1
|
Yu M, Ning FTE, Liu C, Liu YC. Interconnections between diabetic corneal neuropathy and diabetic retinopathy: diagnostic and therapeutic implications. Neural Regen Res 2025; 20:2169-2180. [PMID: 39359077 DOI: 10.4103/nrr.nrr-d-24-00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024] Open
Abstract
Diabetic corneal neuropathy and diabetic retinopathy are ocular complications occurring in the context of diabetes mellitus. Diabetic corneal neuropathy refers to the progressive damage of corneal nerves. Diabetic retinopathy has traditionally been considered as damage to the retinal microvasculature. However, growing evidence suggests that diabetic retinopathy is a complex neurovascular disorder resulting from dysfunction of the neurovascular unit, which includes both the retinal vascular structures and neural tissues. Diabetic retinopathy is one of the leading causes of blindness and is frequently screened for as part of diabetic ocular screening. However, diabetic corneal neuropathy is commonly overlooked and underdiagnosed, leading to severe ocular surface impairment. Several studies have found that these two conditions tend to occur together, and they share similarities in their pathogenesis pathways, being triggered by a status of chronic hyperglycemia. This review aims to discuss the interconnection between diabetic corneal neuropathy and diabetic retinopathy, whether diabetic corneal neuropathy precedes diabetic retinopathy, as well as the relation between the stage of diabetic retinopathy and the severity of corneal neuropathy. We also endeavor to explore the relevance of a corneal screening in diabetic eyes and the possibility of using corneal nerve measurements to monitor the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Mingyi Yu
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Faith Teo En Ning
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chang Liu
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Center, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
2
|
Long P, Guo C, Wen T, Luo T, Yang L, Li Y, Wen A, Wang W, Wen X, He M. Therapeutic effects of Mudan granules on diabetic retinopathy: Mitigating fibrogenesis caused by FBN2 deficiency and inflammation associated with TNF-α elevation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118963. [PMID: 39490708 DOI: 10.1016/j.jep.2024.118963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mudan granules (MuD), a time-honored traditional Chinese patent medicine (TCPM), are widely utilized in the clinical treatment of diabetic peripheral neuropathy (DPN). In the field of biomedical diagnostics, both diabetic retinopathy (DR) and DPN are recognized as critical microvascular complications associated with diabetes. According to the principles of traditional Chinese medicine (TCM), these conditions are primarily attributed to a deficiency in Qi and the obstruction of collaterals. Despite this, the protective effects of MuD on DR and the underlying mechanisms remain to be comprehensively elucidated. AIMS OF THE STUDY The purpose of this study was to investigate the effect of MuD on DR and to further explore the promising therapeutic targets. METHODS A diabetic mouse model was established by administering 60 mg/kg of streptozotocin (STZ) via intraperitoneal injection for five consecutive days. The therapeutic efficacy of MuD was evaluated using a comprehensive approach, which included electroretinogram (ERG) analysis, histopathological examination, and assessment of serum biochemical markers. Then, the pharmacodynamic mechanisms of MuD were systematically analyzed using Tandem Mass Tags-based proteomics. Meanwhile, the candidate compounds of MuD were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and molecular docking was applied to estimate the affinity of the active ingredient to their potential key targets. In addition, the functional mechanisms identified through bioinformatics analysis were confirmed by molecular biological methods. RESULTS We demonstrated that MuD provided significant protection to retinal function and effectively mitigated the reduction in retinal thickness observed in the animal model. Through proteomic analysis, we identified a substantial regulation by MuD of 70 biomarkers associated with diabetic retinal damage. These proteins were notably enriched in the tumor necrosis factor (TNF) signaling pathway, a critical mediator in inflammatory processes. A particularly intriguing finding was the significant downregulation of fibrillin-2 (FBN2) in the diabetic retina compared to the control group (0.36 times the level), and its most pronounced upregulation (3.26 times) in the MuD treatment group. This suggests that FBN2 may play a pivotal role in the protective effects of MuD. Molecular docking analyses have unveiled a robust interplay between the components of MuD and TNF-α. Further corroboration was provided by molecular biological methods, which confirmed that MuD could suppress TNF-mediated inflammation and prevent retinal neovascularization and fibrogenesis. CONCLUSION MuD have the potential to alleviate diabetic retinal dysfunction by effectively curbing the fibrogenesis-associated neoangiogenesis and mitigating the inflammatory response, thereby restoring retinal health and function.
Collapse
Affiliation(s)
- Pan Long
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, China; Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ting Wen
- Department of Outpatient, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Ling Yang
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Yubo Li
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, Sichuan, China.
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Karpagavalli M, Sindal MD, Arunachalam JP, Chidambaram S. miRNAs, piRNAs, and lncRNAs: A Triad of Non-Coding RNAs Regulating The Neurovascular Unit in Diabetic Retinopathy And Their Therapeutic Potentials. Exp Eye Res 2025:110236. [PMID: 39800284 DOI: 10.1016/j.exer.2025.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow. These interconnections between the neurovascular components get compromised due to hyperglycemia and are further associated with the progression of DR early on in the disease. As a result, therapeutic approaches are needed to avert the advancement of DR by acting at its initial stage to delay or prevent the pathogenesis. Non-coding RNAs (ncRNAs) such as microRNAs, piwi-interacting RNAs, and long non-coding RNAs regulate various cellular components in the neurovascular unit. These ncRNAs are key regulators of neurodegeneration, apoptosis, inflammation, and oxidative stress in DR. In this review, research related to alterations in the expression of ncRNAs and, correspondingly, their effect on the disintegration of the neurovascular coupling will be discussed briefly to understand the potential of ncRNAs as therapeutic targets for treating this debilitating disease.
Collapse
Affiliation(s)
| | | | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
4
|
Foster T, Lim P, Wagle SR, Ionescu CM, Kovacevic B, McLenachan S, Carvalho L, Brunet A, Mooranian A, Al-Salami H. Nanoparticle-Based gene therapy strategies in retinal delivery. J Drug Target 2025:1-20. [PMID: 39749456 DOI: 10.1080/1061186x.2024.2433563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 01/04/2025]
Abstract
Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated. Gene delivery is an emerging field that may assist with the treatment of some of these difficult to manage forms of vision loss. Here we review how a component of nanotechnology-based, non-viral gene delivery systems are being applied to help resolve vision impairment. This review focuses on the use of lipid and polymer nanoparticles, and quantum dots as gene delivery vectors to the eye. Finally, we also highlight some emerging technologies that may be useful in this discipline.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
5
|
Hwang J, Jung JS, Kim D, Kwon M, Yong J, Yoon H, Park KM. Therapeutic Potential of Dimethyl Sulfoxide via Subconjunctival Injection in a Diabetic Retinopathy Rat Model. In Vivo 2025; 39:132-145. [PMID: 39740902 PMCID: PMC11705140 DOI: 10.21873/invivo.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Diabetic retinopathy (DR), a complication of diabetes, causes damage to retinal blood vessels and can lead to vision impairment. Persistent high blood glucose levels contribute to this damage, and despite ongoing research, effective treatment options for DR remain limited. Dimethyl sulfoxide (DMSO) has shown anti-inflammatory and antioxidant properties in both in vivo and in vitro studies; however, its potential as an anti-inflammatory agent in the context of DR has not yet been explored. This study aimed to assess the effects of subconjunctival injection of DMSO on the progression of DR. MATERIALS AND METHODS DR was induced in rats using intraperitoneal injections of streptozotocin (55 mg/kg), confirmed by measuring blood glucose levels and electroretinography (ERG). The rats were divided into five groups: a normal control group (CON), a DR control group receiving PBS injections (DMSO 0), and three DR groups receiving different concentrations of DMSO (98%, 50%, and 10%). Retinal function was evaluated using ERG at weeks 10 and 14, and histological analysis at week 16. RESULTS The DMSO 50 group had significantly higher B-wave amplitude in ERG compared to the DMSO 0 group (p<0.05). Flicker response amplitudes were also significantly greater in the DMSO 50 and DMSO 10 groups compared to DMSO 0 (p<0.05). Histological examination revealed thinner retinal layers in the DMSO 0 group compared to the CON group, while the DMSO-treated groups showed improved retinal thickness. CONCLUSION Subconjunctival injection of 50% DMSO appears to improve retinal function in a rat model of DR.
Collapse
Affiliation(s)
- Jiyi Hwang
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Ji Seung Jung
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Donghee Kim
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Myeongjee Kwon
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Jungyeon Yong
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Haerin Yoon
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| | - Kyung-Mee Park
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea
| |
Collapse
|
6
|
Yoshida M, Murakami T, Nishikawa K, Ishihara K, Mori Y, Tsujikawa A. Severity Scale of Diabetic Macular Ischemia Based on the Distribution of Capillary Nonperfusion in OCT Angiography. OPHTHALMOLOGY SCIENCE 2025; 5:100603. [PMID: 39386056 PMCID: PMC11462257 DOI: 10.1016/j.xops.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 10/12/2024]
Abstract
Purpose To evaluate the severity scales of diabetic macular ischemia (DMI) by analyzing the quantity and distribution of capillary nonperfusion using OCT angiography (OCTA) images. Design A single-center, prospective case series. Participants Three hundred one eyes from 301 patients with diabetic retinopathy. Methods We acquired 3 × 3-mm swept-source OCTA images and created en face images within a central 2.5-mm circle. The circle was divided into 15 × 15-pixel squares and nonperfusion squares (NPSs) were defined as those without retinal vessels. Eyes with high-dimensional spatial data were arranged on a 2-dimensional space using the uniform manifold approximation and projection (UMAP) algorithm and classified by clustering into 5 groups: Initial, Mild, Superficial, Moderate, and Severe. Main Outcome Measures Development of a severity scale for DMI. Results Eyes arranged on a 2-dimensional UMAP space were divided into 5 clusters, based on the similarity of nonperfusion area distribution. Nonperfusion square counts in the deep layer increased in eyes of the Initial, Mild, Moderate, and Severe groups in a stepwise manner. In contrast, there were no significant changes in superficial NPS counts between eyes of the Initial and Mild groups. In the intermediate stage, eyes of the Superficial group exhibited higher NPS counts in the central sector of the superficial layer compared with those of the Moderate group. The foveal avascular zone extended into the temporal subfield of the deep layer in eyes of the Moderate group. Eyes of the Severe group had significantly poorer visual acuity that was more frequently accompanied with proliferative diabetic retinopathy. Conclusions The application of dimensionality reduction and clustering has facilitated the development of a novel severity scale for DMI based on the distribution of capillary nonperfusion in OCTA images. Financial Disclosures The authors have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Miyo Yoshida
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Murakami
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiichi Nishikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Ishihara
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Mori
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Hata M, Hata M, Dejda A, Pilon F, Diaz-Marin R, Fournier F, Joyal JS, Cagnone G, Ochi Y, Crespo-Garcia S, Wilson AM, Sapieha P. Corticosteroids reduce pathological angiogenesis yet compromise reparative vascular remodeling in a model of retinopathy. Proc Natl Acad Sci U S A 2024; 121:e2411640121. [PMID: 39693344 DOI: 10.1073/pnas.2411640121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024] Open
Abstract
Tissue inflammation is often broadly associated with cellular damage, yet sterile inflammation also plays critical roles in beneficial tissue remodeling. In the central nervous system, this is observed through a predominantly innate immune response in retinal vascular diseases such as age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. Here, we set out to elucidate the dynamics of the immune response during progression and regression of pathological neovascularization in retinopathy. In a mouse model of oxygen-induced retinopathy, we report that dexamethasone, a broad-spectrum corticosteroid, suppresses initial formation of pathological preretinal neovascularization in early stages of disease, yet blunts reparative inflammation by impairing distinct myeloid cell populations, and hence reduces beneficial vascular remodeling in later stages of disease. Using genetic depletion of distinct components of the innate immune response, we demonstrate that CX3C chemokine receptor 1-expressing microglia contribute to angiogenesis. Conversely, myeloid cells expressing lysozyme 2 are recruited to sites of damaged blood vessels and pathological neovascularization where they partake in a reparative process that ultimately restores circulatory homeostasis to the retina. Hence, the Janus-faced properties of anti-inflammatory drugs should be considered, particularly in stages associated with persistent neovascularization.
