1
|
Hu S, Chen Y, Zhou Y, Cao T, Liu S, Ding C, Xie D, Liang P, Huang L, Liu H, Huang J. In vivo adenine base editing ameliorates Rho-associated autosomal dominant retinitis pigmentosa. J Genet Genomics 2024:S1673-8527(24)00365-5. [PMID: 39725189 DOI: 10.1016/j.jgg.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo. The correctable pathogenic mutations are screened and verified, including T17M, Q344ter, and P347L. Two adRP animal models are created carrying the class 1 (Q344ter) and class 2 (T17M) mutations, and dual AAV-delivered ABE can effectively repair both mutations in vivo. The early intervention of ABE8e efficiently corrects the Q344ter mutation that causes a severe form of adRP, delays photoreceptor death, and restores retinal function and visual behavior. These results suggest that ABE is a promising alternative to treat RHO mutation-associated adRP. Our work provides an effective spacer-mediated point mutation correction therapy approach for dominantly inherited ocular disorders.
Collapse
Affiliation(s)
- Sihui Hu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yitong Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tianqi Cao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Simiao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Chenhui Ding
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Dongchun Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Huang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
2
|
Siqueira RC, Pinho TS, Brandão CC. Short-Term Results of Multiwavelength Photobiomodulation in Retinitis Pigmentosa. Clin Ophthalmol 2024; 18:3715-3724. [PMID: 39691309 PMCID: PMC11651134 DOI: 10.2147/opth.s483722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024] Open
Abstract
Objective To assess the short-term effects of Multiwavelength Photobiomodulation (LumiThera Valeda Light Delivery System) on retinal functional behavior in patients with retinitis pigmentosa (RP). Materials and Methods Twelve RP patients (24 eyes) underwent treatment involving nine photobiomodulation (PBM) sessions using the Valeda system, which emits three distinct wavelengths within the yellow (590 nm; 4 mW/cm2), red (660 nm; 65 mW/cm2), and near-infrared (NIR) (850 nm; 0.6 mW/cm2) spectrum. All evaluations were conducted four weeks post-therapy. The treated eye was compared with baseline (pre-therapy). Following nine PBM sessions, assessments included best-corrected visual acuity (BCVA), retinal sensitivity, and characteristics of the correction area via fundus automated perimetry using the Compass system. Additionally, a functional and structural assessment of the retina was performed using multifocal electroretinography (ERG), optical coherence tomography (OCT), fluorescence retinography (FR), and autofluorescence (AF). Statistical analysis employed the Student's t-test for paired samples at a 95% confidence level (p-value ≤ 0.05). Results LogMAR-based visual acuity assessment demonstrated an improvement in mean value from 0.62 to 0.53 logMAR, with a statistically significant p-value of 0.001. Visual field examination, based on mean deviation (MD), pattern standard deviation (PSD), and fundal perimeter deviation index (FPDI) parameters, showed improvement from -19.87 dB to -19.45 dB, 9.77 dB to 9.76 dB, and 37% to 39%, respectively, although with non-significant p-values of 0.366, 0.446, and 0.245, respectively. No adverse effects or abnormalities in optical coherence tomography (OCT) and electroretinogram (ERG) were observed during the follow-up period. Conclusion In this short-term study, PBM appeared to have the potential to enhance BCVA and fundus automated perimeter in RP patients without causing significant adverse events. However, further assessment with a larger patient cohort and longer follow-up is warranted to ascertain the efficacy of this technique in these patients.
Collapse
Affiliation(s)
- Rubens Camargo Siqueira
- Rubens Siqueira Research Center, São Jose do Rio Preto, Brazil
- Faculty of Medicine of São Jose do Rio Preto—FAMERP, São Jose do Rio Preto, Brazil
| | - Tainara Souza Pinho
- Faculty of Medicine of São Jose do Rio Preto—FAMERP, São Jose do Rio Preto, Brazil
| | | |
Collapse
|
3
|
Ng LYB, Ang CZ, Tan TE, Chan CM, Mathur RS, Farooqui SZ, Lott PPW, Tang RWC, Fenner BJ. When do patients with retinitis pigmentosa present to ophthalmologists? A multi-centre retrospective study. Eye (Lond) 2024; 38:3595-3600. [PMID: 39322768 PMCID: PMC11621706 DOI: 10.1038/s41433-024-03368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Planned gene therapies for retinitis pigmentosa (RP) depend on viable photoreceptors for efficacy. Understanding disease severity at presentation, and drivers that influence time to presentation is important when planning interventions. We examined features that influence RP severity at initial presentation. METHODS Multi-centre retrospective cohort study of RP patients at initial presentation. Disease severity was scored using ellipsoid zone (EZ) width on SD-OCT and logistic regression used to determine risk factors for advanced disease at presentation. RESULTS A total of 146 unrelated RP patients were included. Median age at onset and presentation was 40.5 (range 1-74) and 50.1 (range 3.9-81.8), respectively. Severe disease (<5° of remaining EZ width) was present in 28.1% of cases at presentation. Patients with family history of RP had greater odds of severe disease (OR 3.29, 95% CI 1.56, 6.95; p = 0.002), while male gender, race, age, syndromic features, and socioeconomic status did not. Patients with affected siblings (median EZ width 6.2°; p = 0.01), but not affected parents (median EZ width 9.4°; p = 0.99), presented with severe EZ loss compared to patients without family history (median EZ width 13.1°). Patients with affected siblings had delayed presentation (≥5 years; OR 5.76, 95% CI 1.817, 18.262; p = 0.003) compared to patients without family history. CONCLUSIONS Family history influences the stage of disease at which RP patients initially seek ophthalmology review. This has implications for patient counselling and the number of patients who may benefit from future therapies.
Collapse
Affiliation(s)
- Lucas Yan Bin Ng
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Cheng Ze Ang
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Tien-En Tan
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Choi Mun Chan
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ranjana S Mathur
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Saadia Z Farooqui
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Paediatric Ophthalmology, KK Women's and Children's Hospital, Singapore, Singapore
| | | | - Rachael W C Tang
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Beau J Fenner
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
4
|
Yan W, He Q, Long P, Zhang L, Wang H, Chen T. A Novelly-Spatiotemporal Characterization of the Disease Course in the MNU-Induced Retinitis Pigmentosa Model. J Inflamm Res 2024; 17:9243-9254. [PMID: 39583858 PMCID: PMC11586005 DOI: 10.2147/jir.s474102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Objective With the aids of ophthalmic imaging techniques for animals, the spatiotemporal characterization of MNU-induced retinitis pigmentosa (RP) rats were performed. Methods Sprague-Dawley (SD) rats were randomly divided into normal group (N), MNU-low-dose group (L) and MNU-high-dose group (H). Rats in the L and H group were given intraperitoneally injection with 40 and 60 mg/kg of MNU, a kind of alkylating agent, respectively. The body weight, electroretinogram (ERG) and retinal structure were observed on day one (D1), D3, and D7 after MNU administration. FFA, OCT, TUNEL staining, and immunostaining of Iba1 were also performed. Results After MNU injection, the weight and ERG amplitudes of rats in both L and H groups decreased gradually, compared to those of the normal group (P < 0.05). Fundus imaging revealed enlargement of the optical disc and slightly reduced shadow of retinal vessels in both L and H groups, which were more obvious on D7. No significant morphological changes of retinal vessels were found under FFA. OCT and retinal histological examination revealed that outer nuclear layers (ONL) became thinner gradually in both L and H groups, and disappeared in H group at D7. MNU administration increased the numbers of apoptotic cells and Iba1-positive cells in the retinas gradually, showing a dose-dependent effect. Conclusion MNU gradually reduced the ONL thickness and the ERG amplitudes in the MNU-induced RP model revealed by various ophthalmic imaging techniques, along with the increased apoptosis of photoreceptors, the microglia cells activation, which provide indicators for new intervention effect for RP.
Collapse
Affiliation(s)
- Weiming Yan
- Department of Ophthalmology, Fuzong Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University, Fuzhou, People’s Republic of China
| | - Qiurui He
- Department of Cardiovascular Intervention, The Third Hospital of Zhangzhou, Zhangzhou, People’s Republic of China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theatre Command, PLA, Chengdu, People’s Republic of China
| | - Lei Zhang
- Department of Ophthalmology, The Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Xi’an, People’s Republic of China
| | - Haiyan Wang
- Department of Ophthalmology, The Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Xi’an, People’s Republic of China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, Air Force Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
5
|
Montaser AB, Gao F, Peters D, Vainionpää K, Zhibin N, Skowronska-Krawczyk D, Figeys D, Palczewski K, Leinonen H. Retinal Proteome Profiling of Inherited Retinal Degeneration Across Three Different Mouse Models Suggests Common Drug Targets in Retinitis Pigmentosa. Mol Cell Proteomics 2024; 23:100855. [PMID: 39389360 PMCID: PMC11602984 DOI: 10.1016/j.mcpro.2024.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a leading cause of blindness among the population of young people in the developed world. Approximately half of IRDs initially manifest as gradual loss of night vision and visual fields, characteristic of retinitis pigmentosa (RP). Due to challenges in genetic testing, and the large heterogeneity of mutations underlying RP, targeted gene therapies are an impractical largescale solution in the foreseeable future. For this reason, identifying key pathophysiological pathways in IRDs that could be targets for mutation-agnostic and disease-modifying therapies (DMTs) is warranted. In this study, we investigated the retinal proteome of three distinct IRD mouse models, in comparison to sex- and age-matched wild-type mice. Specifically, we used the Pde6βRd10 (rd10) and RhoP23H/WT (P23H) mouse models of autosomal recessive and autosomal dominant RP, respectively, as well as the Rpe65-/- mouse model of Leber's congenital amaurosis type 2 (LCA2). The mice were housed at two distinct institutions and analyzed using LC-MS in three separate facilities/instruments following data-dependent and data-independent acquisition modes. This cross-institutional and multi-methodological approach signifies the reliability and reproducibility of the results. The large-scale profiling of the retinal proteome, coupled with in vivo electroretinography recordings, provided us with a reliable basis for comparing the disease phenotypes and severity. Despite evident inflammation, cellular stress, and downscaled phototransduction observed consistently across all three models, the underlying pathologies of RP and LCA2 displayed many differences, sharing only four general KEGG pathways. The opposite is true for the two RP models in which we identify remarkable convergence in proteomic phenotype even though the mechanism of primary rod death in rd10 and P23H mice is different. Our data highlights the cAMP and cGMP second-messenger signaling pathways as potential targets for therapeutic intervention. The proteomic data is curated and made publicly available, facilitating the discovery of universal therapeutic targets for RP.
