1
|
Gao R, Huang Y, Chen A, Jiang Q, Ding S, Meek KM, Wang Q, Yu AY, Huang J. Comparison of rose bengal-green light scleral crosslinking in rabbit eyes using different infiltration protocols - An Ex Vivo study. Exp Eye Res 2025; 250:110183. [PMID: 39608482 DOI: 10.1016/j.exer.2024.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Different concentrations and infiltration times of rose bengal (Rb) were assessed for their impact on penetration depth and crosslinking efficacy in rabbit sclera. Fresh rabbit eyes were used. Rb solution with concentrations of 0.1%-0.9% were applied for 5-30 min to infiltrate the sclera. The penetration depth of Rb was observed with confocal microscopy. After infiltration, the sclera was irradiated by green light for crosslinking. The sclera's biomechanical stiffness and the resistance to enzyme digestion post-treatment were evaluated. Histopathological analysis and transmission electron microscopy were performed to observe the morphology. As the infiltration time increased, the penetration depth and the fluorescence intensity of the Rb in sclera increased. After 32 h, 48.6% of the scleral tissue was undissolved in the 0.5% Rb-10min group, followed by the 0.1% Rb-20min group (13.8%) and 0.05% Rb-30min group (7.7%). At 8% strain, the Young's modulus of the 0.05%Rb-30min, the 0.1% Rb-20min and the 0.5% Rb-10min group were respectively 1.77, 2.45 and 3.19 times greater than that of the untreated group. There were no morphological differences between the experimental group and the untreated group. RG-SXL significantly increased the diameter of large collagen fibers in the middle and inner layers of the sclera. Ultimately, 0.5% Rb infiltration for 10 min achieves an appropriate infiltration depth and crosslinking effect, and may thus be a feasible schedule for scleral crosslinking.
Collapse
Affiliation(s)
- Rongrong Gao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuyan Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aodong Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Jiang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengnan Ding
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keith M Meek
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Qinmei Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - A-Yong Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jinhai Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| |
Collapse
|
2
|
Al Monla R, Daien V, Michon F. Advanced bioengineering strategies broaden the therapeutic landscape for corneal failure. Front Bioeng Biotechnol 2024; 12:1480772. [PMID: 39605752 PMCID: PMC11598527 DOI: 10.3389/fbioe.2024.1480772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The cornea acts as the eye foremost protective layer and is essential for its focusing power. Corneal blindness may arise from physical trauma or conditions like dystrophies, keratitis, keratoconus, or ulceration. While conventional treatments involve medical therapies and donor allografts-sometimes supplemented with keratoprostheses-these options are not suitable for all corneal defects. Consequently, the development of bioartificial corneal tissue has emerged as a critical research area, aiming to address the global shortage of human cornea donors. Bioengineered corneas hold considerable promise as substitutes, with the potential to replace either specific layers or the entire thickness of damaged corneas. This review first delves into the structural anatomy of the human cornea, identifying key attributes necessary for successful corneal tissue bioengineering. It then examines various corneal pathologies, current treatments, and their limitations. Finally, the review outlines the primary approaches in corneal tissue engineering, exploring cell-free, cell-based, and scaffold-based options as three emerging strategies to address corneal failure.
Collapse
Affiliation(s)
- Reem Al Monla
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Vincent Daien
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Sydney Medical School, The Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| |
Collapse
|
3
|
Carlà MM, Gambini G, Caporossi T, Giannuzzi F, Boselli F, Crincoli E, Ripa M, Rizzo S. Ocular Involvement in Systemic Sclerosis: Updated Review and New Insights on Microvascular Impairment. Ocul Immunol Inflamm 2024; 32:2209-2216. [PMID: 38466107 DOI: 10.1080/09273948.2024.2308030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 03/12/2024]
Abstract
Systemic sclerosis (SSc) is a chronic multisystemic disease characterized by immunological activation, diffuse vasculopathy, and generalized fibrosis exhibiting a variety of symptoms. A recognized precursor of SSc is Raynaud's phenomenon, which is part of the very early disease of systemic sclerosis (VEDOSS) in combination with nailfold videocapillaroscopy (NVC) impairment. The pathophysiology of ocular involvement, alterations in internal organs, and body integumentary system involvement in SSc patients are complicated and poorly understood, with multiple mechanisms presumptively working together. The most prevalent ocular symptoms of SSc are abnormalities of the eyelids and conjunctiva as well as dry eye syndrome, due to fibroblasts' dysfunction and inflammation of the ocular surface. In particular, lagophthalmos, blepharophimosis limitation of eyelid motion, eyelid telangiectasia, and rigidity or tightening of the lids may affect up to two-third of the patients. In addition, reduction in central corneal thickness, iris defects and higher rates of glaucoma were reported. In the first reports based on retinography or fluorescein angiography, about 50% of SSc patients showed signs of vascular disease: peripheral artery occlusion, thinning of retinal pigment epithelium and choroidal capillaries, ischemic areas surrounded by intraretinal extravasation and microaneurysms, and peripheral capillary non-perfusion. Successively, thanks to the advent of optical coherence tomography angiography (OCTA), several studies highlighted significant impairment of either the choriocapillaris and retinal vascular plexuses, also correlating with NVC involvement and skin disease, even in VEDOSS disease. Given the sensitivity of this technique, ocular micro-vasculopathy may act as a tool for early SSc identification and discriminate between disease stages.
Collapse
Affiliation(s)
- Matteo Mario Carlà
- Ophthalmology Department, "Fondazione Policlinico Universitario A. Gemelli, IRCCS", Rome, Italy
- Ophthalmology Department, Catholic University "Sacro Cuore", Rome, Italy
| | - Gloria Gambini
- Ophthalmology Department, "Fondazione Policlinico Universitario A. Gemelli, IRCCS", Rome, Italy
- Ophthalmology Department, Catholic University "Sacro Cuore", Rome, Italy
| | - Tomaso Caporossi
- Ophthalmology Department, Catholic University "Sacro Cuore", Rome, Italy
- Vitreoretinal Surgery Unit, Fatebenefratelli Isola Tiberina Gemelli Isola Hospital, Rome, Italy
| | - Federico Giannuzzi
- Ophthalmology Department, "Fondazione Policlinico Universitario A. Gemelli, IRCCS", Rome, Italy
- Ophthalmology Department, Catholic University "Sacro Cuore", Rome, Italy
| | - Francesco Boselli
- Ophthalmology Department, "Fondazione Policlinico Universitario A. Gemelli, IRCCS", Rome, Italy
- Ophthalmology Department, Catholic University "Sacro Cuore", Rome, Italy
| | - Emanuele Crincoli
- Ophthalmology Department, "Fondazione Policlinico Universitario A. Gemelli, IRCCS", Rome, Italy
- Ophthalmology Department, Catholic University "Sacro Cuore", Rome, Italy
| | - Matteo Ripa
- Department of Ophthalmology, William Harvey Hospital, East Kent Hospitals University NHS Foundation Trust, Willesborough, UK
| | - Stanislao Rizzo
- Ophthalmology Department, "Fondazione Policlinico Universitario A. Gemelli, IRCCS", Rome, Italy
- Ophthalmology Department, Catholic University "Sacro Cuore", Rome, Italy
| |
Collapse
|
4
|
Vecchiotti D, Di Vito Nolfi M, Veglianti F, Dall’Aglio F, Khan HN, Flati I, Verzella D, Capece D, Alesse E, Angelucci A, Zazzeroni F. A 3D Bioprinting Approach to Studying Retinal Müller Cells. Genes (Basel) 2024; 15:1414. [PMID: 39596614 PMCID: PMC11593586 DOI: 10.3390/genes15111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Bioprinting is an innovative technology in tissue engineering, enabling the creation of complex biological structures. This study aims to develop a three-dimensional (3D) bioprinted model of Müller cells (MCs) to enhance our understanding of their physiological and pathological roles in the retina. Methods: We investigated two different hydrogels for their ability to support the viability and differentiation of rMC-1 cells, an immortalized retinal cell line. Using 3D bioprinting technology, we assessed cell viability, differentiation, and functional characteristics through various assays, including live/dead assays and western blot analysis. Results: The collagen-based hydrogel significantly improved the viability of rMC-1 cells and facilitated the formation of spheroid aggregates, more accurately mimicking in vivo conditions compared to traditional two-dimensional (2D) culture systems. Moreover, 3D bioprinted MCs exhibited reduced markers of gliosis and oxidative stress compared to 2D cultures. Molecular analysis revealed decreased expression of GFAP and phosphorylated ERK in the 3D setting, indicating a less stressed cellular phenotype. Conclusions: Our findings demonstrate that 3D bioprinting technologies provide a more predictive platform for studying the biology of retinal MCs, which can help in the development of targeted therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Veglianti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Dall’Aglio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Hafiz Nadeem Khan
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Irene Flati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
5
|
Prieto-López L, Pereiro X, Vecino E. The mechanics of the retina: Müller glia role on retinal extracellular matrix and modelling. Front Med (Lausanne) 2024; 11:1393057. [PMID: 39296899 PMCID: PMC11410058 DOI: 10.3389/fmed.2024.1393057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The retina is a highly heterogeneous tissue, both cell-wise but also regarding its extracellular matrix (ECM). The stiffness of the ECM is pivotal in retinal development and maturation and has also been associated with the onset and/or progression of numerous retinal pathologies, such as glaucoma, proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), epiretinal membrane (ERM) formation or uveitis. Nonetheless, much remains unknown about the biomechanical milieu of the retina, and specifically the role that Müller glia play as principal mechanosensors and major producers of ECM constituents. So far, new approaches need to be developed to further the knowledge in the field of retinal mechanobiology for ECM-target applications to arise. In this review, we focus on the involvement of Müller glia in shaping and altering the retinal ECM under both physiological and pathological conditions and look into various biomaterial options to more accurately replicate the impact of matrix stiffness in vitro.
Collapse
Affiliation(s)
- Laura Prieto-López
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
6
|
Feo A, Vinciguerra R, Antropoli A, Barone G, Criscuolo D, Vinciguerra P, Romano V, Romano MR. Pachychoroid pigment epitheliopathy in keratoconic eyes. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06612-9. [PMID: 39212800 DOI: 10.1007/s00417-024-06612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE To report the association between keratoconus (KC) and pachychoroid pigment epitheliopathy (PPE). As secondary outcome, we explored the relation between subfoveal choroidal thickness (SFCT) and topometric indexes. METHODS Retrospective, observational, cross-sectional, case-control study. Multicentric study including patients with KC and healthy controls. Each subject underwent a complete ophthalmological visit, Placido-based corneal topography, Scheimpflug corneal tomography and spectral-domain OCT (SD-OCT) with the enhanced depth imaging (EDI) mode on. Linear mixed models (LMM) were employed for comparison between groups, and to examine the impact of different topometric factors on SFCT. KC stages were defined according to Belin grading. RESULTS Overall, 56 eyes from 35 KC patients and 52 eyes from 27 healthy, age- and axial length-matched control subjects were included in the study. PPE was found in 10 (17.9%) eyes from 8 KC patients, whereas was absent in all healthy controls. SFCT was statistically significantly higher in keratoconic eyes (median: 390 µm; interquartile range (IQR): 339 - 425 µm) compared to healthy eyes (median: 240 µm; IQR: 200 - 288 µm) (p < 0.001). SFCT did not differ across different KC stages and between keratoconic eyes with and without PPE. CONCLUSIONS PPE is a relatively frequent finding in eyes with KC, being present in about 1 out of 6 cases, regardless of disease stage. KEY MESSAGES What is known: Keratoconus (KC) is a corneal disorder commonly associated with other chorioretinal abnormalities. It is well known that keratoconic eyes display increased choroidal thickness, and the rare association between KC and central serous chorioretinopathy (CSC) has already been reported in the literature. WHAT IS NEW We identified an association between KC and pachychoroid pigment epitheliopathy (PPE), a precursor or forme fruste of pachychoroid diseases, such as CSC. PPE presence is independent from corneal parameters and is observed in about 1 out 6 KC eyes.
