1
|
Dey P, Haldar D, Sharma C, Chopra J, Chakrabortty S, Dilip KJ. Innovations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and nanocomposites for sustainable food packaging via biochemical biorefinery platforms: A comprehensive review. Int J Biol Macromol 2024; 283:137574. [PMID: 39542313 DOI: 10.1016/j.ijbiomac.2024.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The substantial build-up of non-biodegradable plastic waste from packaging sector not only poses severe environmental threats but also hastens the depletion of natural petroleum-based resources. Presently, poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV), received enormous attention as ideal alternatives for such traditional petroleum-derived plastics based on their biocompatibility and superior mechanical properties. However, high cost of such copolymer, due to expensive nature of feedstock, inefficient microbial processes and unfavorable downstream processing strategies restricts its large-scale commercial feasibility in the packaging sector. This review explores merits and challenges associated with using potent agricultural and industrial waste biomasses as sustainable feedstocks alongside improved fermentation and downstream processing strategies for the biopolymer in terms of biorefinery concept. Despite PHBV's attractive properties, its inherent shortcomings like weak thermal stability, poor mechanical properties, processability difficulty, substantial hydrophobicity and comparatively higher water vapor permeability (WVP) demand the development of its composites based on the application. Based on this fact, the review assessed properties and potential applications of PHBV-based composite materials having natural raw materials, nanomaterials and synthetic biodegradable polymers. Besides, the review also enlightens sustainability, future prospects, and challenges associated with PHBV-based composites in the field of food packaging while considering insights about economic evaluation and life cycle assessment.
Collapse
Affiliation(s)
- Pinaki Dey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali 140413, India
| | - Jayita Chopra
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani K.K. Birla Goa Campus, 403726, India
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | | |
Collapse
|
2
|
Chaber P, Andrä-Żmuda S, Śmigiel-Gac N, Zięba M, Dawid K, Martinka Maksymiak M, Adamus G. Enhancing the Potential of PHAs in Tissue Engineering Applications: A Review of Chemical Modification Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5829. [PMID: 39685265 DOI: 10.3390/ma17235829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of polyesters produced by many microbial species. These naturally occurring polymers are widely used in tissue engineering because of their in vivo degradability and excellent biocompatibility. The best studied among them is poly(3-hydroxybutyrate) (PHB) and its copolymer with 3-hydroxyvaleric acid (PHBV). Despite their superior properties, PHB and PHBV suffer from high crystallinity, poor mechanical properties, a slow resorption rate, and inherent hydrophobicity. Not only are PHB and PHBV hydrophobic, but almost all members of the PHA family struggle because of this characteristic. One can overcome the limitations of microbial polyesters by modifying their bulk or surface chemical composition. Therefore, researchers have put much effort into developing methods for the chemical modification of PHAs. This paper explores a rarely addressed topic in review articles-chemical methods for modifying the structure of PHB and PHBV to enhance their suitability as biomaterials for tissue engineering applications. Different chemical strategies for improving the wettability and mechanical properties of PHA scaffolds are discussed in this review. The properties of PHAs that are important for their applications in tissue engineering are also discussed.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Silke Andrä-Żmuda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Zięba
- Department of Optoelectronics, Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Kamil Dawid
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
3
|
Mi CH, Qi XY, Zhou YW, Ding YW, Wei DX, Wang Y. Advances in medical polyesters for vascular tissue engineering. DISCOVER NANO 2024; 19:125. [PMID: 39115796 PMCID: PMC11310390 DOI: 10.1186/s11671-024-04073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
Blood vessels are highly dynamic and complex structures with a variety of physiological functions, including the transport of oxygen, nutrients, and metabolic wastes. Their normal functioning involves the close and coordinated cooperation of a variety of cells. However, adverse internal and external environmental factors can lead to vascular damage and the induction of various vascular diseases, including atherosclerosis and thrombosis. This can have serious consequences for patients, and there is an urgent need for innovative techniques to repair damaged blood vessels. Polyesters have been extensively researched and used in the treatment of vascular disease and repair of blood vessels due to their excellent mechanical properties, adjustable biodegradation time, and excellent biocompatibility. Given the high complexity of vascular tissues, it is still challenging to optimize the utilization of polyesters for repairing damaged blood vessels. Nevertheless, they have considerable potential for vascular tissue engineering in a range of applications. This summary reviews the physicochemical properties of polyhydroxyalkanoate (PHA), polycaprolactone (PCL), poly-lactic acid (PLA), and poly(lactide-co-glycolide) (PLGA), focusing on their unique applications in vascular tissue engineering. Polyesters can be prepared not only as 3D scaffolds to repair damage as an alternative to vascular grafts, but also in various forms such as microspheres, fibrous membranes, and nanoparticles to deliver drugs or bioactive ingredients to damaged vessels. Finally, it is anticipated that further developments in polyesters will occur in the near future, with the potential to facilitate the wider application of these materials in vascular tissue engineering.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- School of Clinical Medicine, Chengdu University, Chengdu, China.
