1
|
Eddicks M, Feicht F, Beckjunker J, Genzow M, Alonso C, Reese S, Ritzmann M, Stadler J. Monitoring of Respiratory Disease Patterns in a Multimicrobially Infected Pig Population Using Artificial Intelligence and Aggregate Samples. Viruses 2024; 16:1575. [PMID: 39459909 PMCID: PMC11512249 DOI: 10.3390/v16101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
A 24/7 AI sound-based coughing monitoring system was applied in combination with oral fluids (OFs) and bioaerosol (AS)-based screening for respiratory pathogens in a conventional pig nursery. The objective was to assess the additional value of the AI to identify disease patterns in association with molecular diagnostics to gain information on the etiology of respiratory distress in a multimicrobially infected pig population. Respiratory distress was measured 24/7 by the AI and compared to human observations. Screening for swine influenza A virus (swIAV), porcine reproductive and respiratory disease virus (PRRSV), Mycoplasma (M.) hyopneumoniae, Actinobacillus (A.) pleuropneumoniae, and porcine circovirus 2 (PCV2) was conducted using qPCR. Except for M. hyopneumoniae, all of the investigated pathogens were detected within the study period. High swIAV-RNA loads in OFs and AS were significantly associated with a decrease in respiratory health, expressed by a respiratory health score calculated by the AI The odds of detecting PRRSV or A. pleuropneumoniae were significantly higher for OFs compared to AS. qPCR examinations of OFs revealed significantly lower Ct-values for swIAV and A. pleuropneumoniae compared to AS. In addition to acting as an early warning system, AI gained respiratory health data combined with laboratory diagnostics, can indicate the etiology of respiratory distress.
Collapse
Affiliation(s)
- Matthias Eddicks
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University München, 85764 München, Germany; (M.E.); (F.F.); (M.R.)
| | - Franziska Feicht
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University München, 85764 München, Germany; (M.E.); (F.F.); (M.R.)
| | - Jochen Beckjunker
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim, 55216 Ingelheim am Rhein, Germany; (J.B.); (M.G.); (C.A.)
| | - Marika Genzow
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim, 55216 Ingelheim am Rhein, Germany; (J.B.); (M.G.); (C.A.)
| | - Carmen Alonso
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim, 55216 Ingelheim am Rhein, Germany; (J.B.); (M.G.); (C.A.)
| | - Sven Reese
- Institute for Anatomy, Histology and Embryology, LMU Munich, 80539 Munich, Germany;
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University München, 85764 München, Germany; (M.E.); (F.F.); (M.R.)
| | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University München, 85764 München, Germany; (M.E.); (F.F.); (M.R.)
| |
Collapse
|
2
|
Ham S, Suh J, Kim C, Seo B, Park G, Chae C. A field evaluation of a new porcine circovirus type 2d and Mycoplasma hyopneumoniae bivalent vaccine in herds suffering from subclinical PCV2d infection and enzootic pneumonia. Vet Med Sci 2024; 10:e70001. [PMID: 39189840 PMCID: PMC11348503 DOI: 10.1002/vms3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND This field efficacy study was designed to determine the efficacy of a new bivalent vaccine containing porcine circovirus type 2d (PCV2d) and Mycoplasma hyopneumoniae at three independent pig farms. METHODS Three pig farms were selected based on their history of subclinical PCV2 infection and enzootic pneumonia. Each farm housed a total of 40, 18-day-old pigs that were randomly allocated to 1 of 2 treatment groups. Pigs were administered a 2.0 mL dose of the bivalent vaccine intramuscularly at 21 days of age in accordance with the manufacturer's recommendations, whereas unvaccinated pigs were administered a single dose of phosphate-buffered saline at the same age. RESULTS Clinically, the average daily weight gain of vaccinated groups was significantly higher (p < 0.05) than those of unvaccinated animals during the growing (70-112 days of age), finishing (112-175 days of age) and overall (3-175 days of age) stages of production. Vaccinated animals elicited neutralizing anti-PCV2 antibodies and PCV2d-specific interferon-γ secreting cells (IFN-γ-SC), which reduced the amount of PCV2d genomic copies in blood and reduced lymphoid lesions severity when compared with unvaccinated animals. Similarly, vaccinated animals elicited M. hyopneumoniae-specific IFN-γ-SC, which reduced the amount of M. hyopneumoniae in the larynx and reduced lung lesions severity. CONCLUSIONS The result of the field trial demonstrated that the bivalent vaccine was efficacious in the protection of swine herds suffering from subclinical PCV2d infection and enzootic pneumonia.
Collapse
Affiliation(s)
- Sehyeong Ham
- Department of Veterinary Pathology, College of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Jeongmin Suh
- Department of Veterinary Pathology, College of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | | | | | | | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
3
|
Fang Z, Sun M, Cai X, An T, Tu Y, Wang H. Identification of a conserved B-cell epitope on the capsid protein of porcine circovirus type 4. mSphere 2024; 9:e0022524. [PMID: 38926905 PMCID: PMC11288031 DOI: 10.1128/msphere.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine circovirus type 4 (PCV4), a recently identified circovirus, is prevalent in numerous provinces in China, as well as in South Korea, Thailand, and Europe. PCV4 virus rescued from an infectious clone showed pathogenicity, suggesting the economic impact of PCV4. However, there remains a lack of understanding regarding the immunogenicity and epitopes of PCV4. This study generated a monoclonal antibody (MAb) 1D8 by immunizing mice with PCV4 virus-like particles (VLPs). Subsequently, the epitope recognized by the MAb 1D8 was identified by truncated protein expression and alanine scanning mutagenesis analysis. Results showed that the 225PKQG228 located at the C-terminus of the PCV4 Cap protein is the minimal motif binding to the MAb. Homology modeling analysis and immunoelectron microscopy revealed that the epitope extends beyond the outer surface of the PCV4 VLP. Moreover, the epitope is highly conserved among PCV4 strains and does not react with other PCVs. Together, the MAb 1D8 recognized epitope shows potential for detecting PCV4. These findings significantly contribute to the design of antigens for PCV4 detection and control strategies. IMPORTANCE Porcine circovirus type 4 (PCV4) is a novel circovirus. Although PCV4 has been identified in several countries, including China, Korea, Thailand, and Spain, no vaccine is available. Given the potential pathogenic effects of PCV4 on pigs, PCV4 could threaten the global pig farming industry, highlighting the urgency for further investigation. Thus, epitopes of PCV4 remain to be determined. Our finding of a conserved epitope significantly advances vaccine development and pathogen detection.
Collapse
Affiliation(s)
- Zheng Fang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingxia Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Veterinary Biopharmaceutical Engineering Technology Research Center, Harbin, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Yabin Tu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| |
Collapse
|
4
|
Faustini G, Poletto F, Baston R, Tucciarone CM, Legnardi M, Dal Maso M, Genna V, Fiorentini L, Di Donato A, Perulli S, Cecchinato M, Drigo M, Franzo G. D for dominant: porcine circovirus 2d (PCV-2d) prevalence over other genotypes in wild boars and higher viral flows from domestic pigs in Italy. Front Microbiol 2024; 15:1412615. [PMID: 38952451 PMCID: PMC11215180 DOI: 10.3389/fmicb.2024.1412615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Porcine circovirus 2 (PCV-2) is a key pathogen for the swine industry at a global level. Nine genotypes, differing in epidemiology and potentially virulence, emerged over time, with PCV-2a, -2b, and -2d being the most widespread and clinically relevant. Conversely, the distribution of minor genotypes appears geographically and temporally restricted, suggesting lower virulence and different epidemiological drivers. In 2022, PCV-2e, the most genetically and phenotypically divergent genotype, was identified in multiple rural farms in North-eastern Italy. Since rural pigs often have access to outdoor environment, the introduction from wild boars was investigated. Methods Through a molecular and spatial approach, this study investigated the epidemiology and genetic diversity of PCV-2 in 122 wild boars across different provinces of North-eastern Italy. Results Molecular analysis revealed a high PCV-2 frequency (81.1%, 99/122), and classified the majority of strains as PCV-2d (96.3%, 78/81), with sporadic occurrences of PCV-2a (1.2%, 1/81) and PCV-2b (2.5%, 2/81) genotypes. A viral flow directed primarily from domestic pigs to wild boars was estimated by phylogenetic and phylodynamic analyses. Discussion These findings attested that the genotype replacement so far described only in the Italian domestic swine sector occurred also in wild boars. and suggested that the current heterogeneity of PCV-2d strains in Italian wild boars likely depends more on different introduction events from the domestic population rather than the presence of independent evolutionary pressures. While this might suggest PCV-2 circulation in wild boars having a marginal impact in the industrial sector, the sharing of PCV-2d strains across distinct wild populations, in absence of a consistent geographical pattern, suggests a complex interplay between domestic and wild pig populations, emphasizing the importance of improved biosecurity measures to mitigate the risk of pathogen transmission.
Collapse
Affiliation(s)
- Giulia Faustini
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Francesca Poletto
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Riccardo Baston
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | | | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Mariangela Dal Maso
- AULSS 8 Berica, Dipartimento di Prevenzione, Servizi Veterinari, Vicenza, Italy
| | | | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia Romagna (IZSLER), Forlì, Forlì-Cesena, Italy
| | | | - Simona Perulli
- Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia Romagna (IZSLER), Forlì, Forlì-Cesena, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| |
Collapse
|
5
|
Bester C, Käsbohrer A, Wilkins N, Correia Carreira G, Marschik T. Identification of cost-effective biosecurity measures to reduce Salmonella along the pork production chain. Front Vet Sci 2024; 11:1380029. [PMID: 38562917 PMCID: PMC10983795 DOI: 10.3389/fvets.2024.1380029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
The continued occurrence of salmonellosis cases in Europe attributed to the consumption of pork products highlights the importance of identifying cost-effective interventions. Certain biosecurity measures (BSMs) may be effective in reducing the prevalence of specific pathogens along the pork production chain and their presence in food products. The objective of this study was to identify pathogen-specific, cost-effective BSMs to reduce Salmonella at different stages of the pork production chain in two European countries - Austria (AT) and the United Kingdom (UK). For this purpose, a cost-benefit analysis was conducted based on the epidemiological output of an established quantitative microbiological risk assessment that simulated the implementation effect of the BSMs based on their risk ratios. For each of the BSMs, the associated costs and benefits were assessed individually and country-specifically. For both AT and UK, nine different BSMs were evaluated assuming a countrywide implementation rate of 100%. The results showed that four BSMs were cost-effective (benefit-cost ratio > 1) for AT and five for the UK. The uncertainty regarding the cost-effectiveness of the BSMs resulted from the variability of individual risk ratios, and the variability of benefits associated with the implementation of the BSMs. The low number of cost-effective BSMs highlights the need for holistic risk-based models and economic assessments. To increase the willingness to implement BSMs and maximize the benefits for stakeholders, who carry the majority of the implementation costs, epidemiological assessments of BSM effectiveness should consider the impact on several relevant pathogens simultaneously.
Collapse
Affiliation(s)
- Clara Bester
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
| | - Annemarie Käsbohrer
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
- Unit Epidemiology, Zoonoses and Antimicrobial Resistance, Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Neil Wilkins
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Guido Correia Carreira
- Unit Epidemiology, Zoonoses and Antimicrobial Resistance, Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Tatiana Marschik
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Sagrera M, Garza-Moreno L, Sibila M, Oliver-Ferrando S, Cárceles S, Casanovas C, Prieto P, García-Flores A, Espigares D, Segalés J. Frequency of PCV-2 viremia in nursery piglets from a Spanish swine integration system in 2020 and 2022 considering PRRSV infection status. Porcine Health Manag 2024; 10:4. [PMID: 38229182 DOI: 10.1186/s40813-024-00354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Porcine circovirus 2 (PCV-2) poses a significant economic threat for the swine industry, causing a range of diseases collectively referred to as porcine circovirus diseases (PCVDs). Despite PCV-2 vaccine effectiveness, the need for monitoring infectious pressure remains. PCV-2 coinfection with other pathogens like porcine reproductive and respiratory syndrome virus (PRRSV) can exacerbate disease severity and lead to PCV-2-systemic disease cases. Monitoring both PRRSV and PCV-2 in co-infected farms is crucial for an effective management and vaccination programs. The present cross-sectional study aimed to determine PCV-2 antibody levels in piglets at weaning and PCV-2 and PRRSV viremia in pooled serum samples at weaning (vaccination age) and at 6 and 9 weeks of age from a Spanish swine integration system in 2020 (48 farms) and in 2022 (28 out of the 48 analysed previously). RESULTS The frequency of PCV-2 detection in pools of piglet sera was 2.1% (2020) and 7.1% (2022) at vaccination age but increased at the end of the nursery period (10.4% in 2020 and 39.3% in 2022) in both years. Co-infections between PCV-2 and PRRSV were detected in a significant proportion of PRRSV positive farms (15% in 2020, and 60% in 2022). PCV-2 antibody levels (ELISA S/P ratios) at weaning were lower in PCV-2 qPCR positive farms at different sampling time-points (0.361 in 2020 and 0.378 in 2022) compared to PCV-2 qPCR negative ones (0.587 in 2020 and 0.541 in 2022). The 28 farms tested both years were classified in four different epidemiological scenarios depending on their PCV-2 virological status. Those PCV-2 qPCR negative farms in 2020 that turned to be positive in 2022 had a statistically significant increase of PRRSV RT-qPCR detection and a PCV-2 antibody levels reduction, facts that were not observed in the rest of the scenarios. CONCLUSION This epidemiological study in farms from the same integration system determined the occurrence, in 2020 and in 2022, of PCV-2 and PRRSV infections in piglets during the nursery period by using pooled serum samples.