Collapse
Affiliation(s)
- Alessandro Feo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy.
| | | | - Alessio Antropoli
- Ophthalmology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianmaria Barone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Daniele Criscuolo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Paolo Vinciguerra
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Vito Romano
- Opththalmic Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 15, 25123, Brescia, Italy
| | - Mario R Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, Bergamo, Italy
| |
Collapse
|
7
|
Nagashima T, Akiyama H, Nakamura K, Tokui S, Nitta K. Posterior Precortical Vitreous Pocket in Stickler Syndrome: A Report of Two Cases. Cureus 2024; 16:e59633. [PMID: 38832188 PMCID: PMC11146095 DOI: 10.7759/cureus.59633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2024] [Indexed: 06/05/2024] Open
Abstract
Stickler syndrome is a genetic disorder characterized by collagen abnormalities leading to various ocular manifestations, such as retinal detachment. We present two cases of siblings clinically diagnosed with Stickler syndrome who exhibited retinal detachment. Case 1, a seven-year-old girl, and case 2, her 14-year-old brother, both displayed severe myopia and other clinical signs consistent with Stickler syndrome. Despite their ages, neither case showed evidence of posterior precortical vitreous pocket (PPVP) on imaging or during surgical intervention. These findings suggest a potential relationship between collagen abnormalities and PPVP dysplasia in Stickler syndrome.
Collapse
Affiliation(s)
- Tetsuhiro Nagashima
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, JPN
| | - Hideo Akiyama
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, JPN
| | - Kosuke Nakamura
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, JPN
| | - Shunsuke Tokui
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, JPN
| | - Keisuke Nitta
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, JPN
| |
Collapse
|
8
|
Hua QQH, Kültz D, Wiltshire K, Doubleday ZA, Gillanders BM. Projected ocean temperatures impair key proteins used in vision of octopus hatchlings. GLOBAL CHANGE BIOLOGY 2024; 30:e17255. [PMID: 38572638 DOI: 10.1111/gcb.17255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 04/05/2024]
Abstract
Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S-crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non-essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.
Collapse
Affiliation(s)
- Qiaz Q H Hua
- Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Dietmar Kültz
- Department of Animal Sciences and Genome Centre, University of California, Davis, USA
| | - Kathryn Wiltshire
- Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
- South Australian Research and Development Institute, West Beach, South Australia
| | - Zoe A Doubleday
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Bronwyn M Gillanders
- Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Soh Z, Martin H, Richards AJ, Suri M, Snead MP. Ophthalmic manifestations of Czech dysplasia. Am J Med Genet A 2024; 194:e63480. [PMID: 37982325 DOI: 10.1002/ajmg.a.63480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/21/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Czech dysplasia is an autosomal dominant type 2 collagenopathy that is caused by heterozygosity for the recurrent p.(Arg275Cys) COL2A1 variant. Affected individuals usually present with skeletal abnormalities such as metatarsal hypoplasia of the third and fourth toes and early-onset arthropathy, as well as hearing loss. To date, no ophthalmic findings have been reported in patients with Czech dysplasia even though COL2A1 has been implicated in other ocular conditions such as type 1 Stickler syndrome. For the first time, we report the ocular findings in four families with Czech dysplasia, including type 1 vitreous anomaly, hypoplastic vitreous, retinal tears, and significant refractive error. These novel ocular findings expand the phenotype associated with Czech dysplasia and may aid clinicians as an additional diagnostic feature. Patients with congenital abnormalities of vitreous gel architecture have an increased risk of retinal detachment, and as such, patients may benefit from prophylaxis. Considering that many of the patients did not report any ocular symptoms, vitreous phenotyping is of key importance in identifying the need for counseling with regard to prophylaxis.
Collapse
Affiliation(s)
- Zack Soh
- Vitreoretinal Research Group, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Howard Martin
- Vitreoretinal Research Group, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Allan J Richards
- Vitreoretinal Research Group, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Martin P Snead
- Vitreoretinal Research Group, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Sharma M, Kaur S, Mavlankar NA, Chanda A, Gupta PC, Saikia UN, Ram J, Pal A, Mandal S, Guptasarma P, Luthra-Guptasarma M. Use of discarded corneo-scleral rims to create cornea-like tissue. Mol Biol Rep 2024; 51:391. [PMID: 38446253 DOI: 10.1007/s11033-024-09321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Corneal disease is a major cause of blindness. Transplantation of cadaver-derived corneas (keratoplasty) is still the current therapy of choice; however, the global shortage of donor corneas continues to drive a search for alternatives. To this end, biosynthetic corneal substitutes have recently begun to gain importance. Here, we present a novel method for the generation of a cornea-like tissue (CLT), using corneo-scleral rims discarded after keratoplasty. METHODS AND RESULTS Type I collagen was polymerized within the corneo-scleral rim, which functioned as a 'host' mould, directing the 'guest' collagen to polymerize into disc-shaped cornea-like material (CLM), displaying the shape, curvature, thickness, and transparency of normal cornea. This polymerization of collagen appears to derive from some morphogenetic influence exerted by the corneo-scleral rim. Once the CLM had formed naturally, we used collagen crosslinking to fortify it, and then introduced cells to generate a stratified epithelial layer to create cornea-like tissue (CLT) displaying characteristics of native cornea. Through the excision and reuse of rims, each rim turned out to be useful for the generation of multiple cornea-shaped CLTs. CONCLUSIONS The approach effectively helps to shorten the gap between demand and supply of CLMs/CLTs for transplantation. We are exploring the surgical transplantation of this CLT into animal eyes, as keratoprostheses, as a precursor to future applications involving human eyes. It is possible to use either the CLM or CLT, for patients with varying corneal blinding diseases.
Collapse
Affiliation(s)
- Maryada Sharma
- Department of Immunopathology, Research Block A, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Subhpreet Kaur
- Department of Immunopathology, Research Block A, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | | | - Alokananda Chanda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Parul Chawla Gupta
- Departments of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Uma Nahar Saikia
- Departments of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Jagat Ram
- Departments of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Asish Pal
- Institute of Nano Science and Technology, SAS Nagar, Punjab, India
| | - Sanjay Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Purnananda Guptasarma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Research Block A, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India.
| |
Collapse
|
11
|
Dönmez Gün R, Tezcan ME, Özen MC, Tutaş Günaydın N, Şimşek Ş. The effect of systemic sclerosis and its subtypes on ocular anterior and posterior segment parameters. Int Ophthalmol 2024; 44:113. [PMID: 38407652 DOI: 10.1007/s10792-024-02950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/04/2023] [Indexed: 02/27/2024]
Abstract
PURPOSE To evaluate anterior and posterior segment parameters in the eyes of patients with systemic sclerosis (SSc) and examine the effect of disease and disease subtypes on these parameters. METHODS This cross-sectional study included 54 eyes of 27 SSc patients and 54 eyes of 27 age- and sex-matched healthy controls. In addition to a complete ophthalmologic examination, all patients were examined using a Scheimpflug camera, specular microscopy, and spectral domain optical coherence tomography. RESULTS The mean age of the patients was 52.5 ± 11.4 years and 19 patients were female. Anterior chamber volume, central corneal thickness, and central macular thickness (CMT) were significantly lower in the eyes of SSc patients compared to healthy controls (p = 0.01, p = 0.03, and p = 0.006, respectively). When evaluated according to SSc subtype, CMT was lower in diffuse SSc patients (p = 0.001), while mean retinal nerve fiber layer (RNFL) and inferior quadrant RNFL values were lower in limited SSc (p = 0.003 and p = 0.005, respectively). CONCLUSION In the eyes of patients with SSc, some ocular parameters may show decreases compared to healthy individuals, presumably secondary to disease-related vasculopathy and fibrosis. CMT and RNFL parameters may be affected differently according to disease subtype.
Collapse
Affiliation(s)
- Raziye Dönmez Gün
- Department of Ophthalmology, Istanbul Kartal Doctor Lütfi Kırdar City Hospital, Semsi Denizer Street, E-5, 34890, Kartal, Istanbul, Turkey.
| | - Mehmet Engin Tezcan
- Department of Rheumatology, Istanbul Kartal Doctor Lütfi Kırdar City Hospital, Istanbul, Turkey
| | - Mehmet Can Özen
- Şişli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | | | - Şaban Şimşek
- Department of Ophthalmology, Istanbul Kartal Doctor Lütfi Kırdar City Hospital, Semsi Denizer Street, E-5, 34890, Kartal, Istanbul, Turkey
| |
Collapse
|
12
|
Wu CY, Song DF, Chen ZJ, Hu CS, Lin DPC, Chang HH. Absence of the Klotho Function Causes Cornea Degeneration with Specific Features Resembling Fuchs Endothelial Corneal Dystrophy and Bullous Keratopathy. BIOLOGY 2024; 13:133. [PMID: 38534403 DOI: 10.3390/biology13030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
The Klotho loss-of-function mutation is known to cause accelerated senescence in many organs, but its effects on the cornea have not been published. The present study aims to investigate the effects of the Klotho null mutation on cornea degeneration and to characterize the pathological features. Mouse corneas of Klotho homozygous, heterozygous, and wild-type mice at 8 weeks of age for both genders were subject to pathological and immunohistological examinations. The results show an irregular topography on the corneal surface with a Klotho null mutation. Histological examinations revealed a reduced corneal epithelial cell density, endothelial cell-shedding, and decreased cornea stromal layer thickness in the absence of the Klotho function. Furthermore, guttae formation and the desquamation of wing cells were significantly increased, which was comparable to the characteristics of Fuchs endothelial corneal dystrophy and bullous keratopathy. The mechanism analysis showed multi-fold abnormalities, including oxidative stress-induced cornea epithelium apoptosis and inflammation, extracellular matrix remodeling in the stroma, and a disruption of epithelial repair, presumably through the epithelial-mesenchymal transition. In conclusion, cornea degeneration was observed in the Klotho loss-of-function mutant mice. These pathological features support the use of Klotho mutant mice for investigating age-related cornea anomalies, including Fuchs endothelial corneal dystrophy, bullous keratopathy, and dry eye diseases.