- Shaanxi Key Laboratory for Carbon-Neutral Technology, Xi'an, 710069, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
4
|
Pereira JR, Rafael AM, Esmail A, Morais M, Matos M, Marques AC, Reis MAM, Freitas F. Preparation of Porous Scaffold Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) and FucoPol. Polymers (Basel) 2023; 15:2945. [PMID: 37447591 DOI: 10.3390/polym15132945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
This work focused on the development of porous scaffolds based on biocomposites comprising two biodegradable and biocompatible biopolymers: a terpolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBHVHHx), and the bacterial polysaccharide FucoPol. The PHBHVHHx terpolymer was composed of 3-hydroxybutyrate (55 wt%), 3-hydroxyvalerate (21 wt%), and 3-hydroxyhexanoate (24 wt%). This hydrophobic polyester has low crystallinity and can form elastic and flexible films. Fucopol is a fucose-containing water-soluble polysaccharide that forms viscous solutions with shear thinning behavior and has demonstrated emulsion-forming and stabilizing capacity and wound healing ability. Emulsion-templating was used to fabricate PHA-based porous structures in which FucoPol acted as a bioemulsifier. Compared with the scaffolds obtained from emulsions with only water, the use of FucoPol aqueous solutions resulted in structures with improved mechanical properties, namely higher tensile strength (4.4 MPa) and a higher Young's Modulus (85 MPa), together with an elongation at break of 52%. These features, together with the scaffolds' high porosity and pore interconnectivity, suggest their potential to sustain cell adhesion and proliferation, which is further supported by FucoPol's demonstrated wound healing ability. Therefore, the developed PHBHVHHx:FucoPol scaffolds arise as innovative porous bioactive structures with great potential for use in tissue engineering applications.
Collapse
Affiliation(s)
- João Ricardo Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Ana Margarida Rafael
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Asiyah Esmail
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Maria Morais
- CENIMAT/i3N, Materials Science Department, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mariana Matos
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Ana Carolina Marques
- CENIMAT/i3N, Materials Science Department, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Filomena Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
5
|
Caputo MR, Fernández M, Aguirresarobe R, Kovalcik A, Sardon H, Candal MV, Müller AJ. Influence of FFF Process Conditions on the Thermal, Mechanical, and Rheological Properties of Poly(hydroxybutyrate-co-hydroxy Hexanoate). Polymers (Basel) 2023; 15:polym15081817. [PMID: 37111965 PMCID: PMC10143864 DOI: 10.3390/polym15081817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates are natural polyesters synthesized by microorganisms and bacteria. Due to their properties, they have been proposed as substitutes for petroleum derivatives. This work studies how the printing conditions employed in fuse filament fabrication (FFF) affect the properties of poly(hydroxybutyrate-co-hydroxy hexanoate) or PHBH. Firstly, rheological results predicted the printability of PHBH, which was successfully realized. Unlike what usually happens in FFF manufacturing or several semi-crystalline polymers, it was observed that the crystallization of PHBH occurs isothermally after deposition on the bed and not during the non-isothermal cooling stage, according to calorimetric measurements. A computational simulation of the temperature profile during the printing process was conducted to confirm this behavior, and the results support this hypothesis. Through the analysis of mechanical properties, it was shown that the nozzle and bed temperature increase improved the mechanical properties, reducing the void formation and improving interlayer adhesion, as shown by SEM. Intermediate printing velocities produced the best mechanical properties.