Collapse
Affiliation(s)
- Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Fangyuan Gao
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Danielle Peters
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katri Vainionpää
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ning Zhibin
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dorota Skowronska-Krawczyk
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, University of California, Irvine, California, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Wongchaisuwat N, Amato A, Yang P, Everett L, Pennesi ME, Huang D, Chen S. Optical Coherence Tomography Split-Spectrum Amplitude-Decorrelation Optoretinography Detects Early Central Cone Photoreceptor Dysfunction in Retinal Dystrophies. Transl Vis Sci Technol 2024; 13:5. [PMID: 39361318 PMCID: PMC11451826 DOI: 10.1167/tvst.13.10.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/01/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose To investigate if split-spectrum amplitude-decorrelation optoretinography (SSADOR) can detect and measure macular cone dysfunction in inherited retinal dystrophies (IRDs). Methods This study was a case series of participants presenting with various IRD pathologies. Participants were recruited from the Ophthalmic Genetics clinic at the Casey Eye Institute from February to August 2023. Multimodal and SSADOR imaging was obtained in all cases. Results We recruited nine participants, including four with macular dystrophy, one with fundus flavimaculatus, one with cone dystrophy, and three with retinitis pigmentosa. SSADOR decorrelation maps identified areas of cone functional impairment consistent with disease phenotypes. A correlation between the SSADOR signal and retinal sensitivity measured by microperimetry within the central 20° diameter area was observed. Additionally, SSADOR was able to demonstrate a decreased signal in mild cases when microperimetry measurements were still normal but subtle changes were also apparent on structural OCT. Conclusions SSADOR is sensitive at detecting functional changes in macular cones, even prior to abnormalities in perimetry testing. We highlight the potential benefits of this innovative technology for the early detection of cone dysfunction and their potential contributions to earlier diagnosis and more accurate monitoring of progression. Translational Relevance SSADOR is an innovative technology that detects early macular cone function changes, allowing for early diagnosis and precise monitoring of cone dysfunction progression. By serving as a potential clinical trial endpoint, SSADOR facilitates the translation of scientific findings into practical applications, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nida Wongchaisuwat
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alessia Amato
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Lesley Everett
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Mark E. Pennesi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Retina Foundation of the Southwest, Dallas, TX, USA
| | - David Huang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Siyu Chen
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Huang H, Zou Z, Peng Y. Theoretical insights into a turn-on fluorescence probe based on naphthalimide for peroxynitrite detection. Heliyon 2024; 10:e37298. [PMID: 39296189 PMCID: PMC11409076 DOI: 10.1016/j.heliyon.2024.e37298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Compared with other reactive oxygen species, peroxynitrite (ONOO-) has diversified reactions and transformations in organisms, and its specific action mechanism is not very clear. The study of reactive oxygen species is of great significance in the field of physiology and pathology. Recently an effective on/off fluorescent probe HCA-OH was designed by Liu et al. through tethering p-aminophenol to 1,8-naphthalimide directly. The probe HCA-OH could release the fluorophore HCA-NH2 with good photostability and high fluorescence quantum yield under oxidation of ONOO- via dearylation process. In this work, the sensing mechanism and spectrum character of probe HCA-OH were studied in detail under quantum chemistry calculation. The electronic structures, reaction sites and fluorescent properties of the probe were theoretically analyzed to benefit us for in-depth understanding the principle of detection on reactive oxygen species (ONOO-) with the fluorescent probe HCA-OH. These theoretical results could inspire the medical research community to design and synthesize highly efficient fluorescent probe for reactive oxygen species detection.
Collapse
Affiliation(s)
- He Huang
- College of Modern Industry of Health Management, Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Zhongfu Zou
- College of Modern Industry of Health Management, Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Yongjin Peng
- College of Modern Industry of Health Management, Jinzhou Medical University, Jinzhou, 121001, PR China
| |
Collapse
|
8
|
Napoli D, Orsini N, Salamone G, Calvello MA, Capsoni S, Cattaneo A, Strettoi E. Human NGF "Painless" Ocular Delivery for Retinitis Pigmentosa: An In Vivo Study. eNeuro 2024; 11:ENEURO.0096-24.2024. [PMID: 39293937 PMCID: PMC11412101 DOI: 10.1523/eneuro.0096-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 09/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a family of genetically heterogeneous diseases still without a cure. Despite the causative genetic mutation typically not expressed in cone photoreceptors, these cells inevitably degenerate following the primary death of rods, causing blindness. The reasons for the "bystander" degeneration of cones are presently unknown but decrement of survival factors, oxidative stress, and inflammation all play a role. Targeting these generalized biological processes represents a strategy to develop mutation-agnostic therapies for saving vision in large populations of RP individuals. A classical method to support neuronal survival is by employing neurotrophic factors, such as NGF. This study uses painless human NGF (hNGFp), a TrkA receptor-biased variant of the native molecule with lower affinity for nociceptors and limited activity as a pain inducer; the molecule has identical neurotrophic power of the native form but a reduced affinity for the p75NTR receptors, known to trigger apoptosis. hNGFp has a recognized activity on brain microglial cells, which are induced to a phenotype switch from a highly activated to a more homeostatic configuration. hNGFp was administered to RP-like mice in vivo with the aim of decreasing retinal inflammation and also providing retinal neuroprotection. However, the ability of this treatment to counteract the bystander degeneration of cones remained limited.
Collapse
Affiliation(s)
- Debora Napoli
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | - Noemi Orsini
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | | | | | - Simona Capsoni
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Roma 00161, Italy
| | | |
Collapse
|
9
|
Pawar YB, Thool AR. Navigating the Genetic Landscape: A Comprehensive Review of Novel Therapeutic Strategies for Retinitis Pigmentosa Management. Cureus 2024; 16:e67046. [PMID: 39286723 PMCID: PMC11405069 DOI: 10.7759/cureus.67046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Retinitis pigmentosa (RP) is a collection of retinal disorders characterized by the progressive degeneration of photoreceptor cells, leading to significant visual impairment and, in severe cases, blindness. RP affects individuals worldwide and can be inherited through various genetic patterns, making it a genetically diverse condition. Despite considerable advancements in diagnostic methods and supportive therapies, there is currently no cure for RP. The focus of existing management strategies is on slowing the progression of the disease and improving the quality of life for those affected. This comprehensive review explores the latest therapeutic approaches in the management of RP, highlighting advancements in genetic therapies, such as gene augmentation and editing, as well as cell-based treatments including stem cell transplantation and induced pluripotent stem cell (iPSC) technologies. Emerging methods like optogenetics and pharmacological interventions designed to preserve retinal function are also discussed. Additionally, the review examines technological innovations, including retinal prosthetics and the use of artificial intelligence, which hold the potential to revolutionize RP treatment. The challenges and limitations associated with these novel therapies, such as safety concerns, accessibility issues, and regulatory hurdles, are critically evaluated. By providing an overview of current research and future directions, this review aims to inform clinicians and researchers about the state of the art in RP treatment and the prospects for achieving significant therapeutic advancements.
Collapse
Affiliation(s)
- Yuga B Pawar
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Archana R Thool
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Savastano MC, Placidi G, Fossataro C, Giannuzzi F, D'Onofrio NC, Hu L, Cestrone V, D'Agostino E, Biagini I, Paris L, Coppa G, Rizzo C, Kilian R, Chiurazzi P, Bertelli M, Maltese PE, Falsini B, Rizzo S. Retinal Pigment Epithelium and Outer Retinal Atrophy (RORA) in Retinitis Pigmentosa: Functional, Structural, and Genetic Evaluation. Transl Vis Sci Technol 2024; 13:44. [PMID: 39212608 PMCID: PMC11364178 DOI: 10.1167/tvst.13.8.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose To examine whether the extension of retinal pigment epithelium (RPE) and outer retinal atrophy (RORA) and various other morphofunctional parameters correlate with the genetic assessment and severity of retinitis pigmentosa (RP). Methods Thirty-eight patients (76 eyes) with RP were prospectively enrolled and underwent full ophthalmic examination, including visual field testing, full-field electroretinography (ERG), and optical coherence tomography angiography. The severity of the disease was calculated using the RP stage scoring system, and the area of RORA was assessed using the automatically calculated area of sub-RPE illumination. Blood or saliva samples were collected from subjects, and DNA extraction was performed to evaluate genetic mutations and nucleotide and amino acid variations. Results There was a statistically significant correlation between the extent of RORA and patient age, best-corrected visual acuity, ellipsoid zone extension, and disease severity in both eyes (each, P < 0.05). In contrast, RORA did not correlate with either the visual field or the ERG amplitude. Cumulative score and grade severity were both significantly correlated with superficial and deep capillary plexus density (both, P < 0.001) in both eyes. Evaluating RORA, we found genes with an overall less severe phenotype, such as EYS, PCDH15, and PRPF31, and those with a worse phenotype, such as RPGR. Conclusions The correlation of RORA with structural, functional, and genetic assessment in RP disease leads us to consider RORA as a potential biomarker for prediction of disease stage. Multicenter studies are needed to confirm our findings. Translational Relevance The morphofunctional and genetic correlations suggest a role for RORA in RP diagnosis and follow-up.
Collapse
Affiliation(s)
- Maria Cristina Savastano
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Placidi
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Fossataro
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federico Giannuzzi
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Claudio D'Onofrio
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenzo Hu
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Cestrone
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elena D'Agostino
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilaria Biagini
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence and AOU Careggi, Firenze, Italy
| | - Ludovica Paris
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgia Coppa
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Clara Rizzo
- Ophthalmology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Pietro Chiurazzi
- Medical Genetics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Genomic Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Benedetto Falsini
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stanislao Rizzo
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
Leinonen H, Zhang J, Occelli LM, Seemab U, Choi EH, L P Marinho LF, Querubin J, Kolesnikov AV, Galinska A, Kordecka K, Hoang T, Lewandowski D, Lee TT, Einstein EE, Einstein DE, Dong Z, Kiser PD, Blackshaw S, Kefalov VJ, Tabaka M, Foik A, Petersen-Jones SM, Palczewski K. A combination treatment based on drug repurposing demonstrates mutation-agnostic efficacy in pre-clinical retinopathy models. Nat Commun 2024; 15:5943. [PMID: 39009597 PMCID: PMC11251169 DOI: 10.1038/s41467-024-50033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration. The treatment improves cone photoreceptor function and slows degeneration in Pde6βrd10 and RhoP23H/WT retinitis pigmentosa mice. Cone degeneration is modestly mitigated after a 7-month-long drug infusion in PDE6A-/- dogs. The treatment also improves rod pathway function in an Rpe65-/- mouse model of Leber congenital amaurosis but does not protect from cone degeneration. RNA-sequencing analyses indicate improved metabolic function in drug-treated Rpe65-/- and rd10 mice. Our data show that catecholaminergic GPCR drug combinations that modify second messenger levels via multiple receptor actions provide a potential disease-modifying therapy against retinal degeneration.
Collapse
Affiliation(s)
- Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland.
| | - Jianye Zhang
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Laurence M Occelli
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Umair Seemab
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Elliot H Choi
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | | | - Janice Querubin
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexander V Kolesnikov
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Anna Galinska
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kordecka
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Thanh Hoang
- Department of Ophthalmology, Department of Cell & Developmental Biology, Ann Arbor, MI, 48105, USA
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Timothy T Lee
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Elliott E Einstein
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - David E Einstein
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Philip D Kiser
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, CA, 92697, USA
- Research Service, VA Long Beach Healthcare System, Long Beach, California, 90822, USA
| | - Seth Blackshaw
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vladimir J Kefalov
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Foik
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA.