Collapse
Affiliation(s)
- Chun-Yen Wu
- Department of Nutrition, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Da-Fong Song
- Department of Nutrition, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Zhi-Jia Chen
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Chao-Sheng Hu
- Department of Nutrition, Chung Shan Medical University, Taichung City 402, Taiwan
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung City 402, Taiwan
| |
Collapse
|
13
|
Kiyota N, Shiga Y, Ninomiya T, Tsuda S, Omodaka K, Himori N, Yokoyama Y, Pak K, Nakazawa T. The Effect of β-Blocker Eye Drops on Pulse Rate, Ocular Blood Flow, and Glaucoma Progression: A Retrospective Longitudinal Study. Adv Ther 2024; 41:730-743. [PMID: 38169060 PMCID: PMC10838819 DOI: 10.1007/s12325-023-02762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Our study was conducted to determine factors associated with the effectiveness of a β-blocker eye drop add-on in altering pulse rate (PR) in glaucoma patients. METHODS This retrospective study examined 236 eyes of 138 patients who received a β-blocker eye drop add-on during follow-up. Patients were included if at least one PR measurement was available both before and after the add-on was started. We collected data on ophthalmic parameters: longitudinal PR; longitudinal choroidal blood flow, represented by laser speckle flowgraphy-measured mean blur rate (MBR); and diacron-reactive oxygen metabolites (d-ROMs). We used a multivariable linear mixed-effects model to investigate the effectiveness of the β-blocker eye drop add-on in altering PR and examined factors contributing to a larger PR alteration after the add-on was started by analyzing the effect on PR of the interaction term between the add-on and clinical factors. We used the k-means method to classify the patients. RESULTS The β-blocker eye drop add-on reduced PR (- 7.61 bpm, P < 0.001). Female gender, higher PR when the add-on was started, lower central corneal thickness, and a higher d-ROM level were associated with greater reduction in PR (P < 0.05). In a cluster of patients with these clinical features, choroidal MBR increased by + 3.42% when we adjusted for change over time; MD slope, which represents the speed of glaucoma progression, improved by + 0.64 dB/year (P < 0.05). CONCLUSIONS We identified a glaucoma subgroup in which PR decreased, choroidal blood flow increased, and glaucoma progression slowed after a β-blocker eye drop add-on was started.
Collapse
Affiliation(s)
- Naoki Kiyota
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Takahiro Ninomiya
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kyongsun Pak
- Division of Biostatistics, Department of Data Management, Center for Clinical Research, National Center for Child Health and Development, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
14
|
Ghorbani R, Rasouli M, Sefat F, Heidari Keshel S. Pathogenesis of Common Ocular Diseases: Emerging Trends in Extracellular Matrix Remodeling. Semin Ophthalmol 2024; 39:27-39. [PMID: 37424085 DOI: 10.1080/08820538.2023.2233601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
The prevalence of visual impairments in human societies is worrying due to retinopathy complications of several chronic diseases such as diabetes, cardiovascular diseases, and many more that are on the rise worldwide. Since the proper function of this organ plays a pivotal role in people's quality of life, identifying factors affecting the development/exacerbation of ocular diseases is of particular interest among ophthalmology researchers. The extracellular matrix (ECM) is a reticular, three-dimensional (3D) structure that determines the shape and dimensions of tissues in the body. The ECM remodeling/hemostasis is a critical process in both physiological and pathological conditions. It consists of ECM deposition, degradation, and decrease/increase in the ECM components. However, disregulation of this process and an imbalance between the synthesis and degradation of ECM components are associated with many pathological situations, including ocular disorders. Despite the impact of ECM alterations on the development of ocular diseases, there is not much research conducted in this regard. Therefore, a better understanding in this regard, can pave the way toward discovering plausible strategies to either prevent or treat eye disorders. In this review, we will discuss the importance of ECM changes as a sentimental factor in various ocular diseases based on the research done up to now.
Collapse
Affiliation(s)
- Raziyeh Ghorbani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Joseph R, Boateng A, Srivastava OP, Pfister RR. Role of Fibroblast Growth Factor Receptor 2 (FGFR2) in Corneal Stromal Thinning. Invest Ophthalmol Vis Sci 2023; 64:40. [PMID: 37750740 PMCID: PMC10541240 DOI: 10.1167/iovs.64.12.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/01/2023] [Indexed: 09/27/2023] Open
Abstract
Purpose To determine the role of fibroblast growth factor receptor 2 (FGFR2)-mediated signaling in keratocytes during corneal development, a keratocyte-specific FGFR2-knockout (named FGFR2cKO) mouse model was generated, and its phenotypic characteristics were determined. Methods A FGFR2cKO mouse model was generated by the following method: FGFR2 flox mice were crossed with the inducible keratocyte specific-Cre mice (Kera-rtTA/tet-O-Cre). Both male and female FGFR2cKO- and control mice (1 to 3-months-old) were analyzed for changes in corneal topography and pachymetry maps using the optical coherence tomography (OCT) method. The comparative TUNEL assay and immunohistochemical analyses were performed using corneas of FGFR2cKO and control mice to determine apoptotic cells, and expression of collagen-1 and fibronectin. Transmission electron microscopic analysis was conducted to determine collagen structures and their diameters in corneas of FGFR2cKO and control mice. Results OCT-analyses of corneas of FGFR2cKO mice (n = 24) showed localized central thinning and an increased corneal steepness compared to control mice (n = 23). FGFR2cKO mice further showed a decreased expression in collagen-1, decreased collagen diameters, acute corneal hydrops, an increased fibronectin expression, and an increased number of TUNEL-positive cells suggesting altered collagen structures and keratocytes' apoptosis in the corneas of FGFR2cKO mice compared to control mice. Conclusions The FGFR2cKO mice showed several corneal phenotypes (as described above in the results) that are also exhibited by the human keratoconus corneas. The results suggested that the FGFR2cKO mouse model serves to elucidate not only the yet unknown role of FGFR2-mediated signaling in corneal physiology but also serves as a model to determine molecular mechanism of human keratoconus development.
Collapse
Affiliation(s)
- Roy Joseph
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Akosua Boateng
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Om P. Srivastava
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | |
Collapse
|
16
|
Neltner TJ, Sahoo PK, Smith RW, Anders JPV, Arnett JE, Ortega DG, Schmidt RJ, Johnson GO, Natarajan SK, Housh TJ. Effects of High-Intensity, Eccentric-Only Muscle Actions on Serum Biomarkers of Collagen Degradation and Synthesis. J Strength Cond Res 2023; 37:1729-1737. [PMID: 37616533 DOI: 10.1519/jsc.0000000000004457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
ABSTRACT Neltner, TJ, Sahoo, PK, Smith, RW, Anders, JPV, Arnett, JE, Ortega, DG, Schmidt, RJ, Johnson, GO, Natarajan, SK, and Housh, TJ. Effects of high-intensity, eccentric-only muscle actions on serum biomarkers of collagen degradation and synthesis. J Strength Cond Res 37(9): 1729-1737, 2023-The purpose of this study was to examine the effects of high-intensity, eccentric-only muscle actions of the leg extensors on (a) serum biomarkers of collagen degradation (hydroxyproline [HYP] and C-terminal telopeptide of type I collagen [C1M]) and synthesis (pro-c1α1) and (b) the time course of changes in maximal voluntary isometric contraction (MVIC) and ratings of muscle soreness after the eccentric-only exercise bout. Twenty-five recreationally active men (mean ± SD: age = 21.2 ± 2.0 years) completed 5 sets of 10 bilateral, eccentric-only dynamic constant external resistance muscle actions of the leg extensors at a load of 110% of their concentric leg extension 1 repetition maximum. Analysis of variances (p < 0.05) and a priori planned pairwise comparisons using Bonferroni corrected (p < 0.0167) paired t tests were used to examine mean changes in blood biomarkers from baseline to 48 hours postexercise as well as in MVIC and soreness ratings immediately, 24 hours, and 48 hours postexercise. There were increases in HYP (3.41 ± 2.37 to 12.37 ± 8.11 μg·ml-1; p < 0.001) and C1M (2.50 ± 1.05 to 5.64 ± 4.89 μg·L-1; p = 0.003) from preexercise to 48 hours postexercise, but no change in pro-c1α1. Maximal voluntary isometric contraction declined immediately after the exercise bout (450.44 ± 72.80 to 424.48 ± 66.67 N·m; p = 0.002) but recovered 24 hours later, whereas soreness was elevated immediately (6.56 ± 1.58; p < 0.001), 24 hours (3.52 ± 1.53; p < 0.001), and 48 hours (2.60 ± 1.32; p = 0.001) postexercise. The eccentric-only exercise bout induced increases in collagen degradation but had no effect on collagen synthesis. These findings provide information for clinicians to consider when prescribing exercise after an acute injury or surgery.
Collapse
Affiliation(s)
- Tyler J Neltner
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Prakash K Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Robert W Smith
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | | | - Jocelyn E Arnett
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Dolores G Ortega
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Richard J Schmidt
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Terry J Housh
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| |
Collapse
|
17
|
Su Y, Ran CQ, Liu ZL, Yang Y, Yuan G, Hu SH, Yu XF, He WT. Case report: Autosomal recessive type 3 Stickler syndrome caused by compound heterozygous mutations in COL11A2. Front Genet 2023; 14:1154087. [PMID: 37347055 PMCID: PMC10279880 DOI: 10.3389/fgene.2023.1154087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Stickler syndrome (SS) is a group of hereditary collagenopathies caused by a variety of collagen and non-collagen genes. Affected patients have characteristic manifestations involving ophthalmic, articular, craniofacial and auditory disorders. SS is classified into several subtypes according to clinical and molecular features. Type 3 SS is an ultra-rare disease, known as non-ocular SS or otospondylomegaepiphyseal dysplasia (OSMED) with only a few pathogenic COL11A2 variants reported to date. Case presentation: A 29-year-old Chinese male was referred to our hospital for hearing loss and multiple joint pain. He presented a phenotype highly suggestive of OSMED, including progressive sensorineural deafness, spondyloepiphyseal dysplasia with large epiphyses, platyspondyly, degenerative osteoarthritis, and sunken nasal bridge. We detected compound heterozygous mutations in COL11A2, both of which were predicted to be splicing mutations. One is synonymous mutation c.3774C>T (p.Gly1258Gly) supposed to be a splice site mutation, the other is a novel intron mutation c.4750 + 5 G>A, which is a highly conservative site across several species. We also present a review of the current known pathogenic mutation spectrum of COL11A2 in patients with type 3 SS. Conclusion: Both synonymous extonic and intronic variants are easily overlooked by whole-exome sequencing. For patients with clinical manifestations suspected of SS syndrome, next-generation whole-genome sequencing is necessary for precision diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Ying Su
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Chun-Qiong Ran
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Zhe-Long Liu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Gang Yuan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Shu-Hong Hu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Xue-Feng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Wen-Tao He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| |
Collapse
|
18
|
Pan Q, Lu K, Luo J, Jiang Y, Xia B, Chen L, Wang M, Dai R, Chen T. Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome. Funct Integr Genomics 2023; 23:168. [PMID: 37204625 DOI: 10.1007/s10142-023-01090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
pax6 is a canonic master gene for eye formation. Knockout of pax6 affects the development of craniofacial skeleton and eye in mice. Whether pax6 affects the development of spinal bone has not been reported yet. In the present study, we used CRISPR/Cas9 system to generate Olpax6.1 mutant in Japanese medaka. Phenotype analysis showed that ocular mutation caused by the Olpax6.1 mutation occurred in the homozygous mutant. The phenotype of heterozygotes is not significantly different from that of wild-type. In addition, knockout Olpax6.1 resulted in severe curvature of the spine in the homozygous F2 generation. Comparative transcriptome analysis and qRT-PCR revealed that the defective Olpax6.1 protein caused a decrease in the expression level of sp7, col10a1a, and bglap, while the expression level of xylt2 did not change significantly. The functional enrichment of differentially expressed genes (DEGs) using the Kyoto Encyclopedia of Genes and Genomes database showed that the DEGs between Olpax6.1 mutation and wild-type were enriched in p53 signaling pathway, extracellular matrix (ECM) -receptor interaction, et al. Our results indicated that the defective Olpax6.1 protein results in the reduction of sp7 expression level and the activation of p53 signaling pathway, which leads to a decrease in the expression of genes encoding ECM protein, such as collagen protein family and bone gamma-carboxyglutamate protein, which further inhibits bone development. Based on the phenotype and molecular mechanism of ocular mutation and spinal curvature induced by Olpax6.1 knockout, we believe that the Olpax6.1-/- mutant could be a potential model for the study of spondylo-ocular syndrome.
