coupled plasma mass spectrometry (ICP-MS). Cord blood leukocyte mtDNAcn was measured by real-time quantitative polymerase chain reaction (qPCR). Trimester-specific associations of specific gravity (SG)-adjusted urinary thallium concentrations with mtDNAcn were estimated using a multiple informant model. RESULTS The geometric mean value of maternal urinary thallium was 0.34 μg/L, 0.36 μg/L, and 0.34 μg/L for the first, second, and third trimesters, respectively. Prenatal exposure to thallium during the first trimester, rather than during the second or the third trimester, was identified as negatively related to mtDNAcn. The multiple informant model showed a 10.4% lower level of mtDNAcn with each doubling increase of thallium levels (95% CI, -16.4%, -3.9%; P = 0.002). The observed associations were stronger among female newborns and among newborns born to older mothers. CONCLUSIONS The present study revealed a significant negative association between maternal thallium exposure during early pregnancy and cord blood leukocyte mtDNAcn in Chinese newborns, pointing to the important role of mitochondria as a target of thallium toxicity in early pregnancy.
Collapse
Affiliation(s)
- Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanling Shu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingqing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lina Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunyun Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
25
|
Placental Ageing in Adverse Pregnancy Outcomes: Telomere Shortening, Cell Senescence, and Mitochondrial Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3095383. [PMID: 31249642 PMCID: PMC6556237 DOI: 10.1155/2019/3095383] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a multisystemic pregnancy disorder and a major cause of maternal and neonatal morbidity and mortality worldwide. The exact pathophysiology of preeclampsia remains unclear; however, it is speculated that the various pathologies can be attributed to impaired vascular remodelling and elevated oxidative stress within the placenta. Oxidative stress plays a key role in cell ageing, and the persistent presence of elevated oxidative stress precipitates cellular senescence and mitochondrial dysfunction, resulting in premature ageing of the placenta. Premature ageing of the placenta is associated with placental insufficiency, which reduces the functional capacity of this critical organ and leads to abnormal pregnancy outcomes. The changes brought about by oxidative insults are irreversible and often lead to deleterious modifications in macromolecules such as lipids and proteins, DNA mutations, and alteration of mitochondrial functioning and dynamics. In this review, we have summarized the current knowledge of placental ageing in the aetiology of adverse pregnancy outcomes and discussed the hallmarks of ageing which could be potential markers for preeclampsia and fetal growth restriction.
Collapse
|