Collapse
Affiliation(s)
- Masayuki Hata
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Maki Hata
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Agnieszka Dejda
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Frédérique Pilon
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Roberto Diaz-Marin
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Frédérik Fournier
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier, Universitaire Ste-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Gael Cagnone
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier, Universitaire Ste-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Yotaro Ochi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
| | - Sergio Crespo-Garcia
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Ariel M Wilson
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Przemyslaw Sapieha
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
8
|
Ge J, Zhang Y, Han L, Zhao L, Zhao H, Qiao D, Cheng Y. Photobiomodulation inhibits retinal degeneration in diabetic mice through modulation of stem cell mobilization and gene expression. Exp Eye Res 2024; 251:110218. [PMID: 39716680 DOI: 10.1016/j.exer.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The number of people suffering from type 2 diabetes (DM2) is increasing and over 30 percent of DM2 patients will develop diabetic retinopathy (DR). Available therapeutic approaches for DR have their limitations. It is of great significance to search for other effective alternate therapeutic approaches. The present study aimed to explore the beneficial effects of photobiomodulation (PBM) on the diabetic retinopathy and underlying mechanisms. Streptozotocin was administered to male mice to establish diabetic model. The mice in the diabetic group (DM) received no treatment, and the mice in DM + PBM group received LED illumination (wavelength 670 nm) once a day for 20 consecutive weeks. Retinal vessel degenerate changes, the expression levels of E-Cadherin, N-Cadherin and the mRNA levels of c-kit, CXCR4, MYPT1, SCF, SDF1-α in retina, the levels of SDF-1α and SCF in the peripheral blood and the number of LSK cells expressing c-kit and sca-1 were determined. PBM could significantly inhibit the degenerative change of diabetic retinal vessels, decrease the expression levels of E-Cadherin and N-Cadherin and the mRNA levels of c-kit, CXCR4, MYPT1, SCF, SDF1-α and increase VEGF mRNA levels in retina. PBM could also increase the levels of SDF-1α and SCF in the peripheral blood and the number of LSK cells expressing c-kit and sca-1 in diabetic mice. PBM at 4 min/day for 20 consecutive weeks significantly inhibit the degenerative change of diabetic retinal vessels, and PBM is likely to produce its beneficial effects on the retina through promoting the migration of bone marrow stem cells to circulation and diabetic retinal tissue. The present study provides a new therapeutic direction and experimental foundation for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jingyan Ge
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yinan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling Han
- Department of Pulmonary & Critical Care Medicine, Jilin Provincial People's Hospital, Changchun, Jilin Province, China
| | - Liangliang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongwei Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dan Qiao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
9
|
Morya AK, Ramesh PV, Nishant P, Kaur K, Gurnani B, Heda A, Salodia S. Diabetic retinopathy: A review on its pathophysiology and novel treatment modalities. World J Methodol 2024; 14:95881. [PMID: 39712561 PMCID: PMC11287547 DOI: 10.5662/wjm.v14.i4.95881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/26/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic non-communicable disease with the ability to cause serious microvascular and macrovascular complications throughout the body, including in the eye. Diabetic retinopathy (DR), present in one-third of patients with diabetes, is a vision-threatening complication caused by uncontrolled diabetes, which greatly affects the retinal blood vessels and the light-sensitive inner retina, eventually leading to blindness. Several epidemiological studies elucidate that DR can vary by age of onset, duration, types of diabetes, and ethnicity. Recent studies show that the pathogenesis of diabetic retinopathy has spread its roots beyond merely being the result of hyperglycemia. The complexity of its etiopathology and diagnosis makes therapeutic intervention challenging. This review throws light on the pathological processes behind DR, the cascade of events that follow it, as well as the available and emerging treatment options.
Collapse
Affiliation(s)
- Arvind Kumar Morya
- Head of the Department, Department of Ophthalmology, All India Institute of Medical Sciences, Hyderabad 508126, Telangana, India
| | - Prasanna Venkatesh Ramesh
- Glaucoma Medical Officer, Department of Glaucoma and Research, Mahathma Eye Hospital Private Limited, Trichy 620017, Tamil Nadu, India
| | - Prateek Nishant
- Department of Ophthalmology, ESIC Medical College, Patna 801103, Bihar, India
| | - Kirandeep Kaur
- Department of Pediatric Ophthalmology and Strabismus, Gomabai Netralaya and Research Centre, Neemuch 458441, Madhya Pradesh, India
| | - Bharat Gurnani
- Cornea and Refractive Services, Gomabai Netralaya and Research Centre, Neemuch 458441, Madhya Pradesh, India
| | - Aarti Heda
- Department of Ophthalmology, National Institute of Ophthalmology, Pune 411000, Maharashtra, India
| | - Sarika Salodia
- Global Medical Safety, Lundbeck, Singapore 569933, Singapore, Singapore
| |
Collapse
|
10
|
Arora A, Morya AK, Gupta PC, Menia NK, Nishant P, Gupta V. Intravitreal therapy for the management of diabetic retinopathy: A concise review. World J Exp Med 2024; 14:99235. [PMID: 39713073 PMCID: PMC11551706 DOI: 10.5493/wjem.v14.i4.99235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 10/31/2024] Open
Abstract
Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus and may result in irreversible visual loss. Laser treatment has been the gold standard treatment for diabetic macular edema and proliferative diabetic retinopathy for many years. Of late, intravitreal therapy has emerged as a cornerstone in the management of DR. Among the diverse pharmacotherapeutic options, anti-vascular endothelial growth factor agents have demonstrated remarkable efficacy by attenuating neovascularization and reducing macular edema, thus preserving visual acuity in DR patients.
Collapse
Affiliation(s)
- Atul Arora
- Teleophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Punjab, India
| | - Arvind K Morya
- Department of Ophthalmology, All India Institute of Medical Sciences, Hyderabad 508126, Telangana, India
| | - Parul C Gupta
- Department of Ophthalmology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, Punjab, India
| | - Nitin K Menia
- Department of Ophthalmology, All India Institute of Medical Sciences, Vijaypur 180001, Jammu and Kashmīr, India
| | - Prateek Nishant
- Department of Ophthalmology, ESIC Medical College, Patna 801103, Bihār, India
| | - Vishali Gupta
- Department of Ophthalmology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, Punjab, India
| |
Collapse
|
11
|
Wang Y, Liu S, Zhou Q, Feng Y, Xu Q, Luo L, Lv H. Bioinformatics for the Identification of STING-Related Genes in Diabetic Retinopathy. Curr Eye Res 2024:1-14. [PMID: 39704112 DOI: 10.1080/02713683.2024.2430223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Diabetic retinopathy (DR) is the most common complication of diabetes mellitus. Stimulator of interferon genes (STING) plays an important regulatory role in the transcription of several genes. This study aimed to mine and identify hub genes relevant to STING in DR. METHODS The STING-related genes (STING-RGs) were extracted from MSigDB database. Differentially expressed STING-RGs (DE-STING-RGs) were filtered by overlapping differentially expressed genes (DEGs) between DR and NC specimens and STING-RGs. A PPI network was established to mine hub genes. The ability of the hub genes to differentiate between DR and NC specimens was evaluated. Additionally, a ceRNA network was established to investigate the regulatory mechanisms of hub genes. Subsequently, the discrepancies in immune infiltration between DR and NC specimens were further explored. Additionally, we performed drug predictions. Finally, RT-qPCR of peripheral blood samples was used to validate the bioinformatics results. RESULTS A grand total of four genes (IKBKG, STAT6, NFKBIA, and FCGR2A) related to STING were identified for DR. The AUC values of all four hub genes were greater than 0.7, which indicated that the diagnostic value was acceptable. The ceRNA network contained four hub genes, 170 miRNAs, and 135 lncRNAs. In addition, immunoinfiltration analysis demonstrated that the abundance of activated B cells was notably different between the DR and NC specimens. Moreover, 32 drugs were included in the drug-gene network, with twelve drugs targeting STAT6, nine drugs targeting NFKBIA, four drugs targeted IKBKG, and seven drugs targeted FCGR2A. The expression of the four hub genes in blood samples determined by RT-qPCR was consistent with our analysis. CONCLUSION In conclusion, four hub genes (IKBKG, STAT6, NFKBIA, and FCGR2A) related to STING with a diagnostic value for DR were identified by bioinformatics analysis, which might provide new insights into the evaluation and treatment of DR.
Collapse
Affiliation(s)
- Yu Wang
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Siyan Liu
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Qi Zhou
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Yalin Feng
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Qin Xu
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Linbi Luo
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| |
Collapse
|
12
|
Arora L, Singh SK, Kumar S, Gupta H, Alhalabi W, Arya V, Bansal S, Chui KT, Gupta BB. Ensemble deep learning and EfficientNet for accurate diagnosis of diabetic retinopathy. Sci Rep 2024; 14:30554. [PMID: 39695310 DOI: 10.1038/s41598-024-81132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Diabetic Retinopathy (DR) stands as a significant global cause of vision impairment, underscoring the critical importance of early detection in mitigating its impact. Addressing this challenge head-on, this study introduces an innovative deep learning framework tailored for DR diagnosis. The proposed framework utilizes the EfficientNetB0 architecture to classify diabetic retinopathy severity levels from retinal images. By harnessing advanced techniques in computer vision and machine learning, the proposed model aims to deliver precise and dependable DR diagnoses. Continuous testing and experimentation shows to the efficiency of the architecture, showcasing promising outcomes that could help in the transformation of both diagnosing and treatment of DR. This framework takes help from the EfficientNet Machine Learning algorithms and employing advanced CNN layering techniques. The dataset utilized in this study is titled 'Diagnosis of Diabetic Retinopathy' and is sourced from Kaggle. It consists of 35,108 retinal images, classified into five categories: No Diabetic Retinopathy (DR), Mild DR, Moderate DR, Severe DR, and Proliferative DR. Through rigorous testing, the framework yields impressive results, boasting an average accuracy of 86.53% and a loss rate of 0.5663. A comparison with alternative approaches underscores the effectiveness of EfficientNet in handling classification tasks for diabetic retinopathy, particularly highlighting its high accuracy and generalizability across DR severity levels. These findings highlight the framework's potential to significantly advance the field of DR diagnosis, given more advanced datasets and more training resources which leads it to be offering clinicians a powerful tool for early intervention and improved patient outcomes.
Collapse
Affiliation(s)
- Lakshay Arora
- Department of CSE, Chandigarh College of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sunil K Singh
- Department of CSE, Chandigarh College of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Sudhakar Kumar
- Department of CSE, Chandigarh College of Engineering and Technology, Panjab University, Chandigarh, India
| | - Hardik Gupta
- Department of CSE, Chandigarh College of Engineering and Technology, Panjab University, Chandigarh, India
| | - Wadee Alhalabi
- Department of Computer Science, Immersive Virtual Reality Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Varsha Arya
- Department of Electrical and Computer Engineering, Lebanese American University, Beirut, 1102, Lebanon
- Center for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES), Dehradun, India
- UCRD, Chandigarh University, Chandigarh, India
| | | | - Kwok Tai Chui
- Hong Kong Metropolitan University (HKMU), Kowloon, Hong Kong
| | - Brij B Gupta
- Department of Computer Science and Information Engineering, Asia University, Taichung, 413, Taiwan.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International University, Pune, India.
- University of Economics and Human Science, Warsaw, Poland.
| |
Collapse
|
13
|
Huang Y, Zhang Y, Liu Y, Jin Y, Yang H. PRDX4 mitigates diabetic retinopathy by inhibiting reactive gliosis, apoptosis, ER stress, oxidative stress, and mitochondrial dysfunction in Müller cells. J Biol Chem 2024; 301:108111. [PMID: 39706273 DOI: 10.1016/j.jbc.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Diabetic retinopathy (DR) is a neurovascular complication of diabetes. As a crucial player in the retinal physiology, Müller cells are affected in DR, impairments of Müller cell function lead to retinal malfunctions. Therefore, searching for approaches to mitigate diabetes-induced injury in Müller cells is imperative for delaying DR. Peroxiredoxin 4 (PRDX4), an important endoplasmic reticulum (ER)-resident antioxidant, was explored in this study for its potential protective role against DR. Streptozotocin-induced mouse model of diabetes and high glucose (HG)-induced Müller cells were utilized to assess the impact of PRDX4. Compared with WT mice, PRDX4 knockout exacerbated retinal neurodegeneration, reactive gliosis, cell apoptosis, ER stress, oxidative stress, and mitochondrial dysfunction in diabetic retinas. Knockdown of PRDX4 aggravated HG-induced reactive gliosis, apoptosis, ER stress, oxidative stress, and mitochondrial dysfunction in Müller cells. Conversely, PRDX4 overexpression in Müller cells protected against HG-induced cell damage. Mechanistically, PRDX4 promoted the degradation of dipeptidyl peptidase-4, which is associated with DR in type 1 diabetics, thereby alleviating HG-stimulated Müller cell abnormalities. Our study indicated that PRDX4 is a crucial protective regulator in DR progression via destabilization of dipeptidyl peptidase-4 protein and suggested that enhancement of PRDX4 level may represent a promising approach for treating DR.