Collapse
Affiliation(s)
- Qihua Pan
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ke Lu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Junzhi Luo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuewen Jiang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bilin Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Chen
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Mengyang Wang
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Ronggui Dai
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Tiansheng Chen
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China.
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
19
|
New Findings in Early-Stage Keratoconus: Lamina Cribrosa Curvature, Retinal Nerve Fiber Layer Thickness, and Vascular Perfusion. Am J Ophthalmol 2023; 246:122-129. [PMID: 36323392 DOI: 10.1016/j.ajo.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Our aim was to investigate the involvement of posterior pole structures in eyes affected by keratoconus (KC). Optical coherence tomography (OCT) and OCT angiography (OCTA) were used to determine the status of lamina cribrosa (LC), peripapillary retinal nerve fiber layer (RNFL), macular and peripapillary microvasculature. DESIGN Observational, cross-sectional, case-control analysis. METHODS Single-center investigation involving patients with KC and healthy control subjects. Enrolled subjects underwent anterior segment OCT combined with Placido-disk topography, macular and optic nerve head swept-source OCT and swept-source OCTA scans, and 3D wide glaucoma module for peripapillary RNFL thickness measurement. The LC curvature index was used to express the degree of LC posterior bowing. We calculated the vessel density and vessel length density at the macular superficial capillary plexus, deep capillary plexus, choriocapillaris, and nerve radial peripapillary capillary plexus. RESULTS Overall, 32 eyes with KC and an equal number of age- and axial length-matched control eyes were included in the analysis. Almost all (97%) of eyes with KC were classified as early stage. KC displayed a reduction in peripapillary RNFL thickness (104.8 ± 11.9 µm vs 110.7 ± 10.5 µm; P = .039) and nerve radial peripapillary capillary plexus vessel density (46.31% ± 3% vs 43.82% ± 4%; P = .006) when compared with control subjects; these differences were more evident in the temporal sector and were associated with a higher LC curvature index (9.9% ± 2.6% vs 8.48% ± 1.7%; P = .012). Mean macular superficial capillary plexus vessel density was 3 percentage points lower in eyes with KC than in healthy controls (P < .001). CONCLUSION Early-stage KC may be characterized by a posterior bowing of the LC along with a subtle peripapillary RNFL thinning and vascular impairment. These findings support the hypothesis that KC may be a corneal manifestation of a more generalized "eye collagen disease."
Collapse
|
20
|
Neltner TJ, Sahoo PK, Smith RW, Anders JPV, Arnett JE, Schmidt RJ, Johnson GO, Natarajan SK, Housh TJ. Effects of 8 Weeks of Shilajit Supplementation on Serum Pro-c1α1, a Biomarker of Type 1 Collagen Synthesis: A Randomized Control Trial. J Diet Suppl 2022; 21:1-12. [PMID: 36546868 DOI: 10.1080/19390211.2022.2157522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 1 collagen is an abundant structural protein with importance to the skin, eyes, bones, ligaments, tendons, and muscles. Shilajit supplementation has been shown to increase gene expression of collagen synthesis, however, it is unclear if increased gene expression translates to increases in circulating levels. Therefore, the purpose of the present study was to examine the effects of 8 weeks of daily supplementation with 500 mg·d-1 and 1000 mg·d-1 of Shilajit versus placebo on serum pro-c1α1, a biomarker of type 1 collagen synthesis. Thirty-five recreationally trained men (mean ± SD: age = 21.1 ± 1.8 yrs; body mass = 80.7 ± 12.4 kg; height = 180.9 ± 6.7 cm) volunteered to participate in this study. Mixed factorial and one-way ANOVAs were used to analyze mean differences between groups, with follow-up t-tests when necessary. Individual subject responses were assessed using the minimal clinically important difference and Chi-squared tests. There were significant (Low dose: p = 0.008, d = 1.2; High dose: p = 0.007, d = 1.3) increases in serum pro-c1α1 from pre- (Low dose: 42.5 ± 12.4 ng·mL-1; High dose: 42.7 ± 12.7 ng·mL-1) to post-supplementation (Low dose: 82.3 ± 46.5 ng·mL-1; High dose: 113.1 ± 78.7 ng·mL-1) for the low and high dose groups, however, no change (p > 0.05) for the placebo group. A greater proportion (p = 0.03) of subjects exhibited increases in pro-c1α1 that exceeded the minimal clinically important difference in the high dose Shilajit group (75%) compared to the placebo group (30%), but no differences (p = 0.06) between the low dose Shilajit group (69%) and placebo. In conclusion, 8 weeks of Shilajit supplementation with 500 and 1000 mg·d-1 increased type 1 collagen synthesis as indicated by serum levels of pro-c1α1.
Collapse
Affiliation(s)
- Tyler J Neltner
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, NE, USA
| | - Prakash K Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, NE, USA
| | - Robert W Smith
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, NE, USA
| | | | - Jocelyn E Arnett
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, NE, USA
| | - Richard J Schmidt
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, NE, USA
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, NE, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, NE, USA
| | - Terry J Housh
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, NE, USA
| |
Collapse
|
21
|
Akoto T, Li JJ, Estes AJ, Karamichos D, Liu Y. The Underlying Relationship between Keratoconus and Down Syndrome. Int J Mol Sci 2022; 23:ijms231810796. [PMID: 36142709 PMCID: PMC9503764 DOI: 10.3390/ijms231810796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Keratoconus (KC) is one of the most significant corneal disorders worldwide, characterized by the progressive thinning and cone-shaped protrusion of the cornea, which can lead to severe visual impairment. The prevalence of KC varies greatly by ethnic groups and geographic regions and has been observed to be higher in recent years. Although studies reveal a possible link between KC and genetics, hormonal disturbances, environmental factors, and specific comorbidities such as Down Syndrome (DS), the exact cause of KC remains unknown. The incidence of KC ranges from 0% to 71% in DS patients, implying that as the worldwide population of DS patients grows, the number of KC patients may continue to rise significantly. As a result, this review aims to shed more light on the underlying relationship between KC and DS by examining the genetics relating to the cornea, central corneal thickness (CCT), and mechanical forces on the cornea, such as vigorous eye rubbing. Furthermore, this review discusses KC diagnostic and treatment strategies that may help detect KC in DS patients, as well as the available DS mouse models that could be used in modeling KC in DS patients. In summary, this review will provide improved clinical knowledge of KC in DS patients and promote additional KC-related research in these patients to enhance their eyesight and provide suitable treatment targets.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Jiemin J. Li
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Amy J. Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-2015
| |
Collapse
|
22
|
Combined Therapy Using Human Corneal Stromal Stem Cells and Quiescent Keratocytes to Prevent Corneal Scarring after Injury. Int J Mol Sci 2022; 23:ijms23136980. [PMID: 35805991 PMCID: PMC9267074 DOI: 10.3390/ijms23136980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Corneal blindness due to scarring is conventionally treated by corneal transplantation, but the shortage of donor materials has been a major issue affecting the global success of treatment. Pre-clinical and clinical studies have shown that cell-based therapies using either corneal stromal stem cells (CSSC) or corneal stromal keratocytes (CSK) suppress corneal scarring at lower levels. Further treatments or strategies are required to improve the treatment efficacy. This study examined a combined cell-based treatment using CSSC and CSK in a mouse model of anterior stromal injury. We hypothesize that the immuno-regulatory nature of CSSC is effective to control tissue inflammation and delay the onset of fibrosis, and a subsequent intrastromal CSK treatment deposited collagens and stromal specific proteoglycans to recover a native stromal matrix. Using optimized cell doses, our results showed that the effect of CSSC treatment for suppressing corneal opacities was augmented by an additional intrastromal CSK injection, resulting in better corneal clarity. These in vivo effects were substantiated by a further downregulated expression of stromal fibrosis genes and the restoration of stromal fibrillar organization and regularity. Hence, a combined treatment of CSSC and CSK could achieve a higher clinical efficacy and restore corneal transparency, when compared to a single CSSC treatment.
Collapse
|
23
|
Soh Z, Richards AJ, McNinch A, Alexander P, Martin H, Snead MP. Dominant Stickler Syndrome. Genes (Basel) 2022; 13:1089. [PMID: 35741851 PMCID: PMC9222743 DOI: 10.3390/genes13061089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The Stickler syndromes are a group of genetic connective tissue disorders associated with an increased risk of rhegmatogenous retinal detachment, deafness, cleft palate, and premature arthritis. This review article focuses on the molecular genetics of the autosomal dominant forms of the disease. Pathogenic variants in COL2A1 causing Stickler syndrome usually result in haploinsufficiency of the protein, whereas pathogenic variants of type XI collagen more usually exert dominant negative effects. The severity of the disease phenotype is thus dependent on the location and nature of the mutation, as well as the normal developmental role of the respective protein.
Collapse
Affiliation(s)
- Zack Soh
- John van Geest Centre for Brain Repair, Vitreoretinal Research Group, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (Z.S.); (A.J.R.); (A.M.); (H.M.)
| | - Allan J. Richards
- John van Geest Centre for Brain Repair, Vitreoretinal Research Group, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (Z.S.); (A.J.R.); (A.M.); (H.M.)
- NHS England Highly Specialised Stickler Syndrome Diagnostic Service, Cambridge University, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Annie McNinch
- John van Geest Centre for Brain Repair, Vitreoretinal Research Group, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (Z.S.); (A.J.R.); (A.M.); (H.M.)
- NHS England Highly Specialised Stickler Syndrome Diagnostic Service, Cambridge University, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Philip Alexander
- NHS England Highly Specialised Stickler Syndrome Diagnostic Service, Cambridge University, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Howard Martin
- John van Geest Centre for Brain Repair, Vitreoretinal Research Group, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (Z.S.); (A.J.R.); (A.M.); (H.M.)
- NHS England Highly Specialised Stickler Syndrome Diagnostic Service, Cambridge University, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Martin P. Snead
- John van Geest Centre for Brain Repair, Vitreoretinal Research Group, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (Z.S.); (A.J.R.); (A.M.); (H.M.)