Collapse
Affiliation(s)
- Maria Rosaria Caputo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernández
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Robert Aguirresarobe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Adriana Kovalcik
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - María Virginia Candal
- School of Engineering, Science and Technology, Valencian International University (VIU), 46002 Valencia, Spain
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Madhusoodhanan G, KS S, Hariharapura RC, Somashekara DM. Cascading Beta-oxidation Intermediates for the Polyhydroxyalkanoate Copolymer Biosynthesis by Metabolic Flux using Co-substrates and Inhibitors. Des Monomers Polym 2023; 26:1-14. [PMID: 36860326 PMCID: PMC9970204 DOI: 10.1080/15685551.2023.2179763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biopolymers that are produced within the microbial cells in the presence of excess carbon and nutrient limitation. Different strategies have been studied to increase the quality and quantity of this biopolymer which in turn can be utilized as biodegradable polymers replacing conventional petrochemical plastics. In the present study, Bacillus endophyticus, a gram-positive PHA-producing bacterium, was cultivated in the presence of fatty acids along with beta-oxidation inhibitor acrylic acid. A novel approach for incorporating different hydroxyacyl groups provided using fatty acids as co-substrate and beta-oxidation inhibitors to direct the intermediates to co-polymer synthesis was experimented. It was observed that higher fatty acids and inhibitors had a greater influence on PHA production. The addition of acrylic acid along with propionic acid had a positive impact, giving 56.49% of PHA along with sucrose which was 1.2-fold more than the control devoid of fatty acids and inhibitors. Along with the copolymer production, the possible PHA pathway functional leading to the copolymer biosynthesis was hypothetically interpreted in this study. The obtained PHA was analyzed by FTIR and 1H NMR to confirm the copolymer production, which indicated the presence of poly3hydroxybutyrate-co-hydroxyvalerate (PHB-co-PHV), poly3hydroxybutyrate-co-hydroxyhexanoate (PHB-co-PHx).
Collapse
Affiliation(s)
- Geethu Madhusoodhanan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Shruthi KS
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Divyashree M Somashekara
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India,CONTACT Divyashree M Somashekara Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| |
Collapse
|
7
|
Binhweel F, Ahmad MI, Zaki SA. Utilization of Polymeric Materials toward Sustainable Biodiesel Industry: A Recent Review. Polymers (Basel) 2022; 14:3950. [PMID: 36235898 PMCID: PMC9572429 DOI: 10.3390/polym14193950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The biodiesel industry is expanding rapidly in accordance with the high energy demand and environmental deterioration related to the combustion of fossil fuel. However, poor physicochemical properties and the malperformance of biodiesel fuel still concern the researchers. In this flow, polymers were introduced in biodiesel industry to overcome such drawbacks. This paper reviewed the current utilizations of polymers in biodiesel industry. Hence, four utilizing approaches were discussed, namely polymeric biodiesel, polymeric catalysts, cold-flow improvers (CFIs), and stabilized exposure materials. Hydroxyalkanoates methyl ester (HAME) and hydroxybutyrate methyl ester (HBME) are known as polymeric biodiesel sourced from carbon-enriched polymers with the help of microbial activity. Based on the literature, the highest HBME yield was 70.7% obtained at 10% H2SO4 ratio in methanol, 67 °C, and 50 h. With increasing time to 60 h, HAME highest yield was reported as 68%. In addition, polymers offer wide range of esterification/transesterification catalysts. Based on the source, this review classified polymeric catalysts as chemically, naturally, and waste derived polymeric catalysts. Those catalysts proved efficiency, non-toxicity, economic feasibility, and reusability till the 10th cycle for some polymeric composites. Besides catalysis, polymers proved efficiency to enhance the biodiesel flow-properties. The best effect reported in this review was an 11 °C reduction for the pour point (PP) of canola biodiesel at 1 wt% of ethylene/vinyl acetate copolymers and cold filter plugging point (CFPP) of B20 waste oil biodiesel at 0.08 wt% of EVA copolymer. Polymeric CFIs have the capability to modify biodiesel agglomeration and facilitate flowing. Lastly, polymers are utilized for storage tanks and auto parts products in direct contact with biodiesel. This approach is completely exclusive for polymers that showed stability toward biodiesel exposure, such as polyoxymethylene (POM) that showed insignificant change during static immersion test for 98 days at 55 °C. Indeed, the introduction of polymers has expanded in the biodiesel industry to promote green chemistry.