Collapse
Affiliation(s)
- Yue Huang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuting Zhang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yinan Jin
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongwei Yang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
14
|
Quan X, Ou X, Gao L, Yin W, Hou G, Zhang H. SCINet: A Segmentation and Classification Interaction CNN Method for Arteriosclerotic Retinopathy Grading. Interdiscip Sci 2024; 16:926-935. [PMID: 39222258 DOI: 10.1007/s12539-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
As a common disease, cardiovascular and cerebrovascular diseases pose a great harm threat to human wellness. Even using advanced and comprehensive treatment methods, there is still a high mortality rate. Arteriosclerosis, as an important factor reflecting the severity of cardiovascular and cerebrovascular diseases, is imperative to detect the arteriosclerotic retinopathy. However, the detection of arteriosclerosis retinopathy requires expensive and time-consuming manual evaluation, while end-to-end deep learning detection methods also need interpretable design to high light task-related features. Considering the importance of automatic arteriosclerotic retinopathy grading, we propose a segmentation and classification interaction network (SCINet). We propose a segmentation and classification interaction architecture for grading arteriosclerotic retinopathy. After IterNet is used to segment retinal vessel from original fundus images, the backbone feature extractor roughly extracts features from the segmented and original fundus arteriosclerosis images and further enhances them through the vessel aware module. The last classifier module generates fundus arteriosclerosis grading results. Specifically, the vessel aware module is designed to highlight the important areal vessel features segmented from original images by attention mechanism, thereby achieving information interaction. The attention mechanism selectively learns the vessel features of segmentation region information under the proposed interactive architecture, which leads to reweighting the extracted features and enhances significant feature information. Extensive experiments have confirmed the effect of our model. SCINet has the best performance on the task of arteriosclerotic retinopathy grading. Additionally, the CNN method is scalable to similar tasks by incorporating segmented images as auxiliary information.
Collapse
Affiliation(s)
- Xiongwen Quan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, College of Artificial Intelligence, Nankai University, Tianjin, 300000, China
| | - Xingyuan Ou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, College of Artificial Intelligence, Nankai University, Tianjin, 300000, China
| | - Li Gao
- Ophthalmology, Tianjin Huanhu Hospital, Tianjin, 300000, China
| | - Wenya Yin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, College of Artificial Intelligence, Nankai University, Tianjin, 300000, China
| | - Guangyao Hou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, College of Artificial Intelligence, Nankai University, Tianjin, 300000, China
| | - Han Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, College of Artificial Intelligence, Nankai University, Tianjin, 300000, China.
| |
Collapse
|
15
|
Zhou S, Wang J, Li B. A multi-class fundus disease classification system based on an adaptive scale discriminator and hybrid loss. Comput Biol Chem 2024; 113:108241. [PMID: 39405777 DOI: 10.1016/j.compbiolchem.2024.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 12/15/2024]
Abstract
Fundus images are crucial in the observation and detection of ophthalmic diseases. However, detecting multiple ophthalmic diseases from fundus images using deep learning techniques is a complex and challenging task One challenge is the complexity of fundus disease structures, which leads to low detection accuracy. Another challenge is the class imbalance problem common in multi-label image classification, which increases the difficulty of algorithm training and evaluation. To address these issues, this study leverages deep learning to propose an ophthalmic disease classification system. We first employ ResNet50 as the backbone network to extract image features, and then use our designed multi-dimensional attention module and adaptive scale discriminator to enhance the network's ability to detect disease features. During training, we innovatively propose a hybrid loss function method to improve the detection capability on imbalanced data. Finally, we conducted experiments on the ODRI-5K dataset with the proposed classification system. In the test set, our method achieved an AUC of 98.53 and an F1-score of 89.73. This result fully demonstrates the excellent disease classification capability of our method. In summary, the multi-label fundus image disease classification system we proposed exhibits outstanding recognition capability, providing an effective solution for the diagnosis of multi-label fundus image diseases.
Collapse
Affiliation(s)
- Shiyu Zhou
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jue Wang
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Bo Li
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
16
|
Amiri-Dashatan N, Etemadi SM, Besharati S, Farahani M, Moghaddam AK. Dysregulation of amino acids balance as potential serum-metabolite biomarkers for diagnosis and prognosis of diabetic retinopathy: a metabolomics study. J Diabetes Metab Disord 2024; 23:2031-2042. [PMID: 39610496 PMCID: PMC11599686 DOI: 10.1007/s40200-024-01462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/23/2024] [Indexed: 11/30/2024]
Abstract
Objectives Diabetic retinopathy (DR), an earnest complication of diabetes, is one of the most common causes of blindness worldwide. This study aimed to investigate the altered metabolites in the serum of non-DR (NDR) and DR including non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR) subjects. Methods In this study, the 1HNMR platform was applied to reveal the discriminating serum metabolites in three diabetic groups based on the status of their complications: T2D or NDR (n = 15), NPDR, (n = 15), and PDR (n = 15) groups. Multivariate analyses include principal component analysis (PCA) and Partial Least Structures-Discriminant Analysis (PLS-DA) analysis that were performed using R software. The main metabolic pathways were also revealed by KEGG pathway enrichment analysis. Results The results revealed the significantly different metabolites include 10 metabolites of the NPDR versus PDR group, 24 metabolites of the PDR versus NDR group, and 25 metabolites of the NPDR versus NDR group. The results showed that the significantly altered metabolites in DR compared with NDR serum samples mainly belonged to amino acids. The most important pathways between NPDR/PDR, and NDR/DR groups include ascorbate and aldarate metabolism, galactose metabolism, glutathione metabolism, and tryptophan metabolism, respectively. In addition, some metabolites were detected for the first time. Conclusions We created a metabolomics profile for NDR, PDR and NPDR groups. The impairment in the ascorbate/aldarate, galactose, and especially amino acids metabolism was identified as metabolic dysregulation associated with DR, which may provide new insights into potential pathogenesis pathways for DR. Graphical Abstract
Collapse
Affiliation(s)
- Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Shahin Besharati
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Karimi Moghaddam
- Department of Ophthalmology, School of Medicine, Vali-E-Asr Hospital, Zanjan University of Medical sciences, Zanjan, Iran
| |
Collapse
|
17
|
Li Z, Li J, Zhong J, Qu C, Du M, Tian H, Xu H, Hao F, Huang L. Red blood cell count and cystatin C as the specific biomarkers for diabetic retinopathy from diabetes mellitus: a case-control study. Sci Rep 2024; 14:29288. [PMID: 39592730 PMCID: PMC11599766 DOI: 10.1038/s41598-024-80797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus (DM). However, the blood physiological indicators for this eye disease are less reported. Here, we systemically investigated healthy controls, DR patients and DM patients from 2014 to 2022 in Sichuan Provincial People's Hospital (Chengdu, China). We found the leukocyte count, urea, and direct bilirubin in the DR patients were significantly increased (P < 0.001) compared with the controls. The ratios of aspartate aminotransferase/alanine transaminase, total bilirubin, indirect bilirubin, and red cell distribution width were lower in the DR patients than in the controls (P < 0.001). Notably, Red blood cell count (mean [SD] = 4.54 [0.67] 10E12/L, OR = 0.75) was significantly decreased (P < 0.001), and cystatin C level (mean [SD] = 1.42 [1.13] mg/L, OR = 1.90) was significantly increased in the DR patients compared with the controls (P < 0.001). However, these two indicators were not significantly different between the DM patients and the controls (P = 0.87 and P = 0.14, respectively). Our results showed that red blood cell count and cystatin C are specific biomarkers for DR patients.
Collapse
Affiliation(s)
- Zheng Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No. 32, Section 2, West 1St Ring Road, Qingyang District, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jie Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No. 32, Section 2, West 1St Ring Road, Qingyang District, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jie Zhong
- Ophthalmology department of Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chao Qu
- Ophthalmology department of Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Mingyan Du
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No. 32, Section 2, West 1St Ring Road, Qingyang District, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Huaping Tian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No. 32, Section 2, West 1St Ring Road, Qingyang District, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Haojue Xu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No. 32, Section 2, West 1St Ring Road, Qingyang District, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Fang Hao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No. 32, Section 2, West 1St Ring Road, Qingyang District, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No. 32, Section 2, West 1St Ring Road, Qingyang District, Chengdu, Sichuan, China.
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Costa C, Nogueira C, Soares M, Simão S, Melo P, Silva R, Murta J, Marques JP. Self-reported visual function and in-depth swept-source optical coherence tomography features of cystoid macular edema in retinitis pigmentosa. Int J Retina Vitreous 2024; 10:89. [PMID: 39578919 PMCID: PMC11583574 DOI: 10.1186/s40942-024-00608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
PURPOSE To evaluate self-reported visual function in retinitis pigmentosa (RP) patients with and without cystoid macular edema (CME) and to explore associations between cystoid spaces (CS), retinal morphometric parameters, and clinical data using swept-source optical coherence tomography (SS-OCT). METHODS In this cross-sectional case-control study (1:3) conducted at an Inherited Retinal Degenerations referral center in Portugal, RP patients with and without CME (matched for age and gender) completed the Michigan Retinal Degeneration Questionnaire (MRDQ) and underwent SS-OCT. Morphometric analysis, including ellipsoid zone area (EZA), was performed by two independent graders. In the CME group, detailed CS analysis was conducted. Correlations between clinical data - age, gender, best-corrected visual acuity (BCVA) - and MRDQ domains were evaluated. RESULTS The study included 23 RP patients with CME (60.87% male, mean age 44.65 ± 13.58 years) and 69 without CME (49.28% male, mean age 47.94 ± 14.39 years). No significant differences were found between groups in almost all MRDQ domains, BCVA, or EZA. Age positively correlated with 4 MRDQ domains in both groups. BCVA negatively correlated with nearly all MRDQ domains. While EZA showed a negative correlation in both groups, it was significant only in RP without CME. In the CME group, centrally located, outer nuclear layer-involving and large CS were associated with worse BCVA but better EZA. CONCLUSION MRDQ responses strongly correlated with clinical parameters. CME does not seem to affect self-reported visual function in RP patients, and CS may not worsen visual function. Thus, aggressive treatment of CME in RP may not be necessary.
Collapse
Affiliation(s)
- Celso Costa
- Ophthalmology Department, Unidade Local de Saúde de Coimbra (ULS Coimbra), Coimbra, 3004-561, Portugal
| | - Carlos Nogueira
- Ophthalmology Department, Unidade Local de Saúde de Coimbra (ULS Coimbra), Coimbra, 3004-561, Portugal
| | - Mário Soares
- Ophthalmology Department, Unidade Local de Saúde de Coimbra (ULS Coimbra), Coimbra, 3004-561, Portugal
| | - Silvia Simão
- Ophthalmology Department, Unidade Local de Saúde de Coimbra (ULS Coimbra), Coimbra, 3004-561, Portugal
| | - Pedro Melo
- Ophthalmology Department, Unidade Local de Saúde de Coimbra (ULS Coimbra), Coimbra, 3004-561, Portugal
| | - Rufino Silva
- Ophthalmology Department, Unidade Local de Saúde de Coimbra (ULS Coimbra), Coimbra, 3004-561, Portugal
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Joaquim Murta
- Ophthalmology Department, Unidade Local de Saúde de Coimbra (ULS Coimbra), Coimbra, 3004-561, Portugal
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - João Pedro Marques
- Ophthalmology Department, Unidade Local de Saúde de Coimbra (ULS Coimbra), Coimbra, 3004-561, Portugal.