- NHS England Highly Specialised Stickler Syndrome Diagnostic Service, Cambridge University, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| |
Collapse
|
24
|
Hintzen KW, Simons C, Schaffrath K, Roessler G, Johnen S, Jakob F, Walter P, Schwaneberg U, Lohmann T. BioAdhere: tailor-made bioadhesives for epiretinal visual prostheses. Biomater Sci 2022; 10:3282-3295. [PMID: 35583519 DOI: 10.1039/d1bm01946e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Visual prostheses, i.e. epiretinal stimulating arrays, are a promising therapy in treating retinal dystrophies and degenerations. In the wake of a new generation of devices, an innovative method for epiretinal fixation of stimulator arrays is required. We present the development of tailor-made bioadhesive peptides (peptesives) for fixating epiretinal stimulating arrays omitting the use of traumatic retinal tacks. Materials and methods: Binding motifs on the stimulating array (poly[chloro-p-xylylene] (Parylene C)) and in the extracellular matrix of the retinal surface (collagens I and IV, laminin, fibronectin) were identified. The anchor peptides cecropin A (CecA), KH1, KH2 (author's initials) and osteopontin (OPN) were genetically fused to reporter proteins to assess their binding behavior to coated microtiter plates via fluorescence-based assays. Domain Z (DZ) of staphylococcal protein A was used as a separator to generate a bioadhesive peptide. Following ISO 10993 "biological evaluation of medical materials", direct and non-direct cytotoxicity testing (L-929 and R28 retinal progenitor cells) was performed. Lastly, the fixating capabilities of the peptesives were tested in proof-of-principle experiments. Results: The generation of the bioadhesive peptide required evaluation of the N- and C-anchoring of investigated APs. The YmPh-CecA construct showed the highest activity on Parylene C in comparison with the wildtype phytase without the anchor peptide. eGFP-OPN was binding to all four investigated ECM proteins (collagen I, laminin > collagen IV, fibronectin). The strongest binding to collagen I was observed for eGFP-KH1, while the strongest binding to fibronectin was observed for eGFP-KH2. The selectivity of binding was checked by incubating eGFP-CecA and eGFP-OPN on ECM proteins and on Parylene C, respectively. Direct and non-direct cytotoxicity testing of the peptide cecropin-A-DZ-OPN using L-929 and R28 cells showed good biocompatibility properties. Proof-of-concept experiments in post-mortem rabbit eyes suggested an increased adhesion of CecA-DZ-OPN-coated stimulating arrays. Conclusion: This is the first study to prove the applicability and biocompatibility of peptesives for the fixation of macroscopic objects.
Collapse
Affiliation(s)
- Kai-Wolfgang Hintzen
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Christian Simons
- DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Kim Schaffrath
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Gernot Roessler
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Sandra Johnen
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Felix Jakob
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Tibor Lohmann
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
25
|
Zhang Y, Zhou K, Feng Z, Feng K, Ji Y, Li C, Huang Z. Viscoelastic properties' characterization of corneal stromal models using non-contact surface acoustic wave optical coherence elastography (SAW-OCE). JOURNAL OF BIOPHOTONICS 2022; 15:e202100253. [PMID: 34713598 DOI: 10.1002/jbio.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Viscoelastic characterization of the tissue-engineered corneal stromal model is important for our understanding of the cell behaviors in the pathophysiologic altered corneal extracellular matrix (ECM). The effects of the interactions between stromal cells and different ECM characteristics on the viscoelastic properties during an 11-day culture period were explored. Collagen-based hydrogels seeded with keratocytes were used to replicate human corneal stroma. Keratocytes were seeded at 8 × 103 cells per hydrogel and with collagen concentrations of 3, 5 and 7 mg/ml. Air-pulse-based surface acoustic wave optical coherence elastography (SAW-OCE) was employed to monitor the changes in the hydrogels' dimensions and viscoelasticity over the culture period. The results showed the elastic modulus increased by 111%, 56% and 6%, and viscosity increased by 357%, 210% and 25% in the 3, 5 and 7 mg/ml hydrogels, respectively. To explain the SAW-OCE results, scanning electron microscope was also performed. The results confirmed the increase in elastic modulus and viscosity of the hydrogels, respectively, arose from increased fiber density and force-dependent unbinding of bonds between collagen fibers. This study reveals the influence of cell-matrix interactions on the viscoelastic properties of corneal stromal models and can provide quantitative guidance for mechanobiological investigations which require collagen ECM with tuneable viscoelastic properties.
Collapse
Affiliation(s)
- Yilong Zhang
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Kanheng Zhou
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Zhengshuyi Feng
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Kairui Feng
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Yubo Ji
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Chunhui Li
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, UK
| |
Collapse
|
26
|
The Role of the Stromal Extracellular Matrix in the Development of Pterygium Pathology: An Update. J Clin Med 2021; 10:jcm10245930. [PMID: 34945227 PMCID: PMC8707182 DOI: 10.3390/jcm10245930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Pterygium is a benign fibrovascular lesion of the bulbar conjunctiva with frequent involvement of the corneal limbus. Its pathogenesis has been mainly attributed to sun exposure to ultraviolet-B radiation. Obtained evidence has shown that it is a complex and multifactorial process which involves multiple mechanisms such as oxidative stress, dysregulation of cell cycle checkpoints, induction of inflammatory mediators and growth factors, angiogenic stimulation, extracellular matrix (ECM) disorders, and, most likely, viruses and hereditary changes. In this review, we aim to collect all authors’ experiences and our own, with respect to the study of fibroelastic ECM of pterygium. Collagen and elastin are intrinsic indicators of physiological and pathological states. Here, we focus on an in-depth analysis of collagen (types I and III), as well as the main constituents of elastic fibers (tropoelastin (TE), fibrillins (FBNs), and fibulins (FBLNs)) and the enzymes (lysyl oxidases (LOXs)) that carry out their assembly or crosslinking. All the studies established that changes in the fibroelastic ECM occur in pterygium, based on the following facts: An increase in the synthesis and deposition of an immature form of collagen type III, which showed the process of tissue remodeling. An increase in protein levels in most of the constituents necessary for the development of elastic fibers, except FBLN4, whose biological roles are critical in the binding of the enzyme LOX, as well as FBN1 for the development of stable elastin. There was gene overexpression of TE, FBN1, FBLN5, and LOXL1, while the expression of LOX and FBLN2 and -4 remained stable. In conclusion, collagen and elastin, as well as several constituents involved in elastic fiber assembly are overexpressed in human pterygium, thus, supporting the hypothesis that there is dysregulation in the synthesis and crosslinking of the fibroelastic component, constituting an important pathogenetic mechanism for the development of the disease.
Collapse
|
27
|
Nag TC, Chakraborti S, Das D. The eye of the tongue sole Cynoglossus bilineatus (Lacepède, 1802) (Teleostei: Pleuronectiformes). Tissue Cell 2021; 74:101710. [PMID: 34953346 DOI: 10.1016/j.tice.2021.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
We report the ocular features of the tongue sole, Cynoglossus bilineatus (Lacepède, 1802), a marine, bottom-dwelling flatfish. In this species, both eyes are located juxtaposed on the same side of the flat head. Histology revealed the sclera to be fibrous (collagenous) in nature. The choroid possesses the choriocapillaris, and adjacent to it, 3-4 rows of iridophores with stacks of cytoplasmic platelets. No choroidal gland is present. The retinal pigment epithelium (RPE) contains scanty melanin granules. Its vitread half is modified into a dense tapetum with lipid spheres (about 0.34 μm in diameter). In juveniles, the tapetal spheres arise by budding from the smooth endoplasmic reticulum of the RPE. There are blood vessels within the retina; the vitreal vessels penetrate the retina and ramify close to the level of the outer limiting membrane. The vessels are capillaries in nature. The photoreceptor layer contains abundant rods, and twin cones and single cones, being arranged into square mosaics. The optic disc is non-pleated and shows pan- cytokeratin immunopositivity, which is related to the bundled cytokeratin filaments detected in astrocytes by electron microscopy. The retinal tapetum and choroidal iridophores help the species to live in a muddy bottom having dim-light environment. The lack of a choroidal gland, hypoxic aquatic condition and presence of a dense retinal tapetum (that limits O2 transport to the photoreceptors) appear to have favored the proliferation of vitreal vessels within the retina in this species. The fibrous sclera has probably arisen to provide structural support to the eye in migration from the lateral to the dorsal aspect of the head during larval metamorphosis.
Collapse
Affiliation(s)
- T C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - S Chakraborti
- Department of Zoology, Bidhannagar College, Salt Lake 1, Kolkata, 700064, West Bengal, India
| | - D Das
- Department of Zoology, Taki Government College, Taki, North 24 Parganas, West Bengal, 743429, India
| |
Collapse
|
28
|
Stachon T, Latta L, Seitz B, Szentmáry N. Different mRNA expression patterns in keratoglobus and pellucid marginal degeneration keratocytes. Exp Eye Res 2021; 213:108804. [PMID: 34756941 DOI: 10.1016/j.exer.2021.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Alike keratoconus (KC), keratoglobus (KG) and pellucid marginal degeneration (PMD) belong to ectatic corneal diseases. While there are numerous studies on keratoconus pathophysiology, there is no exact knowledge on genetic and pathophysiological background of KG and PMD, so far. It is not yet clarified, whether KG and PMD are independent clinical entities or represent different stages of the same disease. Our purpose was to investigate key parameters concerning collagen synthesis, intracellular LOX expression and inflammation in corneal stromal cells of KG and PMD subjects, in vitro. METHODS Normal human keratocytes of corneas from the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz and human keratocytes of KG and PMD patients were isolated and cultured as keratocytes. To examine Collagen I and V (Col I, Col V), heat shock protein 47 (Hsp47), Lysyl Oxidase (LOX), nuclear factor kappa B (NF-κB) mRNA and protein expression in all cell types, quantitative PCR and Western blot analysis has been performed. RESULTS Col5A1 mRNA expression was significantly lower in KG and PMD keratocytes and LOX mRNA expression was significantly higher in KG-keratocytes, compared to controls. Col1A1, Hsp47 and NF-κB mRNA expression and the analyzed protein expressions did not differ from controls, in KG or PMD. CONCLUSIONS Col5A1 mRNA expression is decreased in KG and PMD and LOX mRNA expression is increased in KG. Therefore, the pathophysiology of KG and PMD differs from KC and these seem to be from KC independent entities. The explanation of the peripheral corneal thinning in KG and PMD must be investigated in further studies.
Collapse
Affiliation(s)
- Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany.
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany; Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
29
|
Baratta RO, Del Buono BJ, Schlumpf E, Ceresa BP, Calkins DJ. Collagen Mimetic Peptides Promote Corneal Epithelial Cell Regeneration. Front Pharmacol 2021; 12:705623. [PMID: 34483909 PMCID: PMC8415399 DOI: 10.3389/fphar.2021.705623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The cornea of the eye is at risk for injury through constant exposure to the extraocular environment. A highly collagenous structure, the cornea contains several different types distributed across multiple layers. The anterior-most layer contains non-keratinized epithelial cells that serve as a barrier to environmental, microbial, and other insults. Renewal and migration of basal epithelial cells from the limbus involve critical interactions between secreted basement membranes, composed primarily of type IV collagen, and underlying Bowman's and stromal layers, which contain primarily type I collagen. This process is challenged in many diseases and conditions that insult the ocular surface and damage underlying collagen. We investigated the capacity of a collagen mimetic peptide (CMP), representing a fraction of a single strand of the damaged triple helix human type I collagen, to promote epithelial healing following an acute corneal wound. In vitro, the collagen mimetic peptide promoted the realignment of collagen damaged by enzymic digestion. In an in vivo mouse model, topical application of a CMP-containing formulation following a 360° lamellar keratectomy targeting the corneal epithelial layer accelerated wound closure during a 24 h period, compared to vehicle. We found that the CMP increased adherence of the basal epithelium to the underlying substrate and enhanced density of epithelial cells, while reducing variability in the regenerating layer. These results suggest that CMPs may represent a novel therapeutic to heal corneal tissue by repairing underlying collagen in conditions that damage the ocular surface.