Collapse
Affiliation(s)
- Fozy Binhweel
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Sheikh Ahmad Zaki
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
8
|
Meng D, Miao C, Liu Y, Wang F, Chen L, Huang Z, Fan X, Gu P, Li Q. Metabolic engineering for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose and propionic acid in recombinant Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 348:126786. [PMID: 35114368 DOI: 10.1016/j.biortech.2022.126786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, novel polyhydroxyalkanoate (PHA)-associated genes (phaCp and phaABp) cloned from Propylenella binzhouense L72T were expressed in Escherichiacoli cells for PHA production, and the recombinant strains were used to analyze PHA yields with various substrates. The highest poly (3-hydroxybutyrate-co-3-hydroxy-valerate) (PHBV) yield (1.06 g/L) and cell dry weight (3.31 g/L) in E. coli DH5α/ΔptsG-CpABp were achieved by using glucose and propionicacid as substrates. Structural verification of PHBV produced by E. coli DH5α/ΔptsG-CpABp was performed to evaluate the characteristics of the polymers using Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis. In addition, the X-ray diffraction results showed improved crystallinity of PHBV, and thermogravimetric analysis showed good thermal stability of 298 °C. The above findings indicated that the expression of phaCp and phaABp genes resulted in improved PHBV synthesis activity, and the polymer had better performance at higher processing temperatures.
Collapse
Affiliation(s)
- Dong Meng
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Changfeng Miao
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Yuling Liu
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Fang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Lu Chen
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, PR China.
| |
Collapse
|
9
|
Melendez-Rodriguez B, M'Bengue MS, Torres-Giner S, Cabedo L, Prieto C, Lagaron JM. Barrier biopaper multilayers obtained by impregnation of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with protein and polysaccharide hydrocolloids. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Zhao X, Niu Y, Mi C, Gong H, Yang X, Cheng J, Zhou Z, Liu J, Peng X, Wei D. Electrospinning nanofibers of microbial polyhydroxyalkanoates for applications in medical tissue engineering. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiao‐Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Yi‐Nuo Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Chen‐Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Hai‐Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Xin‐Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Ji‐Si‐Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Zi‐Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Jia‐Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Xue‐Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Dai‐Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| |
Collapse
|
11
|
Volova T, Kiselev E, Nemtsev I, Lukyanenko А, Sukovatyi A, Kuzmin A, Ryltseva G, Shishatskaya E. Properties of degradable polyhydroxyalkanoates with different monomer compositions. Int J Biol Macromol 2021; 182:98-114. [PMID: 33836189 DOI: 10.1016/j.ijbiomac.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE To synthesize and investigate polyhydroxyalkanoates (PHAs) with different monomer composition and percentages and polymer films prepared from them. RESULTS Various PHAs: homopolymer poly-3-hydroxybutyrate P(3HB) and 2-, 3-, and 4-component copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), and 3-hydroxyhexanoate (3HHx) monomers were synthesized under specialized conditions. Relationships were found between the monomer composition of PHAs and their molecular-weight and thermal properties and degree of crystallinity. All copolymers had decreased weight average molecular weights, Mw (to 390-600 kDa), and increased values of polydispersity (3.2-4.6) compared to the P(3HB). PHA copolymers showed different thermal behavior: an insignificant decrease in Tmelt and the presence of the second peak in the melting region and changes in parameters of