Collapse
Affiliation(s)
- Mònica Sagrera
- IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de La UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | | | - Marina Sibila
- IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de La UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Center for Research and Control of Emerging and Re-Emerging Pig Diseases (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | | | - Sonia Cárceles
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | - Carlos Casanovas
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | - Patricia Prieto
- Inga Food S.A., Ronda de Poniente, 9, 28760, Tres Cantos, Madrid, Spain
| | | | - David Espigares
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Center for Research and Control of Emerging and Re-Emerging Pig Diseases (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
7
|
Menegatt JCO, Perosa FF, Gris AH, Piva MM, Serena GC, Bordignon DL, Reck C, Menin Á, Watanabe TTN, Driemeier D. Main Causes of Death in Piglets from Different Brazilian Nursery Farms Based on Clinical, Microbiological, and Pathological Aspects. Animals (Basel) 2023; 13:3819. [PMID: 38136857 PMCID: PMC10740839 DOI: 10.3390/ani13243819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Necropsies can reveal herd problems or comorbidities that can lead to management corrections, improvements in animal performance, and better decision making. Furthermore, the pattern and causes of mortality might differ when different systems are evaluated. The present study was conducted to establish the main causes of death in nursery pigs from different systems in Brazil, as well as the clinical, microbiological, and pathological aspects of these mortalities. Eighteen nurseries were analyzed (a total of 120,243 housed piglets), and 557 necropsies were performed. Streptococcus suis infection was the most prevalent cause of death (21.2%), followed by bacterial polyserositis (16.7%), chronic atrophic enteritis (13.5%), salmonellosis (8.8%), pneumonia (8.6%), and colibacillosis (6.1%). The increase in mortality rate in individual nurseries and, consequently, in the diagnoses was commonly associated with disease outbreaks. Infectious diseases constituted the largest portion of the diagnoses, making a great opportunity for improving production rates in herds. Moreover, the extensive range of observed diagnoses highlights the importance of conducting preliminary diagnostic investigations based on necropsy to determine the causes of death. This approach allows for the direction of complementary tests, which can diagnose agents with greater specificity. As a result, this allows for the implementation of more effective prevention and control strategies.
Collapse
Affiliation(s)
- Jean Carlo Olivo Menegatt
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| | - Fernanda Felicetti Perosa
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| | - Anderson Hentz Gris
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| | - Manoela Marchezan Piva
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| | - Guilherme Carvalho Serena
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| | - Diego Luiz Bordignon
- Cargill Alimentos Ltd.a., Av. José Bonifácio Coutinho Nogueira, 150, Campinas 13091-611, SP, Brazil;
| | - Carolina Reck
- VERTÀ Laboratórios, Instituto de Pesquisa e Diagnóstico Veterinário, Av. Lions, 1380—Nossa Senhora Aparecida, Curitibanos 89520-000, SC, Brazil; (C.R.); (Á.M.)
| | - Álvaro Menin
- VERTÀ Laboratórios, Instituto de Pesquisa e Diagnóstico Veterinário, Av. Lions, 1380—Nossa Senhora Aparecida, Curitibanos 89520-000, SC, Brazil; (C.R.); (Á.M.)
- Departamento de Biociências e Saúde Única, Universidade Federal de Santa Catarina, R. Germano A. Souza, Curitibanos 89520-000, SC, Brazil
| | - Tatiane Terumi Negrão Watanabe
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
- Antech Diagnostics, West Olympic Blvd, Los Angeles, CA 90064, USA
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (F.F.P.); (A.H.G.); (M.M.P.); (G.C.S.); (D.D.)
| |
Collapse
|
8
|
Qi S, He Q, Zhang Z, Chen H, Giménez-Lirola L, Yuan F, Bei W. Detection of Porcine Circovirus Type 3 in Serum, Semen, Oral Fluid, and Preputial Fluid Samples of Boars. Vet Sci 2023; 10:689. [PMID: 38133240 PMCID: PMC10747573 DOI: 10.3390/vetsci10120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) is commonly associated with clinical symptoms such as porcine dermatitis and nephropathy syndrome (PDNS)-like lesions, respiratory signs, and reproductive disorders. This study aimed to investigate the epidemiology of PCV3 in a boar stud. The objectives were to detect PCV3 in semen, as well as matched serum, oral fluid, and preputial fluid samples from adult boars using quantitative polymerase chain reaction (qPCR), analyze PCV3-IgG antibody data, and genetically characterize a positive sample. A total of 112 samples from 28 boars were collected from a large-scale pig farm in Guangxi, China. The qPCR results showed that the PCV3 DNA was not detected in semen, with a positive rate of 0% (0/28), while it was detected in serum (3.57%-1/28), oral fluid (64.28%-18/28), and preputial fluid (46.4%-13/28). The seropositivity rate of PCV3-IgG in serum was 82.14% (23/28) according to the indirect enzyme-linked immunosorbent serologic assay (ELISA) results. Phylogenetic analysis revealed that one of the PCV3 isolates belonged to the PCV3c clades. This is the first report of PCV3 detection in preputial fluid from boars. The results suggest that PCV3 is transmitted among boars on pig farms and exhibits epidemic characteristics.
Collapse
Affiliation(s)
- Song Qi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (S.Q.); (Z.Z.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Qiyun He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (S.Q.); (Z.Z.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Zhewei Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (S.Q.); (Z.Z.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (S.Q.); (Z.Z.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
- Hubei Hongshan Laboratory, Wuhan 430000, China
| | - Luis Giménez-Lirola
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Fangyan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430000, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (S.Q.); (Z.Z.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
- Hubei Hongshan Laboratory, Wuhan 430000, China
| |
Collapse
|
9
|
Boeters M, Garcia-Morante B, van Schaik G, Segalés J, Rushton J, Steeneveld W. The economic impact of endemic respiratory disease in pigs and related interventions - a systematic review. Porcine Health Manag 2023; 9:45. [PMID: 37848972 PMCID: PMC10583309 DOI: 10.1186/s40813-023-00342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Understanding the financial consequences of endemically prevalent pathogens within the porcine respiratory disease complex (PRDC) and the effects of interventions assists decision-making regarding disease prevention and control. The aim of this systematic review was to identify what economic studies have been carried out on infectious endemic respiratory disease in pigs, what methods are being used, and, when feasible, to identify the economic impacts of PRDC pathogens and the costs and benefits of interventions. RESULTS By following the PRISMA method, a total of 58 studies were deemed eligible for the purpose of this systematic review. Twenty-six studies used data derived from European countries, 18 from the US, 6 from Asia, 4 from Oceania, and 4 from other countries, i.e., Canada, Mexico, and Brazil. Main findings from selected publications were: (1) The studies mainly considered endemic scenarios on commercial fattening farms; (2) The porcine reproductive and respiratory syndrome virus was by far the most studied pathogen, followed by Mycoplasma hyopneumoniae, but the absence or presence of other endemic respiratory pathogens was often not verified or accounted for; (3) Most studies calculated the economic impact using primary production data, whereas twelve studies modelled the impact using secondary data only; (4) Seven different economic methods were applied across studies; (5) A large variation exists in the cost and revenue components considered in calculations, with feed costs and reduced carcass value included the most often; (6) The reported median economic impact of one or several co-existing respiratory pathogen(s) ranged from €1.70 to €8.90 per nursery pig, €2.30 to €15.35 per fattening pig, and €100 to €323 per sow per year; and (7) Vaccination was the most studied intervention, and the outcomes of all but three intervention-focused studies were neutral or positive. CONCLUSION The outcomes and discussion from this systematic review provide insight into the studies, their methods, the advantages and limitations of the existing research, and the reported impacts from the endemic respiratory disease complex for pig production systems worldwide. Future research should improve the consistency and comparability of economic assessments by ensuring the inclusion of high impact cost and revenue components and expressing results similarly.
Collapse
Affiliation(s)
- Marloes Boeters
- Department of Population Health Sciences, section Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Beatriz Garcia-Morante
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, Catalonia 08193 Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Spain
| | - Gerdien van Schaik
- Department of Population Health Sciences, section Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Royal GD, Deventer, the Netherlands
| | - Joaquim Segalés
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - Jonathan Rushton
- Institute of Infection, Veterinary and Ecological Sciences, School of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, UK
| | - Wilma Steeneveld
- Department of Population Health Sciences, section Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Pérez E, Venegas-Vargas C, Heinz A, Smutzer M, Taylor LP, Diamondidis Y, Mangarova N, Hansen T, Angulo J, Bandrick M, Balasch M. Safety of the Administration of an Inactivated PCV2a/PCV2b/ Mycoplasma Hyopneumoniae Vaccine to Pregnant and Lactating Sows and Gilts. Vaccines (Basel) 2023; 11:1483. [PMID: 37766159 PMCID: PMC10537677 DOI: 10.3390/vaccines11091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine Circovirus type 2 (PCV2) vaccination of gilts during acclimation has become a routine practice in commercial pig farms to homogenize herd immunity to PCV2 and reduce the impact of diseases associated with PCV2 infection, namely reproductive, respiratory, systemic, and other PCV2-associated diseases. The periodic mass vaccination of sows, with the same objectives, is also common. To ensure mass vaccination is an appropriate health management tool, demonstrating that the vaccine is safe in different sow/gilt physiological stages is necessary. The objective of the present studies was to evaluate safety of a PCV2a/PCV2b/Mycoplasma hyopneumoniae (PCV2a2bMHP) killed vaccine in sows and gilts during gestation and lactation, under controlled experimental pen conditions, and during gestation, mimicking mass vaccination, under field conditions. Safety was assessed by monitoring for immediate adverse reactions after vaccination, rectal temperatures after vaccination (controlled experimental pen studies only), local and systemic reactions, and reproductive performance (studies conducted during pregnancy) or lactation performance (studies conducted during lactation). In total, 416 sows/gilts were enrolled, and more than 4000 piglets were observed during their first week of life, under field conditions. In both controlled experimental and field studies, no immediate anaphylactic type reactions were observed after vaccination and the incidence of adverse events, such as depression or decreased appetite, was acceptable for what is expected in a swine herd. In the studies conducted during gestation, vaccination did not significantly increase rectal temperature of the vaccinated animals. Sow reproductive outcomes were not affected by vaccination. The farrowing rate of animals participating in the field study was higher than the historic averages of the farms. In the laboratory studies conducted during the first and second half of gestation, no differences in reproductive outcome were observed between vaccinated and non-vaccinated animals. However, sows vaccinated during lactation experienced a transient hyperthermia which did not affect milk production since the piglets' average daily weight gain was not affected. The previously described results confirm that the administration of a PCV2a2bMHP vaccine was safe in the tested conditions. All the anticipated benefits of sow and gilt PCV2 vaccination, such as homogenization of PCV2 antibody titers or reduction in PCV2 circulation in the herd, would not be masked by potential adverse events due to herd vaccination. In conclusion, the administration of a PCV2a2bMHP vaccine to sows and gilts during different stages of gestation and during lactation is safe.
Collapse
Affiliation(s)
- Elena Pérez
- Zoetis Manufacturing & Research Spain S.L., Ctra Camprodon s/n, 17813 Vall de Bianya, Spain;
| | - Cristina Venegas-Vargas
- Zoetis Inc., 333 Portage St, Kalamazoo, MI 49007, USA; (C.V.-V.); (A.H.); (M.S.); (L.P.T.); (Y.D.); (M.B.)
| | - Andrea Heinz
- Zoetis Inc., 333 Portage St, Kalamazoo, MI 49007, USA; (C.V.-V.); (A.H.); (M.S.); (L.P.T.); (Y.D.); (M.B.)
| | - Megan Smutzer
- Zoetis Inc., 333 Portage St, Kalamazoo, MI 49007, USA; (C.V.-V.); (A.H.); (M.S.); (L.P.T.); (Y.D.); (M.B.)
| | - Lucas P. Taylor
- Zoetis Inc., 333 Portage St, Kalamazoo, MI 49007, USA; (C.V.-V.); (A.H.); (M.S.); (L.P.T.); (Y.D.); (M.B.)
| | - Yvette Diamondidis
- Zoetis Inc., 333 Portage St, Kalamazoo, MI 49007, USA; (C.V.-V.); (A.H.); (M.S.); (L.P.T.); (Y.D.); (M.B.)
| | - Nevena Mangarova
- Zoetis Belgium S.A., 20 Mercuriusstraat, 1930 Zaventem, Belgium;
| | - Tara Hansen
- Zoetis Inc., 601 West Cornhusker Hwy, Lincoln, NE 68521, USA;
| | | | - Meggan Bandrick
- Zoetis Inc., 333 Portage St, Kalamazoo, MI 49007, USA; (C.V.-V.); (A.H.); (M.S.); (L.P.T.); (Y.D.); (M.B.)
| | - Monica Balasch
- Zoetis Manufacturing & Research Spain S.L., Ctra Camprodon s/n, 17813 Vall de Bianya, Spain;
| |
Collapse
|
11
|
de Souza AE, Cruz ACDM, Rodrigues IL, de Carvalho ECQ, Varella RB, Medina RM, Rodrigues RBR, Silveira RL, de Castro TX. Molecular detection of porcine circovirus (PCV2 and PCV3), torque teno swine virus 1 and 2 (TTSuV1 and TTSuVk2), and histopathological findings in swine organs submitted to regular slaughter in Southeast, Brazil. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2023; 45:e000623. [PMID: 37521362 PMCID: PMC10374291 DOI: 10.29374/2527-2179.bjvm000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
Porcine circovirus 2 and 3 (PCV2 and PCV3) and torque teno sus virus 1 and 2 (TTSuV1 and TTSuVk2) are important pathogens in pig associated with post-weaning mortality, different clinical syndromes in adults (PCVAD), and a decrease of average daily weight gain (PCV2-SI) but little is known about the infection on asymptomatic pigs. The aim of this study was to evaluate the presence of PCV2, PCV3, TTSuV1, and TTSuVk2 in swine organ samples from asymptomatic pigs slaughtered in Espírito Santo State, South-eastern Brazil, through molecular detection and histopathological analysis. Nested PCR showed the presence of PCV2 DNA in 10% (14/140), PCV3 in 13.6% (19/140), TTSuV1 in 12.9% (18/140), and TTSuVk2 in 30% (42/140) of the tissue samples. All four viruses were detected in the lung, kidney, lymph node, and liver. TTSuVk2 was detecded in 30% (42/140), PCV3 in 13.6% (19/140), TTSuV1 in 12.9% (18/140), and PCV2 in 10% (14/140) of the samples. Single infections were observed in 30.7% (43/140), while co-detections in the same tissue occurred in 15.7% (22/140). The most frequent combinations were TTSuV1/TTSuVk2 in 31.8% (7/22), PCV2/TTSuVk2 in 18.1% (4/22), and PCV2/PCV3/TTSuVk2 in 13.6% (3/22). Lymphocyte depletion was associated with TTSuVk2 infection (p = 0.0041) suggesting that TTSuVK2 plays an induction of PMWS-like lymphoid lesions in pigs. The data obtained in this study show that PCV2, PCV3, TTSuV1, and TTSuVk2 are related to infection in asymptomatic animals with different tissue lesions, and the molecular diagnosis for these pathogens should be considered in the sanitary monitoring of herds.