Collapse
Affiliation(s)
| | | | | | - Brian P Ceresa
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
30
|
Gurdita A, Nickerson PEB, Pokrajac NT, Ortín-Martínez A, Samuel Tsai EL, Comanita L, Yan NE, Dolati P, Tachibana N, Liu ZC, Pearson JD, Chen D, Bremner R, Wallace VA. InVision: An optimized tissue clearing approach for three-dimensional imaging and analysis of intact rodent eyes. iScience 2021; 24:102905. [PMID: 34430805 PMCID: PMC8374524 DOI: 10.1016/j.isci.2021.102905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/28/2021] [Accepted: 07/21/2021] [Indexed: 02/05/2023] Open
Abstract
The mouse eye is used to model central nervous system development, pathology, angiogenesis, tumorigenesis, and regenerative therapies. To facilitate the analysis of these processes, we developed an optimized tissue clearing and depigmentation protocol, termed InVision, that permits whole-eye fluorescent marker tissue imaging. We validated this method for the analysis of normal and degenerative retinal architecture, transgenic fluorescent reporter expression, immunostaining and three-dimensional volumetric (3DV) analysis of retinoblastoma and angiogenesis. We also used this method to characterize material transfer (MT), a recently described phenomenon of horizontal protein exchange that occurs between transplanted and recipient photoreceptors. 3D spatial distribution analysis of MT in transplanted retinas suggests that MT of cytoplasmic GFP between photoreceptors is mediated by short-range, proximity-dependent cellular interactions. The InVision protocol will allow investigators working across multiple cell biological disciplines to generate novel insights into the local cellular networks involved in cell biological processes in the eye. InVision is an optimized tissue clearing protocol for the rodent eye InVision can be used to study a wide variety of physiological processes in the eye Material transfer between transplanted and host photoreceptors is spatially correlated
Collapse
Affiliation(s)
- Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip E B Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Neno T Pokrajac
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Arturo Ortín-Martínez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - En Leh Samuel Tsai
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Nicole E Yan
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Parnian Dolati
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Zhongda C Liu
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Joel D Pearson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Danian Chen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Rod Bremner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| |
Collapse
|
31
|
Yan G, Lian CA, Lan Y, Qian PY, He L. Insights into the vision of the hadal snailfish Pseudoliparis swirei through proteomic analysis of the eye. Proteomics 2021; 21:e2100118. [PMID: 34329538 DOI: 10.1002/pmic.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/27/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022]
Abstract
No sunlight can reach the hadal trench, but some fishes dwelling there still have apparent eye morphology. However, whether they are capable of sensing light remains unknown. In this study, the eyes of the dominant hadal endemic snailfish Pseudoliparis swirei from the Mariana Trench were analyzed using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). A total of 2088 proteins were identified in the eye proteome, most of which had at least one hit against public databases and could be mapped to 316 metabolic pathways. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways directly contributing to visual phototransduction were significantly enriched from the top 10% dominant proteins, implying abundant metabolic activities in the eye and it is still a functional visual organ. One rhodopsin was identified in the eye proteome, sequence analysis indicated that it might have an absorption maximum at ∼480 nm and be sensitive to dim blue light. In addition, proteins that might contribute to extreme environment adaptation, such as heat shock proteins and chaperonin-containing T-complex protein 1, were also highly expressed in the eye. Overall, these results provide insights into the molecular mechanism underlying the vision of hadal snailfish and provide a useful database for further research.
Collapse
Affiliation(s)
- Guoyong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chun-Ang Lian
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yi Lan
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
32
|
Abstract
There is a growing need for novel in vitro corneal models to replace animal-based ex vivo tests in drug permeability studies. In this study, we demonstrated a corneal mimetic that models the stromal and epithelial compartments of the human cornea. Human corneal epithelial cells (HCE-T) were grown on top of a self-supporting porcine collagen-based hydrogel. Cross-sections of the multi-layers were characterized by histological staining and immunocytochemistry of zonula oc-cludens-1 protein (ZO-1) and occludin. Furthermore, water content and bssic elastic properties of the synthetized collagen type I-based hydrogels were measured. The apparent permeability coefficient (Papp) values of a representative set of ophthalmic drugs were measured and correlated to rabbit cornea Papp values found in the literature. A multilayered structure of HCE-T cells and the expression of ZO-1 and occludin in the full thickness of the multilayer were observed. The hydrogel-based corneal model exhibited an excellent correlation to rabbit corneal permeability (r = 0.96), whereas the insert-grown HCE-T multilayer was more permeable and the correlation to the rabbit corneal permeability was lower (r = 0.89). The hydrogel-based human corneal model predicts the rabbit corneal permeability more reliably in comparison to HCE-T cells grown in inserts. This in vitro human corneal model can be successfully employed for drug permeability tests whilst avoiding ethical issues and reducing costs.
Collapse
|
33
|
Szalai E, Szucs G, Szamosi S, Aszalos Z, Afra I, Kemeny-Beke A. An in vivo confocal microscopy study of corneal changes in patients with systemic sclerosis. Sci Rep 2021; 11:11111. [PMID: 34045565 PMCID: PMC8160323 DOI: 10.1038/s41598-021-90594-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/06/2021] [Indexed: 01/06/2023] Open
Abstract
To investigate corneal microstructure of systemic sclerosis (SSc) patients using in vivo confocal microscopy (IVCM). 33 patients with SSc and 30 age-matched healthy subjects were recruited. All participants underwent comprehensive ophthalmic examination including IVCM (Heidelberg Retina Tomograph III, Heidelberg Engineering GmbH, Heidelberg, Germany) and ocular surface evaluation. Subbasal nerve plexus morphology was investigated using automated software analysis (ACCMetrics V3; University of Manchester, Manchester, UK). Keratocyte cell densities in the anterior stroma were significantly lower in patients with SSc compared to controls (P < 0.0001). In 7 SSc patients no keratocyte nuclei were identified in the anterior stroma and in most patients scattered hyperreflective punctate material were observed in the anterior stroma. Significantly lower subbasal nerve fiber parameters were found in patients with SSc compared to healthy subjects (P < 0.05). There were no significant correlations between the duration of SSc and any of the corneal cell density values. Tear break-up time values (4.82 ± 3.15 s) and Ocular Surface Disease Index scores (33.27 ± 30.11) were abnormal, Schirmer values (6.78 ± 5.82 mm) were borderline in SSc patients. In SSc, corneal morphological changes and accumulation of punctate material in the stroma was detected with confocal microscopy. Severe ocular surface disease was observed in SSc patients with significant impairment in subbasal nerve plexus morphology resembling peripheral neuropathy.
Collapse
Affiliation(s)
- Eszter Szalai
- Department of Ophthalmology, University of Pecs, Rakoczi u. 2, 7623, Pecs, Hungary.
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary.
| | - Gabriella Szucs
- Department of Rheumatology, Institute of Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Szilvia Szamosi
- Department of Rheumatology, Institute of Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Zsuzsa Aszalos
- Department of Immunology, Institute of Medicine, Faculty of Medicine, University of Debrecen, Moricz Zsigmond krt. 22, 4032, Debrecen, Hungary
| | - Ildiko Afra
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Adam Kemeny-Beke
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| |
Collapse
|
34
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
35
|
Karayilan M, Clamen L, Becker ML. Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules 2021; 22:223-261. [PMID: 33405900 DOI: 10.1021/acs.biomac.0c01525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ocular applications of polymeric materials have been widely investigated for medical diagnostics, treatment, and vision improvement. The human eye is a vital organ that connects us to the outside world so when the eye is injured, infected, or impaired, it needs immediate medical treatment to maintain clear vision and quality of life. Moreover, several essential parts of the eye lose their functions upon aging, causing diminished vision. Modern polymer science and polymeric materials offer various alternatives, such as corneal and scleral implants, artificial ocular lenses, and vitreous substitutes, to replace the damaged parts of the eye. In addition to the use of polymers for medical treatment, polymeric contact lenses can provide not only vision correction, but they can also be used as wearable electronics. In this Review, we highlight the evolution of polymeric materials for specific ocular applications such as intraocular lenses and current state-of-the-art polymeric systems with unique properties for contact lens, corneal, scleral, and vitreous body applications. We organize this Review paper by following the path of light as it travels through the eye. Starting from the outside of the eye (contact lenses), we move onto the eye's surface (cornea and sclera) and conclude with intraocular applications (intraocular lens and vitreous body) of mostly synthetic polymers and several biopolymers. Initially, we briefly describe the anatomy and physiology of the eye as a reminder of the eye parts and their functions. The rest of the Review provides an overview of recent advancements in next-generation contact lenses and contact lens sensors, corneal and scleral implants, solid and injectable intraocular lenses, and artificial vitreous body. Current limitations for future improvements are also briefly discussed.
Collapse
Affiliation(s)
- Metin Karayilan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Liane Clamen
- Adaptilens, LLC, Boston, Massachusetts 02467, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Mechanical Engineering and Materials Science, Orthopaedic Surgery, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
36
|
Age-related increase of let-7 family microRNA in rat retina and vitreous. Exp Eye Res 2021; 204:108434. [PMID: 33412132 DOI: 10.1016/j.exer.2020.108434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022]
Abstract
Vitreous alterations occur from early stages and continue through the normal aging, with gradual lamellae formation and the appearance of liquefied spaces, which eventually leads to complications, such as retinal tear, retinal detachment, and intravitreal hemorrhage. The aim of the present study was to investigate the expression of let-7 miRNA family in the vitreous and retina in newborn (1-3- day-old), young adult (2-month-old), and aging (12-month-old) rats, as well as their role as regulators of vitreous components. MicroRNAs are small, non-coding RNAs that post-transcriptionally regulate gene expression. Our results showed detection of all investigated let-7 isoforms (let-7a, let-7b, let-7c, let-7d, let-7e, let-7f and let-7i) in the retina and vitreous. Although most let-7 members were significantly upregulated in the vitreous during development, only let-7b, let-7c, and let-7e followed this same expression pattern in the retina. Let-7b and -7c increased in aging vitreous as well, and were expressed in vitro by Müller glial cells and their extracellular vesicles. Moreover, let-7 targeted hyaluronan synthase 2 (Has2) mRNA, a synthesizing enzyme of hyaluronan. These observations indicate that let-7 function is important during retina and vitreous development, and that isoforms of let-7 increased with aging, potentially modulating hyaluronan content.
Collapse
|
37
|
Ocular manifestations in patients with systemic sclerosis. Reumatologia 2020; 58:401-406. [PMID: 33456083 PMCID: PMC7792544 DOI: 10.5114/reum.2020.102004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare, chronic autoimmune disease with unknown etiology. Its prominent features are fibrosis, vasculopathy and impaired immune response. Disease can also affect eyes leading to various findings in ophthalmological examination. The objective of this study was to determine the prevalence and type of ocular involvement in patients with SSc. A systematic literature review was conducted using electronic databases. A combination of following keywords was used: “systemic sclerosis” and ophthalmology-related search terms, including the keywords “eye”, “ocular” and “ophthalmic”. In conclusion, eyelid and conjunctival abnormalities and dry eye disease are among the most common ocular manifestations of SSc. Their diversity is connected to complexity of the disease.