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
12
|
Gocuk SA, Hadoux X, Catipon C, Cichello E, Kumar H, Jolly JK, van Wijngaarden P, Llewelyn Edwards T, Ayton LN, Sousa DC. Retinal vascular reactivity in carriers of X-linked inherited retinal disease - a study using optical coherence tomography angiography. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1415393. [PMID: 39045093 PMCID: PMC11263797 DOI: 10.3389/fopht.2024.1415393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Purpose Female carriers of X-linked inherited retinal diseases (IRDs) can show highly variable phenotypes and disease progression. Vascular reactivity, a potential disease biomarker, has not been investigated in female IRD carriers. In this study, functional optical coherence tomography angiography (OCT-A) was used to dynamically assess the retinal microvasculature of X-linked IRD carriers. Methods Genetically confirmed female carriers of IRDs (choroideremia or X-linked retinitis pigmentosa), and healthy women were recruited. Macular angiograms (3x3mm, Zeiss Plex Elite 9000) were obtained in 36 eyes of 15 X-linked IRD female carriers and 21 age-matched control women. Two tests were applied to test vascular reactivity: (i) mild hypoxia and (ii) handgrip test, to induce a vasodilatory or vasoconstrictive response, respectively. Changes to vessel density (VD) and vessel length density (VLD) were independently evaluated during each of the tests for both the superficial and deep capillary plexuses. Results In the control group, the superficial and deep VD decreased during the handgrip test (p<0.001 and p=0.037, respectively). Mean superficial VLD also decreased during the handgrip test (p=0.025), while the deep plexus did not change significantly (p=0.108). During hypoxia, VD and VLD increased in the deep plexus (p=0.027 and p=0.052, respectively) but not in the superficial plexus. In carriers, the physiologic vascular responses seen in controls were not observed in either plexus during either test, with no difference in VD or VLD noted (all p>0.05). Conclusions Functional OCT-A is a useful tool to assess dynamic retinal microvascular changes. Subclinical impairment of the physiological vascular responses seen in carriers of X-linked IRDs may serve as a valuable clinical biomarker.
Collapse
Affiliation(s)
- Sena Ayse Gocuk
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Charmaine Catipon
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Elise Cichello
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Himeesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Jasleen Kaur Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, United Kingdom
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Thomas Llewelyn Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Lauren Nicole Ayton
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - David Cordeiro Sousa
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Goto K, Koyanagi Y, Akiyama M, Murakami Y, Fukushima M, Fujiwara K, Iijima H, Yamaguchi M, Endo M, Hashimoto K, Ishizu M, Hirakata T, Mizobuchi K, Takayama M, Ota J, Sajiki AF, Kominami T, Ushida H, Fujita K, Kaneko H, Ueno S, Hayashi T, Terao C, Hotta Y, Murakami A, Kuniyoshi K, Kusaka S, Wada Y, Abe T, Nakazawa T, Ikeda Y, Momozawa Y, Sonoda KH, Nishiguchi KM. Disease-specific variant interpretation highlighted the genetic findings in 2325 Japanese patients with retinitis pigmentosa and allied diseases. J Med Genet 2024; 61:613-620. [PMID: 38499336 DOI: 10.1136/jmg-2023-109750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND As gene-specific therapy for inherited retinal dystrophy (IRD) advances, unified variant interpretation across institutes is becoming increasingly important. This study aims to update the genetic findings of 86 retinitis pigmentosa (RP)-related genes in a large number of Japanese patients with RP by applying the standardised variant interpretation guidelines for Japanese patients with IRD (J-IRD-VI guidelines) built upon the American College of Medical Genetics and Genomics and the Association for Molecular Pathology rules, and assess the contribution of these genes in RP-allied diseases. METHODS We assessed 2325 probands with RP (n=2155, including n=1204 sequenced previously with the same sequencing panel) and allied diseases (n=170, newly analysed), including Usher syndrome, Leber congenital amaurosis and cone-rod dystrophy (CRD). Target sequencing using a panel of 86 genes was performed. The variants were interpreted according to the J-IRD-VI guidelines. RESULTS A total of 3564 variants were detected, of which 524 variants were interpreted as pathogenic or likely pathogenic. Among these 524 variants, 280 (53.4%) had been either undetected or interpreted as variants of unknown significance or benign variants in our earlier study of 1204 patients with RP. This led to a genetic diagnostic rate in 38.6% of patients with RP, with EYS accounting for 46.7% of the genetically solved patients, showing a 9% increase in diagnostic rate from our earlier study. The genetic diagnostic rate for patients with CRD was 28.2%, with RP-related genes significantly contributing over other allied diseases. CONCLUSION A large-scale genetic analysis using the J-IRD-VI guidelines highlighted the population-specific genetic findings for Japanese patients with IRD; these findings serve as a foundation for the clinical application of gene-specific therapies.
Collapse
Affiliation(s)
- Kensuke Goto
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Fukushima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hanae Iijima
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mitsuyo Yamaguchi
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mikiko Endo
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masataka Ishizu
- Department of Ophthalmology, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Toshiaki Hirakata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masakazu Takayama
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junya Ota
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ai Fujita Sajiki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Ushida
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Fujita
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hisoraki, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | | | - Toshiaki Abe
- Division of Clinical Cell Therapy, Tohoku University Graduate School of Medicine United Centers for Advanced Research and Translational Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Xiong M, Yu C, Ren B, Zhong M, Lu J, Yuan C, Sun Q, Peng Q, Zeng M, Song H. Global trends in oxidative stress in the Retina: A bibliometric analysis of 2013-2023. Heliyon 2024; 10:e31620. [PMID: 38831806 PMCID: PMC11145483 DOI: 10.1016/j.heliyon.2024.e31620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Background Oxidative stress plays a significant role in the pathogenesis of many retinal diseases. However, only a few systematic bibliometric studies have been conducted. This study aims to visualize research hotspots and developmental trends in oxidative stress in the retina from 2013 to 2023 by analyzing bibliometric data. Methods We retrieved papers on oxidative stress in the retina published between 2013 and 2023 from the Web of Science Core Collection. The data were visually analyzed using CiteSpace and VOSviewer software. Results The total number of 2100 publications were included in the analysis. An overall increasing trend in the number of publications is observed between 2013 and 2023. Chinese publications were the most contributive, but United States publications were the most influential. Shanghai Jiao Tong University was the most active and prolific institution. Antioxidants was the most productive journal, while Oxidative Medicine and Cellular Longevity were the journals with the most-cited articles. Kaarniranta K, from Finland, was the most productive and influential author. Examination of co-cited references revealed that researchers in the field are primarily focused on investigating the molecular mechanisms, preventive strategies, and utilization of antioxidants to address retinal oxidative damage. Diabetic retinopathy, endothelial growth factor, retinitis pigmentosa, retinal degeneration, antioxidant response, retinal ganglion cells, and genes are the research hotspots in this field. Metabolism, sodium iodate, and system are at the forefront of research in this field. Conclusion Attention toward retinal oxidative stress has increased over the past decade. Current research focuses on the mechanisms of retinal diseases related to oxidative stress and the experimental study of antioxidants in retinal diseases, which may continue to be a trend in the future.
Collapse
Affiliation(s)
- Meng Xiong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chang Yu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Baoping Ren
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiqi Zhong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Lu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengzhi Yuan
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qifang Sun
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qinghua Peng
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
15
|
Lee TT, Bell BA, Anderson BD, Song Y, Dunaief JL. Tamoxifen protects photoreceptors in the sodium iodate model. Exp Eye Res 2024; 242:109879. [PMID: 38570182 PMCID: PMC11055656 DOI: 10.1016/j.exer.2024.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.
Collapse
Affiliation(s)
- Timothy T Lee
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Brent A Bell
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Brandon D Anderson
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ying Song
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Appell MB, Pejavar J, Pasupathy A, Rompicharla SVK, Abbasi S, Malmberg K, Kolodziejski P, Ensign LM. Next generation therapeutics for retinal neurodegenerative diseases. J Control Release 2024; 367:708-736. [PMID: 38295996 PMCID: PMC10960710 DOI: 10.1016/j.jconrel.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.
Collapse
Affiliation(s)
- Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashwin Pasupathy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kiersten Malmberg
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
17
|
Comberiati AM, Lomartire C, Malvasi M, Migliorini R, Pacella F, Malvasi VM, Turchetti P, Pacella E. Alteration Ocular Motility in Retinitis Pigmentosa: Case-Control Study. CLINICAL OPTOMETRY 2024; 16:55-69. [PMID: 38410094 PMCID: PMC10895995 DOI: 10.2147/opto.s446717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Purpose To evaluate ocular motility (OM) disorders and strabismus in a sample of patients with retinitis pigmentosa (RP) and a control sample. Methods In this cross-sectional retrospective analysis, we studied a sample of RP patients with a mean age of 48.74 years and an average visual acuity of 7/10 based on Snellen optotype and a sample of control patients with similar mean age (49 years [men], 47 years [women]) and sex and an average visual acuity of 9.9/10, with the aim of assessing correlations between alteration of OM and strabismus in RP patients based on age, high refractive defect, or severely impaired binocular vision. The examination followed a protocol of testing for anamnesis and best-corrected visual acuity, as well as a complete eye examination, corneal reflex, cover test, OM, Hess screen, and Lang test. Results At the first orthoptic evaluation, 45.16% of patients showed strabismus, 41.93% exotropia (25% of cases intermittent), 3.22% esotropia, and 6.45% vertical deviation. Later evaluation showed strabismus in 25.80% of patients, exotropia in 19.35% (9.67% intermittent), esotropia in 3.22%, and vertical deviation in 3.22%. Assessment of eye motility study showed 51.6% overaction of the inferior oblique and hypofunction of the superior rectus, and 18% overaction of the lateral rectus and hypofunction of the medial rectus. According to our results, alterations in OM and strabismus in RP patients are not correlated with age or high refractive defect. Therefore, motility disorders and strabismus are attributed to a genetic factor to which men are more susceptible. Conclusion The incidence of OM disorder was 77.42%, and strabismus was present in 45.16% of patients.