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
19
|
Jin G, Ma Y, Zheng D, Jin L, Young CA, Shen Y, Tan Y, Jin J, Zhang X, Wu Y, Liu Z. Evaluation of systemic medications associated with diabetic retinopathy: a nested case-control study from the UK Biobank. Br J Ophthalmol 2024; 108:1716-1722. [PMID: 38769011 DOI: 10.1136/bjo-2023-324930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
AIMS This study aims to investigate the associations between commonly used systemic medications and diabetic retinopathy (DR). METHODS Individuals with linked primary care prescription data from the UK Biobank were included. Cases were defined as individuals with a Hospital Episode Statistics-coded or primary care recorded diagnosis of DR or self-reported DR. Controls were matched for age, sex, glycosylated haemoglobin, duration of diabetes mellitus (DM), hypertension status and cardiovascular disease status. ORs and 95% CIs were calculated using conditional univariate and multivariable logistic regression models. RESULTS A total of 3377 case subjects with DR were included in the study and matched with 3377 control subjects. In multivariable logistic regression, increased odds of incident DR were observed for exposure to short-acting insulins (OR 1.63; 95% CI 1.22 to 2.18), medium-acting insulins (OR 2.10; 95% CI 1.60 to 2.75), sulfonylureas (OR 1.30; 95% CI 1.16 to 1.46). Instead, the use of fibrates (OR 0.71; 95% CI 0.53 to 0.94) and Cox-2 inhibitors (OR 0.68; 95% CI 0.58 to 0.79) was associated with decreased odds of incident DR. Dose-response relationships were observed for all five drug categories (all p<0.05). CONCLUSIONS This study comprehensively investigated the associations between systemic medication use and DR and found significant associations between the use of short-acting insulins, medium-acting insulins and sulfonylureas with increased odds of incident DR. In contrast, fibrates and Cox-2 inhibitors were associated with decreased odds of incident DR. These findings may provide valuable insights into DM medication management and serve as a reference for the prevention of DR in patients with DM.
Collapse
Affiliation(s)
- Guangming Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yiyuan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Danying Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ling Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | | | - Yanyu Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuan Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiaxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinyu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
20
|
Wondmeneh TG, Mohammed JA. Prevalence of diabetic retinopathy and its associated risk factors among adults in Ethiopia: a systematic review and meta-analysis. Sci Rep 2024; 14:28266. [PMID: 39550444 PMCID: PMC11569147 DOI: 10.1038/s41598-024-78596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 11/01/2024] [Indexed: 11/18/2024] Open
Abstract
Diabetic retinopathy is a complication of diabetes mellitus and a leading cause of blindness and visual impairment globally. Limited information existed on the epidemiology of diabetic retinopathy at the national level in Ethiopia. Thus, the objective of this review was to determine the pooled prevalence of diabetic retinopathy and its associated risk factors in Ethiopia. A systematic review and meta-analysis was conducted using previous primary studies that were found in electronic databases such as Web of Science, Scopus, PubMed, CINHAL, Google Scholar, and online African journals. We evaluated the quality of the included studies using the Newcastle-Ottawa Assessment Scale. The random-effects model was applied because heterogeneity was expected. I-Square and the Cochrane Q statistics were used to evaluate heterogeneity. Publication bias was examined using Egger's test and a funnel plot. A random-effect meta-analysis was applied to pool the odds ratios of risk factors to determine the association between the independent and dependent variables. After 598 articles were found, 22 studies that met the eligibility requirements were included. The pooled prevalence of retinopathy among patients with diabetes in Ethiopia was 24.35% (95% CI: 18.88-29.83), with considerable heterogeneity (I2 = 98.18%, p < 0.001). Ten years and longer with diabetes (AOR = 4.36, 95% CI: 1.71-7.01), hypertension (AOR = 2.54, 95% CI: 1.45-3.63), poor glycemic control (AOR = 3.83, 95% CI: 1.62-6.04), and positive proteinuria (AHR = 1.55, 95% CI: 1.02-2.07) were risk factors for diabetic retinopathy. Retinopathy affects one in four patients with diabetes. Diabetic patients with longer duration, hypertension, poor glycemic control, and positive proteinuria should receive special care.
Collapse
Affiliation(s)
| | - Jemal Abdu Mohammed
- Department of Public Health, College of Medical and Health Science, Samara University, Semera, Ethiopia
| |
Collapse
|
21
|
Sun WJ, An XD, Zhang YH, Tang SS, Sun YT, Kang XM, Jiang LL, Zhao XF, Gao Q, Ji HY, Lian FM. Autophagy-dependent ferroptosis may play a critical role in early stages of diabetic retinopathy. World J Diabetes 2024; 15:2189-2202. [PMID: 39582563 PMCID: PMC11580571 DOI: 10.4239/wjd.v15.i11.2189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/16/2024] Open
Abstract
Diabetic retinopathy (DR), as one of the most common and significant microvascular complications of diabetes mellitus (DM), continues to elude effective targeted treatment for vision loss despite ongoing enrichment of the understanding of its pathogenic mechanisms from perspectives such as inflammation and oxidative stress. Recent studies have indicated that characteristic neuroglial degeneration induced by DM occurs before the onset of apparent microvascular lesions. In order to comprehensively grasp the early-stage pathological changes of DR, the retinal neurovascular unit (NVU) will become a crucial focal point for future research into the occurrence and progression of DR. Based on existing evidence, ferroptosis, a form of cell death regulated by processes like ferritinophagy and chaperone-mediated autophagy, mediates apoptosis in retinal NVU components, including pericytes and ganglion cells. Autophagy-dependent ferroptosis-related factors, including BECN1 and FABP4, may serve as both biomarkers for DR occurrence and development and potentially crucial targets for future effective DR treatments. The aforementioned findings present novel perspectives for comprehending the mechanisms underlying the early-stage pathological alterations in DR and open up innovative avenues for investigating supplementary therapeutic strategies.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Dong An
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Yue-Hong Zhang
- Department of Endocrinology, Fangshan Hospital of Beijing University of Chinese Medicine, Beijing 102400, China
| | - Shan-Shan Tang
- Department of Endocrinology, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yu-Ting Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xiao-Min Kang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Lin-Lin Jiang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Fei Zhao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Qing Gao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Hang-Yu Ji
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Feng-Mei Lian
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| |
Collapse
|
22
|
Boneva SK, Wolf J, Jung M, Prinz G, Chui TYP, Jauch J, Drougard A, Pospisilik JA, Schlecht A, Bucher F, Rosen RB, Agostini H, Schlunck G, Lange CAK. The multifaceted role of vitreous hyalocytes: Orchestrating inflammation, angiomodulation and erythrophagocytosis in proliferative diabetic retinopathy. J Neuroinflammation 2024; 21:297. [PMID: 39543723 PMCID: PMC11566480 DOI: 10.1186/s12974-024-03291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Despite great advances in proliferative diabetic retinopathy (PDR) therapy over the last decades, one third of treated patients continue to lose vision. While resident vitreous macrophages called hyalocytes have been implicated in the pathophysiology of vitreoretinal proliferative disease previously, little is known about their exact role in PDR. In this study, we address molecular and cellular alterations in the vitreous of PDR patients as a means towards assessing the potential contribution of hyalocytes to disease pathogenesis. RESULTS A total of 55 patients were included in this study encompassing RNA-Sequencing analysis of hyalocytes isolated from the vitreous of PDR and control patients, multiplex immunoassay and ELISA analyses of vitreous samples from PDR and control patients, as well as isolation and immunohistochemical staining of cultured porcine hyalocytes. Transcriptional analysis revealed an enhanced inflammatory response of hyalocytes contributing to the cytokine pool within the vitreous of PDR patients by expressing interleukin-6, among others. Further, increased angiopoietin-2 expression indicated that hyalocytes from PDR patients undergo a proangiogenic shift and may thus mediate the formation of retinal neovascularizations, the hallmark of PDR. Finally, RNA-Sequencing revealed an upregulation of factors known from hemoglobin catabolism in hyalocytes from PDR patients. By immunohistochemistry, cultured porcine hyalocytes exposed to red blood cells were shown to engulf and phagocytose these, which reveals hyalocytes' potential to dispose of erythrocytes. Thus, our data suggest a potential role for vitreous macrophages in erythrophagocytosis and, thereby, clearance of vitreous hemorrhage, a severe complication of PDR. CONCLUSION Our results strongly indicate a critical role for vitreous hyalocytes in key pathophysiological processes of proliferative diabetic retinopathy: inflammation, angiomodulation and erythrophagocytosis. Immunomodulation of hyalocytes may thus prove an essential novel therapeutic approach in diabetic vitreoretinal disease.
Collapse
Affiliation(s)
- Stefaniya K Boneva
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Malte Jung
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Gabriele Prinz
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Toco Y P Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacqueline Jauch
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anne Drougard
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - J Andrew Pospisilik
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Institute for Anatomy and Cell Biology, Julius Maximilians University Würzburg, Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Clemens A K Lange
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.
- Department of Ophthalmology, St. Franziskus Hospital, Münster, Germany.
| |
Collapse
|
23
|
Luo ZY, Li X, Chen CT, Kang HH, Zhang ZJ, Wang D, Gong JR. Ocular adverse events associated with GLP-1 receptor agonists: a real-world study based on the FAERS database and network pharmacology. Expert Opin Drug Saf 2024:1-10. [PMID: 39425661 DOI: 10.1080/14740338.2024.2419989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE This study evaluates the risk of ocular adverse events (AEs) associated with glucagon-like peptide-1 receptor agonists (GLP-1 RAs) using data from the FDA Adverse Event Reporting System (FAERS) and network pharmacology methods. METHODS FAERS data from 2004 to 2024 were analyzed for ocular AEs linked to GLP-1 RA treatments. Disproportionality analysis (Reporting Odds Ratio, ROR) was used to identify signals, and a drug-gene interaction network explored potential mechanisms. RESULTS Among 17,785,793 FAERS reports, semaglutide and lixisenatide were significantly associated with ocular AEs, with RORs of 1.25 (95% CI, 1.20-1.31) and 1.96 (95% CI, 1.70-2.27), respectively. Commonly reported AEs included blurred vision, visual impairment, and diabetic retinopathy, with some AEs occurring as early as 10 days after treatment initiation. Gene enrichment analysis highlighted potential links between GLP-1-related genes and ocular AEs. CONCLUSION The widespread use of GLP-1 RAs has raised concerns regarding their ophthalmic safety. This study contributes new evidence from real-world data, suggesting that semaglutide and lixisenatide are associated with significant risks of ocular AEs. Further experimental studies are warranted to elucidate the underlying mechanisms and confirm these associations.
Collapse
Affiliation(s)
- Zhan-Yang Luo
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiang Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Cui-Ting Chen
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hong-Hua Kang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Jie Zhang
- Department of Oncology, The Second Clinical College of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Dong Wang
- Department of Information Management, Pudong Institute for Health Development, Shanghai, China
| | - Jing-Ru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
24
|
Liu H, Wang F, Hu Z, Wei J. Potential Drug Targets for Diabetic Retinopathy Identified Through Mendelian Randomization Analysis. Transl Vis Sci Technol 2024; 13:17. [PMID: 39541108 PMCID: PMC11572760 DOI: 10.1167/tvst.13.11.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This study aimed to investigate the causal effect of plasma proteins on diabetic retinopathy (DR) risk and identify potential drug targets for this disease. Methods Two-sample Mendelian randomization was performed to explore potential drug targets for DR. A total of 734 proteins were selected as instrumental variables. The Steiger filtering test and colocalization analysis were conducted to determine the causal direction and genetic pleiotropy. Plasma proteins from the decode study were used to validate the findings. Results Eleven plasma proteins were associated with DR risk. Genetically predicted high levels of CCL3L1 (odds ratio [OR] = 0.582; 95% confidence interval [CI], 0.343-0.986; P = 0.044), PAM (OR = 0.782; 95% CI, 0.652-0.937; P = 0.008), GP1BA (OR = 0.793; 95% CI, 0.632-0.994; P = 0.044), GALNT16 (OR = 0.832; 95% CI, 0.727-0.952; P = 0.008), POGLUT1 (OR = 0.836; 95% CI = 0.703-0.995; P = 0.043), and DKK3 (OR = 0.859; 95% CI, 0.777-0.950; P = 0.003) have the protective effect on DR risk. Genetically predicted high levels of GFRA2 (OR = 1.104; 95% CI, 1.028-1.187; P = 0.007), PATE4 (OR = 1.405; 95% CI, 1.060-1.860; P = 0.018), GSTA1 (OR = 1.464; 95% CI, 1.163-1.842; P = 0.001), SIRPG (OR = 1.600, 95% CI, 1.244-2.057; P = 2.51E-04), and MAPK13 (OR = 1.731; 95% CI, 1.233-2.431; P = 0.002) were associated with an increased risk of DR. However, the colocalization analysis results suggested that SIRPG and GP1BA have a shared causal variant with DR. Conclusions CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 were associated with DR risk and were identified as potential drug targets for DR. Translational Relevance The present study has highlighted the role of CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 in the development of DR.