Collapse
Affiliation(s)
- Amanda Eduarda de Souza
- Veterinarian, Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas (PPGMPA), Departamento de Microbiologia e Parasitologia (MIP), Universidade Federal Fluminense (UFF). Niterói, RJ. Brazil.
| | | | - Ingrid Lyrio Rodrigues
- Veterinarian, MSc. PPGMPA, MIP, UFF. Niterói, RJ. Brazil.
- Veterinarian, DSc. Faculdade de Veterinária, Departamento de Zootecnia (MMO), UFF. Niterói, RJ. Brazil.
| | | | | | | | | | | | | |
Collapse
|
12
|
Li Y, Yu P, Bao Y, Ren Y, Zhao S, Zhang X. Production of virus-like particles of porcine circovirus 2 in baculovirus expression system and its application for antibody detection. BMC Vet Res 2023; 19:87. [PMID: 37468893 PMCID: PMC10355036 DOI: 10.1186/s12917-023-03648-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Porcine circovirus 2 (PCV-2) is one of the pathogens that leads to a growing and persistent threat in pigs. Thus, the development of serological detection methods for PCV-2 is of great necessity for clinical diagnosis as well as epidemiological investigations. This study aimed to establish an indirect enzyme-linked immunosorbent assay (ELISA) to examine antibodies against PCV-2 based on virus-like particles (VLPs). RESULTS Recombinant PCV-2 Cap protein was expressed in the baculovirus-insect cells system and PCV-2 VLPs were observed over transmission electron microscopy (TEM). The PCV-2 VLPs were shown to have good immunogenicity in mice and stimulated a high level of PCV-2 antibody titers. Using PCV-2 VLPs as coating antigen, the indirect ELISA can detect PCV-2 antibodies in animals with diagnostic sensitivity and specificity of 98.33% and 93.33% compared to immunofluorescence assay (IFA), respectively. The intra- and inter-assay coefficient variations (CVs) were < 10% in a batch, and < 15% in different batches, indicating good repeatability. There was no cross-reaction of this ELISA with antibodies against other porcine viruses. A total of 170 serum samples collected from different pig farms in China were tested for PCV-2 antibodies, and 151 (88.8%) samples were PCV-2 antibody positive. CONCLUSION Our findings suggest that this ELISA was rapid, specific, and reproducible and can be used for large-scale serological investigations of PCV-2 antibodies in pigs.
Collapse
Affiliation(s)
- Yanwei Li
- Beijing Kemufeng Biopharmaceutical Co., Ltd, No.25 Xiangrui Street Daxing District, Beijing, 102600, China
| | - Pingping Yu
- Beijing Kemufeng Biopharmaceutical Co., Ltd, No.25 Xiangrui Street Daxing District, Beijing, 102600, China
| | - Yaxuan Bao
- Beijing Kemufeng Biopharmaceutical Co., Ltd, No.25 Xiangrui Street Daxing District, Beijing, 102600, China
| | - Yuwen Ren
- Beijing Kemufeng Biopharmaceutical Co., Ltd, No.25 Xiangrui Street Daxing District, Beijing, 102600, China
| | - Shaowei Zhao
- Beijing Kemufeng Biopharmaceutical Co., Ltd, No.25 Xiangrui Street Daxing District, Beijing, 102600, China
| | - Xuexian Zhang
- Beijing Kemufeng Biopharmaceutical Co., Ltd, No.25 Xiangrui Street Daxing District, Beijing, 102600, China.
| |
Collapse
|
13
|
Faustini G, Tucciarone CM, Legnardi M, Grassi L, Berto G, Drigo M, Cecchinato M, Franzo G. Into the backyard: Multiple detections of PCV-2e in rural pig farms of Northern Italy. An unexpected ecological niche? Prev Vet Med 2023; 216:105943. [PMID: 37216841 DOI: 10.1016/j.prevetmed.2023.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Porcine circovirus type 2 (PCV-2) is among the most burdensome viruses of the swine industry globally. Several genotypes have been periodically emerging, but just three of them (PCV-2a, PCV-2b, and PCV-2d) seem to circulate worldwide and be associated with the disease. Conversely, the spatial-temporal distribution of minor genotypes appears limited and their clinical relevance is still unclear. Recently PCV-2e was incidentally detected for the first time in Europe in a breeding farm in Northeastern Italy, while no connection could be established with countries where this genotype had been previously detected. To investigate circulating genotypes in the neglected rural context and provide a comparison with the most explored industrial context, a molecular survey was performed on samples collected in rural (n = 72) and industrial farms (n = 110) located in the same geographic area. Phylogenetic analysis surprisingly evidenced PCV-2e circulation only in pigs reared in backyard farms (n = 5), while major genotypes (PCV-2a, -2b, -2d) circulate in both rearing contexts. However, the close genetic similarity between the herein detected PCV-2e strains and the previously reported one testify that, although unusual, such rural-to-industrial strains exchange affected also PCV-2e. The greater genetic and phenotypic diversity of PCV-2e genotype compared to other ones might threaten the protection granted by current vaccines. The present study suggests the rural context as an ecological niche for the circulation of PCV-2e, and even of other minor genotypes. PCV-2e detection in pigs with outdoor access further stresses the epidemiological role of backyard farms as interfaces for pathogen introduction, potentially ascribable to the different rearing approaches, lower managerial and biosecurity capabilities, and easier contacts with wildlife.
Collapse
Affiliation(s)
- Giulia Faustini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Giacomo Berto
- Dipartimento di Prevenzione, AULSS 8 Berica, Via Giovanni Giuseppe Cappellari 6, Vicenza 36100, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy.
| |
Collapse
|
14
|
Papatsiros V, Papakonstantinou G, Meletis E, Bitchava D, Kostoulas P. Evaluation of porcine circovirus type 2 double vaccination in weaning piglets that reared for gilts under field conditions. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:13-19. [PMID: 36816863 PMCID: PMC9906616 DOI: 10.30466/vrf.2022.543079.3292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 02/24/2023]
Abstract
The objective of the present study was to evaluate the efficacy of a porcine circovirus type 2 (PCV2) double vaccination in weaning piglets reared for gilts under field conditions. The study was conducted at a Greek farrow-to-finish conventional pig farm with a previous history of PCV2 infections. The trial included 96 female piglets at 21 days of age, which were equally allocated to two different study groups. Piglets of the group-1 received a single PCV2 vaccination at 21 days of age, while piglets of the group-2 were double vaccinated against PCV2, at 21 and 42 days of age. The results indicated that the piglets of group-2 had better growth performance, as they showed higher body weight (BW) and average daily weight gain (ADWG). In addition, ELISA tests showed that the double- vaccinated piglets presented a better humoral response against PCV2, as higher levels of IgG antibodies were detected in them than the piglets of the group-1. In conclusion, the current results suggested that a double PCV2 vaccination of piglets, reared for gilts, on a PCV2-affected farm could lead to higher protection against the virus.
Collapse
Affiliation(s)
- Vasileios Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece; ,Correspondence Vasileios Papatsiros, DVM, PhD, Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece. E-mail:
| | - Georgios Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece;
| | - Eleftherios Meletis
- Faculty of Public and Integrated (One) Health, School of Health Sciences, University of Thessaly, Karditsa, Greece;
| | | | - Polychronis Kostoulas
- Faculty of Public and Integrated (One) Health, School of Health Sciences, University of Thessaly, Karditsa, Greece;
| |
Collapse
|
15
|
López-Lorenzo G, Prieto A, López-Novo C, Díaz P, Remesar S, Morrondo P, Fernández G, Díaz-Cao JM. Presence of Porcine Circovirus Type 2 in the Environment of Farm Facilities without Pigs in Long Term-Vaccinated Farrow-to-Wean Farms. Animals (Basel) 2022; 12:ani12243515. [PMID: 36552435 PMCID: PMC9774950 DOI: 10.3390/ani12243515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccination against Porcine Circovirus Type 2 (PCV2) even over several years has proven as an insufficient measure to eradicate the infection from farms, possibly due to not producing sterilizing immunity. Viral persistence in the farm environment has been proposed as a possible cause of reinfection, and for that reason, the main objective of this study was to identify potential critical points where PCV2 could persist in farrow-to-wean farms which had been vaccinating piglets for years. Surface samples were collected from different farm facilities with and without animals and analyzed by qPCR to detect and quantify the viral load. Most of the samples taken in animal housing facilities tested negative (96.6%); however, PCV2 was more frequently detected in samples from the offices (37.5%), the farm staff (25%) and the perimeter (21%). These results indicate that PCV2 contamination is frequent in facilities despite the long-term use of vaccination programs. Therefore, PCV2 control programs should include more exhaustive cleaning and disinfection protocols in non-animal facilities, as well as the implementation of specific biosecurity measures in these areas to minimize the risk of PCV2 introduction from external sources.
Collapse
|
16
|
Pleguezuelos P, Sibila M, Ramírez C, López-Jiménez R, Pérez D, Huerta E, Llorens AM, Pérez M, Correa-Fiz F, Mancera Gracia JC, Taylor LP, Smith J, Bandrick M, Borowski S, Saunders G, Segalés J, López-Soria S, Fort M, Balasch M. Efficacy Studies against PCV-2 of a New Trivalent Vaccine including PCV-2a and PCV-2b Genotypes and Mycoplasma hyopneumoniae When Administered at 3 Weeks of Age. Vaccines (Basel) 2022; 10:vaccines10122108. [PMID: 36560518 PMCID: PMC9784864 DOI: 10.3390/vaccines10122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the efficacy of a new trivalent vaccine containing inactivated Porcine Circovirus 1-2a and 1-2b chimeras and a Mycoplasma hyopneumoniae bacterin administered to pigs around 3 weeks of age. This trivalent vaccine has already been proved as efficacious in a split-dose regimen but has not been tested in a single-dose scenario. For this purpose, a total of four studies including two pre-clinical and two clinical studies were performed. Globally, a significant reduction in PCV-2 viraemia and faecal excretion was detected in vaccinated pigs compared to non-vaccinated animals, as well as lower histopathological lymphoid lesion plus PCV-2 immunohistochemistry scorings, and incidence of PCV-2-subclinical infection. Moreover, in field trial B, a significant increase in body weight and in average daily weight gain were detected in vaccinated animals compared to the non-vaccinated ones. Circulation of PCV-2b in field trial A and PCV-2a plus PCV-2d in field trial B was confirmed by virus sequencing. Hence, the efficacy of this new trivalent vaccine against a natural PCV-2a, PCV-2b or PCV-2d challenge was demonstrated in terms of reduction of histopathological lymphoid lesions and PCV-2 detection in tissues, serum and faeces, as well as improvement of production parameters.
Collapse
Affiliation(s)
- Patricia Pleguezuelos
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
- Correspondence:
| | - Marina Sibila
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Carla Ramírez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Rosa López-Jiménez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Diego Pérez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Eva Huerta
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Anna Maria Llorens
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Mónica Pérez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Florencia Correa-Fiz
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | | | - Lucas P. Taylor
- Zoetis Inc., 333 Portage Street 300-504SW, Kalamazoo, MI 49007, USA
| | - Jennifer Smith
- Zoetis Inc., 333 Portage Street 300-504SW, Kalamazoo, MI 49007, USA
| | - Meggan Bandrick
- Zoetis Inc., 333 Portage Street 300-504SW, Kalamazoo, MI 49007, USA
| | - Stasia Borowski
- Zoetis Belgium S.A., 20 Mercuriusstraat, 1930 Zaventem, Belgium
| | | | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Sergio López-Soria
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Maria Fort
- Zoetis Manufacturing & Research Spain S.L., Ctra Camprodon s/n Finca “La Riba”, Vall de Bianya, 17813 Girona, Spain
| | - Mónica Balasch
- Zoetis Manufacturing & Research Spain S.L., Ctra Camprodon s/n Finca “La Riba”, Vall de Bianya, 17813 Girona, Spain
| |
Collapse
|
17
|
Uribe‐García HF, Suarez‐Mesa RA, Rondón‐Barragán IS. Survey of porcine circovirus type 2 and parvovirus in swine breeding herds of Colombia. Vet Med Sci 2022; 8:2451-2459. [PMID: 36137294 PMCID: PMC9677394 DOI: 10.1002/vms3.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background One of the consequences of the presentation of reproductive failures in sows is the economic losses in production because it alters the estimated values of the volume of production, decreasing the productivity of the farm. Porcine circovirosis by porcine circovirus 2 (PCV2) has been associated with reproductive disorders, and porcine parvovirus (PVP) is one of the pathological agents most related to the presentation of reproductive failure in pigs. In Colombia, there are reports of the presence of PCV2 through molecular techniques, and PVP through serum tests; however, in the department of Tolima, the prevalence of these two viruses is unknown. Objective In this study, the aim was to establish a report of the prevalence of viruses in five municipalities of the department of Tolima‐Colombia. Methods Blood samples from 150 breeding sows of five municipalities in Tolima, Colombia, were obtained. Quantitative polymerase chain reaction (qPCR) was used to detect the PCV2 and PVP virus in the blood samples followed by PCR and sequencing of 16 PCR products of the amplification of the cap gene of PCV2. A phylogenetic tree was constructed to identify the genotype of the PCV2 virus. Results The presence of PCV2d in sows was detected in 135 samples (90%), as well as the identification of PVP in 2.6% of the samples. In addition, the phylogenetic analysis showed that 16 isolates were the PCV2d2 genotype. Conclusion PCV2d and PVP were found to coinfect the females, and the identification of variability in regions in the predicted amino acid sequence of the PCV2 capsid may be associated with virus pathogenicity.