Collapse
Affiliation(s)
| | - Chiara Lomartire
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Vito Maurizio Malvasi
- Department of Odontostomatological and Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Turchetti
- National Institute for Health, Migration and Poverty (INMP/NIHMP), Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Menger KE, Logan A, Luhmann UF, Smith AJ, Wright AF, Ali RR, Murphy MP. In vivo measurement of mitochondrial ROS production in mouse models of photoreceptor degeneration. REDOX BIOCHEMISTRY AND CHEMISTRY 2023; 5-6:None. [PMID: 38046619 PMCID: PMC10686909 DOI: 10.1016/j.rbc.2023.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 12/05/2023]
Abstract
Retinitis pigmentosa (RP) is a disease characterised by photoreceptor cell death. It can be initiated by mutations in a number of different genes, primarily affecting rods, which will die first, resulting in loss of night vision. The secondary death of cones then leads to loss of visual acuity and blindness. We set out to investigate whether increased mitochondrial reactive oxygen species (ROS) formation, plays a role in this sequential photoreceptor degeneration. To do this we measured mitochondrial H2O2 production within mouse eyes in vivo using the mass spectrometric probe MitoB. We found higher levels of mitochondrial ROS that preceded photoreceptor loss in four mouse models of RP: Pde6brd1/rd1; Prhp2rds/rds; RPGR-/-; Cln6nclf. In contrast, there was no increase in mitochondrial ROS in loss of function models of vision loss (GNAT-/-, OGC), or where vision loss was not due to photoreceptor death (Cln3). Upregulation of Nrf2 transcriptional activity with dimethylfumarate (DMF) lowered mitochondrial ROS in RPGR-/- mice. These findings have important implications for the mechanism and treatment of RP.
Collapse
Affiliation(s)
- Katja E. Menger
- UCL Institute of Ophthalmology, Bath St, London, EC1V 9EL, UK
| | - Angela Logan
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, University of Cambridge, Cambridge, CB2 0XY, UK
| | | | | | - Alan F. Wright
- MRC Human Genetics Unit, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Robin R. Ali
- UCL Institute of Ophthalmology, Bath St, London, EC1V 9EL, UK
| | - Michael P. Murphy
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
19
|
Daich Varela M, Conti GM, Malka S, Vaclavik V, Mahroo OA, Webster AR, Tran V, Michaelides M. Coats-like Vasculopathy in Inherited Retinal Disease: Prevalence, Characteristics, Genetics, and Management. Ophthalmology 2023; 130:1327-1335. [PMID: 37544434 PMCID: PMC10937259 DOI: 10.1016/j.ophtha.2023.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
PURPOSE To describe the largest, most phenotypically and genetically diverse cohort of patients with inherited retinal disease (IRD)-related Coats-like vasculopathy (CLV). DESIGN Multicenter retrospective cohort study. PARTICIPANTS A total of 67 patients with IRD-related CLV. METHODS Review of clinical notes, ophthalmic imaging, and molecular diagnosis from 2 international centers. MAIN OUTCOME MEASURES Visual function, retinal imaging, management, and response to treatment were evaluated and correlated. RESULTS The prevalence of IRD-related CLV was 0.5%; 54% of patients had isolated retinitis pigmentosa (RP), 21% had early-onset severe retinal dystrophy, and less frequent presentations were syndromic RP, sector RP, cone-rod dystrophy, achromatopsia, PAX6-related dystrophy, and X-linked retinoschisis. The overall age of patients at CLV diagnosis was 30.7 ± 16.9 years (1-83). Twenty-one patients (31%) had unilateral CLV, and the most common retinal features were telangiectasia, exudates, and exudative retinal detachment (ERD) affecting the inferior and temporal retina. Macular edema/schisis was observed in 26% of the eyes, and ERD was observed in 63% of the eyes. Fifty-four patients (81%) had genetic testing, 40 of whom were molecularly solved. Sixty-six eyes (58%) were observed, 17 eyes (15%) were treated with a single modality, and 30 eyes (27%) had a combined approach. Thirty-five eyes (31%) were "good responders," 42 eyes (37%) were "poor responders," 22 eyes (19%) had low vision at baseline and were only observed, and 12 eyes (11%) did not have longitudinal assessment. Twenty-one observed eyes (62%) responded well versus 14 (33%) treated eyes. Final best-corrected visual acuity was significantly worse than baseline (P = 0.002); 40 patients (60%) lost 15 ETDRS letters or more over follow-up in 1 or both eyes, and 21 patients (31%) progressed to more advanced stages of visual impairment. CONCLUSIONS Inherited retinal disease-related CLV is rare, sporadic, and mostly bilateral; there is no gender predominance, and it can occur in diverse types of IRD at any point of the disease, with a mean onset in the fourth decade of life. Patients with IRD-related CLV who have decreased initial visual acuity, ERD, CLV changes affecting 2 or more retinal quadrants, and CRB1-retinopathy may be at higher risk of a poor prognosis. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Viet Tran
- Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
20
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
21
|
Santhanam A, Shihabeddin E, Wei H, Wu J, O'Brien J. Molecular basis of retinal remodeling in a zebrafish model of retinitis pigmentosa. Cell Mol Life Sci 2023; 80:362. [PMID: 37979052 PMCID: PMC10657301 DOI: 10.1007/s00018-023-05021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
A hallmark of inherited retinal degenerative diseases such as retinitis pigmentosa (RP) is progressive structural and functional remodeling of the remaining retinal cells as photoreceptors degenerate. Extensive remodeling of the retina stands as a barrier for the successful implementation of strategies to restore vision. To understand the molecular basis of remodeling, we performed analyses of single-cell transcriptome data from adult zebrafish retina of wild type AB strain (WT) and a P23H mutant rhodopsin transgenic model of RP with continuous degeneration and regeneration. Retinas from both female and male fish were pooled to generate each library, combining data from both sexes. We provide a benchmark atlas of retinal cell type transcriptomes in zebrafish and insight into how each retinal cell type is affected in the P23H model. Oxidative stress is found throughout the retina, with increases in reliance on oxidative metabolism and glycolysis in the affected rods as well as cones, bipolar cells, and retinal ganglion cells. There is also transcriptional evidence for widespread synaptic remodeling and enhancement of glutamatergic transmission in the inner retina. Notably, changes in circadian rhythm regulation are detected in cones, bipolar cells, and retinal pigmented epithelium. We also identify the transcriptomic signatures of retinal progenitor cells and newly formed rods essential for the regenerative process. This comprehensive transcriptomic analysis provides a molecular road map to understand how the retina remodels in the context of chronic retinal degeneration with ongoing regeneration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Eyad Shihabeddin
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Haichao Wei
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jiaqian Wu
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John O'Brien
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Li SY, Xue RY, Wu H, Pu N, Wei D, Zhao N, Song ZM, Tao Y. Novel Role of Molecular Hydrogen: The End of Ophthalmic Diseases? Pharmaceuticals (Basel) 2023; 16:1567. [PMID: 38004433 PMCID: PMC10674431 DOI: 10.3390/ph16111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/26/2023] Open
Abstract
Molecular hydrogen (H2) is a colorless, odorless, and tasteless gas which displays non-toxic features at high concentrations. H2 can alleviate oxidative damage, reduce inflammatory reactions and inhibit apoptosis cascades, thereby inducing protective and repairing effects on cells. H2 can be transported into the body in the form of H2 gas, hydrogen-rich water (HRW), hydrogen-rich saline (HRS) or H2 produced by intestinal bacteria. Accumulating evidence suggest that H2 is protective against multiple ophthalmic diseases, including cataracts, dry eye disease, diabetic retinopathy (DR) and other fields. In particular, H2 has been tested in the treatment of dry eye disease and corneal endothelial injury in clinical practice. This medical gas has brought hope to patients suffering from blindness. Although H2 has demonstrated promising therapeutic potentials and broad application prospects, further large-scale studies involving more patients are still needed to determine its optimal application mode and dosage. In this paper, we have reviewed the basic characteristics of H2, and its therapeutic effects in ophthalmic diseases. We also focus on the latest progress in the administration approaches and mechanisms underlying these benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zong-Ming Song
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| |
Collapse
|
23
|
Xiong M, Ou C, Yu C, Qiu J, Lu J, Fu C, Peng Q, Zeng M, Song H. Qi-Shen-Tang alleviates retinitis pigmentosa by inhibiting ferroptotic features via the NRF2/GPX4 signaling pathway. Heliyon 2023; 9:e22443. [PMID: 38034716 PMCID: PMC10687062 DOI: 10.1016/j.heliyon.2023.e22443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Ferroptosis has been observed during retinal photoreceptor cell death, suggesting that it plays a role in retinitis pigmentosa (RP) pathogenesis. Qi-Shen-Tang (QST) is a combination of two traditional Chinese medicines used for the treatment of ophthalmic diseases; however, its mechanism of action in RP and ferroptosis remains unclear. Therefore, this study aimed to explore the effect and potential molecular mechanisms of QST on RP. QST significantly improved tissue morphology and function of the retina in the RP model mice. A significant increase in retinal blood flow and normalization of the fundus structure were observed in mice in the treatment group. After QST treatment, the level of iron and the production of malondialdehyde decreased significantly; the levels of superoxide dismutase and glutathione increased significantly; and the protein expression of glutathione peroxidase 4 (GPX4), glutathione synthetase, solute carrier family 7 member 11, and nuclear factor erythroid 2-related factor 2 (NRF2) increased significantly. The molecular docking results demonstrated potential interactions between the small molecules of QST and the key proteins of NRF2/GPX4 signaling pathway. Our results indicate that QST may inhibit ferroptosis by inhibiting the NRF2/GPX4 signaling pathway, thereby reducing RP-induced damage to retinal tissue.
Collapse
Affiliation(s)
- Meng Xiong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chen Ou
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chang Yu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jingyue Qiu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jing Lu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chaojun Fu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qinghua Peng
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
24
|
Yang Q, Li J, Zeng S, Li Z, Liu X, Li J, Zhou W, Chai Y, Zhou D. Retinal Organoid Models Show Heterozygous Rhodopsin Mutation Favors Endoplasmic Reticulum Stress-Induced Apoptosis in Rods. Stem Cells Dev 2023; 32:681-692. [PMID: 37470211 DOI: 10.1089/scd.2023.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Retinitis pigmentosa (RP) is a prevalent inherited retinal degenerative disease resulting from photoreceptor and pigment epithelial apoptosis. The Rhodopsin (RHO) is the most commonly associated pathogenic gene in RP. However, RHO mutations (c.512C>T P171L) have been infrequently reported, and the RP pathogenesis caused by these mutations remains unclear. The objective of this study was to investigate the impact of RHO (c.512C>T P171L) mutation on retinal cell differentiation and elucidate the underlying mechanisms of RP. An effective retinal organoid induction scheme for inhibiting the Wnt signaling pathway was selected for further experiments, and the established cell line chHES-406 was demonstrated to be heterozygous for RHO c.512C>T, with a normal karyotype and pluripotency potential. Furthermore, the development of chHES-406 organoids may be delayed, and apoptosis detection and co-localization revealed that chHES-406 organoids had more apoptotic cells than chHES-90 in the outer nuclear layer (ONL), mutant RHO protein was mislocalized in the endoplasmic reticulum (ER), and stress-related and apoptotic gene expression increased. Overall, our study elucidated a possible mechanism by which ER stress caused by RHO P171L protein mislocalization may lead to ONL cell apoptosis.