Collapse
Affiliation(s)
- Huan Liu
- Department of Ophthalmology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Feiyan Wang
- Department of Ophthalmology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Ziqing Hu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Jing Wei
- Department of Ophthalmology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, PR China
| |
Collapse
|
25
|
Chen S, Sun D, Zhang S, Xu L, Wang N, Li H, Xu X, Wei F. TIN2 modulates FOXO1 mitochondrial shuttling to enhance oxidative stress-induced apoptosis in retinal pigment epithelium under hyperglycemia. Cell Death Differ 2024; 31:1487-1505. [PMID: 39080375 PMCID: PMC11519896 DOI: 10.1038/s41418-024-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 10/30/2024] Open
Abstract
Progressive dysfunction of the retinal pigment epithelium (RPE) and the adjacent photoreceptor cells in the outer retina plays a pivotal role in the pathogenesis of diabetic retinopathy (DR). Here, we observed a marked increase in oxidative stress-induced apoptosis in parallel with higher expression of telomeric protein TIN2 in RPE cells under hyperglycemia in vivo and in vitro. Delving deeper, we confirm that high glucose-induced elevation of mitochondria-localized TIN2 compromises mitochondrial activity and weakens the intrinsic antioxidant defense, thereby leading to the activation of mitochondria-dependent apoptotic pathways. Mechanistically, mitochondrial TIN2 promotes the phosphorylation of FOXO1 and its relocation to the mitochondria. Such translocation of transcription factor FOXO1 not only promotes its binding to the D-loop region of mitochondrial DNA-resulting in the inhibition of mitochondrial respiration-but also hampers its availability to nuclear target DNA, thereby undermining the intrinsic antioxidant defense. Moreover, TIN2 knockdown effectively mitigates oxidative-induced apoptosis in diabetic mouse RPE by preserving mitochondrial homeostasis, which concurrently prevents secondary photoreceptor damage. Our study proposes the potential of TIN2 as a promising molecular target for therapeutic interventions for diabetic retinopathy, which emphasizes the potential significance of telomeric proteins in the regulation of metabolism and mitochondrial function. Created with BioRender ( https://www.biorender.com/ ).
Collapse
Affiliation(s)
- Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Li Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
26
|
Sinclair SH, Schwartz S. Diabetic retinopathy: New concepts of screening, monitoring, and interventions. Surv Ophthalmol 2024; 69:882-892. [PMID: 38964559 DOI: 10.1016/j.survophthal.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The science of diabetes care has progressed to provide a better understanding of the oxidative and inflammatory lesions and pathophysiology of the neurovascular unit within the retina (and brain) that occur early in diabetes, even prediabetes. Screening for retinal structural abnormalities, has traditionally been performed by fundus examination or color fundus photography; however, these imaging techniques detect the disease only when there are sufficient lesions, predominantly hemorrhagic, that are recognized to occur late in the disease process after significant neuronal apoptosis and atrophy, as well as microvascular occlusion with alterations in vision. Thus, interventions have been primarily oriented toward the later-detected stages, and clinical trials, while demonstrating a slowing of the disease progression, demonstrate minimal visual improvement and modest reduction in the continued loss over prolonged periods. Similarly, vision measurement utilizing charts detects only problems of visual function late, as the process begins most often parafoveally with increasing number and progressive expansion, including into the fovea. While visual acuity has long been used to define endpoints of visual function for such trials, current methods reviewed herein are found to be imprecise. We review improved methods of testing visual function and newer imaging techniques with the recommendation that these must be utilized to discover and evaluate the injury earlier in the disease process, even in the prediabetic state. This would allow earlier therapy with ocular as well as systemic pharmacologic treatments that lower the and neuro-inflammatory processes within eye and brain. This also may include newer, micropulsed laser therapy that, if applied during the earlier cascade, should result in improved and often normalized retinal function without the adverse treatment effects of standard photocoagulation therapy.
Collapse
Affiliation(s)
| | - Stan Schwartz
- University of Pennsylvania Affiliate, Main Line Health System, USA
| |
Collapse
|
27
|
Huang J, Liang C, Huang J, Liu L. Update on diabetic retinopathy during pregnancy. Eur J Ophthalmol 2024; 34:1695-1706. [PMID: 38710196 DOI: 10.1177/11206721241248868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Diabetes mellitus (DM) leads to several vascular and neurological complications, including diabetic retinopathy (DR). As the population ages, health problems in certain groups, including children and pregnant women, are drawing more and more attention. Pregnancy is one of the independent risk factors for the development and progression of DR. Pregnancy-induced changes may contribute to or worsen DR, which can cause a tremendous burden on public health. It is essential for pregnant women with DR and their offspring to minimize the risk of vision loss from DR in this population and adverse outcomes by understanding the development and processes behind this process. Thus, we have updated the recent situation of epidemiology, evolution characteristics, risk factors, pathophysiology, pregnancy outcomes for a better understanding of the latest status of DR, helping to improve maternal and neonatal pregnancy outcomes, and promoting health for women with DR.
Collapse
Affiliation(s)
- Jiping Huang
- Chengnan Community Health Service Center of Yangchun, Yangjiang, Guangdong Province, China
| | - Chunlan Liang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jining Huang
- Bao'an Center Hosipital, Shenzhen, Guangdong Province, China
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
28
|
Rojekar S, Parit S, Gholap AD, Manchare A, Nangare SN, Hatvate N, Sugandhi VV, Paudel KR, Ingle RG. Revolutionizing Eye Care: Exploring the Potential of Microneedle Drug Delivery. Pharmaceutics 2024; 16:1398. [PMID: 39598522 PMCID: PMC11597228 DOI: 10.3390/pharmaceutics16111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 11/29/2024] Open
Abstract
Microneedle technology revolutionizes ocular drug delivery by addressing challenges in treating ocular diseases. This review explores its potential impact, recent advancements, and clinical uses. This minimally invasive technique offers precise control of drug delivery to the eye, with various microneedle types showing the potential to penetrate barriers in the cornea and sclera, ensuring effective drug delivery. Recent advancements have improved safety and efficacy, offering sustained and controlled drug delivery for conditions like age-related macular degeneration and glaucoma. While promising, challenges such as regulatory barriers and long-term biocompatibility persist. Overcoming these through interdisciplinary research is crucial. Ultimately, microneedle drug delivery presents a revolutionary method with the potential to significantly enhance ocular disease treatment, marking a new era in eye care.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Swapnali Parit
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India;
| | - Ajit Manchare
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Sopan N. Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India;
| | - Navnath Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Vrashabh V. Sugandhi
- College of Pharmacy & Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Rahul G. Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University)—DMIHER, Wardha 442107, India
| |
Collapse
|
29
|
Gezer A, Özkaraca M, Üstündağ H, Soydan M, Alkanoğlu Ö, Bedir G. Docosahexaenoic acid eliminates endoplasmic reticulum stress and inflammatory pathways in diabetic rat keratopathy. Int Immunopharmacol 2024; 140:112871. [PMID: 39111146 DOI: 10.1016/j.intimp.2024.112871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
Diabetic keratopathy, characterized by corneal structural changes, is a common complication of diabetes mellitus (DM). Docosahexaenoic acid (DHA), an omega-3 fatty acid, has shown potential therapeutic benefits in various diabetic complications. This study aimed to investigate the protective effect of DHA on corneal tissue in streptozotocin (STZ)-induced type 2 DM in rats. Forty male Sprague-Dawley rats were randomly assigned to four groups (n = 10 per group): Control, DHA, DM, and DM + DHA. The DHA group received DHA by oral gavage at a dose of 100 mg/kg daily for 10 days. In the DM group, diabetes was induced by a single intraperitoneal injection of STZ at 50 mg/kg. Confirmation of diabetes induction was based on monitoring fasting blood glucose levels on the third day post-injection. The DM + DHA group underwent the same diabetes induction protocol with STZ and received DHA at 100 mg/kg daily via oral gavage for 10 consecutive days. Corneal tissue samples were collected at the end of the study period for histopathological, immunohistochemical, qRT-PCR, and ELISA analyses. Histopathological analysis showed significant edema, angiogenesis, and degeneration in the DM group compared to the control (p < 0.001). DHA treatment significantly mitigated these changes, approaching control levels (p < 0.01). Immunohistochemistry showed increased VEGFR2 and iNOS expression in the DM group, which was significantly reduced in the DM + DHA group (p < 0.01). qRT-PCR results indicated a significant decrease in Bcl-2 expression (p < 0.001) and an increase in ATF-6, IRE1, NF-κB, TNF-α, IL-1β, NLRP3, Bax, and Caspase-3 expressions in the DM group (p < 0.001). ELISA analyses revealed significantly elevated levels of inflammatory markers NF-κB, TNF-α, IL-1β, and IL-6 in the DM group compared to the control (p < 0.001). DHA treatment significantly upregulated Bcl-2 and downregulated apoptotic and inflammatory markers (p < 0.01). DHA demonstrated significant protective effects against STZ-induced corneal damage in diabetic rats by modulating apoptotic and inflammatory pathways. These findings suggest that DHA may be a promising therapeutic agent for preventing diabetic keratopathy.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Atatürk University, Erzurum, Turkiye; Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkiye.
| | - Mustafa Özkaraca
- Faculty of Veterinary Medicine, Department of Pathology, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkiye.
| | - Menekşe Soydan
- Institute of Natural Sciences, Sakarya University, Sakarya, Turkiye
| | - Ömer Alkanoğlu
- Atatürk University, Faculty of Veterinary Medicine, Department of Biochemistry, Erzurum, Turkiye
| | - Gürsel Bedir
- School of Medicine, Department of Histology and Embryology, Ataturk University Erzurum, Turkiye
| |
Collapse
|
30
|
Xu X, Zhang M, Huang S, Li X, Kui X, Liu J. The application of artificial intelligence in diabetic retinopathy: progress and prospects. Front Cell Dev Biol 2024; 12:1473176. [PMID: 39524224 PMCID: PMC11543434 DOI: 10.3389/fcell.2024.1473176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, artificial intelligence (AI), especially deep learning models, has increasingly been integrated into diagnosing and treating diabetic retinopathy (DR). From delving into the singular realm of ocular fundus photography to the gradual development of proteomics and other molecular approaches, from machine learning (ML) to deep learning (DL), the journey has seen a transition from a binary diagnosis of "presence or absence" to the capability of discerning the progression and severity of DR based on images from various stages of the disease course. Since the FDA approval of IDx-DR in 2018, a plethora of AI models has mushroomed, gradually gaining recognition through a myriad of clinical trials and validations. AI has greatly improved early DR detection, and we're nearing the use of AI in telemedicine to tackle medical resource shortages and health inequities in various areas. This comprehensive review meticulously analyzes the literature and clinical trials of recent years, highlighting key AI models for DR diagnosis and treatment, including their theoretical bases, features, applicability, and addressing current challenges like bias, transparency, and ethics. It also presents a prospective outlook on the future development in this domain.
Collapse
Affiliation(s)
- Xinjia Xu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingchen Zhang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Sihong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoying Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyan Kui
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center in Hunan Province, Changsha, China
| |
Collapse
|
31
|
Song Y, Yin C, Kong N. Stem Cell-Derived Exosomes: Natural Intercellular Messengers with Versatile Mechanisms for the Treatment of Diabetic Retinopathy. Int J Nanomedicine 2024; 19:10767-10784. [PMID: 39469447 PMCID: PMC11514697 DOI: 10.2147/ijn.s475234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetic retinopathy is one of the complications of diabetes mellitus that occurs in the early stages. It is a disease that has a serious impact, and may lead to blindness when the disease progresses to advanced stages. Currently, treatments for diabetic retinopathy are mainly limited to its advanced stages of the disease, being restricted to a single therapeutic mechanism. Stem cells hold the promise of regenerative therapy and have the potential to comprehensively improve diabetic retinopathy. However, direct stem cell therapy carries some risk of carcinogenesis. Exosomes secreted by stem cells have shown a similar overall improvement in disease as stem cells. Exosomes can carry a number of biologically active materials from donor cells to recipient cells or distant organs, regulating intercellular signaling. Exosomes have shown remarkable efficacy in alleviating oxidative stress, inhibiting inflammatory responses, suppressing angiogenesis, reducing apoptosis and protecting neural tissues. Currently, the experimental literature using stem cell exosomes in the treatment of diabetic retinopathy tends to converge on the above experimental results. With this in mind, we have chosen to explore exosomes in depth from a subtle molecular perspective. We will elaborate on this perspective in this paper and propose to advocate exosome therapy as one promising approach for the treatment of diabetic retinopathy to ameliorate the lesions through multiple mechanisms.