Collapse
Affiliation(s)
- Heinner F. Uribe‐García
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics University of Tolima Ibagué Colombia
| | - Rafael A. Suarez‐Mesa
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics University of Tolima Ibagué Colombia
| | - Iang S. Rondón‐Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics University of Tolima Ibagué Colombia
| |
Collapse
|
18
|
Pfuderer S, Bennett RM, Brown A, Collins LM. A flexible tool for the assessment of the economic cost of pig disease in growers and finishers at farm level. Prev Vet Med 2022; 208:105757. [PMID: 36179554 DOI: 10.1016/j.prevetmed.2022.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022]
Abstract
Pigmeat is the most consumed red meat globally and consumption is expected to continue to increase. The sector is faced by the risk of epidemic and endemic disease impacts and other adverse influences. The aim of this study was to develop a dynamic simulation model of pig growing and finishing that can be used to model the financial and economic impacts of a variety of scenarios both related to disease effects and other influences on production. The model consists of a physical performance module and financial performance module. The core of the physical performance module comprises three stocks to model the flow of pigs from purchase to slaughter. Mortality rates, daily live weight gain and feed conversion ratios influence the dynamics of the physical performance. Since contracts between farmers and slaughterhouses often include large price penalties for over- and underweight pigs, carcase weight distribution is an important determinant of revenues. The physical performance module, therefore, simulates slaughter weight variations. The financial performance module calculates revenue, costs and gross margins. The revenue calculations take into account price penalties for over- and underweight pigs. To demonstrate the capabilities of the model, we apply the model to assess the economic consequences of production impacts associated with respiratory disease. We use estimated production impacts associated with respiratory disease from a study of all-in-all out growing and finishing systems based on pig production data and information from slaughterhouse monitoring in the UK. Our model suggests a reduction in the gross margin of nearly 40 % as a consequence of the estimated production impacts associated with a 10% increase in respiratory disease prevalence. Due to the lack of reliable information on slaughter weight variation, we also simulate the model using different assumptions about the slaughter weight distribution. An increase in the standard deviation of carcase weights from 8 kg to 12 kg, holding average weights constant, more than halves gross margins under our scenarios. We suggest that for all-in-all-out systems, carcase weight variation is likely to be a substantial factor in reducing income in the presence of respiratory disease and the economic impact of respiratory disease may be underestimated if the effects of disease on variation in carcase weights are not included in any analysis.
Collapse
Affiliation(s)
| | | | - Anna Brown
- University of Reading, Whiteknights, Reading RG6 6EU, UK.
| | | |
Collapse
|
19
|
Ramon G, Legnardi M, Cecchinato M, Cazaban C, Tucciarone CM, Fiorentini L, Gambi L, Mato T, Berto G, Koutoulis K, Franzo G. Efficacy of live attenuated, vector and immune complex infectious bursal disease virus (IBDV) vaccines in preventing field strain bursa colonization: A European multicentric study. Front Vet Sci 2022; 9:978901. [PMID: 36172614 PMCID: PMC9510747 DOI: 10.3389/fvets.2022.978901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is among the most relevant and widespread immunosuppressive agents, which can severely damage poultry farming by causing direct losses, predisposing the host to secondary diseases and reducing the efficacy of vaccination protocols against other infections. IBDV has thus been the object of intense control activities, largely based on routine vaccination. However, the need for protecting animals from the infection in the first period of the production cycle, when the bursa susceptibility is higher, clashes with the blanketing effect of maternally derived antibodies. To overcome this issue, other strategies have been developed besides live attenuated vaccines, including vector vaccines and immune complex (icx) ones. The present study aims to investigate, in field conditions, the efficacy of these approaches in preventing IBDV infection in laying chickens vaccinated with either live attenuated, vector or immune complex (icx) vaccines. For this purpose, a multicentric study involving 481 farms located in 11 European countries was organized and IBDV infection diagnosis and strain characterization was performed at 6 weeks of age using a molecular approach. Vaccine strains were commonly detected in flocks vaccinated with live or icx vaccines. However, a significantly higher number of field strains (characterized as very virulent IBDVs) was detected in flocks vaccinated with vector vaccines, suggesting their lower capability of preventing bursal colonization. Different from vector vaccines, live and icx ones have a marked bursal tropism. It can thus be speculated that vaccine virus replication in these sites could limit vvIBDV replication by direct competition or because of a more effective activation of innate immunity. Although such different behavior doesn't necessarily affect clinical protection, further studies should be performed to evaluate if vvIBDV replication could still be associated with subclinical losses and/or for viral circulation in a “vaccinated environment” could drive viral evolution and favor the emergence of vaccine-escape variants.
Collapse
Affiliation(s)
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padova, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padova, Italy
| | | | | | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Forlì, Italy
| | - Lorenzo Gambi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Tamas Mato
- Scientific Support and Investigation Unit, Ceva-Phylaxia Co. Ltd., Ceva Animal Health, Budapest, Hungary
| | | | - Kostas Koutoulis
- Department of Poultry Diseases, Faculty of Veterinary Science, University of Thessaly, Trikalon, Greece
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padova, Italy
- *Correspondence: Giovanni Franzo
| |
Collapse
|
20
|
Gainor K, Castillo Fortuna Y, Alakkaparambil AS, González W, Malik YS, Ghosh S. Detection and Complete Genome Analysis of Porcine Circovirus 2 (PCV2) and an Unclassified CRESS DNA Virus from Diarrheic Pigs in the Dominican Republic: First Evidence for Predominance of PCV2d from the Caribbean Region. Viruses 2022; 14:v14081799. [PMID: 36016421 PMCID: PMC9415081 DOI: 10.3390/v14081799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
We report here high rates (47.5%, 48/101) of detection of porcine circovirus 2 (PCV2) in diarrheic pigs from three pig farms in the Dominican Republic. Seventeen of the PCV2 positive samples, representing the three pig farms, different age groups and sampling periods (2020–2021), were amplified for the complete PCV2 genome. Based on analysis of open reading frame 2 and complete genome sequences, the 17 PCV2 strains were assigned to the PCV2d genotype. Significant differences were observed in PCV2 detection rates between the vaccinated (20% (10/50)) and unvaccinated (62.5% (10/16) and 80% (28/35)) farms, corroborating previous observations that PCV2a-based vaccines confer protection against heterologous PCV2 genotypes. The present study is the first to report detection and molecular characterization of PCV2 from the Dominican Republic, warranting large-scale molecular epidemiological studies on PCV2 in pig farms and backyard systems across the country. For the first time, PCV2d was identified as the predominant PCV2 genotype in a study from the Caribbean region, suggesting that a genotype shift from PCV2b to PCV2d might be happening in the Caribbean region, which mirrored the current PCV2 genotype scenario in many other parts of the world. Besides PCV2, we also identified a pigeon circovirus-like virus, and a circular Replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA virus, which was characterized for the complete genome. The CRESS DNA virus shared a similar genomic organization and was related to unclassified CRESSV2 DNA viruses (belonging to the Order Cirlivirales) from porcine feces in Hungary, indicating that related unclassified CRESS DNA viruses are circulating among pigs in different geographical regions, warranting further studies on the epidemiology and biology of these novel viruses.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Yussaira Castillo Fortuna
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Angeline Steny Alakkaparambil
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Wendy González
- Epidemiological Surveillance Division, Dirección General de Ganadería, Santo Domingo 10410, Dominican Republic
- School of Veterinary Medicine, Faculty of Agronomic and Veterinary Sciences, Autonomous University of Santo Domingo, Calle Camino de Engombe 10904, Dominican Republic
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141012, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
- Correspondence: or ; Tel.: +1-(869)-4654161 (ext. 401-1202)
| |
Collapse
|
21
|
Pleguezuelos P, Sibila M, Cuadrado-Matías R, López-Jiménez R, Pérez D, Huerta E, Pérez M, Correa-Fiz F, Mancera-Gracia JC, Taylor LP, Borowski S, Saunders G, Segalés J, López-Soria S, Balasch M. Efficacy Studies of a Trivalent Vaccine Containing PCV-2a, PCV-2b Genotypes and Mycoplasma hyopneumoniae When Administered at 3 Days of Age and 3 Weeks Later against Porcine Circovirus 2 (PCV-2) Infection. Vaccines (Basel) 2022; 10:1234. [PMID: 36016122 PMCID: PMC9414577 DOI: 10.3390/vaccines10081234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Four studies under preclinical and clinical conditions were performed to evaluate the efficacy of a new trivalent vaccine against Porcine circovirus 2 (PCV-2) infection. The product contained inactivated PCV-1/PCV-2a (cPCV-2a) and PCV-1/PCV-2b (cPCV-2b) chimeras, plus M. hyopneumoniae inactivated cell-free antigens, which was administered to piglets in a two-dose regime at 3 days of age and 3 weeks later. The overall results of preclinical and clinical studies show a significant reduction in PCV-2 viraemia and faecal excretion, and lower histopathological lymphoid lesions and PCV-2 immunohistochemistry scores in vaccinated pigs when compared to non-vaccinated ones. Furthermore, in field trial A, a statistically significant reduction in the incidence of PCV-2-subclinical infection, an increase in body weight from 16 weeks of age to slaughterhouse and an average daily weight gain over the whole period (from 3 days of age to slaughterhouse) was detected in the vaccinated group when compared to the non-vaccinated one. Circulation of PCV-2a in field trial A, and PCV-2b plus PCV-2d in field trial B was confirmed by virus sequencing. In conclusion, a double immunization with a cPCV-2a/cPCV-2b/M. hyopneumoniae vaccine was efficacious against PCV-2 infection by reducing the number of histopathological lymphoid lesions and PCV-2 detection in tissues, serum, and faeces, as well as reducing losses in productive parameters.
Collapse
Affiliation(s)
- Patricia Pleguezuelos
- Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (M.S.); (R.C.-M.); (R.L.-J.); (D.P.); (E.H.); (M.P.); (F.C.-F.); (S.L.-S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain;
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (M.S.); (R.C.-M.); (R.L.-J.); (D.P.); (E.H.); (M.P.); (F.C.-F.); (S.L.-S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain;
| | - Raúl Cuadrado-Matías
- Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (M.S.); (R.C.-M.); (R.L.-J.); (D.P.); (E.H.); (M.P.); (F.C.-F.); (S.L.-S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain;
| | - Rosa López-Jiménez
- Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (M.S.); (R.C.-M.); (R.L.-J.); (D.P.); (E.H.); (M.P.); (F.C.-F.); (S.L.-S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain;
| | - Diego Pérez
- Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (M.S.); (R.C.-M.); (R.L.-J.); (D.P.); (E.H.); (M.P.); (F.C.-F.); (S.L.-S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain;
| | - Eva Huerta
- Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (M.S.); (R.C.-M.); (R.L.-J.); (D.P.); (E.H.); (M.P.); (F.C.-F.); (S.L.-S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain;
| | - Mónica Pérez
- Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (M.S.); (R.C.-M.); (R.L.-J.); (D.P.); (E.H.); (M.P.); (F.C.-F.); (S.L.-S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain;
| | - Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (M.S.); (R.C.-M.); (R.L.-J.); (D.P.); (E.H.); (M.P.); (F.C.-F.); (S.L.-S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain;
| | | | - Lucas P. Taylor
- Zoetis Inc., 333 Portage Street 300-504SW, Kalamazoo, MI 49007, USA;
| | - Stasia Borowski
- Zoetis Belgium S.A., 20 Mercuriusstraat, 1930 Zaventem, Belgium; (J.C.M.-G.); (S.B.); (G.S.)
| | - Gillian Saunders
- Zoetis Belgium S.A., 20 Mercuriusstraat, 1930 Zaventem, Belgium; (J.C.M.-G.); (S.B.); (G.S.)
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain;
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Zoetis Manufacturing & Research Spain S.L., Ctra Camprodon s/n Finca “La Riba”, 17813 Vall de Bianya, Girona, Spain;
| | - Sergio López-Soria
- Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (M.S.); (R.C.-M.); (R.L.-J.); (D.P.); (E.H.); (M.P.); (F.C.-F.); (S.L.-S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain;
| | - Mònica Balasch
- Zoetis Manufacturing & Research Spain S.L., Ctra Camprodon s/n Finca “La Riba”, 17813 Vall de Bianya, Girona, Spain;
| |
Collapse
|
22
|
Revisiting Porcine Circovirus Disease Diagnostic Criteria in the Current Porcine Circovirus 2 Epidemiological Context. Vet Sci 2022; 9:vetsci9030110. [PMID: 35324838 PMCID: PMC8953210 DOI: 10.3390/vetsci9030110] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Current knowledge on porcine circovirus diseases (PCVD) caused by Porcine circovirus 2 (PCV-2) includes the subclinical infection (PCV-2-SI), systemic (PCV-2-SD) and reproductive (PCV-2-RD) diseases, and porcine dermatitis and nephropathy syndrome (PDNS). Criteria to establish the diagnosis of these conditions have not changed over the years; thus, the triad composed by clinical signs, lesions and viral detection in lesions are still the hallmark for PCV-2-SD and PCV-2-RD. In contrast, PCV-2-SI diagnosis is not usually performed since this condition is perceived to be controlled by default through vaccination. PDNS is diagnosed by gross and histopathological findings, and PCV-2 detection is not recognized as a diagnostic criterion. Molecular biology methods as a proxy for PCVD diagnoses have been extensively used in the last decade, although these techniques should be mainly considered as monitoring tools rather than diagnostic ones. What has changed over the years is the epidemiological picture of PCV-2 through the massive use of vaccination, which allowed the decrease in infectious pressure paralleled with a decrease in overall herd immunity. Consequently, the need for establishing the diagnosis of PCVD has increased lately, especially in cases with a PCV-2-SD-like condition despite vaccination. Therefore, the objective of the present review is to update the current knowledge on diagnostic criteria for PCVDs and to contextualize the interest of using molecular biology methods in the overall picture of these diseases within variable epidemiological scenarios of PCV-2 infection.