Collapse
Affiliation(s)
- Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, China
| | - Jialin Li
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Sicong Zeng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, China
- Hunan Guangxiu Hospital, School of Medicine, Hunan Normal University, Changsha, China
| | - Zhuo Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Xiao Liu
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jin Li
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Wang Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, China
| | - Yujiao Chai
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, China
| | - Di Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| |
Collapse
|
25
|
Toledo-Cortés S, Dubis AM, González FA, Müller H. Deep Density Estimation for Cone Counting and Diagnosis of Genetic Eye Diseases From Adaptive Optics Scanning Light Ophthalmoscope Images. Transl Vis Sci Technol 2023; 12:25. [PMID: 37982767 PMCID: PMC10668615 DOI: 10.1167/tvst.12.11.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/02/2023] [Indexed: 11/21/2023] Open
Abstract
Purpose Adaptive optics scanning light ophthalmoscope (AOSLO) imaging offers a microscopic view of the living retina, holding promise for diagnosing and researching eye diseases like retinitis pigmentosa and Stargardt's disease. The technology's clinical impact of AOSLO hinges on early detection through automated analysis tools. Methods We introduce Cone Density Estimation (CoDE) and CoDE for Diagnosis (CoDED). CoDE is a deep density estimation model for cone counting that estimates a density function whose integral is equal to the number of cones. CoDED is an integration of CoDE with deep image classifiers for diagnosis. We use two AOSLO image datasets to train and evaluate the performance of cone density estimation and classification models for retinitis pigmentosa and Stargardt's disease. Results Bland-Altman plots show that CoDE outperforms state-of-the-art models for cone density estimation. CoDED reported an F1 score of 0.770 ± 0.04 for disease classification, outperforming traditional convolutional networks. Conclusions CoDE shows promise in classifying the retinitis pigmentosa and Stargardt's disease cases from a single AOSLO image. Our preliminary results suggest the potential role of analyzing patterns in the retinal cellular mosaic to aid in the diagnosis of genetic eye diseases. Translational Relevance Our study explores the potential of deep density estimation models to aid in the analysis of AOSLO images. Although the initial results are encouraging, more research is needed to fully realize the potential of such methods in the treatment and study of genetic retinal pathologies.
Collapse
Affiliation(s)
- Santiago Toledo-Cortés
- Department of TI and Process Optimization, Faculty of Engineering, Universidad de La Sabana Campus Puente del Común km 7, Chía, Colombia
- MindLab Research Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adam M. Dubis
- Moorfields Eye Hospital NHS Foundation Trust, London, Institute of Ophthalmology, University College London, London, UK
- Global Business School for Health, University College London, London, UK
| | - Fabio A. González
- MindLab Research Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Henning Müller
- Institute of Information Systems, HES-SO (University of Applied Sciences and Arts Western Switzerland), Sierre, Switzerland
- Medical Faculty, University of Geneva, Switzerland
- The Sense research and innovation center, Sion and Lausanne, Switzerland
| |
Collapse
|
26
|
Malvasi M, Casillo L, Avogaro F, Abbouda A, Vingolo EM. Gene Therapy in Hereditary Retinal Dystrophies: The Usefulness of Diagnostic Tools in Candidate Patient Selections. Int J Mol Sci 2023; 24:13756. [PMID: 37762059 PMCID: PMC10531171 DOI: 10.3390/ijms241813756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Gene therapy actually seems to have promising results in the treatment of Leber Congenital Amaurosis and some different inherited retinal diseases (IRDs); the primary goal of this strategy is to change gene defects with a wild-type gene without defects in a DNA sequence to achieve partial recovery of the photoreceptor function and, consequently, partially restore lost retinal functions. This approach led to the introduction of a new drug (voretigene neparvovec-rzyl) for replacement of the RPE65 gene in patients affected by Leber Congenital Amaurosis (LCA); however, the treatment results are inconstant and with variable long-lasting effects due to a lack of correctly evaluating the anatomical and functional conditions of residual photoreceptors. These variabilities may also be related to host immunoreactive reactions towards the Adenovirus-associated vector. A broad spectrum of retinal dystrophies frequently generates doubt as to whether the disease or the patient is a good candidate for a successful gene treatment, because, very often, different diseases share similar genetic characteristics, causing an inconstant genotype/phenotype correlation between clinical characteristics also within the same family. For example, mutations on the RPE65 gene cause Leber Congenital Amaurosis (LCA) but also some forms of Retinitis Pigmentosa (RP), Bardet Biedl Syndrome (BBS), Congenital Stationary Night Blindness (CSNB) and Usher syndrome (USH), with a very wide spectrum of clinical manifestations. These confusing elements are due to the different pathways in which the product protein (retinoid isomer-hydrolase) is involved and, consequently, the overlapping metabolism in retinal function. Considering this point and the cost of the drug (over USD one hundred thousand), it would be mandatory to follow guidelines or algorithms to assess the best-fitting disease and candidate patients to maximize the output. Unfortunately, at the moment, there are no suggestions regarding who to treat with gene therapy. Moreover, gene therapy might be helpful in other forms of inherited retinal dystrophies, with more frequent incidence of the disease and better functional conditions (actually, gene therapy is proposed only for patients with poor vision, considering possible side effects due to the treatment procedures), in which this approach leads to better function and, hopefully, visual restoration. But, in this view, who might be a disease candidate or patient to undergo gene therapy, in relationship to the onset of clinical trials for several different forms of IRD? Further, what is the gold standard for tests able to correctly select the patient? Our work aims to evaluate clinical considerations on instrumental morphofunctional tests to assess candidate subjects for treatment and correlate them with clinical and genetic defect analysis that, often, is not correspondent. We try to define which parameters are an essential and indispensable part of the clinical rationale to select patients with IRDs for gene therapy. This review will describe a series of models used to characterize retinal morphology and function from tests, such as optical coherence tomography (OCT) and electrophysiological evaluation (ERG), and its evaluation as a primary outcome in clinical trials. A secondary aim is to propose an ancillary clinical classification of IRDs and their accessibility based on gene therapy's current state of the art. MATERIAL AND METHODS OCT, ERG, and visual field examinations were performed in different forms of IRDs, classified based on clinical and retinal conditions; compared to the gene defect classification, we utilized a diagnostic algorithm for the clinical classification based on morphofunctional information of the retina of patients, which could significantly improve diagnostic accuracy and, consequently, help the ophthalmologist to make a correct diagnosis to achieve optimal clinical results. These considerations are very helpful in selecting IRD patients who might respond to gene therapy with possible therapeutic success and filter out those in which treatment has a lower chance or no chance of positive results due to bad retinal conditions, avoiding time-consuming patient management with unsatisfactory results.
Collapse
Affiliation(s)
- Mariaelena Malvasi
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Lorenzo Casillo
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Filippo Avogaro
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Alessandro Abbouda
- Department of Ophthalmology, Fiorini Hospital Terracina AUSL, 04019 Terracina, Italy
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
- Department of Ophthalmology, Fiorini Hospital Terracina AUSL, 04019 Terracina, Italy
| |
Collapse
|
27
|
Honisch C, Rodella U, Gatto C, Ruzza P, Tóthová JD. Oxidative Stress and Antioxidant-Based Interventional Medicine in Ophthalmology. Pharmaceuticals (Basel) 2023; 16:1146. [PMID: 37631061 PMCID: PMC10458870 DOI: 10.3390/ph16081146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The different anatomical compartments of the eye are highly subjected to reactive oxygen species (ROS) generation due to internal factors, such as metabolic high oxygen consumption, as well as environmental factors, including UV light. An antioxidant defense system is endowed in the eye tissues to regulate ROS quantity and activity. When this homeostatic system is overwhelmed, oxidative stress occurs, causing cellular damage, chronic inflammation, and tissue degeneration. It also plays a significant role in the development and progression of various ocular diseases. Understanding the mechanisms underlying oxidative stress in ocular conditions is thus crucial for the development of effective prevention and treatment strategies. To track marketed products based on antioxidant substances as active ingredients, the databases of the European Medicines Agency and the U.S. Food and Drug Administration were consulted. Only a limited number of items were identified, which were either used as therapeutic treatment or during ocular surgery, including antioxidants, synthetical derivatives, or pro-drugs designed to enhance tissue permeation and activity. This review aims to provide an overview of the primary ocular pathologies associated with oxidative stress and of the available pharmacological interventions centered around antioxidant molecules. Such insights are essential for advancing the development of effective prevention and novel treatment approaches.
Collapse
Affiliation(s)
- Claudia Honisch
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy;
| | - Umberto Rodella
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria, 14, 35020 Ponte San Nicolờ, Italy; (U.R.); (C.G.)
- Fondazione Banca degli Occhi del Veneto (FBOV), Via Paccagnella, 11, 30174 Zelarino, Italy
| | - Claudio Gatto
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria, 14, 35020 Ponte San Nicolờ, Italy; (U.R.); (C.G.)
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy;
| | - Jana D’Amato Tóthová
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria, 14, 35020 Ponte San Nicolờ, Italy; (U.R.); (C.G.)
| |
Collapse
|
28
|
Móvio MI, de Lima-Vasconcellos TH, Dos Santos GB, Echeverry MB, Colombo E, Mattos LS, Resende RR, Kihara AH. Retinal organoids from human-induced pluripotent stem cells: From studying retinal dystrophies to early diagnosis of Alzheimer's and Parkinson's disease. Semin Cell Dev Biol 2023; 144:77-86. [PMID: 36210260 DOI: 10.1016/j.semcdb.2022.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have provided new methods to study neurodegenerative diseases. In addition to their wide application in neuronal disorders, hiPSCs technology can also encompass specific conditions, such as inherited retinal dystrophies. The possibility of evaluating alterations related to retinal disorders in 3D organoids increases the truthfulness of in vitro models. Moreover, both Alzheimer's (AD) and Parkinson's disease (PD) have been described as causing early retinal alterations, generating beta-amyloid protein accumulation, or affecting dopaminergic amacrine cells. This review addresses recent advances and future perspectives obtained from in vitro modeling of retinal diseases, focusing on retinitis pigmentosa (RP). Additionally, we depicted the possibility of evaluating changes related to AD and PD in retinal organoids obtained from potential patients long before the onset of the disease, constituting a valuable tool in early diagnosis. With this, we pointed out prospects in the study of retinal dystrophies and early diagnosis of AD and PD.