Collapse
Affiliation(s)
- Yameng Song
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People’s Republic of China
| | - Caiyun Yin
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People’s Republic of China
| | - Ning Kong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
32
|
Wang S, Bao N, Li M, Liu D, Tao L. Ets2 Exacerbates Diabetic Retinopathy by Aggravating the Proliferation of Endothelial Cells and Inflammatory Response. Biochem Genet 2024:10.1007/s10528-024-10938-8. [PMID: 39432129 DOI: 10.1007/s10528-024-10938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024]
Abstract
Proliferative diabetic retinopathy (PDR), the most common type of diabetic retinopathy, is a main cause of visual and impairment blindness. Abnormal neovascularization, endothelial dysfunction, and vascular inflammation are important mechanisms for the development of PDR. Ets2 regulates angiogenesis-related genes and inflammation, however, the effect of Ets2 in PDR procession has not been clarified. Thus, this study is performed to investigate whether Ets2 exerts key functions in PDR. In this study, 10-week-old mice were used for establishing STZ-induced diabetic mice, and Ets2 expression was analyzed in retina tissues. Besides, newborn mice were applied to construct oxygen-induced retinopathy (OIR) models. The Ets2 expression, oxidative stress, and inflammation were detected in retina tissues. We found that Ets2 was highly expressed in retina tissues both in diabetic mice and OIR mice. Oxidative stress and inflammatory processes are two factors contributing to the pathogenesis of PDR. In retinal tissues of OIR mice, Ets2 knockdown inhibited expression of inflammatory mediators VEGFA, IL-6, and IL-8, and biomarkers of oxidative stress MCP-1, VCAM-1, and iNOS. ROS production was also inhibited by silencing Ets2. Ets2 deficiency inhibited endothelial cell proliferation in the retina. Furthermore, Ets2 knockdown contributed to suppressing the expression of angiogenesis-related genes VEGFA, JUNB, MMP-9, Tie2, Ang-2, and EphB4. Our study highlights that Ets2 accelerates PDR procession by promoting the proliferation of endothelial cells, oxidative stress, and inflammation, which provides a novel target against PDR.
Collapse
Affiliation(s)
- Song Wang
- Department of Ophthalmology, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Ning Bao
- Department of Ophthalmology, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Mohan Li
- Department of Ophthalmology, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Dongwei Liu
- Department of Ophthalmology, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Liming Tao
- Department of Ophthalmology, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
33
|
Choi K, Park SJ, Yoon H, Choi S, Mun Y, Kim S, Yoo S, Woo SJ, Park KH, Na J, Suh HS. Patient-Centered Economic Burden of Diabetic Macular Edema: Retrospective Cohort Study. JMIR Public Health Surveill 2024; 10:e56741. [PMID: 39378098 PMCID: PMC11496919 DOI: 10.2196/56741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Diabetic macular edema (DME), a leading cause of blindness, requires treatment with costly drugs, such as anti-vascular endothelial growth factor (VEGF) agents. The prolonged use of these effective but expensive drugs results in an incremental economic burden for patients with DME compared with those with diabetes mellitus (DM) without DME. However, there are no studies on the long-term patient-centered economic burden of DME after reimbursement for anti-VEGFs. OBJECTIVE This retrospective cohort study aims to estimate the 3-year patient-centered economic burden of DME compared with DM without DME, using the Common Data Model. METHODS We used medical data from 1,903,603 patients (2003-2020), transformed and validated using the Observational Medical Outcomes Partnership Common Data Model from Seoul National University Bundang Hospital. We defined the group with DME as patients aged >18 years with nonproliferative diabetic retinopathy and intravitreal anti-VEGF or steroid prescriptions. As control, we defined the group with DM without DME as patients aged >18 years with DM or diabetic retinopathy without intravitreal anti-VEGF or steroid prescriptions. Propensity score matching, performed using a regularized logistic regression with a Laplace prior, addressed selection bias. We estimated direct medical costs over 3 years categorized into total costs, reimbursement costs, nonreimbursement costs, out-of-pocket costs, and costs covered by insurance, as well as healthcare resource utilization. An exponential conditional model and a count model estimated unbiased incremental patient-centered economic burden using generalized linear models and a zero-inflation model. RESULTS In a cohort of 454 patients with DME matched with 1640 patients with DM, the economic burden of DME was significantly higher than that of DM, with total costs over 3 years being 2.09 (95% CI 1.78-2.47) times higher. Reimbursement costs were 1.89 (95% CI 1.57-2.28) times higher in the group with DME than with the group with DM, while nonreimbursement costs were 2.54 (95% CI 2.12-3.06) times higher. Out-of-pocket costs and costs covered by insurance were also higher by a factor of 2.11 (95% CI 1.58-2.59) and a factor of 2.01 (95% CI 1.85-2.42), respectively. Patients with DME had a significantly higher number of outpatient (1.87-fold) and inpatient (1.99-fold) visits compared with those with DM (P<.001 in all cases). CONCLUSIONS Patients with DME experience a heightened economic burden compared with diabetic patients without DME. The substantial and enduring economic impact observed in real-world settings underscores the need to alleviate patients' burden through preventive measures, effective management, appropriate reimbursement policies, and the development of innovative treatments. Strategies to mitigate the economic impact of DME should include proactive approaches such as expanding anti-VEGF reimbursement criteria, approving and reimbursing cost-effective drugs such as bevacizumab, advocating for proactive eye examinations, and embracing early diagnosis by ophthalmologists facilitated by cutting-edge methodologies such as artificial intelligence for patients with DM.
Collapse
Affiliation(s)
- Kyungseon Choi
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Jun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyuna Yoon
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Seoyoon Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yongseok Mun
- Department of Ophthalmology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Seok Kim
- Healthcare ICT Research Center, Office of eHealth Research and Businesses, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sooyoung Yoo
- Healthcare ICT Research Center, Office of eHealth Research and Businesses, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junghyun Na
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Hae Sun Suh
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
35
|
Yang H, Han RY, Gong RW, Zhang YJ, Yang SS, Xu GZ, Liu W. CST3 alleviates retinal vascular leakage by regulating the Rap1 signaling pathway. Exp Eye Res 2024; 247:110042. [PMID: 39147193 DOI: 10.1016/j.exer.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Retinal vascular leakage is a major event in several retinal diseases, including diabetic retinopathy (DR). In a previous study, we demonstrated that the aqueous humor concentration of Cystatin C (CST3), a physiological inhibitor of cysteine protease, is negatively correlated with the severity of diabetic macular edema. However, its function in the retina has not been clearly elucidated. In this study, we found a significant decrease in the aqueous humor concentration of CST3 with DR progression. Furthermore, we found that CST3 was expressed in retinal endothelial cells and that its expression was significantly downregulated in high glucose-treated human retinal microvascular endothelial cells (HRMECs) and the retinal vessels of oxygen-induced retinopathy (OIR) mice. Silencing CST3 expression resulted in decreased HRMEC migration and tubule formation ability. Exogenous addition of the CST3 protein significantly improved HRMEC migration and tubular formation. In-vivo experiments demonstrated that CST3 silencing induced retinal vascular leakage in WT mice, while its intravitreal injection significantly reduced retinal leakage in OIR mice. Mechanistically, CST3 promoted the expression of the downstream adhesion molecules, claudin5, VE-cadherin, and ZO-1, in retinal vascular cells by regulating the Rap1 signaling pathway. Therefore, this study revealed a novel mechanism by which CST3 improves retinal vascular function and provided evidence that it is a potential therapeutic target for retinal vascular leakage.
Collapse
Affiliation(s)
- Hong Yang
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China
| | - Ru-Yi Han
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China
| | - Ruo-Wen Gong
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China
| | - Ya-Juan Zhang
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Shi-Shi Yang
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Ge-Zhi Xu
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China.
| | - Wei Liu
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
36
|
Kim TY, De R, Choi I, Kim H, Hahn SK. Multifunctional nanomaterials for smart wearable diabetic healthcare devices. Biomaterials 2024; 310:122630. [PMID: 38815456 DOI: 10.1016/j.biomaterials.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Wearable diabetic healthcare devices have attracted great attention for real-time continuous glucose monitoring (CGM) using biofluids such as tears, sweat, saliva, and interstitial fluid via noninvasive ways. In response to the escalating global demand for CGM, these devices enable proactive management and intervention of diabetic patients with incorporated drug delivery systems (DDSs). In this context, multifunctional nanomaterials can trigger the development of innovative sensing and management platforms to facilitate real-time selective glucose monitoring with remarkable sensitivity, on-demand drug delivery, and wireless power and data transmission. The seamless integration into wearable devices ensures patient's compliance. This comprehensive review evaluates the multifaceted roles of these materials in wearable diabetic healthcare devices, comparing their glucose sensing capabilities with conventionally available glucometers and CGM devices, and finally outlines the merits, limitations, and prospects of these devices. This review would serve as a valuable resource, elucidating the intricate functions of nanomaterials for the successful development of advanced wearable devices in diabetes management.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Ranjit De
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
37
|
Wolek M, Wollocko B, Li DM, Bansal J, Ghani N, Mackey M, Chaudhary K. Adjusting for Glycemic Control in Assessing the Relationship Between Age-Related Macular Degeneration and Diabetic Retinopathy. Cureus 2024; 16:e71479. [PMID: 39539883 PMCID: PMC11560319 DOI: 10.7759/cureus.71479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Studies regarding the relationship between age-related macular degeneration (AMD) and diabetic retinopathy (DR) conflict: while some support that AMD is protective against DR, others find the opposite. The mechanism by which AMD may protect against DR is unclear. We sought to assess the association between AMD and DR when controlling for glycemic control in patients with diabetes mellitus (DM) type II. Methods We identified 461 unique patients over 55 years old with a diagnosis of DM type II seen in our academic retina clinic in Stony Brook, New York between 12/31/2019 and 12/31/2020. Data were manually extracted and the population was split based on the presence of AMD diagnosis. Multivariate regression analyses were then performed comparing the prevalence of DR between groups while controlling for A1c. Secondary endpoints included demographic differences and smoking status. Results Among the 461 patients, 118 (25.6%) had a diagnosis of AMD. Compared to patients without AMD, patients with AMD were older (69 vs. 66; OR 1.05; p=0.005) and less likely to have DR (37.3% vs. 59.2%; OR 0.35; p<0.001). There was no difference in average A1c between groups. Conclusion This is the first reported study assessing the relationship between AMD and DR while controlling for A1c. In our population, diagnosis of AMD was associated with significantly reduced odds of having DR. As AMD and DR appear to be related even after holding A1c constant, researchers should use caution when using DR as a surrogate for diabetic control in the context of AMD.
Collapse
Affiliation(s)
- Michael Wolek
- Ophthalmology, University Hospitals Cleveland Medical Center, Cleveland, USA
| | - Brian Wollocko
- Ophthalmology, State University of New York Downstate Health Sciences University, New York, USA
| | - Deborah M Li
- Ophthalmology, Stony Brook University, Stony Brook, USA
| | - Jahnvi Bansal
- Anesthesiology, Westchester Medical Center, Valhalla, USA
| | - Nimra Ghani
- Internal Medicine, Stony Brook University, Stony Brook, USA
| | - Michael Mackey
- Anesthesiology, Westchester Medical Center, Valhalla, USA
| | | |
Collapse
|
38
|
Yuan Y, Ji S, Song Y, Che Z, Xiao L, Tang S, Xiao J. Global trends in diabetic eye disease research from 2012 to 2021. Neural Regen Res 2024; 19:2310-2320. [PMID: 38488565 PMCID: PMC11034595 DOI: 10.4103/1673-5374.391303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 10/07/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00032/figure1/v/2024-02-06T055622Z/r/image-tiff Diabetic eye disease refers to a group of eye complications that occur in diabetic patients and include diabetic retinopathy, diabetic macular edema, diabetic cataracts, and diabetic glaucoma. However, the global epidemiology of these conditions has not been well characterized. In this study, we collected information on diabetic eye disease-related research grants from seven representative countries--the United States, China, Japan, the United Kingdom, Spain, Germany, and France--by searching for all global diabetic eye disease journal articles in the Web of Science and PubMed databases, all global registered clinical trials in the ClinicalTrials database, and new drugs approved by the United States, China, Japan, and EU agencies from 2012 to 2021. During this time period, diabetic retinopathy accounted for the vast majority (89.53%) of the 2288 government research grants that were funded to investigate diabetic eye disease, followed by diabetic macular edema (9.27%). The United States granted the most research funding for diabetic eye disease out of the seven countries assessed. The research objectives of grants focusing on diabetic retinopathy and diabetic macular edema differed by country. Additionally, the United States was dominant in terms of research output, publishing 17.53% of global papers about diabetic eye disease and receiving 22.58% of total citations. The United States and the United Kingdom led international collaborations in research into diabetic eye disease. Of the 415 clinical trials that we identified, diabetic macular edema was the major disease that was targeted for drug development (58.19%). Approximately half of the trials (49.13%) pertained to angiogenesis. However, few drugs were approved for ophthalmic (40 out of 1830; 2.19%) and diabetic eye disease (3 out of 1830; 0.02%) applications. Our findings show that basic and translational research related to diabetic eye disease in the past decade has not been highly active, and has yielded few new treatment methods and newly approved drugs.