Collapse
|
23
|
Molecular Detection and Genetic Characterization of Porcine Circovirus 2 (PCV-2) in Black-Backed Jackal (Lupulella mesomelas) in Namibia. Animals (Basel) 2022; 12:ani12050620. [PMID: 35268189 PMCID: PMC8909721 DOI: 10.3390/ani12050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the genus Circovirus have been identified in several host species. While initially considered host-specific, there is growing evidence of their presence in unexpected hosts. Porcine circovirus 2 (PCV-2) is no exception, having been reported in animals belonging to different orders, including carnivores. Recently, PCV-2 was detected in domestic pigs, warthogs and antelopes in Namibia. Considering the potential contact between these populations and wild carnivores, the presence of PCV-2 was investigated in 32 black-backed jackals (Lupulella mesomelas) shot between February and July 2021 as part of predator control operations in Namibia. Two lung lymph nodes tested positive for PCV-2 by PCR, confirming the broader-than-expected PCV-2 host tropism and the susceptibility of canids. Sequence analysis demonstrated a close association between the PCV-2s identified in the jackals and PCV-2b strains collected from South African domestic pigs. Although several hypotheses regarding the source of the jackal’s infection are proposed, further studies should be performed to properly assess how PCV-2 is acquired and maintained in the wild and its potential impact on wild and domestic species.
Collapse
|
24
|
Um H, Yang S, Oh T, Cho H, Park KH, Suh J, Chae C. A field efficacy trial of a trivalent vaccine containing porcine circovirus type 2a and 2b, and Mycoplasma hyopneumoniae in three herds. Vet Med Sci 2022; 8:578-590. [PMID: 34687172 PMCID: PMC8959324 DOI: 10.1002/vms3.657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This field trial was designed to evaluate the efficacy of a new trivalent vaccine containing porcine circovirus type 2a and 2b (PCV2a/b), and Mycoplasma hyopneumoniae at three independent locations. METHODS Three farms were selected based on their history of PCV2 and M. hyopneumoniae co-infection. Each farm housed a total of 60, 3-day-old pigs that were randomly allocated to one of three treatment groups. Pigs were administered the trivalent vaccine intramuscularly with either a 1.0 ml dose at 3 and 24 days of age or a 2.0 ml dose at 21 days of age in accordance with the manufacturer's recommendations. RESULTS Clinically, the average daily weight gain of the one-dose and two-dose vaccinated groups within all three farms was significantly higher (p < 0.05) than those of unvaccinated animals during the growing (70-112 days of age), finishing (112-175 days of age) and overall (3-175 days of age) stages of production. One-dose and two-dose vaccinated animals elicited neutralizing antibodies and interferon-γ-secreting cells (IFN-γ-SC), which reduced the amount of PCV2 in terms of blood load and reduced the severity of lymphoid lesions when compared with unvaccinated animals. Similarly, one-dose and two-dose vaccinated animals elicited IFN-γ-SC, which reduced the amount of M. hyopneumoniae in terms of laryngeal load and reduced the severity of lung lesions. CONCLUSIONS The intramuscular administration of either one or two doses of trivalent vaccine was not significantly different in any of the evaluated parameters. The results of field trial demonstrated that the trivalent vaccine was efficacious in the protection of swine herds where PCV2d and M. hyopneumoniae were in active circulation.
Collapse
Affiliation(s)
- Hyungmin Um
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guRepublic of Korea
| | - Siyeon Yang
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guRepublic of Korea
| | - Taehwan Oh
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guRepublic of Korea
| | - Hyejean Cho
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guRepublic of Korea
| | - Kee Hwan Park
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guRepublic of Korea
| | - Jeongmin Suh
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guRepublic of Korea
| | - Chanhee Chae
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guRepublic of Korea
| |
Collapse
|
25
|
de Sousa Moreira A, Santos-Silva S, Mega J, Palmeira JD, Torres RT, Mesquita JR. Epidemiology of Porcine Circovirus Type 2 Circulating in Wild Boars of Portugal during the 2018–2020 Hunting Seasons Suggests the Emergence of Genotype 2d. Animals (Basel) 2022; 12:ani12040451. [PMID: 35203158 PMCID: PMC8868319 DOI: 10.3390/ani12040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Porcine circovirus type 2 (PCV-2) is a swine disease associated with post-weaning multi-systemic wasting syndrome, which causes a high economic impact on animal production. Recently, new evidence has suggested the increasing circulation of the PCV-2d genotype. We screened wild boar stools collected from several districts across Portugal during the 2018–2020 hunting seasons, for PCV-2 and genetically characterized detected strains. From a total 76 stool samples of wild boar tested, two sequences were obtained, both of the PCV-2d genotype, showing the presence of this genotype in Portugal for the first time. Monitoring wild PCV-2 reservoirs is important for both veterinary public health and economic reasons. Abstract Porcine circovirus type 2 (PCV-2) is associated with several syndromes affecting swine, also known as porcine-circovirus-associated diseases, of which post-weaning multi-systemic wasting syndrome stands out due to its high economic impact on swine production. Recent data suggest the increasing circulation of the PCV-2d genotype in several countries worldwide. To provide updated data on PCV-2 genotypes currently circulating in swine in Portugal, we screened wild boar stools collected from several districts across Portugal, during the 2018–2020 hunting seasons, for PCV-2 and genetically characterized detected strains. From a total of 76 stool samples of wild boar tested by PCR for the partial PCV-2 ORF2 gene, two sequences were obtained (2/76; 2.6%, 95% confidence interval: 0.032–9.18). Bidirectional sequencing showed that the sequences were 100% identical and both of the PCV-2d genotype, showing for the first time the presence of this genotype in Portugal. Monitoring wild PCV-2 reservoirs is important for both veterinary public health and economic reasons, since PCV-2 infection has a strong economic impact on the swine industry.
Collapse
Affiliation(s)
- Alícia de Sousa Moreira
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (A.d.S.M.); (S.S.-S.); (J.M.)
| | - Sérgio Santos-Silva
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (A.d.S.M.); (S.S.-S.); (J.M.)
| | - João Mega
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (A.d.S.M.); (S.S.-S.); (J.M.)
| | - Josman D. Palmeira
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (J.D.P.); (R.T.T.)
| | - Rita T. Torres
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (J.D.P.); (R.T.T.)
| | - João R. Mesquita
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (A.d.S.M.); (S.S.-S.); (J.M.)
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-220-428-000
| |
Collapse
|
26
|
Turlewicz-Podbielska H, Augustyniak A, Pomorska-Mól M. Novel Porcine Circoviruses in View of Lessons Learned from Porcine Circovirus Type 2-Epidemiology and Threat to Pigs and Other Species. Viruses 2022; 14:v14020261. [PMID: 35215854 PMCID: PMC8877176 DOI: 10.3390/v14020261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/20/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) plays a key role in PCV2-associated disease (PCVAD) etiology and has yielded significant losses in the pig husbandry in the last 20 years. However, the impact of two recently described species of porcine circoviruses, PCV3 and PCV4, on the pork industry remains unknown. The presence of PCV3 has been associated with several clinical presentations in pigs. Reproductive failure and multisystemic inflammation have been reported most consistently. The clinical symptoms, anatomopathological changes and interaction with other pathogens during PCV3 infection in pigs indicate that PCV3 might be pathogenic for these animals and can cause economic losses in the swine industry similar to PCV2, which makes PCV3 worth including in the differential list as a cause of clinical disorders in reproductive swine herds. Moreover, subsequent studies indicate interspecies transmission and worldwide spreading of PCV3. To date, research related to PCV3 and PCV4 vaccine design is at early stage, and numerous aspects regarding immune response and virus characteristics remain unknown.
Collapse
|
27
|
Bai X, Plastow GS. Breeding for disease resilience: opportunities to manage polymicrobial challenge and improve commercial performance in the pig industry. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:6. [PMID: 35072100 PMCID: PMC8761052 DOI: 10.1186/s43170-022-00073-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/06/2022] [Indexed: 05/31/2023]
Abstract
Disease resilience, defined as an animal's ability to maintain productive performance in the face of infection, provides opportunities to manage the polymicrobial challenge common in pig production. Disease resilience can deliver a number of benefits, including more sustainable production as well as improved animal health and the potential for reduced antimicrobial use. However, little progress has been made to date in the application of disease resilience in breeding programs due to a number of factors, including (1) confusion around definitions of disease resilience and its component traits disease resistance and tolerance, and (2) the difficulty in characterizing such a complex trait consisting of multiple biological functions and dynamic elements of rates of response and recovery from infection. Accordingly, this review refines the definitions of disease resistance, tolerance, and resilience based on previous studies to help improve the understanding and application of these breeding goals and traits under different scenarios. We also describe and summarize results from a "natural disease challenge model" designed to provide inputs for selection of disease resilience. The next steps for managing polymicrobial challenges faced by the pig industry will include the development of large-scale multi-omics data, new phenotyping technologies, and mathematical and statistical methods adapted to these data. Genome editing to produce pigs resistant to major diseases may complement selection for disease resilience along with continued efforts in the more traditional areas of biosecurity, vaccination and treatment. Altogether genomic approaches provide exciting opportunities for the pig industry to overcome the challenges provided by hard-to-manage diseases as well as new environmental challenges associated with climate change.
Collapse
Affiliation(s)
- Xuechun Bai
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Graham S. Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
28
|
Ariyama N, Agüero B, Valdés V, Berrios F, Bucarey S, Mor S, Brito B, Neira V. Update of Genetic Diversity of Porcine Circovirus Type 2 in Chile Evidences the Emergence of PCV2d Genotype. Front Vet Sci 2022; 8:789491. [PMID: 34977221 PMCID: PMC8718606 DOI: 10.3389/fvets.2021.789491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
Porcine Circovirus 2 (PCV2) can cause multiple clinical conditions known as porcine circovirus-associated diseases (PCVAD). Before the wide availability of PCV2 vaccines, PCVAD resulted in significant losses to the global swine industry. PCV2's rapid evolutionary dynamics are comparable to single-stranded RNA viruses. Thus, shifts in the dominance and distribution of different genotypes may frequently occur, resulting in the emergence and spread of varying PCV2 genotypes and recombinant strains in swine. This study aims at identifying the PCV2 genotypes currently circulating in Chile. Seven hundred thirty-eight samples were obtained from 21 swine farms between 2020 and 2021. The samples were tested using PCR for species detection and genotyping. Sequencing and phylogenetic analyses were conducted in selected samples. PCV2 was detected in 26.9% of the PCR reactions and 67% of the sampled farms. The genotypes were determined in nine farms, PCV2a in one farm, PCV2b in four, and PCV2d in five, with PCV2b and PCV2d co-circulating in one farm. The phylogenetic analysis of twelve ORF2 sequences obtained (PCV2a = 5; PCV2b = 4; PCV2d = 3) showed a PCV2a Chilean strains monophyletic cluster; closely related to Chilean viruses collected in 2012 and 2013. Of the three different PCV2b sequenced viruses, two viruses were close to the root of the PCV2b group, whereas the remaining one grouped with a South Korean virus. PCV2d sequences were closely related to Asian viruses. A previously reported PCV2a/PCV2d recombinant strain was not detected in this study. Our results suggest the emergence and potential shift to PCV2d genotype in Chilean farms.