Collapse
Affiliation(s)
- Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | | | - Marcela Bermudez Echeverry
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Leonardo S Mattos
- Biomedical Robotics Laboratory, Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
29
|
Wang NK, Liu PK, Kong Y, Tseng YJ, Jenny LA, Nolan ND, Chen N, Wang HH, Hsu CW, Huang WC, Sparrow JR, Lin CS, Tsang SH. Spatiotemporal control of genome engineering in cone photoreceptors. Cell Biosci 2023; 13:119. [PMID: 37381060 PMCID: PMC10304375 DOI: 10.1186/s13578-023-01033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/15/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Cones are essential for color recognition, high resolution, and central vision; therefore cone death causes blindness. Understanding the pathophysiology of each cell type in the retina is key to developing therapies for retinal diseases. However, studying the biology of cone cells in the rod-dominant mammalian retina is particularly challenging. In this study, we used a bacterial artificial chromosome (BAC) recombineering method to knock in the "CreERT2" sequence into the Gnat2 and Arr3 genes, respectively and generated three novel inducible CreERT2 mice with different cone cell specificities. RESULTS These models (Gnat2CreERT2, Arr3T2ACreERT2, and Arr3P2ACreERT2) express temporally controllable Cre recombinase that achieves conditional alleles in cone photoreceptors. Cre-LoxP recombination can be induced as early as postnatal day (PD) two upon tamoxifen injection at varying efficiencies, ranging from 10 to 15% in Gnat2CreERT2, 40% in Arr3T2ACreERT2, and 100% in Arr3P2ACreERT2. Notably, knocking in the P2A-CreERT2 cassette does not affect cone cell morphology and functionality. Most cone-phototransduction enzymes, including Opsins, CNGA3, etc. are not altered except for a reduction in the Arr3 transcript. CONCLUSIONS The Arr3P2ACreERT2 mouse, an inducible cone-specific Cre driver, is a valuable line in studying cone cell biology, function, as well as its relationship with rod and other retinal cells. Moreover, the Cre activity can be induced by delivering tamoxifen intragastrically as early as PD2, which will be useful for studying retinal development or in rapid degenerative mouse models.
Collapse
Affiliation(s)
- Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Pei-Kang Liu
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yang Kong
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yun-Ju Tseng
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Laura A Jenny
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nicholas D Nolan
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Biomedical Engineering, The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Nelson Chen
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Hung-Hsi Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- College of Arts and Sciences, University of Miami, Coral Gables, FL, USA
| | - Chun Wei Hsu
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wan-Chun Huang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Janet R Sparrow
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stephen H Tsang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|
30
|
Zhou J, Welinder C, Ekström P. The Phosphoproteome of the Rd1 Mouse Retina, a Model of Inherited Photoreceptor Degeneration, Changes after Protein Kinase G Inhibition. Int J Mol Sci 2023; 24:9836. [PMID: 37372984 DOI: 10.3390/ijms24129836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Retinitis pigmentosa (RP) is a frequent cause of blindness among the working population in industrial countries due to the inheritable death of photoreceptors. Though gene therapy was recently approved for mutations in the RPE65 gene, there is in general no effective treatment presently. Previously, abnormally high levels of cGMP and overactivation of its dependent protein kinase (PKG) have been suggested as causative for the fatal effects on photoreceptors, making it meaningful to explore the cGMP-PKG downstream signaling for more pathological insights and novel therapeutic target development purposes. Here, we manipulated the cGMP-PKG system in degenerating retinas from the rd1 mouse model pharmacologically via adding a PKG inhibitory cGMP-analogue to organotypic retinal explant cultures. A combination of phosphorylated peptide enrichment and mass spectrometry was then applied to study the cGMP-PKG-dependent phosphoproteome. We identified a host of novel potential cGMP-PKG downstream substrates and related kinases using this approach and selected the RAF1 protein, which may act as both a substrate and a kinase, for further validation. This showed that the RAS/RAF1/MAPK/ERK pathway may be involved in retinal degeneration in a yet unclarified mechanism, thus deserving further investigation in the future.
Collapse
Affiliation(s)
- Jiaming Zhou
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 00 Lund, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 00 Lund, Sweden
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
31
|
Arrigo A, Aragona E, Perra C, Saladino A, Amato A, Bianco L, Pina A, Basile G, Bandello F, Battaglia Parodi M. Morphological and functional involvement of the inner retina in retinitis pigmentosa. Eye (Lond) 2023; 37:1424-1431. [PMID: 35768721 PMCID: PMC10169765 DOI: 10.1038/s41433-022-02139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND To investigate the morphological retinal parameters associated with retinal sensitivity status in retinitis pigmentosa (RP) through a quantitative multimodal imaging approach. METHODS The study was designed as an observational, prospective case series, including RP patients and healthy controls. Multimodal imaging included fundus autofluorescence (FAF), structural optical coherence tomography (OCT), OCT angiography (OCTA) and microperimetry (MP). The follow-up lasted 12 months. For each imaging modality, we performed an overall quantitative analysis and a detailed investigation based on the ETDRS-9 sectors grid. Quantitative parameters included the thickness of each retinal and choroidal layer, vessel density (VD), choriocapillaris porosity (CCP), FAF intensity and MP retinal sensitivity. RESULTS We included 40 eyes (40 patients) affected by RP and 40 healthy eyes (40 controls). Mean baseline BCVA was 0.14 ± 0.18 LogMAR, with 0.18 ± 0.24 LogMAR after 1-year of follow-up. RP eyes showed statistically significant alterations of retinal and choroidal layers on the ETDRS-9 sectors grid, significant reduction of VD values and MP retinal sensitivity, and significantly higher CCP than controls. The inner retinal layers proved closely associated with the functional integrity of the posterior pole. In addition, our ROC analysis provided quantitative cutoffs connected significantly with a high probability of observing a partial sparing of MP retinal sensitivity. CONCLUSIONS The inner retinal layers are closely associated with the functional integrity of the posterior pole in RP. FAF intensity reduction may be interpreted as lipofuscin metabolism impairment inducing increased phototoxic distress for retinal structures. Vascular involvement contributes to the morpho-functional deterioration of the macular region in RP.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Emanuela Aragona
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristian Perra
- Department of Electrical and Electronic Engineering (DIEE), CNIT Research Unit, University of Cagliari, Cagliari, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Amato
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adelaide Pina
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Basile
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
32
|
Nguyen XTA, Moekotte L, Plomp AS, Bergen AA, van Genderen MM, Boon CJF. Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. Int J Mol Sci 2023; 24:ijms24087481. [PMID: 37108642 PMCID: PMC10139437 DOI: 10.3390/ijms24087481] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies characterized by the degeneration of rod photoreceptors, followed by the degeneration of cone photoreceptors. As a result of photoreceptor degeneration, affected individuals experience gradual loss of visual function, with primary symptoms of progressive nyctalopia, constricted visual fields and, ultimately, central vision loss. The onset, severity and clinical course of RP shows great variability and unpredictability, with most patients already experiencing some degree of visual disability in childhood. While RP is currently untreatable for the majority of patients, significant efforts have been made in the development of genetic therapies, which offer new hope for treatment for patients affected by inherited retinal dystrophies. In this exciting era of emerging gene therapies, it remains imperative to continue supporting patients with RP using all available options to manage their condition. Patients with RP experience a wide variety of physical, mental and social-emotional difficulties during their lifetime, of which some require timely intervention. This review aims to familiarize readers with clinical management options that are currently available for patients with RP.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Bartiméus, Diagnostic Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
33
|
Song DJ, Bao XL, Fan B, Li GY. Mechanism of Cone Degeneration in Retinitis Pigmentosa. Cell Mol Neurobiol 2023; 43:1037-1048. [PMID: 35792991 DOI: 10.1007/s10571-022-01243-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of genetic disorders resulting in inherited blindness due to the degeneration of rod and cone photoreceptors. The various mechanisms underlying rod degeneration primarily rely on genetic mutations, leading to night blindness initially. Cones gradually degenerate after rods are almost eliminated, resulting in varying degrees of visual disability and blindness. The mechanism of cone degeneration remains unclear. An understanding of the mechanisms underlying cone degeneration in RP, a highly heterogeneous disease, is essential to develop novel treatments of RP. Herein, we review recent advancements in the five hypotheses of cone degeneration, including oxidative stress, trophic factors, metabolic stress, light damage, and inflammation activation. We also discuss the connection among these theories to provide a better understanding of secondary cone degeneration in RP. Five current mechanisms of cone degenerations in RP Interactions among different pathways are involved in RP.
Collapse
Affiliation(s)
- De-Juan Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Xiao-Li Bao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
34
|
Aziz N, Ullah M, Rashid A, Hussain Z, Shah K, Awan A, Khan M, Ullah I, Rehman AU. A novel homozygous missense substitution p.Thr313Ile in the PDE6B gene underlies autosomal recessive retinitis pigmentosa in a consanguineous Pakistani family. BMC Ophthalmol 2023; 23:116. [PMID: 36959549 PMCID: PMC10035148 DOI: 10.1186/s12886-023-02845-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is one of the most frequent hereditary retinal diseases that often starts with night blindness and eventually leads to legal blindness. Our study aimed to identify the underlying genetic cause of autosomal recessive retinitis pigmentosa (arRP) in a consanguineous Pakistani family. METHODS Following a detailed ophthalmological examination of the patients by an ophthalmologist, whole-exome sequencing was performed on the proband's DNA to delineate the genetic cause of RP in the family. In-depth computational methods, in-silico analysis, and familial co-segregation study were performed for variant detection and validation. RESULTS We studied an inbred Pakistani family with two siblings affected by retinitis pigmentosa. The proband, a 32 years old female, was clinically diagnosed with RP at the age of 6 years. A classical night blindness symptom was reported in the proband since her early childhood. OCT report showed a major reduction in the outer nuclear layer and the ellipsoid zone width, leading to the progression of the disease. Exome sequencing revealed a novel homozygous missense mutation (c.938C > T;p.Thr313Ile) in exon 12 of the PDE6B gene. The mutation p.Thr313Ile co-segregated with RP phenotype in the family. The altered residue (p.Thr313) was super conserved evolutionarily across different vertebrate species, and all available in silico tools classified the mutation as highly pathogenic. CONCLUSION We present a novel homozygous pathogenic mutation in the PDE6B gene as the underlying cause of arRP in a consanguineous Pakistani family. Our findings highlight the importance of missense mutations in the PDE6B gene and expand the known mutational repertoire of PDE6B-related RP.
Collapse
Affiliation(s)
- Nobia Aziz
- Department of Biotechnology and Genetic Engineering, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Mukhtar Ullah
- Institute of Molecular and Clinical Ophthalmology Basel, University of Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Abdur Rashid
- Department of Higher Education Archives and Libraries Peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Zubair Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Khadim Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Azeem Awan
- LRBT Secondary Eye Hospital, Reerah Galla, Balakot Road, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan.
| |
Collapse
|
35
|
An Overview towards Zebrafish Larvae as a Model for Ocular Diseases. Int J Mol Sci 2023; 24:ijms24065387. [PMID: 36982479 PMCID: PMC10048880 DOI: 10.3390/ijms24065387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Despite the obvious morphological differences in the visual system, zebrafish share a similar architecture and components of the same embryonic origin as humans. The zebrafish retina has the same layered structure and cell types with similar metabolic and phototransduction support as humans, and is functional 72 h after fertilization, allowing tests of visual function to be performed. The zebrafish genomic database supports genetic mapping studies as well as gene editing, both of which are useful in the ophthalmological field. It is possible to model ocular disorders in zebrafish, as well as inherited retinal diseases or congenital or acquired malformations. Several approaches allow the evaluation of local pathological processes derived from systemic disorders, such as chemical exposure to produce retinal hypoxia or glucose exposure to produce hyperglycemia, mimicking retinopathy of prematurity or diabetic retinopathy, respectively. The pathogenesis of ocular infections, autoimmune diseases, or aging can also be assessed in zebrafish larvae, and the preserved cellular and molecular immune mechanisms can be assessed. Finally, the zebrafish model for the study of the pathologies of the visual system complements certain deficiencies in experimental models of mammals since the regeneration of the zebrafish retina is a valuable tool for the study of degenerative processes and the discovery of new drugs and therapies.