Collapse
Affiliation(s)
- Yuan Yuan
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China
| | - Shangli Ji
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yali Song
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhaodi Che
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Lu Xiao
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Shibo Tang
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Jia Xiao
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China
- Aier Eye Institute, Changsha, Hunan Province, China
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
39
|
Liao L, Chen J, Peng S. hsa_circ_0000047 targeting miR-6720-5p/CYB5R2 axis alleviates inflammation and angiogenesis in diabetic retinopathy. Arch Physiol Biochem 2024; 130:537-545. [PMID: 36971486 DOI: 10.1080/13813455.2023.2190055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
Context: Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM). Circular RNAs (circRNAs) act as key regulators of DR development by regulating inflammation and angiogenesis.Objective: This study aimed to elucidate the function and mechanism of hsa_circ_0000047 in DR.Materials and methods: High glucose (HG) was used to induce human retinal microvascular endothelial cells (hRMECs) to construct a DR model in vitro. Qualitative real-time polymerase chain reaction (qRT-PCR) or western blotting were used to detected the levels of hsa_circ_0000047, miR-6720-5p, and CYB5R2 in DR and HG-indeced hRMECs. Cell functional experiments were performed to detect the change of viability, inflammation, migration, invasion, and angiogenesis of HG-induced hRMECs. Besides, the correlation between miR-6720-5p and hsa_circ_0000047/CYB5R2 was confirmed by luciferase assay and Pearson correlation analysis.Results: hsa_circ_0000047 and CYB5R2 were downregulated in DR, whereas miR-6720-5p was upregulated in DR. Cell functional experiments showed that hsa_circ_0000047 overexpression restrained viability, inflammation, migration, invasion, and angiogenesis of HG-induced hRMECs. Regarding mechanism, hsa_circ_0000047 could sponge miR-6720-5p to regulate CYB5R2 expression in hRMECs. Additionally, CYB5R2 knockdown reversed the effects of hsa_circ_0000047 overexpression on HG-induced hRMECs.Conclusion: Our study revealed that hsa_circ_0000047 alleviated inflammation and angiogenesis in HG-induced hRMECs by targeting the miR-6720-5p/CYB5R2 axis, which may be a novel biomarker for DR therapy.
Collapse
Affiliation(s)
- Lin Liao
- Department of Ophthalmology, Wuhan Fourth Hospital, Puai Hospital, Wuhan, China
| | - Jinpeng Chen
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, China
| | - Sheng Peng
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital, Wuhan, China
| |
Collapse
|
40
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Khamees Thabet H, Ragab A, Imran M, Helal MH, Ibrahim Alaqel S, Alshehri A, Ash Mohd A, Rakan Alshammari M, S Abusaif M, A Ammar Y. Discovery of new anti-diabetic potential agents based on paracetamol incorporating sulfa-drugs: Design, synthesis, α-amylase, and α-glucosidase inhibitors with molecular docking simulation. Eur J Med Chem 2024; 275:116589. [PMID: 38878516 DOI: 10.1016/j.ejmech.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Uncontrolled diabetes can lead to hyperglycemia, which causes neuropathy, heart attacks, retinopathy, and nervous system damage over time, therefore, controlling hyperglycemia using potential drug target inhibitors is a promising strategy. This work focused on synthesizing new derivatives via the diazo group, using a hybridization strategy involving two approved drugs, paracetamol and several sulfonamides. The newly designed diazo-paracetamols 5-12 were fully characterized and then screened for in vitro α-amylase and α-glucosidase activities and exhibited inhibitory percentages (IP) = 92.5-96.5 % and 91.0-95.7 % compared to Acarbose IP = 96.5 and 95.8 %, respectively at 100 μg/mL. The IC50 values of the synthesized derivatives were evaluated against α-amylase and α-glucosidase enzymes, and the results demonstrated moderate to potent activity. Among the tested diazo-paracetamols, compound 11 was found to have the highest potency activity against α-amylase with IC50 value of 0.98 ± 0.015 μM compared to Acarbose IC50 = 0.43 ± 0.009 μM, followed by compound 10 (IC50 = 1.55 ± 0.022 μM) and compound 9 (IC50 = 1.59 ± 0.023 μM). On the other hand, for α-glucosidase, compound 10 with pyrimidine moiety demonstrated the highest inhibitory activity with IC50 = 1.39 ± 0.021 μM relative to Acarbose IC50 = 1.24 ± 0.029 μM and the order of the most active derivatives was 10 > 9 (IC50 = 2.95 ± 0.046 μM) > 11 (IC50 = 5.13 ± 0.082 μM). SAR analysis confirmed that the presence of 4,5-dimethyl-isoxazole or pyrimidine nucleus attached to the sulfonyl group is important for activity. Finally, the docking simulation was achieved to determine the mode of binding interactions for the most active derivatives in the enzyme's active site.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam, 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Malek Rakan Alshammari
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
42
|
Yue J, Xu J, Li T, Li Y, Chen Z, Liang S, Liu Z, Wang Y. Discovery of potential antidiabetic peptides using deep learning. Comput Biol Med 2024; 180:109013. [PMID: 39137670 DOI: 10.1016/j.compbiomed.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antidiabetic peptides (ADPs), peptides with potential antidiabetic activity, hold significant importance in the treatment and control of diabetes. Despite their therapeutic potential, the discovery and prediction of ADPs remain challenging due to limited data, the complex nature of peptide functions, and the expensive and time-consuming nature of traditional wet lab experiments. This study aims to address these challenges by exploring methods for the discovery and prediction of ADPs using advanced deep learning techniques. Specifically, we developed two models: a single-channel CNN and a three-channel neural network (CNN + RNN + Bi-LSTM). ADPs were primarily gathered from the BioDADPep database, alongside thousands of non-ADPs sourced from anticancer, antibacterial, and antiviral peptide datasets. Subsequently, data preprocessing was performed with the evolutionary scale model (ESM-2), followed by model training and evaluation through 10-fold cross-validation. Furthermore, this work collected a series of newly published ADPs as an independent test set through literature review, and found that the CNN model achieved the highest accuracy (90.48 %) in predicting the independent test set, surpassing existing ADP prediction tools. Finally, the application of the model was considered. SeqGAN was used to generate new candidate ADPs, followed by screening with the constructed CNN model. Selected peptides were then evaluated using physicochemical property prediction and structural forecasts for pharmaceutical potential. In summary, this study not only established robust ADP prediction models but also employed these models to screen a batch of potential ADPs, addressing a critical need in the field of peptide-based antidiabetic research.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zihui Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
43
|
Yapislar H, Gurler EB. Management of Microcomplications of Diabetes Mellitus: Challenges, Current Trends, and Future Perspectives in Treatment. Biomedicines 2024; 12:1958. [PMID: 39335472 PMCID: PMC11429415 DOI: 10.3390/biomedicines12091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by high blood sugar levels, which can lead to severe health issues if not managed effectively. Recent statistics indicate a significant global impact, with 463 million adults diagnosed worldwide and this projected to rise to 700 million by 2045. Type 1 diabetes is an autoimmune disorder where the immune system attacks pancreatic beta cells, reducing insulin production. Type 2 diabetes is primarily due to insulin resistance. Both types of diabetes are linked to severe microvascular and macrovascular complications if unmanaged. Microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy, result from damage to small blood vessels and can lead to organ and tissue dysfunction. Chronic hyperglycemia plays a central role in the onset of these complications, with prolonged high blood sugar levels causing extensive vascular damage. The emerging treatments and current research focus on various aspects, from insulin resistance to the intricate cellular damage induced by glucose toxicity. Understanding and intervening in these pathways are critical for developing effective treatments and managing diabetes long term. Furthermore, ongoing health initiatives, such as increasing awareness, encouraging early detection, and improving treatments, are in place to manage diabetes globally and mitigate its impact on health and society. These initiatives are a testament to the collective effort to combat this global health challenge.
Collapse
Affiliation(s)
- Hande Yapislar
- Department of Physiology, Faculty of Medicine, Acibadem University, 34752 Istanbul, Türkiye
| | - Esra Bihter Gurler
- Department of Basic Sciences, Faculty of Dentistry, Istanbul Galata University, 34430 Istanbul, Türkiye
| |
Collapse
|
44
|
Du K, Liu Y, Zhao X, Wang H, Wan X, Sun X, Luo W. Global research trends and hotspots of oxidative stress in diabetic retinopathy (2000-2024). Front Endocrinol (Lausanne) 2024; 15:1428411. [PMID: 39220368 PMCID: PMC11361963 DOI: 10.3389/fendo.2024.1428411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Oxidative stress has been identified as a major contributor to the pathogenesis of DR, and many diagnostic and therapeutic strategies have been developed to target oxidative stress. Our aim was to understand the contribution of the country of origin of the publication, the institution, the authors, and the collaborative relationship between them. Methods We performed a bibliometric analysis to summarize and explore the research hotspots and trends of oxidative stress in the DR. Results We observe an upward trend in the number of posts on related topics from year to year. Expanding on this, Queens University Belfast is the most influential research institution. Current research hotspots and trends focus on the mechanism of autophagy and NLRP3 inflammasome's role in oxidative stress in DR. Discussion We conducted a multi-dimensional analysis of the research status of oxidative stress in diabetic retinopathy through bibliometric analysis, and proposed possible future research trends and hotspots.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenjuan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Martín-Loro F, Cano-Cano F, Ortega MJ, Cuevas B, Gómez-Jaramillo L, González-Montelongo MDC, Freisenhausen JC, Lara-Barea A, Campos-Caro A, Zubía E, Aguilar-Diosdado M, Arroba AI. Arylphthalide Delays Diabetic Retinopathy via Immunomodulating the Early Inflammatory Response in an Animal Model of Type 1 Diabetes Mellitus. Int J Mol Sci 2024; 25:8440. [PMID: 39126007 PMCID: PMC11313200 DOI: 10.3390/ijms25158440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic retinopathy (DR) is one of the most prevalent secondary complications associated with diabetes. Specifically, Type 1 Diabetes Mellitus (T1D) has an immune component that may determine the evolution of DR by compromising the immune response of the retina, which is mediated by microglia. In the early stages of DR, the permeabilization of the blood-retinal barrier allows immune cells from the peripheral system to interact with the retinal immune system. The use of new bioactive molecules, such as 3-(2,4-dihydroxyphenyl)phthalide (M9), with powerful anti-inflammatory activity, might represent an advance in the treatment of diseases like DR by targeting the immune systems responsible for its onset and progression. Our research aimed to investigate the molecular mechanisms involved in the interaction of specific cells of the innate immune system during the progression of DR and the reduction in inflammatory processes contributing to the pathology. In vitro studies were conducted exposing Bv.2 microglial and Raw264.7 macrophage cells to proinflammatory stimuli for 24 h, in the presence or absence of M9. Ex vivo and in vivo approaches were performed in BB rats, an animal model for T1D. Retinal explants from BB rats were cultured with M9. Retinas from BB rats treated for 15 days with M9 via intraperitoneal injection were analyzed to determine survival, cellular signaling, and inflammatory markers using qPCR, Western blot, or immunofluorescence approaches. Retinal structure images were acquired via Spectral-Domain-Optical Coherence Tomography (SD-OCT). Our results show that the treatment with M9 significantly reduces inflammatory processes in in vitro, ex vivo, and in vivo models of DR. M9 works by inhibiting the proinflammatory responses during DR progression mainly affecting immune cell responses. It also induces an anti-inflammatory response, primarily mediated by microglial cells, leading to the synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). Ultimately, in vivo administration of M9 preserves the retinal integrity from the degeneration associated with DR progression. Our findings demonstrate a specific interaction between both retinal and systemic immune cells in the progression of DR, with a differential response to treatment, mainly driven by microglia in the anti-inflammatory action. In vivo treatment with M9 induces a switch in immune cell phenotypes and functions that contributes to delaying the DR progression, positioning microglial cells as a new and specific therapeutic target in DR.