Collapse
Affiliation(s)
- Naomi Ariyama
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Belén Agüero
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Valentina Valdés
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Felipe Berrios
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sergio Bucarey
- Departamento de Ciencias Biológicas, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sunil Mor
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Barbara Brito
- The iThree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Victor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
First detection of porcine circovirus type 2e in Europe. Vet J 2022; 279:105787. [DOI: 10.1016/j.tvjl.2022.105787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 11/19/2022]
|
30
|
Ning Y, Wei L, Lin S, Jiang Y, Wang N, Xiao L. Dissection the endocytic routes of viral capsid proteins-coated upconversion nanoparticles by single-particle tracking. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Franzo G, Settypalli TBK, Agusi ER, Meseko C, Minoungou G, Ouoba BL, Habibata ZL, Wade A, de Barros JL, Tshilenge CG, Gelaye E, Yami M, Gizaw D, Chibssa TR, Anahory IV, Mapaco LP, Achá SJ, Ijomanta J, Jambol AR, Adedeji AJ, Luka PD, Shamaki D, Diop M, Bakhoum MT, Lo MM, Chang'a JS, Magidanga B, Mayenga C, Ziba MW, Dautu G, Masembe C, Achenbach J, Molini U, Cattoli G, Lamien CE, Dundon WG. Porcine circovirus-2 in Africa: Identification of continent-specific clusters and evidence of independent viral introductions from Europe, North America and Asia. Transbound Emerg Dis 2021; 69:e1142-e1152. [PMID: 34812571 DOI: 10.1111/tbed.14400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/16/2023]
Abstract
Porcine circovirus-2 (PCV-2) is associated with several disease syndromes in domestic pigs that have a significant impact on global pig production and health. Currently, little is known about the status of PCV-2 in Africa. In this study, a total of 408 archived DNA samples collected from pigs in Burkina Faso, Cameroon, Cape Verde, Ethiopia, the Democratic Republic of the Congo, Mozambique, Nigeria, Senegal, Tanzania and Zambia between 2000 and 2018 were screened by PCR for the presence of PCV-2. Positive amplicons of the gene encoding the viral capsid protein (ORF2) were sequenced to determine the genotypes circulating in each country. Four of the nine currently known genotypes of PCV-2 were identified (i.e. PCV-2a, PCV-2b, PCV-2d and PCV-2 g) with more than one genotype being identified in Burkina Faso, Ethiopia, Nigeria, Mozambique, Senegal and Zambia. Additionally, a phylogeographic analysis which included 38 additional ORF2 gene sequences of PCV-2s previously identified in Mozambique, Namibia and South Africa from 2014 to 2016 and 2019 to 2020 and available in public databases, demonstrated the existence of several African-specific clusters and estimated the approximate time of introduction of PCV-2s into Africa from other continents. This is the first in-depth study of PCV-2 in Africa and it has important implications for pig production at both the small-holder and commercial farm level on the continent.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Tirumala B K Settypalli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | | - Clement Meseko
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | | | | | | | - Abel Wade
- National Veterinary Laboratory (LANAVET), Garoua, Cameroon
| | - José Luís de Barros
- Direction Génerale de l`Agriculture, Sylviculture et Élèvage, Direction des Services Vétérinaires, Cape Verde
| | | | - Esayas Gelaye
- National Veterinary Institute (NVI), Debre Zeit, Ethiopia
| | - Martha Yami
- National Veterinary Institute (NVI), Debre Zeit, Ethiopia
| | - Daniel Gizaw
- National Animal Health Diagnostic and Investigation Center (NAHDIC), Sebeta, Ethiopia
| | | | - Iolanda Vieira Anahory
- Directorate of Animal Science, Central Veterinary Laboratory, Agrarian Research Institute of Mozambique, Maputo, Mozambique
| | - Lourenço P Mapaco
- Directorate of Animal Science, Central Veterinary Laboratory, Agrarian Research Institute of Mozambique, Maputo, Mozambique
| | - Sara J Achá
- Directorate of Animal Science, Central Veterinary Laboratory, Agrarian Research Institute of Mozambique, Maputo, Mozambique
| | | | | | | | - Pam Dachung Luka
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - David Shamaki
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Mariame Diop
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | - Mame Thierno Bakhoum
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | - Modou Moustapha Lo
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | - Jelly S Chang'a
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dares Salaam, Tanzania
| | - Bishop Magidanga
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dares Salaam, Tanzania
| | - Charles Mayenga
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dares Salaam, Tanzania
| | - Maureen Wakwamba Ziba
- Department of Veterinary Services Ministry of Fisheries and Livestock, Central Veterinary Research Institute, Lusaka, Zambia
| | - George Dautu
- Department of Veterinary Services Ministry of Fisheries and Livestock, Central Veterinary Research Institute, Lusaka, Zambia
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | | | - Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia.,Central Veterinary Laboratory (CVL), Windhoek, Namibia
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Charles E Lamien
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - William G Dundon
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
32
|
Lee SI, Jeong CG, Ul Salam Mattoo S, Nazki S, Prasad Aganja R, Kim SC, Khatun A, Oh Y, Noh SH, Lee SM, Kim WI. Protective immunity induced by concurrent intradermal injection of porcine circovirus type 2 and Mycoplasma hyopneumoniae inactivated vaccines in pigs. Vaccine 2021; 39:6691-6699. [PMID: 34538524 DOI: 10.1016/j.vaccine.2021.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022]
Abstract
Vaccines against porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (Mhp) are routinely used by intramuscular injection. However, since intramuscular vaccination causes stress and increases the risk of cross-contamination among pigs, research on intradermal vaccination is currently being actively conducted. This study was designed to evaluate the efficacy of intradermally administered inactivated vaccines against PCV2 and Mhp in pigs. Three-week-old specific pathogen-free pigs were divided into three groups (5 pigs per group). Pigs in the two groups were intradermally vaccinated with the PCV2 or Mhp vaccine using a needle-free injector. Pigs in the third group were kept as nonvaccinated controls. At 21 days post-vaccination, pigs in one of these vaccinated groups and the nonvaccinated group were intranasally challenged with PCV2b and Mhp, while the other vaccinated group pigs were maintained as vaccine controls. Vaccine efficacy was evaluated by observing weight gain, pathogen load, pathological changes, and humoral or cellular immune responses. As a result, vaccinated pigs revealed significantly higher body weight gain, with lower clinical scores. Vaccinated pigs also showed higher antibody responses but lower PCV2b or Mhp loads in sera, nasal swabs, or lungs than nonvaccinated pigs. Intriguingly, vaccinated pigs upregulated cytotoxic T cells (CTLs), helper T type 1 cells (Th1 cells), and helper T type 17 cells (Th17 cells) after immunization and showed significantly higher levels of CTLs, Th1 and Th17 cells at 14 days post-challenge than nonvaccinated and challenged pigs. This study demonstrated that protective immune responses against PCV2 and Mhp could be efficiently induced in pigs using a relatively small volume of intradermal vaccines, probably due to effective antigen delivery to antigen-presenting cells in the dermis.
Collapse
Affiliation(s)
- Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| | | | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea; The Pirbright Institute, Ash Road, Pirbright-GU24 0NF, Woking, United Kingdom.
| | - Ram Prasad Aganja
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea.
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| | - Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea; Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Yeonsu Oh
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sang-Hyun Noh
- MSD Animal Health Korea Ltd., Seoul 04637, Republic of Korea.
| | - Sang-Myeong Lee
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| |
Collapse
|
33
|
Lo Verso L, Dumont K, Lessard M, Lauzon K, Provost C, Gagnon CA, Chorfi Y, Guay F. The administration of diets contaminated with low to intermediate doses of deoxynivalenol and supplemented with antioxidants and binding agents slightly affects the growth, antioxidant status, and vaccine response in weanling pigs. J Anim Sci 2021; 99:skab238. [PMID: 34406414 PMCID: PMC8420677 DOI: 10.1093/jas/skab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to evaluate the impact of grading levels of deoxynivalenol (DON) in the diet of weaned pigs, as well as the effects of a supplementation with antioxidants (AOX), hydrated sodium calcium aluminosilicates (HSCAS), and their combination on the growth, AOX status, and immune and vaccine responses against the porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2). At weaning, 336 piglets were allocated to six dietary treatments according to a randomized complete block design. Treatments were as follows: basal diet (CTRL); basal diet containing DON at 1.2 mg/kg (DON1.2); basal diet containing DON at 2.4 mg/kg (DON2.4); DON2.4 diet + a mix of AOX which included vitamins A and E at 20,000 IU and 200 IU/kg feed respectively, selenized yeast at 0.3 mg/kg, and a grape seed extracts at 100 mg/kg feed (DON2.4 + AOX); DON2.4 diet + the mix of AOX and the modified HSCAS mentioned above (DON2.4 + AOX + HSCAS); DON2.4 + AOX + HSCAS. Pigs were vaccinated against PRRSV and PCV2 at 7 d; on 0, 14, and 35 d, growth performance was recorded, and blood samples were collected in order to evaluate the oxidative status, inflammatory blood markers, lymphocyte blastogenic response, and vaccine antibody response. Increasing intake of DON resulted in a quadratic effect at 35 d in the lymphocyte proliferative response to concanavalin A and PCV2 as well as in the anti-PRRSV antibody response, whereas the catalase activity decreased in DON2.4 pigs compared with the CTRL and DON1.2 groups (P ≤ 0.05). Compared with the DON2.4 diet, the AOX supplementation slightly reduced gain to feed ratio (P = 0.026) and increased the ferric reducing ability of plasma as well as α-tocopherol concentration (P < 0.05), whereas the association of AOX + HSCAS increased the anti-PRRSV IgG (P < 0.05). Furthermore, the HSCAS supplement reduced haptoglobin levels in serum at 14 d compared with the DON2.4 group; however, its concentration decreased in all the experimental treatments from 14 to 35 d and particularly in the DON2.4 + AOX pigs, whereas a different trend was evidenced in the DON2.4 + HSCAS group, where over the same period haptoglobin concentration increased (P < 0.05). Overall, our results show that the addition of AOX and HSCAS in the diet may alleviate the negative effects due to DON contamination on the AOX status and immune response of vaccinated weanling pigs.
Collapse
Affiliation(s)
- Luca Lo Verso
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
| | - Kristina Dumont
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
| | - Martin Lessard
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Sherbrooke R & D Center, Agriculture and Agri-Food Canada (AAFC), Sherbrooke, QC J1M 0C8, Canada
| | - Karoline Lauzon
- Sherbrooke R & D Center, Agriculture and Agri-Food Canada (AAFC), Sherbrooke, QC J1M 0C8, Canada
| | - Chantale Provost
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Carl A Gagnon
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Younes Chorfi
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Frédéric Guay
- Department of Animal Science, Laval University, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
34
|
Kang SJ, Park IB, Chun T. Open reading frame 5 protein of porcine circovirus type 2 induces RNF128 (GRAIL) which inhibits mRNA transcription of interferon-β in porcine epithelial cells. Res Vet Sci 2021; 140:79-82. [PMID: 34416463 DOI: 10.1016/j.rvsc.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
A previous study has indicated that mRNA transcript of Rnf128 (Grail) is significantly increased in porcine epithelial cells expressing porcine circovirus type 2 (PCV2) open reading frame 5 (ORF5). RNF128 is an E3 ubiquitin ligase that can modulate the activity of target protein via ubiquitination of specific lysine residues. However, the function of RNF128 in PCV2-infected epithelial cells has not been well studied yet. Thus, the objective of the present study was to examine the functional role of RNF128 in porcine epithelial cells (PK15 cells) after PCV2 infection. Results clearly indicated that PCV2 ORF5 increased the expression of RNF128 which inhibited type I IFN production and enhanced viral replication of PCV2 in PK15 cells. Therefore, up-regulating RNF128 by PCV2 ORF5 can help PCV2 circumvent initial immune surveillance of porcine epithelial cells.
Collapse
Affiliation(s)
- Seok-Jin Kang
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In-Byung Park
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
35
|
Genotyping of Porcine Circovirus 2 (PCV-2) in Vaccinated Pigs Suffering from PCV-2-Systemic Disease between 2009 and 2020 in Spain. Pathogens 2021; 10:pathogens10081016. [PMID: 34451480 PMCID: PMC8402084 DOI: 10.3390/pathogens10081016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Vaccination against porcine circovirus 2 (PCV-2) is a common practice all over the world. Vaccines can prevent PCV-2-systemic disease (PCV-2-SD) outbreaks but not PCV-2 infection, which can be detectable in a percentage of vaccinated animals. Occasionally, PCV-2-SD is diagnosed in vaccinated farms. The objective of this study was to genotype the PCV-2 strains detected in vaccinated animals diagnosed with PCV-2-SD. Additionally, the evolution of the frequency of PCV-2 genotype detection at Spanish, European, and world levels was assessed. Fifty cases diagnosed as PCV-2-SD between 2009 and 2020 were included in this study. PCV-2 genotype was determined by sequencing the Cap gene region. Among them, only PCV-2b (23/50, 46%) and PCV-2d (27/50, 54%) genotypes were detected. Although the frequency of detection of these two genotypes was similar, their temporal distribution was different. Whereas most PCV-2b sequences (17/23, 74%) were detected between 2009 and 2012, PCV-2d sequences were obtained from 2013 to 2020. Indeed, a predominance of the PCV-2d genotype was observed from 2013 onwards, a trend also noticed at European and world levels. The results suggest that detection of particular genotypes in vaccinated animals probably reflects the general prevalence of the genotypes over time rather than genotype-specific vaccine-immunity escaping.
Collapse
|
36
|
Park Y, Min K, Kim NH, Kim JH, Park M, Kang H, Sohn EJ, Lee S. Porcine circovirus 2 capsid protein produced in N. benthamiana forms virus-like particles that elicit production of virus-neutralizing antibodies in guinea pigs. N Biotechnol 2021; 63:29-36. [PMID: 33667631 DOI: 10.1016/j.nbt.2021.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Porcine circovirus type 2 (PCV2) is a non-enveloped, icosahedral virus of the Circoviridae family, with a small, circular, single-stranded DNA genome. PCV2 infections cause substantial economic losses in the pig industry worldwide. Currently, commercially produced PCV2 vaccines are expensive, whereas plant-based expression systems can produce recombinant proteins at low cost for use as vaccines. In this study, recombinant PCV2 capsid protein (rCap) was transiently expressed in Nicotiana benthamiana and purified by metal affinity chromatography, with a yield of 102 mg from 1 kg plant leaves. Electron microscopy confirmed that purified rCap self-assembled into virus-like particles (VLPs) at neutral pH. It was shown to provoke a strong immune response in guinea pigs. The results indicate that plant systems can enable production of large amounts of proteins to serve as candidates for subunit vaccines.
Collapse
Affiliation(s)
- Youngmin Park
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang, 37668, Republic of Korea
| | - Kyungmin Min
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang, 37668, Republic of Korea
| | - Nam Hyung Kim
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang, 37668, Republic of Korea
| | - Ji-Hwan Kim
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang, 37668, Republic of Korea
| | - Minhee Park
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang, 37668, Republic of Korea
| | - Hyangju Kang
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang, 37668, Republic of Korea
| | - Eun-Ju Sohn
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang, 37668, Republic of Korea
| | - Sangmin Lee
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang, 37668, Republic of Korea.
| |
Collapse
|
37
|
Pleguezuelos P, Sibila M, Cuadrado R, López-Jiménez R, Pérez D, Huerta E, Llorens AM, Núñez JI, Segalés J, López-Soria S. Exploratory field study on the effects of porcine circovirus 2 (PCV-2) sow vaccination at different physiological stages mimicking blanket vaccination. Porcine Health Manag 2021; 7:35. [PMID: 33902747 PMCID: PMC8077688 DOI: 10.1186/s40813-021-00213-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023] Open
Abstract
Background The objective of the present study was to explore the benefits of Porcine circovirus 2 (PCV-2) blanket vaccination in a sow herd on productive parameters, PCV-2 infection and immune status in sows and their progeny. For this purpose, 288 sows were distributed among four balanced experimental groups. One group remained as negative control group and the other three received 1 mL of PCV-2 Ingelvac Circoflex® intramuscularly at different productive cycle moments: before mating, mid gestation (42–49 days post-insemination) or late gestation (86–93 days post-insemination); phosphate buffered saline (PBS) was used as negative control item. Reproductive parameters from sows during gestation and body weight of their progeny from birth to weaning were recorded. Additionally, blood was collected from sows at each vaccination time and piglets at 3 weeks of age. Moreover, up to 4 placental umbilical cords (PUC) per sow were taken at peri-partum. Sera from sows and piglets were analysed for PCV-2 antibody detection using an enzyme-linked immunosorbent assay (ELISA). Sera from sows and PUC were tested to quantify viraemia using a real time quantitative polymerase chain reaction (qPCR) assay. Results Globally, results indicated that vaccinated sows showed heavier piglets at birth and at weaning, less cross-fostered piglets, lower viral load at farrowing as well as in PUC, and higher antibody levels at farrowing, compared to non-vaccinated ones. When all groups were compared among them, sows vaccinated at mid or late gestation had heavier piglets at birth than non-vaccinated sows, and lower proportion of PCV-2 positive PUC. Also, cross-fostering was less frequently practiced in sows vaccinated at pre-mating or mid gestation compared to non-vaccinated ones. Conclusions In conclusion, the present study points out that PCV-2 sow vaccination at different time points of their physiological status (mimicking blanket vaccination) offers benefits at production and serological and virological levels. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-021-00213-2.