Collapse
|
38
|
Kwok SS, Wong FSY, Shih KC, Chan YK, Bu Y, Chan TCY, Ng ALK, Lo ACY, Tong L, Yam GHF, Jhanji V. Lycium barbarum Polysaccharide Suppresses Expression of Fibrotic Proteins in Primary Human Corneal Fibroblasts. J Clin Med 2020; 9:jcm9113572. [PMID: 33171906 PMCID: PMC7694544 DOI: 10.3390/jcm9113572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Objective: To study the anti-fibrotic effects of Lycium barbarum polysaccharides (LBP) on corneal stromal fibroblasts and assess LBP’s effect on cell viability. (2) Methods: Primary human corneal keratocytes of passage 3 to 6 were used for all experiments. Cells are pretreated with LBP solution for 24 h and then transforming growth factor beta 1 (TGFβ1) for 48 h and collected for experiments. Fibrotic protein analysis was performed using immunofluorescence and Western blot. The effect of LBP on cell viability was assessed using the MTS assay. (3) Results: LBP significantly reduced the expression of fibrotic proteins, including α-SMA and extracellular matrix proteins (collagen type I and III). LBP significantly decreased the viability of myofibroblasts but not the fibroblasts. Conclusions: In this study, LBP was effective in the prevention of fibrosis gene expression. Further studies to assess the underlying mechanism and pharmacological properties will facilitate the formation of a topical LBP solution for in vivo studies.
Collapse
Affiliation(s)
- Sum Sum Kwok
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong and Hong Kong SAR, Hong Kong, China; (S.S.K.); (F.S.-Y.W.); (Y.-K.C.); (Y.B.); (T.C.-Y.C.); (A.L.-K.N.); (A.C.-Y.L.)
| | - Francisca Siu-Yin Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong and Hong Kong SAR, Hong Kong, China; (S.S.K.); (F.S.-Y.W.); (Y.-K.C.); (Y.B.); (T.C.-Y.C.); (A.L.-K.N.); (A.C.-Y.L.)
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong and Hong Kong SAR, Hong Kong, China; (S.S.K.); (F.S.-Y.W.); (Y.-K.C.); (Y.B.); (T.C.-Y.C.); (A.L.-K.N.); (A.C.-Y.L.)
- Correspondence:
| | - Yau-Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong and Hong Kong SAR, Hong Kong, China; (S.S.K.); (F.S.-Y.W.); (Y.-K.C.); (Y.B.); (T.C.-Y.C.); (A.L.-K.N.); (A.C.-Y.L.)
| | - Yashan Bu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong and Hong Kong SAR, Hong Kong, China; (S.S.K.); (F.S.-Y.W.); (Y.-K.C.); (Y.B.); (T.C.-Y.C.); (A.L.-K.N.); (A.C.-Y.L.)
| | - Tommy Chung-Yan Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong and Hong Kong SAR, Hong Kong, China; (S.S.K.); (F.S.-Y.W.); (Y.-K.C.); (Y.B.); (T.C.-Y.C.); (A.L.-K.N.); (A.C.-Y.L.)
| | - Alex Lap-Ki Ng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong and Hong Kong SAR, Hong Kong, China; (S.S.K.); (F.S.-Y.W.); (Y.-K.C.); (Y.B.); (T.C.-Y.C.); (A.L.-K.N.); (A.C.-Y.L.)
| | - Amy Cheuk-Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong and Hong Kong SAR, Hong Kong, China; (S.S.K.); (F.S.-Y.W.); (Y.-K.C.); (Y.B.); (T.C.-Y.C.); (A.L.-K.N.); (A.C.-Y.L.)
| | - Louis Tong
- Cornea and External Eye Disease Service, Singapore National Eye Centre, Singapore 168751, Singapore;
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh Medical Centre, Pittsburgh, PA 15213, USA; (G.H.-F.Y.); (V.J.)
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Centre, Pittsburgh, PA 15213, USA; (G.H.-F.Y.); (V.J.)
| |
Collapse
|
39
|
Ray HC, Corliss BA, Bruce AC, Kesting S, Dey P, Mansour J, Seaman SA, Smolko CM, Mathews C, Dey BK, Owens GK, Peirce SM, Yates PA. Myh11+ microvascular mural cells and derived mesenchymal stem cells promote retinal fibrosis. Sci Rep 2020; 10:15808. [PMID: 32978500 PMCID: PMC7519078 DOI: 10.1038/s41598-020-72875-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/10/2020] [Indexed: 12/29/2022] Open
Abstract
Retinal diseases are frequently characterized by the accumulation of excessive scar tissue found throughout the neural retina. However, the pathophysiology of retinal fibrosis remains poorly understood, and the cell types that contribute to the fibrotic response are incompletely defined. Here, we show that myofibroblast differentiation of mural cells contributes directly to retinal fibrosis. Using lineage tracing technology, we demonstrate that after chemical ocular injury, Myh11+ mural cells detach from the retinal microvasculature and differentiate into myofibroblasts to form an epiretinal membrane. Inhibition of TGFβR attenuates Myh11+ retinal mural cell myofibroblast differentiation, and diminishes the subsequent formation of scar tissue on the surface of the retina. We demonstrate retinal fibrosis within a murine model of oxygen-induced retinopathy resulting from the intravitreal injection of adipose Myh11-derived mesenchymal stem cells, with ensuing myofibroblast differentiation. In this model, inhibiting TGFβR signaling does not significantly alter myofibroblast differentiation and collagen secretion within the retina. This work shows the complexity of retinal fibrosis, where scar formation is regulated both by TGFβR and non-TGFβR dependent processes involving mural cells and derived mesenchymal stem cells. It also offers a cautionary note on the potential deleterious, pro-fibrotic effects of exogenous MSCs once intravitreally injected into clinical patients.
Collapse
Affiliation(s)
- H Clifton Ray
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Bruce A Corliss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sam Kesting
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Paromita Dey
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Jennifer Mansour
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Scott A Seaman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Christian M Smolko
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Corbin Mathews
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Bijan K Dey
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Paul A Yates
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia, PO Box 800715, Charlottesville, VA, 22908, USA.
| |
Collapse
|
40
|
Matsunaga T. Clinical genetics, practice, and research of deafblindness: From uncollected experiences to the national registry in Japan. Auris Nasus Larynx 2020; 48:185-193. [PMID: 32859446 DOI: 10.1016/j.anl.2020.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Deafblindness is a condition of combined vision and hearing loss that is extremely rare in children and young adults, as well as being a highly heterogeneous condition, with over 70 specific etiologies. Due to these features, sporadic clinical experiences have not been collated, which has hampered medical progress. Genetics plays a major role in the pathogenesis of deafblindness in children and young adults, with more than 50 hereditary syndromes and disorders associated with the condition, including CHARGE, Usher, Down, Stickler, and Dandy-Walker syndromes, which are the most common. Clinical diagnosis of deafblindness is often difficult, and a significant proportion of patients are undiagnosed. No curative therapy is currently available for the majority of patients with hereditary deafblindness; however, experimental studies using animal models have shown promising results by targeting specific genes that cause vision or hearing loss. In Japan, the Rare Disease Data Registry of Japan (RADDAR-J) has been established as a national registry of rare and intractable diseases. Diseases of deafblindness have been elected as a disease category in RADDAR-J. Currently, clinical and genomic data are being collected and analyzed using this system, with the aim of generating an overview of deafblindness to improve medical practice.
Collapse
Affiliation(s)
- Tatsuo Matsunaga
- Department of Otolaryngology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan; Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Japan; Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Japan.
| |
Collapse
|
41
|
Preclinical challenges for developing long acting intravitreal medicines. Eur J Pharm Biopharm 2020; 153:130-149. [DOI: 10.1016/j.ejpb.2020.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
|
42
|
Ng TK, Chen W, Chen Q, Zheng Y, Xu Y, Chen W, Zhang G, Chen J, Pang CP, Chen H. COL2A1 protective variant reduces sporadic rhegmatogenous retinal detachment severity. Exp Eye Res 2020; 191:107907. [PMID: 31899252 DOI: 10.1016/j.exer.2019.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/05/2019] [Accepted: 12/30/2019] [Indexed: 02/05/2023]
Abstract
Rhegmatogenous retinal detachment (RRD) is the most common type of RD, the separation of neurosensory retina from the underlying retinal pigment epithelium. The RRD patients can be benefited from appropriate treatment if detected early, especially for the people predicted at high risk. In this study, we aimed to investigate the genetic association and clinical correlation of collagen type II alpha 1 (COL2A1) variants with sporadic RRD in a southern Chinese population. Totally 156 RRD patients and 254 control subjects were recruited, and 12 COL2A1 tag single nucleotide polymorphisms were genotyped by the TaqMan assay. The RRD patients had poorer visual acuity (P < 0.001) and lower intraocular pressure (IOP; P < 0.001) in their surgical eyes compared to the fellow eyes. The COL2A1 rs1793958 variant was significantly associated with RRD in the genotypic (P = 0.024), allelic (P = 0.011, odds ratio (OR) = 0.669), recessive (P = 0.011, OR = 0.384) and homozygous models (P = 0.007, OR = 0.348). RRD patients carrying the rs1793958 G allele had smaller retinal detachment area (P = 0.041) and smaller IOP differences (P = 0.046) between the surgical and fellow eyes compared to those carrying the wildtype AA genotype. In summary, this study revealed that the COL2A1 rs1793958 variant is associated with reduced risk of sporadic RRD, and patients carrying rs1793958 G allele have lower RRD severity.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Wanghao Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Qianwen Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yuqian Zheng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Guihua Zhang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jianhuan Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Haoyu Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China.
| |
Collapse
|
43
|
Mayali H, Altinisik M, Sencan S, Pirildar T, Kurt E. A multimodal ophthalmic analysis in patients with systemic sclerosis using ocular response analyzer, corneal topography and specular microscopy. Int Ophthalmol 2019; 40:287-296. [PMID: 31564047 DOI: 10.1007/s10792-019-01173-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/19/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE To conduct a multimodal ophthalmic evaluation of systemic sclerosis (SSc) in patients using ocular response analyzer (ORA), Pentacam, and specular microscopy (SM). METHODS Thirty-one SSc patients and a group of age- and sex-matched controls were enrolled in this cross-sectional study. Corneal hysteresis (CH), corneal resistance factor (CRF), corneal-compensated intraocular pressure (IOPcc), and Goldmann-correlated IOP (IOPg) were measured with ORA. Anterior chamber depth (ACD), central corneal thickness (CCT), and corneal volume (CV) measurements were obtained using Pentacam. Corneal endothelial cell density (ECD) and CCT were evaluated by SM. RESULTS SSc patients had significantly lower CH, ACD, and ECD values compared to the control group (p = 0.018; < 0.001; < 0.001, respectively). There was no significant difference regarding CRF, IOP, CV, or CCT measurements acquired by Pentacam and SM. Regarding CCT, SM and Pentacam showed relatively better agreement in SSc patients. CONCLUSIONS Multimodal imaging can provide more comprehensive and useful information regarding the ocular involvement of systemic diseases. The multimodal evaluation in our study demonstrated that the pathologic effects of SSc may manifest as reductions in ACD, corneal elasticity, and ECD before there are any detectable changes in corneal thickness or IOP.