Collapse
|
36
|
Fujii Y, Arima M, Murakami Y, Sonoda KH. Rhodopsin-positive cell production by intravitreal injection of small molecule compounds in mouse models of retinal degeneration. PLoS One 2023; 18:e0282174. [PMID: 36821627 PMCID: PMC9949636 DOI: 10.1371/journal.pone.0282174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
We aimed to verify whether the intravitreal injection of small molecule compounds alone can create photoreceptor cells in mouse models of retinal degeneration. Primary cultured mouse Müller cells were stimulated in vitro with combinations of candidate compounds and the rhodopsin expression was measured on day 7 using polymerase chain reaction and immunostaining. We used 6-week-old N-methyl-N-nitrosourea-treated and 4-week-old rd10 mice as representative in vivo models of retinal degeneration. The optimal combination of compounds selected via in vitro screening was injected into the vitreous and the changes in rhodopsin expression were investigated on day 7 using polymerase chain reaction and immunostaining. The origin of rhodopsin-positive cells was also analyzed via lineage tracing and the recovery of retinal function was assessed using electroretinography. The in vitro mRNA expression of rhodopsin in Müller cells increased 30-fold, and 25% of the Müller cells expressed rhodopsin protein 7 days after stimulation with a combination of 4 compounds: transforming growth factor-β inhibitor, bone morphogenetic protein inhibitor, glycogen synthase kinase 3 inhibitor, and γ-secretase inhibitor. The in vivo rhodopsin mRNA expression and the number of rhodopsin-positive cells in the outer retina were significantly increased on day 7 after the intravitreal injection of these 4 compounds in both N-methyl-N-nitrosourea-treated and rd10 mice. Lineage tracing in td-Tomato mice treated with N-methyl-N-nitrosourea suggested that the rhodopsin-positive cells originated from endogenous Müller cells, accompanied with the recovery of the rhodopsin-derived scotopic function. It was suggested that rhodopsin-positive cells generated by compound stimulation contributes to the recovery of retinal function impaired by degeneration.
Collapse
Affiliation(s)
- Yuya Fujii
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan,* E-mail:
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
38
|
m6A Modification-Association with Oxidative Stress and Implications on Eye Diseases. Antioxidants (Basel) 2023; 12:antiox12020510. [PMID: 36830067 PMCID: PMC9952187 DOI: 10.3390/antiox12020510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Oxidative stress (OS) refers to a state of imbalance between oxidation and antioxidation. OS is considered to be an important factor leading to aging and a range of diseases. The eyes are highly oxygen-consuming organs. Due to its continuous exposure to ultraviolet light, the eye is particularly vulnerable to the impact of OS, leading to eye diseases such as corneal disease, cataracts, glaucoma, etc. The N6-methyladenosine (m6A) modification is the most investigated RNA post-transcriptional modification and participates in a variety of cellular biological processes. In this study, we review the role of m6A modification in oxidative stress-induced eye diseases and some therapeutic methods to provide a relatively overall understanding of m6A modification in oxidative stress-related eye diseases.
Collapse
|
39
|
Genetic characteristics of suspected retinitis pigmentosa in a cohort of Chinese patients. Gene 2023; 853:147087. [PMID: 36464167 DOI: 10.1016/j.gene.2022.147087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The study aimed to screen for the causative variants in Chinese patients with suspected retinitis pigmentosa (RP). A cohort of 75 unrelated Chinese patients with a clinical diagnosis of RP and their available family members were enrolled in this study. Genomic DNA of all subjects was extracted and whole-exome sequencing (WES) was applied. Candidate variants were identified, and minigene assays were conducted to evaluate the pathogenicity of novel splicing variants. Totally, the diagnostic yield was 44 % (33/75) and 16 novel variants that had not been reported previously were found. Among the genetically solved 33 cases, 31 patients were identified as carrying causative variants of RP and 2 patients carried pathogenic variants implicated in other retinal diseases. USH2A, CYP4V2, and RPGR were the most common causative genes, accounting for about half of the genetically solved cases. Moreover, minigene assays validated that the novel splicing variants were detrimental. Additionally, 9 patients carried a single deleterious heterozygous variant in 6 genes with autosomal recessive hereditary patterns, and no corresponding copy number variants (CNVs) was detected. The findings of this study revealed the genetic landscape of RP in China and provided guidance for clinicians.
Collapse
|
40
|
Olivares-González L, Velasco S, Campillo I, Millán JM, Rodrigo R. Redox Status in Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:443-448. [PMID: 37440070 DOI: 10.1007/978-3-031-27681-1_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy characterized by the progressive loss of vision. It is a rare disease. Despite being a genetic disease, its progression is influenced by oxidative damage and chemokines and cytokines released by the activated immune cells (e.g., macrophages or microglia). The role of oxidative stress is very important in the retina. Rods are the main consumers of oxygen (O2), so they are constantly exposed to oxidative stress and lipid peroxidation. According to the oxidative hypothesis, after rod death in the early stages of the disease, O2 would accumulate in large quantities in the retina, producing hyperoxia and favoring the accumulation of reactive oxygen species and reactive nitrogen species that would cause oxidative damage to lipids, proteins, and DNA, exacerbating the process of retinal degeneration. Evidence shows alterations in the antioxidant-oxidant state in patients and in animal models of RP. In recent years, therapeutic approaches aimed at reducing oxidative stress have emerged as useful therapies to slow down the progression of RP. We focus this review on oxidative stress and its relationship with the progression of RP.
Collapse
Affiliation(s)
- L Olivares-González
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
| | - S Velasco
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
| | - I Campillo
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
| | - J M Millán
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Madrid, Spain
- Molecular, Cellular and Genomic Biomedicine, Health Research Institute La Fe, Valencia, Spain
| | - R Rodrigo
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain.
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain.
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Madrid, Spain.
| |
Collapse
|
41
|
Olivares-González L, Velasco S, Gallego I, Esteban-Medina M, Puras G, Loucera C, Martínez-Romero A, Peña-Chilet M, Pedraz JL, Rodrigo R. An SPM-Enriched Marine Oil Supplement Shifted Microglia Polarization toward M2, Ameliorating Retinal Degeneration in rd10 Mice. Antioxidants (Basel) 2022; 12:antiox12010098. [PMID: 36670960 PMCID: PMC9855087 DOI: 10.3390/antiox12010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy causing progressive vision loss. It is accompanied by chronic and sustained inflammation, including M1 microglia activation. This study evaluated the effect of an essential fatty acid (EFA) supplement containing specialized pro-resolving mediators (SPMs), on retinal degeneration and microglia activation in rd10 mice, a model of RP, as well as on LPS-stimulated BV2 cells. The EFA supplement was orally administered to mice from postnatal day (P)9 to P18. At P18, the electrical activity of the retina was examined by electroretinography (ERG) and innate behavior in response to light were measured. Retinal degeneration was studied via histology including the TUNEL assay and microglia immunolabeling. Microglia polarization (M1/M2) was assessed by flow cytometry, qPCR, ELISA and histology. Redox status was analyzed by measuring antioxidant enzymes and markers of oxidative damage. Interestingly, the EFA supplement ameliorated retinal dysfunction and degeneration by improving ERG recording and sensitivity to light, and reducing photoreceptor cell loss. The EFA supplement reduced inflammation and microglia activation attenuating M1 markers as well as inducing a shift to the M2 phenotype in rd10 mouse retinas and LPS-stimulated BV2 cells. It also reduced oxidative stress markers of lipid peroxidation and carbonylation. These findings could open up new therapeutic opportunities based on resolving inflammation with oral supplementation with SPMs such as the EFA supplement.
Collapse
Affiliation(s)
- Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | | | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, 41013 Seville, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Health Institute Carlos III, 28029 Madrid, Spain
- Department of Physiology, University of Valencia (UV), 46100 Burjassot, Spain
- Department of Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-96-328-96-80
| |
Collapse
|
42
|
Martinez-Fernandez de la Camara C, Cehajic-Kapetanovic J, MacLaren RE. Emerging gene therapy products for RPGR-associated X-linked retinitis pigmentosa. Expert Opin Emerg Drugs 2022; 27:431-443. [PMID: 36562395 DOI: 10.1080/14728214.2022.2152003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Mutations in the RPGR gene are responsible for one of the most prevalent and severe types of retinitis pigmentosa. Gene therapy has shown great promise to treat inherited retinal diseases, and currently, four RPGR gene therapy vectors are being evaluated in clinical trials. AREAS COVERED This manuscript reviews the gene therapy products that are in development for X-linked retinitis pigmentosa caused by mutations in RPGR, and the challenges that scientists and clinicians have faced. EXPERT OPINION The development of a gene therapy product for RPGR-associated retinal degeneration has been a great challenge due to the incomplete understanding of the underlying genetics and mechanism of action of RPGR, and on the other hand, due to the instability of the RPGR gene. Three of the four gene therapy vectors currently in clinical trials include a codon-optimized version of the human RPGR sequence, and the other vector contains a shortened version of the human RPGR. To date, the only Phase I/II results published in a peer-reviewed journal demonstrate a good safety profile and an improvement in the visual field using a codon optimized version of RPGRORF15.
Collapse
Affiliation(s)
- Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| |
Collapse
|
43
|
Inhibition of the MAPK/c-Jun-EGR1 Pathway Decreases Photoreceptor Cell Death in the rd1 Mouse Model for Inherited Retinal Degeneration. Int J Mol Sci 2022; 23:ijms232314600. [PMID: 36498926 PMCID: PMC9740268 DOI: 10.3390/ijms232314600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies that typically results in photoreceptor cell death and vision loss. Here, we explored the effect of early growth response-1 (EGR1) expression on photoreceptor cell death in Pde6brd1 (rd1) mice and its mechanism of action. To this end, single-cell RNA-seq (scRNA-seq) was used to identify differentially expressed genes in rd1 and congenic wild-type (WT) mice. Chromatin immunoprecipitation (ChIP), the dual-luciferase reporter gene assay, and western blotting were used to verify the relationship between EGR1 and poly (ADP-ribose) polymerase-1 (PARP1). Immunofluorescence staining was used to assess PARP1 expression after silencing or overexpression of EGR1. Photoreceptor cell death was assessed using the TUNEL assay following silencing/overexpression of EGR1 or administration of MAPK/c-Jun pathway inhibitors tanzisertib and PD98059. Our results showed differential expression of ERG1 in rd1 and WT mice via scRNA-seq analysis. The ChIP assay demonstrated EGR1 binding to the PARP1 promoter region. The dual-luciferase reporter gene assay and western blotting results revealed that EGR1 upregulated PARP1 expression. Additionally, the TUNEL assay showed that silencing EGR1 effectively reduced photoreceptor cell death. Similarly, the addition of tanzisertib and PD98059 reduced the expression of c-Jun and EGR1 and decreased photoreceptor cell death. Our study revealed that inhibition of the MAPK/c-Jun pathway reduced the expression of EGR1 and PARP1 and prevented photoreceptor cell death. These results highlight the importance of EGR1 for photoreceptor cell death and identify a new avenue for therapeutic interventions in RP.