Collapse
Affiliation(s)
- Patricia Pleguezuelos
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain.
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Raúl Cuadrado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Rosa López-Jiménez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Diego Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Eva Huerta
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Anna M Llorens
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - José Ignacio Núñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Spain
| | - Sergio López-Soria
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| |
Collapse
|
38
|
Yang S, Ahn Y, Oh T, Cho H, Park KH, Chae C. Field evaluation of a sing-dose bivalent vaccine of porcine circovirus type 2b and Mycoplasma hyopneumoniae. Vet Med Sci 2021; 7:755-765. [PMID: 33386664 PMCID: PMC8136929 DOI: 10.1002/vms3.420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The field efficacy of a bivalent vaccine containing porcine circovirus type 2b (PCV2b) and Mycoplasma hyopneumoniae was evaluated on three pig farms. METHODS Three pig farms were used, two of which had a history of subclinical PCV2 and clinical M. hyopneumoniae infections between 84 and 126 days of age while concurrent porcine circovirus-associated disease and clinical M. hyopneumoniae infection between 70 and 105 days of age. Each farm vaccinated pigs with a single dose of a bivalent vaccine at 10 days of age while unvaccinated pigs were administered a single dose of phosphate buffered-saline at the same age. RESULTS Vaccination improved growth performance and reduced clinical scores significantly (p < .05) when compared with unvaccinated animals. The amount of PCV2d loads in blood and M. hyopneumoniae loads in nasal swabs of vaccinated animals were also significantly lower (p < .05) when compared with unvaccinated animals. Immunologically, vaccinated groups elicited a significantly higher (p < .05) level of protective immunity against PCV2d such as neutralizing antibodies and interferon-γ secreting cells (IFN-γ-SC), as well as protective immunity against M. hyopneumoniae such as IFN-γ-SC when compared with unvaccinated animals. Pathologically, vaccination significantly lowered (p < .05) the scores of M. hyopneumoniae-induced pneumonia and PCV2-associated lymphoid lesions when compared with unvaccinated animals. CONCLUSIONS The evaluated bivalent vaccine provided good protection against PCV2d and M. hyopneumoniae infection under field conditions.
Collapse
Affiliation(s)
- Siyeon Yang
- College of Veterinary Medicine, Department of Veterinary Pathology, Seoul National University, Seoul, Republic of Korea
| | - Yongjun Ahn
- College of Veterinary Medicine, Department of Veterinary Pathology, Seoul National University, Seoul, Republic of Korea
| | - Taehwan Oh
- College of Veterinary Medicine, Department of Veterinary Pathology, Seoul National University, Seoul, Republic of Korea
| | - Hyejean Cho
- College of Veterinary Medicine, Department of Veterinary Pathology, Seoul National University, Seoul, Republic of Korea
| | - Kee Hwan Park
- College of Veterinary Medicine, Department of Veterinary Pathology, Seoul National University, Seoul, Republic of Korea
| | - Chanhee Chae
- College of Veterinary Medicine, Department of Veterinary Pathology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Nath BK, Das S, Roby JA, Sarker S, Luque D, Raidal SR, Forwood JK. Structural Perspectives of Beak and Feather Disease Virus and Porcine Circovirus Proteins. Viral Immunol 2020; 34:49-59. [PMID: 33275868 DOI: 10.1089/vim.2020.0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circoviruses represent a rapidly expanding group of viruses that infect both vertebrate and invertebrate hosts. Members are responsible for diseases of veterinary and economic importance, including postweaning multisystemic wasting syndrome in pigs, and beak and feather disease (BFD) in birds. These viruses are associated with lymphoid depletion and immunosuppressive conditions in infected animals leading to systemic illness. Circoviruses are small nonenveloped DNA viruses containing a single-stranded circular genome, encoding two major proteins: the capsid-associated protein (Cap), comprising the entirety of the viral capsid, and the replication-associated protein (Rep). Cap is the only protein component of the virion and plays crucial roles throughout the virus replication cycle, including viral attachment, cell entry, genome uncoating, and packaging of newly formed viral particles. Rep mediates recognition of replication origin motifs in the viral genome sequence and is responsible for endonuclease activity enabling nicking of the circular DNA and initiation of rolling-circle replication (RCR). Porcine circovirus 2 (PCV2) was the first circovirus capsid structure to be solved at atomic resolution using X-ray crystallography. The structure revealed an assembly comprising 60 monomeric subunits to form virus-like particles. Each Cap monomer harbors a canonical viral jelly roll domain composed of two, four-stranded antiparallel β-sheets. Crystal structures of two distinct macromolecular assemblies from BFD virus Cap were also resolved at high resolution. In these structures, the exposure of the N-terminal arginine-rich motif, responsible for DNA binding and nuclear localization is reversed. Additional structural investigations have also elucidated a PCV2 type-specific neutralizing epitope, and interaction between the PCV2 capsid and polymers such as heparin. In this review, we provide a snapshot of the structural and functional aspects of circovirus proteins.
Collapse
Affiliation(s)
- Babu Kanti Nath
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Justin A Roby
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Daniel Luque
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Madrid, Spain
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
40
|
Frequency of Detection and Phylogenetic Analysis of Porcine circovirus 3 (PCV-3) in Healthy Primiparous and Multiparous Sows and Their Mummified Fetuses and Stillborn. Pathogens 2020; 9:pathogens9070533. [PMID: 32630733 PMCID: PMC7399965 DOI: 10.3390/pathogens9070533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023] Open
Abstract
Porcine circovirus 3 (PCV-3) has been suggested as a putative causal agent of swine reproductive disease. A number of different studies have pointed out this association, but there is still a lack of information regarding the normal rates of PCV-3 infection in farms with normal reproductive parameters. The objective of the present study was to assess the frequency of PCV-3 detection in primiparous and multiparous sows and in tissues from their respective fetuses from farms with average reproductive parameters. Sera from 57 primiparous and 64 multiparous sows from 3 different farms were collected at two time points. Brain and lung tissues from 49 mummies and 206 stillborn were collected at farrowing. Samples were tested by PCR, and when positive, quantified by quantitative PCR. Thirty-nine complete genomes were obtained and phylogenetically analyzed. All sera from multiparous sows were negative, while 19/57 (33.3%) primiparous sows were PCV-3 PCR positive. From the 255 tested fetuses, 86 (33.7%) had at least one tissue positive to PCV-3. The frequency of detection in fetuses from primiparous sows (73/91, 80.2%) was significantly higher than those from multiparous ones (13/164, 7.9%). It can be concluded that PCV-3 is able to cause intrauterine infections in absence of overt reproductive disorders.
Collapse
|
41
|
Varela APM, Loiko MR, Andrade JDS, Tochetto C, Cibulski SP, Lima DA, Weber MN, Roehe PM, Mayer FQ. Complete genome characterization of porcine circovirus 3 recovered from wild boars in Southern Brazil. Transbound Emerg Dis 2020; 68:240-247. [PMID: 32530113 DOI: 10.1111/tbed.13679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/07/2020] [Accepted: 06/05/2020] [Indexed: 02/03/2023]
Abstract
In the present study, the complete nucleotide sequence of porcine circovirus 3 (PCV3) recovered from wild boars lymph nodes is described. The full genome was named PCV3-wb/Br/RS and comprises 2,000 nucleotides with two open reading frames (ORFs) with a stem-loop motif in intergenic region. The ORFs are oriented in opposite directions and encode the putative capsid (Cap) and replicase (Rep) proteins. Based on amino acid motif analysis, PCV3-wb/Br/RS as well as most of the sequences from wild boars are classified as PCV3b. Phylogenetic analysis including 97 PCV3 sequences available in databases showed that the PCV3-wb/Br/RS genome is more closely related to genomes recovered in Spain, China, Germany and Denmark. Phylogenetic inferences among PCV3-wb/Br/RS and other circoviruses confirmed that these seem to have a most recent common ancestor with bat-associated circoviruses. In addition, PCV3 infection was investigated by real-time PCR in a cohort of 80 wild boars in Southern Brazil. A total of 29 animals (36.3%) were PCV3-positive leading the conclusion that PCV3 is circulating in the wild boar population in Southern Brazil. The role played by PCV3-like infections in wild boars and the risk these could pose to commercial swine production within that region remains to be further investigated.
Collapse
Affiliation(s)
- Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Márcia Regina Loiko
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliana da Silva Andrade
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Caroline Tochetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Paulo Cibulski
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diane Alves Lima
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Matheus Nunes Weber
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| |
Collapse
|
42
|
Opriessnig T, Karuppannan AK, Castro AMMG, Xiao CT. Porcine circoviruses: current status, knowledge gaps and challenges. Virus Res 2020; 286:198044. [PMID: 32502553 DOI: 10.1016/j.virusres.2020.198044] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Circoviruses (CV) include some of the smallest viruses known. They were named after their circularly arranged single-stranded DNA genome with a gene encoding a conserved replicase protein on the sense strand. Circoviruses are widely distributed in mammals, fish, avian species and even insects. In pigs, four different CVs have been identified and named with consecutive numbers based on the order of their discovery: Porcine circovirus 1 (PCV1), Porcine circovirus 2 (PCV2), Porcine circovirus 3 (PCV3) and most recently Porcine circovirus 4 (PCV4). PCVs are ubiquitous in global pig populations and uninfected herds are rarely found. It is generally accepted that PCV1 is non-pathogenic. In contrast, PCV2 is considered an important, economically challenging pathogen on a global scale with comprehensive vaccination schemes in place. The role of PCV3 is still controversial several years after its discovery. Propagation of PCV3 appears to be challenging and only one successful experimental infection model has been published to date. Similarly to PCV2, PCV3 is widespread and found in many pigs regardless of their health history, including high health herds. PCV4 has only recently been discovered and further information on this virus is required to understand its potential impact. This review summarizes current knowledge on CVs in pigs and aims to contrast and compare known facts on PCVs.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
| | - Anbu K Karuppannan
- Vaccine Research Centre-Viral Vaccines, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - Chao-Ting Xiao
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
43
|
Sibila M, Guevara G, Cuadrado R, Pleguezuelos P, Pérez D, Pérez de Rozas A, Huerta E, Llorens A, Valero O, Pérez M, López C, Krejci R, Segalés J. Comparison of Mycoplasma hyopneumoniae and porcine circovirus 2 commercial vaccines efficacy when applied separate or combined under experimental conditions. Porcine Health Manag 2020; 6:11. [PMID: 32391165 PMCID: PMC7197127 DOI: 10.1186/s40813-020-00148-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Mycoplasma hyopneumoniae (Mhyo) and Porcine circovirus 2 (PCV-2) are two of the most significant infectious agents causing economic losses in the weaning to slaughter period. Due to their similar vaccination age, the objective of this study was to assess the efficacy of two already existing Mhyo (Hyogen®) and PCV-2 (Circovac®) vaccines when administered separately or combined (RTM) by means of Mhyo or PCV-2 experimental challenges. Results Seven groups of animals were included in the study, being three of them challenged with PCV-2, three with Mhyo and one composed of non-challenged, non-vaccinated pigs. Within each experimental challenge, non-vaccinated (NV) groups were compared with double vaccinated groups using the commercial products separated (VS) or combined (VC). Both vaccinated groups showed significant differences for most parameters measured regarding PCV-2 (serology, percentage of infected animals and viral load in tissues) and Mhyo (serology and gross lesions) when compared to NV groups. VS and VC offered similar results, being only significantly different the PCV-2 antibody values at different time points (higher in the VS group) of the study, although not at the termination day (21 days post-PCV-2 inoculation). Conclusion The present study expands the knowledge on the possibility of using two separate Mhyo and PCV-2 commercial vaccines as a RTM product, which offered equivalent virological, immunological and pathological outcomes as compared to these vaccines when used by separate.
Collapse
Affiliation(s)
- M Sibila
- 1IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - G Guevara
- 1IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - R Cuadrado
- 1IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - P Pleguezuelos
- 1IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - D Pérez
- 1IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - A Pérez de Rozas
- 1IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - E Huerta
- 1IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - A Llorens
- 1IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - O Valero
- 3Servei d'Estadística Aplicada, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - M Pérez
- 1IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - C López
- 1IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,4Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - R Krejci
- 5Ceva, La Ballastiere-BP, 126, 33501 Libourne Cedex, France
| | - J Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,4Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.,6UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
44
|
The Carboxyl Terminus of the Porcine Circovirus Type 2 Capsid Protein Is Critical to Virus-Like Particle Assembly, Cell Entry, and Propagation. J Virol 2020; 94:JVI.00042-20. [PMID: 32075927 DOI: 10.1128/jvi.00042-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
The capsid protein (Cap) is the sole structural protein and the main antigen of porcine circovirus type 2 (PCV2). Structural loops of the Cap play crucial roles in viral genome packaging, capsid assembly, and virus-host interactions. Although the molecular mechanisms are yet unknown, the carboxyl terminus (CT) of the PCV2 Cap is known to play critical roles in the evolution, pathogenesis, and proliferation of this virus. In this study, we investigated functions of CT. Removal of this loop leads to abrogation of the in vitro Cap self-assembly into virus-like particles (VLPs). Likewise, the mutated virus resists rescue from PK15 cell culture. A conserved PXXP motif in the CT is dispensable for VLP assembly and subsequent cell entry. However, its removal leads to the subsequent failure of virus rescued from PK15 cells. Furthermore, substituting either the PCV1 counterpart or an AXXA for the PXXP motif still supports virus rescue from cell culture but results in a dramatic decrease in viral titers compared with wild type. In particular, a strictly conserved residue (227K) in the CT is essential for VLP entry into PK15 cells, and its mutation to alanine greatly attenuates cell entry of the VLPs, supporting a mechanism for the failure to rescue a mutated PCV2 infectious DNA clone (K227A) from PK15 cell culture. These results suggest the CT of the PCV2 Cap plays critical roles in virus assembly, viral-host cell interaction(s), and virus propagation in vitro IMPORTANCE The carboxyl terminus (CT) of porcine circovirus type 2 (PCV2) capsid protein (Cap) was previously reported to be associated with immunorecognition, alterations of viral titer in swine sera, and pathogenicity. However, the molecular mechanisms underlying these effects remain unknown. In this study, roles of the critical residues and motifs of the CT are investigated with respect to virus-like particle (VLP) assembly, cell entry, and viral proliferation. The results revealed that the positively charged 227K of the CT is essential for both cell entry of PCV2 VLPs and virus proliferation. Our findings, therefore, suggest that the CT should be considered one of the key epitopes, recognized by neutralizing antibodies, for vaccine design and a target for drug development to prevent PCV2-associated diseases (PCVADs). Furthermore, it is important to respect the function of 227K for its role in cell entry if using either PCV2 VLPs for nanoscale DNA/drug cell delivery or using PCV2 VLPs to display a variety of foreign epitopes for immunization.