Collapse
Affiliation(s)
- Francisco Martín-Loro
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
| | - Fátima Cano-Cano
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
| | - María J. Ortega
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain; (M.J.O.); (E.Z.)
| | - Belén Cuevas
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain; (M.J.O.); (E.Z.)
| | - Laura Gómez-Jaramillo
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
| | - María del Carmen González-Montelongo
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
| | - Jan Cedric Freisenhausen
- Dermatology and Venereology Division, Department of Medicine, Karolinska Institute, SE-171 77 Solna, Sweden;
- Center for Molecular Medicine, Karolinska University Hospital, SE-171 76 Solna, Sweden
| | - Almudena Lara-Barea
- Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, 11009 Cádiz, Spain;
| | - Antonio Campos-Caro
- Área Genética, Departamento Biomedicina Biotecnología y Salud Pública, Universidad de Cádiz, 11510 Puerto Real, Spain;
| | - Eva Zubía
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain; (M.J.O.); (E.Z.)
| | - Manuel Aguilar-Diosdado
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
- Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, 11009 Cádiz, Spain;
| | - Ana I. Arroba
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
- Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, 11009 Cádiz, Spain;
| |
Collapse
|
46
|
Nam MH, Dhillon A, Nahomi RB, Carrillo NL, Hougen CS, Nagaraj RH. Peptain-1 blocks ischemia/reperfusion-induced retinal capillary degeneration in mice. Front Cell Neurosci 2024; 18:1441924. [PMID: 39149168 PMCID: PMC11324586 DOI: 10.3389/fncel.2024.1441924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Neurovascular degeneration results in vascular dysfunction, leakage, ischemia, and structural changes that can lead to significant visual impairment. We previously showed the protective effects of peptain-1, a 20 amino acid peptide derived from the αB-crystallin core domain, on retinal ganglion cells in two animal models of glaucoma. Here, we evaluated the ability of peptain-1 to block apoptosis of human retinal endothelial cells (HRECs) in vitro and retinal capillary degeneration in mice subjected to retinal ischemia/reperfusion (I/R) injury. Methods HRECs were treated with either peptain-1 or scrambled peptides (200 μg/mL) for 3 h and a combination of proinflammatory cytokines (IFN-γ 20 ng/mL + TNF-α 20 ng/mL+ IL-1β 20 ng/mL) for additional 48 h. Apoptosis was measured with cleaved caspase-3 formation via western blot, and by TUNEL assay. C57BL/6J mice (12 weeks old) were subjected to I/R injury by elevating the intraocular pressure to 120 mmHg for 60 min, followed by reperfusion. Peptain-1 or scrambled peptide (0.5 μg) was intravitreally injected immediately after I/R injury and 7 days later. One microliter of PBS was injected as vehicle control, and animals were euthanized on day 14 post-I/R injury. Retinal capillary degeneration was assessed after enzyme digestion followed by periodic acid-Schiff staining. Results Our data showed that peptain-1 entered HRECs and blocked proinflammatory cytokine-mediated apoptosis. Intravitreally administered peptain-1 was distributed throughout the retinal vessels after 4 h. I/R injury caused retinal capillary degeneration. Unlike scrambled peptide, peptain-1 protected capillaries against I/R injury. Additionally, peptain-1 inhibited microglial activation and reduced proinflammatory cytokine levels in the retina following I/R injury. Discussion Our study suggests that peptain-1 could be used as a therapeutic agent to prevent capillary degeneration and neuroinflammation in retinal ischemia.
Collapse
Affiliation(s)
- Mi-Hyun Nam
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Armaan Dhillon
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Rooban B Nahomi
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Noelle L Carrillo
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Radiology, UCHealth University of Colorado Hospital, Aurora, CO, United States
| | - Clarinda S Hougen
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Ram H Nagaraj
- Department of Ophthalmology, UCHealth-Sue Anschutz-Rodgers Eye Centre, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
| |
Collapse
|
47
|
Tan Y, Yan Z, Yin J, Cao J, Xie B, Zhang F, Zhang W, Xiong W. Elucidating the role of genetically determined metabolites in Diabetic Retinopathy: insights from a mendelian randomization analysis. Acta Diabetol 2024:10.1007/s00592-024-02345-7. [PMID: 39090426 DOI: 10.1007/s00592-024-02345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024]
Abstract
AIMS Diabetic retinopathy (DR) results from complex genetic and metabolic interactions. Unraveling the links between blood metabolites and DR can advance risk prediction and therapy. METHODS Leveraging Mendelian Randomization (MR) and Linkage Disequilibrium Score Regression (LDSC), we analyzed 10,413 DR cases and 308,633 controls. Data was sourced from the Metabolomics GWAS server and the FinnGen project. RESULTS Our research conducted a comprehensive MR analysis across 486 serum metabolites to investigate their causal role in DR. After stringent selection and validation of instrumental variables, we focused on 480 metabolites for analysis. Our findings revealed 38 metabolites potentially causally associated with DR. Specifically, 4-androsten-3beta,17beta-diol disulfate 2 was identified as significantly associated with a reduced risk of DR (OR = 0.471, 95% CI = 0.324-0.684, p = 7.87 × 10- 5), even after rigorous adjustments for multiple testing. Sensitivity analyses further validated the robustness of this association, and linkage disequilibrium score regression analyses showed no significant genetic correlation between this metabolite and DR, suggesting a specific protective effect against DR. CONCLUSIONS Our study identifies 4-androsten-3beta,17beta-diol disulfate 2, a metabolite of androgens, as a significant protective factor against diabetic retinopathy, suggesting androgens as potential therapeutic targets.
Collapse
Affiliation(s)
- Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
- Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Zuyun Yan
- The Third Xiangya Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Jiayang Yin
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
| | - Jiamin Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
| | - Bingyu Xie
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
| | - Feng Zhang
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
| | - Wenhua Zhang
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China.
| | - Wei Xiong
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China.
| |
Collapse
|
48
|
Wu Q, Zhu J, Zhang X, Xu X, Luo D, Lin Y, Yan M, Song Y. The antioxidant effect of tetrahedral framework nucleic acid-based delivery of small activating RNA targeting DJ-1 on retinal oxidative stress injury. Cell Prolif 2024; 57:e13635. [PMID: 38594962 PMCID: PMC11294416 DOI: 10.1111/cpr.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are the world's leading causes of blindness. The retinal pigment epithelium (RPE) and vascular endothelial cell exposed to oxidative stress is the major cause of AMD and DR. DJ-1, an important endogenous antioxidant, its overexpression is considered as a promising antioxidant treatment for AMD and DR. Here, we modified the tetrahedral frame nucleic acids (tFNAs) with DJ-1 saRNAs as a delivery system, and synthesized a novel nanocomplex (tFNAs-DJ-1 saRNAs). In vitro studies show that tFNAs-DJ-1 saRNAs can efficiently transfer DJ-1 saRNAs to human umbilical vein endothelial cells (HUVECs) and ARPE-19s, and significantly increased their cellular DJ-1 level. Reactive oxygen species expression in H2O2-treated HUVECs and ARPE-19s were decreased, cell viability was enhanced and cell apoptosis were inhibited when tFNAs-DJ-1 saRNAs were delivered. Moreover, tFNAs-DJ-1 saRNAs preserved mitochondrial structure and function under oxidative stress conditions. In the aspect of molecular mechanism, tFNAs-DJ-1 saRNAs activated Erk and Nrf2 pathway, which might contribute to its protective effects against oxidative stress damage. To conclude, this study shows the successfully establishment of a simple but effective delivery system of DJ-1 saRNAs associated with antioxidant effects in AMD and DR, which may be a promising agent for future treatment in oxidative stress-related retinal disorders.
Collapse
Affiliation(s)
- Qiaowei Wu
- Department of OphthalmologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Jingyi Zhu
- Department of OphthalmologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Xianggui Zhang
- Department of OphthalmologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Xiaoxiao Xu
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Delun Luo
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yunfeng Lin
- Department of Maxillofacial Surgery, State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyChengduChina
| | - Ming Yan
- Department of OphthalmologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Yanping Song
- Department of OphthalmologyGeneral Hospital of Central Theater CommandWuhanChina
| |
Collapse
|
49
|
Wang Y, Shen J, Hu J, Yin H, Chen Z, Fang X, Zhang L. Investigation of the Role of Carcinoembryonic Antigen-Related Cell Adhesion Molecule-1 in Diabetic Retinopathy. Ocul Immunol Inflamm 2024; 32:1024-1035. [PMID: 37023410 DOI: 10.1080/09273948.2023.2192272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
PURPOSE Diabetic retinopathy (DR) has become a major cause of blindness with increased prevalence of diabetic mellitus. Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) plays a part in pathological neovascularization. This study aimed to investigate the role of CEACAM1 in the progression of DR. METHODS Aqueous and vitreous samples were collected from proliferative or non-proliferative DR and the control group. Multiplex fluorescent bead-based immunoassays were used to detect the levels of Cytokines. Expression of CEACAM1, VEGF, VEGF receptor 2 (VEGFR2) and hypoxia-induced factor-1α (HIF-1α) were detected in human retinal microvascular endothelial cells (HRECs). RESULTS CEACAM1 and VEGF levels were significantly upregulated in PDR group and positively correlated with PDR progression. Expression CEACAM1 and VEGFR2 were increased in HRECs under hypoxic conditions. The HIF-1α/VEGFA/VEGFR2 pathway was blocked by CEACAM1 siRNA in vitro. CONCLUSIONS CEACAM1 might play a role in the pathology of PDR. CEACAM1 might be a therapeutic target for retinal neovasculariztion.
Collapse
Affiliation(s)
- Yuanqi Wang
- Department of Ophthalmology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Junhui Shen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Jianghua Hu
- Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Houfa Yin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Zhiqing Chen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Xiaoyun Fang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Li Zhang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Bhandari S, Pathak S, Jain SA, Agarwal B. Improved diabetic retinopathy severity classification using squeeze-and-excitation and sparse light weight multi-level attention u-net with transfer learning from xception. Acta Diabetol 2024:10.1007/s00592-024-02341-x. [PMID: 39060799 DOI: 10.1007/s00592-024-02341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
AIMS Diabetic Retinopathy (DR) is a significant cause of vision loss in diabetic patients, making early detection and accurate severity classification essential for effective management and prevention. This study aims to develop an enhanced DR severity classification approach using advanced model architectures and transfer learning to improve diagnostic accuracy and support better patient care. METHODS We propose a novel model, Xception Squeeze-and-Excitation Sparse Lightweight Multi-Level Attention U-Net (XceSE_SparseLwMLA-UNet), designed to classify DR severity using fundus images from the Messidor 1 and Messidor 2 datasets. The XceSE_SparseLwMLA-UNet integrates several advanced mechanisms: the Squeeze-and-Excitation (SE) mechanism for adaptive feature recalibration, the Sparse Lightweight Multi-Level Attention (SparseLwMLA) mechanism for effective contextual information integration, and transfer learning from the Xception architecture to enhance feature extraction capabilities. The SE mechanism refines channel-wise feature responses, while SparseLwMLA enhances the model's ability to identify complex DR patterns. Transfer learning utilizes pre-trained weights from Xception to improve generalization across DR severity levels. RESULTS The proposed XceSE_SparseLwMLA-UNet model demonstrates superior performance in DR severity classification, achieving higher accuracy and improved multi-class F1 scores compared to existing models. The model's color-coded segmentation outputs offer interpretable visual representations, aiding medical professionals in assessing DR severity levels. CONCLUSIONS The XceSE_SparseLwMLA-UNet model shows promise for advancing early DR diagnosis and management by enhancing classification accuracy and providing valuable visual insights. Its integration of advanced architectural features and transfer learning contributes to better patient care and improved visual health outcomes.
Collapse
Affiliation(s)
- Sachin Bhandari
- Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity University Rajasthan, Jaipur, India.
| | - Sunil Pathak
- Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity University Rajasthan, Jaipur, India
| | - Sonal Amit Jain
- PG Department of Computer Science and Information Technology, Sardar Patel University, Vallabh Vidyanagar, India
| | - Basant Agarwal
- Department of Computer Science and Engineering, Central University of Rajasthan, Ajmer, India
| |
Collapse
|