Collapse
|
44
|
A 69 kb Deletion in chr19q13.42 including PRPF31 Gene in a Chinese Family Affected with Autosomal Dominant Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11226682. [PMID: 36431159 PMCID: PMC9695658 DOI: 10.3390/jcm11226682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify the genetic cause of autosomal dominant retinitis pigmentosa (adRP) and characterize the underlying molecular mechanisms of incomplete penetrance in a Chinese family affected with adRP. All enrolled family members underwent ophthalmic examinations. Whole-genome sequencing (WGS), multiplex ligation-dependent probe amplification (MLPA), linkage analysis and haplotype construction were performed in all participants. RNA-seq was performed to analyze the regulating mechanism of incomplete penetrance among affected patients, mutation carriers and healthy controls. In the studied family, 14 individuals carried a novel heterozygous large deletion of 69 kilobase (kb) in 19q13.42 encompassing exon 1 of the PRPF31 gene and five upstream genes: TFPT, OSCAR, NDUFA3, TARM1, and VSTM1. Three family members were sequenced and diagnosed as non-penetrant carriers (NPCs). RNA-seq showed significant differential expression of genes in deletion between mutation carriers and healthy control. The RP11 pedigree in this study was the largest pedigree compared to other reported RP11 pedigrees with large deletions. Early onset in all affected members in this pedigree was considered to be a special phenotype and was firstly reported in a RP11 family for the first time. Differential expression of PRPF31 between affected and unaffected subjects indicates a haploinsufficiency to cause the disease in the family. The other genes with significant differential expression might play a cooperative effect on the penetrance of RP11.
Collapse
|
45
|
Wang J, Li M, Geng Z, Khattak S, Ji X, Wu D, Dang Y. Role of Oxidative Stress in Retinal Disease and the Early Intervention Strategies: A Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7836828. [PMID: 36275903 PMCID: PMC9586758 DOI: 10.1155/2022/7836828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 02/05/2023]
Abstract
The retina, owing to its cellular anatomy and physical location, is susceptible to generating reactive oxygen species (ROS), which are associated with several major retinal diseases. When ROS exceeds the body's natural antioxidants, the retina is in a state of oxidative stress, which is recognized as the pathogenesis of retinal diseases. The early stage of the pathogenic process is an adaptive change in which oxidative stress and endogenous defense mechanisms occur. If no treatment is applied, the retinal diseases will progress to the pathological stage with neuronal and vascular dysfunction or damage and even blindness. This review summarizes the role of oxidative stress in several common retinal diseases, including retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, glaucoma, and retinopathy of prematurity. In addition, we discuss the early intervention strategies for these diseases. An outline is provided to identify potential intervention targets for further research. Early intervention for retinal diseases is necessary and urgent and may offer hope to improve patients' quality of life through functional vision.
Collapse
Affiliation(s)
- Jun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Mengling Li
- College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ziyue Geng
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xinying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Dongdong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yalong Dang
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Sanmenxia Central Hospital, Sanmenxia, Henan, China
| |
Collapse
|
46
|
Scalabrino ML, Thapa M, Chew LA, Zhang E, Xu J, Sampath AP, Chen J, Field GD. Robust cone-mediated signaling persists late into rod photoreceptor degeneration. eLife 2022; 11:e80271. [PMID: 36040015 PMCID: PMC9560159 DOI: 10.7554/elife.80271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Rod photoreceptor degeneration causes deterioration in the morphology and physiology of cone photoreceptors along with changes in retinal circuits. These changes could diminish visual signaling at cone-mediated light levels, thereby limiting the efficacy of treatments such as gene therapy for rescuing normal, cone-mediated vision. However, the impact of progressive rod death on cone-mediated signaling remains unclear. To investigate the fidelity of retinal ganglion cell (RGC) signaling throughout disease progression, we used a mouse model of rod degeneration (Cngb1neo/neo). Despite clear deterioration of cone morphology with rod death, cone-mediated signaling among RGCs remained surprisingly robust: spatiotemporal receptive fields changed little and the mutual information between stimuli and spiking responses was relatively constant. This relative stability held until nearly all rods had died and cones had completely lost well-formed outer segments. Interestingly, RGC information rates were higher and more stable for natural movies than checkerboard noise as degeneration progressed. The main change in RGC responses with photoreceptor degeneration was a decrease in response gain. These results suggest that gene therapies for rod degenerative diseases are likely to prolong cone-mediated vision even if there are changes to cone morphology and density.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Mishek Thapa
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Lindsey A Chew
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Esther Zhang
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Jason Xu
- Department of Statistical Science, Duke UniversityDurhamUnited States
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, University of California, Los AngelesLos AngelesUnited States
| | - Jeannie Chen
- Zilkha Neurogenetics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Greg D Field
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
47
|
Drinking hydrogen water improves photoreceptor structure and function in retinal degeneration 6 mice. Sci Rep 2022; 12:13610. [PMID: 35948585 PMCID: PMC9365798 DOI: 10.1038/s41598-022-17903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Retinitis pigmentosa (RP) is a genetically heterogeneous group of inherited retinal disorders involving the progressive dysfunction of photoreceptors and the retinal pigment epithelium, for which there is currently no treatment. The rd6 mouse is a natural model of autosomal recessive retinal degeneration. Given the known contributions of oxidative stress caused by reactive oxygen species (ROS) and selective inhibition of potent ROS peroxynitrite and OH·by H2 gas we have previously demonstrated, we hypothesized that ingestion of H2 water may delay the progression of photoreceptor death in rd6 mice. H2 mice showed significantly higher retinal thickness as compared to controls on optical coherence tomography. Histopathological and morphometric analyses revealed higher thickness of the outer nuclear layer for H2 mice than controls, as well as higher counts of opsin red/green-positive cells. RNA sequencing (RNA-seq) analysis of differentially expressed genes in the H2 group versus control group revealed 1996 genes with significantly different expressions. Gene and pathway ontology analysis showed substantial upregulation of genes responsible for phototransduction in H2 mice. Our results show that drinking water high in H2 (1.2-1.6 ppm) had neuroprotective effects and inhibited photoreceptor death in mice, and suggest the potential of H2 for the treatment of RP.
Collapse
|
48
|
Jin W, Chen X, Kong L, Huang C. Gene therapy targeting inflammatory pericytes corrects angiopathy during diabetic wound healing. Front Immunol 2022; 13:960925. [PMID: 35990676 PMCID: PMC9381706 DOI: 10.3389/fimmu.2022.960925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Wound healing is impaired in the diabetic status, largely attributable to diabetes-associated angiopathy. Pericytes play critical roles in the stabilization of the formed vessels. The loss and dysfunction of pericytes have been reported in inflammation during diabetes and associated with the pathology of diabetic angiopathy. However, a practical approach that targets inflammatory pericytes to improve diabetic wound healing is lacking. In the current study, we showed that the inflammatory pericytes from wound skin of diabetic patients were impaired in growth potential and underwent oxidative stress and apoptosis. Expression of antioxidant gene oxidation resistance protein 1 (OXR1) specifically in pericytes through an adenovirus carrying OXR1 under a pericyte-specific neuron glia antigen-2 (NG2) promoter (AV-NG2p-OXR1) relieved the oxidative stress, reduced the apoptosis, and recovered the growth potential in diabetic pericytes. Moreover, expression of OXR1 in diabetic pericytes retrieved their potential of both suppressing the migration of co-cultured HUVECs and inducing cell aggregates at the branching points, indicating a functional recovery. In vivo gene therapy using this AV-NG2p-OXR1 to DB/DB mice, the mouse model for type 2 diabetes, significantly improved wound healing, likely through enhancing blood flow at the wound rather than increasing vessel density. Together, our data suggest that gene therapy targeting inflammatory pericytes may improve diabetes-associated impaired wound healing.
Collapse
Affiliation(s)
- Wenxv Jin
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiong Chen
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingguo Kong
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chongqing Huang
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Rosa RH, Xie W, Zhao M, Tsai SH, Roddy GW, Su MG, Potts LB, Hein TW, Kuo L. Intravitreal Administration of Stanniocalcin-1 Rescues Photoreceptor Degeneration with Reduced Oxidative Stress and Inflammation in a Porcine Model of Retinitis Pigmentosa. Am J Ophthalmol 2022; 239:230-243. [PMID: 35307380 DOI: 10.1016/j.ajo.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE To investigate the effect of stanniocalcin-1 (STC-1), a secreted polypeptide exhibiting multiple functions in cell survival and death, on photoreceptor degeneration in a porcine model of retinitis pigmentosa (RP). METHODS P23H transgenic pigs (TG P23H) and wild-type hybrid littermates were obtained from the National Swine Resource and Research Center. Human recombinant STC-1 was injected intravitreally every 2 weeks from postnatal day 15 (P15) to P75. The contralateral eye was injected with balanced salt solution as a control. Electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT) were performed to evaluate retinal function and morphology in vivo at P90. Retinal tissue was collected for histologic analysis and molecular assays to evaluate the antioxidative and anti-inflammatory mechanisms by which STC-1 may rescue photoreceptor degeneration. RESULTS Intravitreal injection of STC-1 improved retinal function in TG P23H pigs with increased photopic and flicker ERG a- and b-wave amplitudes. Greater integrity of the ellipsoid zone (EZ) band on SD-OCT and morphologic rescue with preservation of cone photoreceptors were observed in STC-1-treated TG P23H pigs. STC-1 altered gene expression in TG P23H pig retina on microarray analysis and increased photoreceptor specific gene expression by reverse transcription-polymerase chain reaction analysis. STC-1 significantly decreased oxidative stress and the expressions of NLRP3 inflammasome, cleaved caspase-1, and IL-1β in TG P23H pig retina. CONCLUSIONS Intravitreal administration of STC-1 enhances cone photoreceptor function, improves EZ integrity, and reduces retinal degeneration through antioxidative and anti-inflammatory effects in a large animal (pig) model of the most common form of autosomal dominant RP in the United States.
Collapse
Affiliation(s)
- Robert H Rosa
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK).
| | - Wankun Xie
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| | - Min Zhao
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| | - Shu-Huai Tsai
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK)
| | - Gavin W Roddy
- Department of Ophthalmology, Mayo Clinic, Rochester, MN (GR)
| | - Maxwell G Su
- Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| | - Luke B Potts
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| | - Travis W Hein
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| | - Lih Kuo
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| |
Collapse
|
50
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|