Collapse
|
45
|
Liu G, Qiao X, Chang C, Hua T, Wang J, Tang B, Zhang D. Reduction of Postweaning Multisystemic Wasting Syndrome-Associated Clinical Symptoms by Virus-Like Particle Vaccine Against Porcine Parvovirus and Porcine Circovirus Type 2. Viral Immunol 2020; 33:444-456. [PMID: 32255758 DOI: 10.1089/vim.2019.0201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The porcine circovirus type 2 (PCV2) capsid (Cap) protein and porcine parvovirus (PPV) VP2 protein have been studied in vaccines to control postweaning multisystemic wasting syndrome (PMWS). Virus-like particle (VLP) vaccines are nonreplicative vectors that deliver epitopes and induce immune responses. However, most VLP vaccines are recombinant proteins expressed in eukaryotic systems and are expensive and complex. In this study, the full-length PCV2-Cap and PPV-VP2 proteins were expressed in Escherichia coli, which self-assembled into VLPs. The highly soluble proteins were purified using Ni-chelating affinity chromatography. The proteins self-assembled into VLPs of ∼20 nm (Cap VLP) and 25 nm (VP2 VLP) in diameter. The immunogenicities of Cap VLP and VP2 VLP were determined in piglets coinfected with PPV and PCV2 postimmunization. The results suggested that Cap VLP and VP2 VLP did not antagonize each other. The combined vaccine induced stronger humoral and cellular immune responses and provided the best protection against PPV and PCV2 coinfection. On a farm containing PMWS-infected pigs, the combined Cap VLP and VP2 VLP vaccine significantly improved piglet growth indices; the average daily weight gains were significantly higher than those of the Cap VLP vaccine and nonimmunized groups. Thus, Cap and VP2 protein expression in E. coli is feasible for large-scale VLP vaccine production. The combined vaccine may be a promising candidate vaccine for better preventing PMWS-associated diseases coinfected with PCV2 and PPV.
Collapse
Affiliation(s)
- Guoyang Liu
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chen Chang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tao Hua
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jichun Wang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Bo Tang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Daohua Zhang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
46
|
Oba P, Wieland B, Mwiine FN, Erume J, Gertzell E, Jacobson M, Dione MM. Status and gaps of research on respiratory disease pathogens of swine in Africa. Porcine Health Manag 2020; 6:5. [PMID: 32257367 PMCID: PMC7066813 DOI: 10.1186/s40813-020-0144-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
Over the last two decades, the pig population in Africa has grown rapidly, reflecting the increased adoption of pig production as an important economic activity. Of all species, pigs are likely to constitute a greater share of the growth in the livestock subsector. However, constraints such as respiratory infectious diseases cause significant economic losses to the pig industry worldwide. Compared to industrialized countries, the occurrence and impacts of respiratory diseases on pig production in Africa is under-documented. Hence, knowledge on prevalence and incidence of economically important swine respiratory pathogens in pigs in Africa is necessary to guide interventions for prevention and control. The purpose of this review was to document the current status of research on five important respiratory pathogens of swine in Africa to inform future research and interventions. The pathogens included were porcine reproductive and respiratory syndrome virus (PPRSv), porcine circovirus 2 (PCV2), Mycoplasma hyopneumoniae (M. hyopneumoniae), Actinobacillus pleuropneumoniae (APP) and swine influenza A viruses (IAV). For this review, published articles were obtained using Harzing's Publish or Perish software tool from GoogleScholar. Articles were also sourced from PubMed, ScienceDirect, FAO and OIE websites. The terms used for the search were Africa, swine or porcine, respiratory pathogens, M. hyopneumoniae, APP, PCV2, PPRSv, IAV, prevention and control. In all, 146 articles found were considered relevant, and upon further screening, only 85 articles were retained for the review. The search was limited to studies published from 2000 to 2019. Of all the studies that documented occurrence of the five respiratory pathogens, most were on IAV (48.4%, n = 15), followed by PCV2 (25.8%, n = 8), PPRSv (19.4%, n = 6), while only one study (3.2%, n = 1) reported APP and M. hyopneumoniae. This review highlights knowledge and information gaps on epidemiologic aspects as well as economic impacts of the various pathogens reported in swine in Africa, which calls for further studies.
Collapse
Affiliation(s)
- P Oba
- International Livestock Research Institute, P. O. Box 24384, Kampala, Uganda.,2College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda.,National Agricultural Research Organization, Abi Zonal Agricultural Research and Development Institute (Abi ZARDI), P. O. Box 219, Arua, Uganda
| | - B Wieland
- 4International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia
| | - F N Mwiine
- 2College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - J Erume
- 2College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - E Gertzell
- 5Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, 750 07 Uppsala, Sweden
| | - M Jacobson
- 5Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, 750 07 Uppsala, Sweden
| | - M M Dione
- International Livestock Research Institute, P. O. Box 24384, Kampala, Uganda
| |
Collapse
|
47
|
Real-Time PCR Detection Patterns of Porcine Circovirus Type 2 (PCV2) in Polish Farms with Different Statuses of Vaccination against PCV2. Viruses 2019; 11:v11121135. [PMID: 31817963 PMCID: PMC6949947 DOI: 10.3390/v11121135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 01/15/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is a globally spread pathogen controlled with generally highly efficacious vaccination protocols. In order to compare PCV2 detection profiles in farms with different vaccination statuses, serum (359) and fecal pools (351) and oral fluids (209) from four farms that do not vaccinate against PCV2 (NON-VAC) and from 22 farms that do vaccinate (VAC) were tested with quantitative real-time PCR. Additionally, nucleotide sequences of ORF2 of the virus were obtained from selected samples. Three genotypes, PCV2a, PCV2b, and PCV2d, were detected. Significant differences (p < 0.05) in PCV2 prevalence and quantities between the VAC and NON-VAC farms were evident. In five VAC farms, no viremia or shedding in feces was detected. On the other hand, in four VAC farms, the results were very similar to those from NON-VAC farms. No significant difference in PCV2 prevalence in oral fluids was observed between VAC and NON-VAC farms. An examination of viremia can be recommended for the detection of vaccination efficacy issues. The median of the PCV2 viral loads >6.0 log10 copies/mL in pooled sera from the vaccinated population should be considered a very strong indication that the vaccination protocol needs revision.
Collapse
|
48
|
Du J, Wang W, Chan JFW, Wang G, Huang Y, Yi Y, Zhu Z, Peng R, Hu X, Wu Y, Zeng J, Zheng J, Cui X, Niu L, Zhao W, Lu G, Yuen KY, Yin F. Identification of a Novel Ichthyic Parvovirus in Marine Species in Hainan Island, China. Front Microbiol 2019; 10:2815. [PMID: 31866980 PMCID: PMC6907010 DOI: 10.3389/fmicb.2019.02815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
Parvoviruses are a diverse group of viruses that are capable of infecting a wide range of animals. In this study, we report the discovery of a novel parvovirus, tilapia parvovirus HMU-HKU, in the fecal samples of crocodiles and intestines of tilapia in Hainan Province, China. The novel parvovirus was firstly identified from crocodiles fed with tilapia using next-generation sequencing (NGS). Screening studies revealed that the prevalence of the novel parvovirus in crocodile feces samples fed on tilapia (75–86%) was apparently higher than that in crocodiles fed with chicken (4%). Further studies revealed that the prevalence of the novel parvovirus in tilapia feces samples collected at four areas in Hainan Province was between 40 and 90%. Four stains of the novel parvovirus were identified in this study based on sequence analyses of NS1 and all the four strains were found in tilapia in contrast only two of them were detected in crocodile feces. The nearly full-length genome sequence of the tilapia parvovirus HMU-HKU-1 was determined and showed less than 45.50 and 40.38% amino acid identity with other members of Parvoviridae in NS1 and VP1 genes, respectively. Phylogenetic analysis based on the complete helicase domain amino acid sequences showed that the tilapia parvovirus HMU-HKU-1 formed a relatively independent branch in the newly proposed genus Chaphamaparvovirus in the subfamily Hamaparvovirinae according to the ICTV’s most recent taxonomic criteria for Parvoviridae classification. Tilapia parvovirus HMU-HKU-1 likely represented a new species within the new genus Chaphamaparvovirus. The identification of tilapia parvovirus HMU-HKU provides further insight into the viral and genetic diversity of parvoviruses and its infections in tilapia populations need to be evaluated in terms of pathogenicity and production losses in tilapia farming.
Collapse
Affiliation(s)
- Jiang Du
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Wenqi Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Jasper Fuk-Woo Chan
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong
| | - Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yi Huang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yufang Yi
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zheng Zhu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yue Wu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Jifeng Zeng
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Haikou, China
| | - Jiping Zheng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Xiuji Cui
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Lina Niu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Wei Zhao
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Gang Lu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Kwok-Yung Yuen
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
49
|
Abid M, Teklue T, Li Y, Wu H, Wang T, Qiu HJ, Sun Y. Generation and Immunogenicity of a Recombinant Pseudorabies Virus Co-Expressing Classical Swine Fever Virus E2 Protein and Porcine Circovirus Type 2 Capsid Protein Based on Fosmid Library Platform. Pathogens 2019; 8:pathogens8040279. [PMID: 31805703 PMCID: PMC6963705 DOI: 10.3390/pathogens8040279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Pseudorabies (PR), classical swine fever (CSF), and porcine circovirus type 2 (PCV2)-associated disease (PCVAD) are economically important infectious diseases of pigs. Co-infections of these diseases often occur in the field, posing significant threat to the swine industry worldwide. gE/gI/TK-gene-deleted vaccines are safe and capable of providing full protection against PR. Classical swine fever virus (CSFV) E2 glycoprotein is mainly used in the development of CSF vaccines. PCV2 capsid (Cap) protein is the major antigen targeted for developing PCV2 subunit vaccines. Multivalent vaccines, and especially virus-vectored vaccines expressing foreign proteins, are attractive strategies to fight co-infections for various swine diseases. The gene-deleted pseudorabies virus (PRV) can be used to develop promising and economical multivalent live virus-vectored vaccines. Herein, we constructed a gE/gI/TK-gene-deleted PRV co-expressing E2 of CSFV and Cap of PCV2 by fosmid library platform established for PRV, and the expression of E2 and Cap proteins was confirmed using immunofluorescence assay and western blotting. The recombinant virus propagated in porcine kidney 15 (PK-15) cells for 20 passages was genetically stable. The evaluation results in rabbits and pigs demonstrate that rPRVTJ-delgE/gI/TK-E2-Cap elicited detectable anti-PRV antibodies, but not anti-PCV2 or anti-CSFV antibodies. These findings provide insights that rPRVTJ-delgE/gI/TK-E2-Cap needs to be optimally engineered as a promising trivalent vaccine candidate against PRV, PCV2 and CSFV co-infections in future.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Ji Qiu
- Correspondence: (H.-J.Q.); (Y.S.); Tel.: +86-451-5105-1708
| | - Yuan Sun
- Correspondence: (H.-J.Q.); (Y.S.); Tel.: +86-451-5105-1708
| |
Collapse
|
50
|
Niu L, Wang Z, Zhao L, Wang Y, Cui X, Shi Y, Chen H, Ge J. Detection and molecular characterization of canine circovirus circulating in northeastern China during 2014-2016. Arch Virol 2019; 165:137-143. [PMID: 31745718 PMCID: PMC7087310 DOI: 10.1007/s00705-019-04433-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022]
Abstract
Canine circovirus (canine CV) is an etiological agent associated with diarrhea, hemorrhagic gastroenteritis and vasculitis. Although canine CV has been identified and characterized in southern China in recent years, its epidemiology in other regions of China and its precise molecular characteristics have not been examined. In this study, we examined 141 fecal specimens collected from domestic dogs with or without diarrhea in Heilongjiang province, Northeastern China, during 2014 to 2016. A total of 18 out of 141 samples were found to be positive for canine CV by real-time quantitative PCR. In the diarrhea samples, canine CV was detected in coinfections with canine parvovirus 2. More importantly, two different canine CV strains were detected in one sample. Five canine CV genomes were successfully amplified. Sequence analysis showed that there were two unique amino acid changes in the Rep protein (N39S in the K1 strain, and T71A in the XF16 strain). Phylogenetic analysis indicated that canine CV could be divided into four genotypes, and specific nucleotide mutations could be used for confirming the four genotypes. Moreover, recombination analysis revealed that a total of eight recombination events were found in five genomic sequences. Molecular evolution analysis showed that the canine CV has been under purifying selection. This study provides evidence that at least three genotypes of canine CV are co-circulating in China. Continuous epidemiological surveillance is therefore necessary to understand their importance for the evolution of canine CV.
Collapse
Affiliation(s)
- Lingdi Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zheng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lili Zhao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Rd, Harbin, 150069, People's Republic of China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Rd, Harbin, 150069, People's Republic of China
| | - Xingyang Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yunjia Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Rd, Harbin, 150069, People's Republic of China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China. .,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030, People's Republic of China.
| |
Collapse
|