crystallization and glass transition. At the same time, they retained thermostability, and the difference between Tmelt and Tdegr was at least 100-120 °C. Incorporation of 4HB, 3HV, and 3HHx monomer units into the 3-hydroxybutyrate chain caused changes in the amorphous to crystalline ratio and decreased the degree of crystallinity (Cx) to 20-40%. According to the degree to which the monomers reduced crystallinity, they were ranked as follows: 4HB - 3HHx - 3HV. A unique set of films was produced; their surface properties and physical/mechanical properties were studied as dependent on PHA composition; monomers other than 3-hydroxybutyrate were found to enhance hydrophilicity, surface development, and elasticity of polymer films. CONCLUSION An innovative set of PHA copolymers was synthesized and solution-cast films were prepared from them; the copolymers and films were investigated as dependent on polymer chemical composition. Results obtained in the present study contribute to the solution of a critical issue of producing degradable polymer materials.
Collapse
Affiliation(s)
- T Volova
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - E Kiselev
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - I Nemtsev
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; Federal Research Center "Krasnoyarsk Science Center SB RAS", 50 Akademgorodok, Krasnoyarsk 660036, Russia; L.V. Kirensky Institute of Physics, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/12 Akademgorodok, Krasnoyarsk 660036, Russia
| | - А Lukyanenko
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; L.V. Kirensky Institute of Physics, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/12 Akademgorodok, Krasnoyarsk 660036, Russia
| | - A Sukovatyi
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk 660036, Russia.
| | - A Kuzmin
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia
| | - G Ryltseva
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia
| | - E Shishatskaya
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
12
|
Meléndez-Rodríguez B, Torres-Giner S, Reis MAM, Silva F, Matos M, Cabedo L, Lagarón JM. Blends of Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate) with Fruit Pulp Biowaste Derived Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate- co-3-Hydroxyhexanoate) for Organic Recycling Food Packaging. Polymers (Basel) 2021; 13:1155. [PMID: 33916564 PMCID: PMC8038484 DOI: 10.3390/polym13071155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, a new poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) [P(3HB-co-3HV-co-3HHx)] terpolyester with approximately 68 mol% of 3-hydroxybutyrate (3HB), 17 mol% of 3-hydroxyvalerate (3HV), and 15 mol% of 3-hydroxyhexanoate (3HHx) was obtained via the mixed microbial culture (MMC) technology using fruit pulps as feedstock, a processing by-product of the juice industry. After extraction and purification performed in a single step, the P(3HB-co-3HV-co-3HHx) powder was melt-mixed, for the first time, in contents of 10, 25, and 50 wt% with commercial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Thereafter, the resultant doughs were thermo-compressed to obtain highly miscible films with good optical properties, which can be of interest in rigid and semirigid organic recyclable food packaging applications. The results showed that the developed blends exhibited a progressively lower melting enthalpy with increasing the incorporation of P(3HB-co-3HV-co-3HHx), but retained the PHB crystalline morphology, albeit with an inferred lower crystalline density. Moreover, all the melt-mixed blends were thermally stable up to nearly 240 °C. As the content of terpolymer increased in the blends, the mechanical response of their films showed a brittle-to-ductile transition. On the other hand, the permeabilities to water vapor, oxygen, and, more notably, limonene were seen to increase. On the overall, this study demonstrates the value of using industrial biowaste derived P(3HB-co-3HV-co-3HHx) terpolyesters as potentially cost-effective and sustainable plasticizing additives to balance the physical properties of organic recyclable polyhydroxyalkanoate (PHA)-based food packaging materials.