Collapse
Affiliation(s)
- Huseyin Mayali
- Ophthalmology Department, Medical School, Manisa Celal Bayar University, Manisa, Turkey
| | - Muhammed Altinisik
- Ophthalmology Department, Medical School, Manisa Celal Bayar University, Manisa, Turkey.
| | - Secil Sencan
- Ophthalmology Department, Tinaztepe Hospital, Izmir, Turkey
| | - Timur Pirildar
- Ophthalmology Department, Medical School, Manisa Celal Bayar University, Manisa, Turkey
| | - Emin Kurt
- Ophthalmology Department, Medical School, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
44
|
Witt J, Borrelli M, Mertsch S, Geerling G, Spaniol K, Schrader S. Evaluation of Plastic-Compressed Collagen for Conjunctival Repair in a Rabbit Model. Tissue Eng Part A 2019; 25:1084-1095. [DOI: 10.1089/ten.tea.2018.0190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Joana Witt
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Maria Borrelli
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sonja Mertsch
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kristina Spaniol
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefan Schrader
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
45
|
Campbell WA, Deshmukh A, Blum S, Todd L, Mendonca N, Weist J, Zent J, Hoang TV, Blackshaw S, Leight J, Fischer AJ. Matrix-metalloproteinase expression and gelatinase activity in the avian retina and their influence on Müller glia proliferation. Exp Neurol 2019; 320:112984. [PMID: 31251936 DOI: 10.1016/j.expneurol.2019.112984] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022]
Abstract
Gelatinases are a class of matrix metalloproteinases (MMPs) that degrade the extracellular matrix (ECM) to regulate intercellular signaling and cell migration. Gelatinase activity is tightly regulated via proteolytic activation and through the expression of tissue inhibitors of matrix metalloproteinases (TIMPs). Gelatinase activity has been implicated in retinal pathophysiology in different animal models and human disease. However, the role of gelatinases in retinal regeneration remains uncertain. In this study we investigated the dynamic changes in gelatinase activity in response to excitotoxic damage and how this enzymatic activity influenced the formation of Müller glia progenitor cells (MGPCs) in the avian retina. This study used hydrogels containing a gelatinase-degradable fluorescent peptide to measure gelatinase activity in vitro and dye quenched gelatin to localize enzymatic activity in situ. These data were corroborated by using single cell RNA sequencing (scRNA-seq). Gelatinase mRNA, specifically MMP2, was detected in oligodendrocytes and Non-Astrocytic Inner Retinal Glia (NIRG). Total retinal gelatinase activity was reduced following NMDA-treatment, and sustained inhibition of MMP2 prior to damage or growth factor treatment increased the formation of proliferating MGPCs and c-fos signaling. We observed that microglia, Müller glia (MG), and NIRG cells were involved in regulating changes in gelatinase activity through TIMP2 and TIMP3. Collectively, these findings implicate MMP2 in reprogramming of Muller glia into MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Ameya Deshmukh
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Sydney Blum
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Ninoshka Mendonca
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Jessica Weist
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Joshua Zent
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jennifer Leight
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
46
|
Haagdorens M, Cėpla V, Melsbach E, Koivusalo L, Skottman H, Griffith M, Valiokas R, Zakaria N, Pintelon I, Tassignon MJ. In Vitro Cultivation of Limbal Epithelial Stem Cells on Surface-Modified Crosslinked Collagen Scaffolds. Stem Cells Int 2019; 2019:7867613. [PMID: 31065280 PMCID: PMC6466865 DOI: 10.1155/2019/7867613] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the efficacy of recombinant human collagen type I (RHC I) and collagen-like peptide (CLP) hydrogels as alternative carrier substrates for the cultivation of limbal epithelial stem cells (LESC) under xeno-free culture conditions. METHODS Human LESC were cultivated on seven different collagen-derived hydrogels: (1) unmodified RHC I, (2) fibronectin-patterned RHC I, (3) carbodiimide-crosslinked CLP (CLP-12 EDC), (4) DMTMM- (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium-) crosslinked CLP (CLP-12), (5) fibronectin-patterned CLP-12, (6) "3D limbal niche-mimicking" CLP-12, and (7) DMTMM-crosslinked CLP made from higher CLP concentration solution. Cell proliferation, cell morphology, and expression of LESC markers were analyzed. All data were compared to cultures on human amniotic membrane (HAM). RESULTS Human LESC were successfully cultivated on six out of seven hydrogel formulations, with primary cell cultures on CLP-12 EDC being deemed unsuccessful since the area of outgrowth did not meet quality standards (i.e., inconsistence in outgrowth and confluence) after 14 days of culture. Upon confluence, primary LESC showed high expression of the stem cell marker ΔNp63, proliferation marker cytokeratin (KRT) 14, adhesion markers integrin-β4 and E-cadherin, and LESC-specific extracellular matrix proteins laminin-α1, and collagen type IV. Cells showed low expression of differentiation markers KRT3 and desmoglein 3 (DSG3). Significantly higher gene expression of KRT3 was observed for cells cultured on CLP hydrogels compared to RHC I and HAM. Surface patterning of hydrogels influenced the pattern of proliferation but had no significant effect on the phenotype or genotype of cultures. Overall, the performance of RHC I and DMTMM-crosslinked CLP hydrogels was equivalent to that of HAM. CONCLUSION RHC I and DMTMM-crosslinked CLP hydrogels, irrespective of surface modification, support successful cultivation of primary human LESC using a xeno-free cultivation protocol. The regenerated epithelium maintained similar characteristics to HAM-based cultures.
Collapse
Affiliation(s)
- Michel Haagdorens
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Campus Drie Eiken, T building, T4-Ophthalmology, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Vytautas Cėpla
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
- Ferentis UAB, Savanorių 235, 02300 Vilnius, Lithuania
| | - Eline Melsbach
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, CCRG-Oogheelkunde, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Laura Koivusalo
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Finland
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre and Department of Ophthalmology, University of Montreal, Montreal, QC, Canada H1T 4B3
| | - Ramūnas Valiokas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
- Ferentis UAB, Savanorių 235, 02300 Vilnius, Lithuania
| | - Nadia Zakaria
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Campus Drie Eiken, T building, T4-Ophthalmology, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, CCRG-Oogheelkunde, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Antwerp University, Campus Drie Eiken, T building, T1-Veterinary Sciences, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Marie-José Tassignon
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Campus Drie Eiken, T building, T4-Ophthalmology, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| |
Collapse
|
47
|
Kreps EO, Carton C, Cutolo M, Cutolo CA, Vanhaecke A, Leroy BP, Smith V. Ocular involvement in systemic sclerosis: A systematic literature review, it's not all scleroderma that meets the eye. Semin Arthritis Rheum 2018; 49:119-125. [PMID: 30660382 DOI: 10.1016/j.semarthrit.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is a rare and complex autoimmune disorder characterized by microvascular damage and progressive fibrosis which affects the skin and multiple other organs. Much of the published data concerning SSc and the eye consists of single case reports or small case studies. This systematic review aims to provide an overview of the current level of evidence for SSc-related ocular changes. MATERIALS AND METHODS A systematic literature review was conducted using 3 electronic databases, according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. A combination of following keywords was used: "Systemic Sclerosis" and ophthalmology-related search terms, including the keywords "Eye", "Ocular" and "Ophthalmic". All articles were screened by 2 independent reviewers at title, abstract and full text level. We solely included case-control studies that investigated specific ocular findings in SSc patients compared to healthy controls. RESULTS Nine of 270 articles were retained. Dry eye symptoms are associated with SSc, whereas objective signs (Schirmer I testing) show conflicting results. There is insufficient evidence of SSc-related changes to the central corneal thickness. In terms of posterior segment involvement, choroidal vasculature appears to be affected to greater extent than the retinal microcirculation. However, the limited number of patients included in the studies renders it hazardous to draw overall conclusions. CONCLUSIONS There is a paucity of well-designed case-control studies investigating possible ocular involvement in SSc. Our systematic review demonstrates limited proven associations between SSc and ocular abnormalities, mainly in terms of dry eye symptoms and choroidal thickness. Future standardized prospective studies are needed to clarify the impact of the disease on the eye.
Collapse
Affiliation(s)
- Elke O Kreps
- Department of Ophthalmology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Charlotte Carton
- Department of Internal Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV, 616132 Genoa, Italy.
| | - Carlo Alberto Cutolo
- Clinica Oculistica, DiNOGMI, University of Genoa, IRCCS Ospedale Policlinico San Martino, Viale Benedetto XV, 616132 Genoa, Italy.
| | - Amber Vanhaecke
- Department of Internal Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Rheumatology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium.
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Division of Ophthalmology & Center for Molecular & Cellular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Vanessa Smith
- Department of Internal Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Rheumatology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
48
|
Sharif R, Bak-Nielsen S, Hjortdal J, Karamichos D. Pathogenesis of Keratoconus: The intriguing therapeutic potential of Prolactin-inducible protein. Prog Retin Eye Res 2018; 67:150-167. [PMID: 29758268 PMCID: PMC6235698 DOI: 10.1016/j.preteyeres.2018.05.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/25/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Keratoconus (KC) is the most common ectatic corneal disease, with clinical findings that include discomfort, visual disturbance and possible blindness if left untreated. KC affects approximately 1:400 to 1:2000 people worldwide, including both males and females. The aetiology and onset of KC remains a puzzle and as a result, the ability to treat or reverse the disease is hampered. Sex hormones are known to play a role in the maintenance of the structure and integrity of the human cornea. Hormone levels have been reported to alter corneal thickness, curvature, and sensitivity during different times of menstrual cycle. Surprisingly, the role of sex hormones in corneal diseases and KC has been largely neglected. Prolactin-induced protein, known to be regulated by sex hormones, is a new KC biomarker that has been recently proposed. Studies herein discuss the role of sex hormones as a control mechanism for KC onset and progression and evidence supporting the view that prolactin-induced protein is an important hormonally regulated biomarker in KC is discussed.
Collapse
Affiliation(s)
- Rabab Sharif
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, United States
| | - Sashia Bak-Nielsen
- Department of Ophthalmology, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Jesper Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Dimitrios Karamichos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, United States; Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Science Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, United States.
| |
Collapse
|
49
|
Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye. Exp Eye Res 2018; 175:133-141. [DOI: 10.1016/j.exer.2018.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022]
|
50
|
Panahi Y, Azimi A, Naderi M, Jadidi K, Sahebkar A. An analytical enrichment-based review of structural genetic studies on keratoconus. J Cell Biochem 2018; 120:4748-4756. [PMID: 30260013 DOI: 10.1002/jcb.27764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Keratoconus is a progressive bilateral corneal protrusion that leads to irregular astigmatism and impairment of vision. Keratoconus is an etiologically heterogeneous corneal dystrophy and both environmental and genetic factors play a role in its etiopathogenesis. In this analytical review, we have studied all the genes that are structurally associated with keratoconus and have tried to explain the function of each gene and its association with other eye disorders in a concise way. In addition, using gene set enrichment analysis, it was attempted to find the most important impaired metabolic pathways in keratoconus. Several genetic studies have been carried out on keratoconus and several genes have been identified as risk factors involved in the etiology of the disease. In the current study, 16 studies, including nine association studies, five genome-wide association studies, one linkage study, and one meta-analysis, were reviewed and based on the 19 genes found, enrichment was performed and the most important metabolic pathways involved in the disease were identified. The enrichment results indicated that the two pathways, interleukin 1 processing and assembly of collagen fibrils, are significantly associated with the disease. Obviously, the results of this study, in addition to providing information about the genes involved in the disease, can provide an integrated insight into the gene-based etiology of keratoconus and therapeutic opportunities thereof.
Collapse
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Azimi
- Department of Ophthalmology, Poostchi Eye Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Naderi
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic inflammation Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|