Collapse
Affiliation(s)
- Beatriz Meléndez-Rodríguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (B.M.-R.); (S.T.-G.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (B.M.-R.); (S.T.-G.)
| | - Maria A. M. Reis
- UCIBIO-REQUIMTE-Applied Molecular Biosciences Unit, Chemistry Department, Faculty of Sciences and Technology, New University of Lisbon, 1099-085 Lisbon, Portugal; (M.A.M.R.); (F.S.); (M.M.)
| | - Fernando Silva
- UCIBIO-REQUIMTE-Applied Molecular Biosciences Unit, Chemistry Department, Faculty of Sciences and Technology, New University of Lisbon, 1099-085 Lisbon, Portugal; (M.A.M.R.); (F.S.); (M.M.)
| | - Mariana Matos
- UCIBIO-REQUIMTE-Applied Molecular Biosciences Unit, Chemistry Department, Faculty of Sciences and Technology, New University of Lisbon, 1099-085 Lisbon, Portugal; (M.A.M.R.); (F.S.); (M.M.)
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), 12071 Castellón, Spain;
| | - José María Lagarón
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (B.M.-R.); (S.T.-G.)
| |
Collapse
|
13
|
Riaz S, Rhee KY, Park SJ. Polyhydroxyalkanoates (PHAs): Biopolymers for Biofuel and Biorefineries. Polymers (Basel) 2021; 13:253. [PMID: 33451137 PMCID: PMC7828617 DOI: 10.3390/polym13020253] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Fossil fuels are energy recourses that fulfill most of the world's energy requirements. However, their production and use cause severe health and environmental problems including global warming and pollution. Consequently, plant and animal-based fuels (also termed as biofuels), such as biogas, biodiesel, and many others, have been introduced as alternatives to fossil fuels. Despite the advantages of biofuels, such as being renewable, environmentally friendly, easy to source, and reducing the dependency on foreign oil, there are several drawbacks of using biofuels including high cost, and other factors discussed in the fuel vs. food debate. Therefore, it is imperative to produce novel biofuels while also developing suitable manufacturing processes that ease the aforementioned problems. Polyhydroxyalkanoates (PHAs) are structurally diverse microbial polyesters synthesized by numerous bacteria. Moreover, this structural diversity allows PHAs to readily undergo methyl esterification and to be used as biofuels, which further extends the application value of PHAs. PHA-based biofuels are similar to biodiesel except for having a high oxygen content and no nitrogen or sulfur. In this article, we review the microbial production of PHAs, biofuel production from PHAs, parameters affecting the production of fuel from PHAs, and PHAs biorefineries. In addition, future work on the production of biofuels from PHAs is also discussed.
Collapse
Affiliation(s)
- Shahina Riaz
- Department of Chemistry, Inha University, Incheon 22212, Korea;
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK PLUS), College of Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Soo Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea;
| |
Collapse
|
14
|
|
15
|
Yin F, Li D, Ma X, Li J, Qiu Y. Poly(3-hydroxybutyrate-3-hydroxyvalerate) production from pretreated waste lignocellulosic hydrolysates and acetate co-substrate. BIORESOURCE TECHNOLOGY 2020; 316:123911. [PMID: 32758919 DOI: 10.1016/j.biortech.2020.123911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 05/20/2023]
Abstract
The purpose of this study was to explore the potential of producing Poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) by mixed microbial culture (MMC) with lignocellulosic hydrolysates and acetate co-substrate as feedstock. The addition of co-substrate acetate led to the introduction of HV monomer into the polyhydroxyalkanoate (PHA), and the initial mixed sludge suspension (MLSS) increased with the increase of acetate. Almost 1.91-fold increase in the yield of PHA was achieved with limited nitrogen medium (the carbon to nitrogen ratio (C/N) was 33) compared to the normal nitrogen medium (C/N = 20). Limiting nitrogen source and micro alkaline culture environment was more conducive to the accumulation of PHBV. PHA production achieved to the highest value of about 2308.45 mg/L under the condition of optimized technology. Acidovorax was the dominant genus of all bioreactors using co-substrate. Further, utilizing lignocellulosic hydrolysate and acetate co-substrate as feedstock in mixed microbial culture was a promising approach in a low-cost large-scale PHA production.
Collapse
Affiliation(s)
- Fen Yin
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China.
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| |
Collapse
|
16
|
Shi LL, Da YY, Zheng WT, Chen GQ, Li ZJ. Production of polyhydroxyalkanoate from acetate by metabolically engineered Aeromonas hydrophilia. J Biosci Bioeng 2020; 130:290-294. [DOI: 10.1016/j.jbiosc.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
|
17
|
Luo Z, Wu YL, Li Z, Loh XJ. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications. Biotechnol J 2019; 14:e1900283. [PMID: 31469496 DOI: 10.1002/biot.201900283] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/20/2019] [Indexed: 12/16/2022]
Abstract
In recent years, naturally biodegradable polyhydroxyalkanoate (PHA) monopolymers have become focus of public attentions due to their good biocompatibility. However, due to its poor mechanical properties, high production costs, and limited functionality, its applications in materials, energy, and biomedical applications are greatly limited. In recent years, researchers have found that PHA copolymers have better thermal properties, mechanical processability, and physicochemical properties relative to their homopolymers. This review summarizes the synthesis of PHA copolymers by the latest biosynthetic and chemical modification methods. The modified PHA copolymer could greatly reduce the production cost with elevated mechanical or physicochemical properties, which can further meet the practical needs of various fields. This review further summarizes the broad applications of modified PHA copolymers in biomedical applications, which might shred lights on their commercial applications.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Science and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| |
Collapse
|
18
|
Polyhydroxyalkanoates Synthesized by Aeromonas Species: Trends and Challenges. Polymers (Basel) 2019; 11:polym11081328. [PMID: 31405025 PMCID: PMC6722653 DOI: 10.3390/polym11081328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 11/24/2022] Open
Abstract
The negative effects of petrochemical-derived plastics on the global environment and depletion of global fossil fuel supplies have paved the way for exploring new technologies for the production of bioplastics. Polyhydroxyalkanoates (PHAs) are considered an alternative for synthetic polymers because of their biodegradability, biocompatibility, and non-toxicity. Many bacteria have been reported to have the ability to synthesize PHAs. Among them, the Aeromonas species seem to be ideal hosts for the industrial production of these biopolyesters due to their robust growth, simple growth requirements, their ability for the synthesis of homopolymers, co-polymers, and terpolymers with unique material properties. Some Aeromonas strains were able to produce PHAs in satisfactory amounts from simple carbon sources. Efforts have been made to use genetically modified Aeromonas strains for enhanced PHAs and to obtain bacteria with modified compositions and improved properties. This review discusses the current state of knowledge of polyhydroxyalkanoates synthesized by Aeromonas species, with a special focus on their potential, challenges, and progress in PHA synthesis.
Collapse
|
19
|
Ye H, Zhang K, Kai D, Li Z, Loh XJ. Polyester elastomers for soft tissue engineering. Chem Soc Rev 2018; 47:4545-4580. [PMID: 29722412 DOI: 10.1039/c8cs00161h] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polyester elastomers are soft, biodegradable and biocompatible and are commonly used in various biomedical applications, especially in tissue engineering. These synthetic polyesters can be easily fabricated using various techniques such as solvent casting, particle leaching, molding, electrospinning, 3-dimensional printing, photolithography, microablation etc. A large proportion of tissue engineering research efforts have focused on the use of allografts, decellularized animal scaffolds or other biological materials as scaffolds, but they face the major concern of triggering immunological responses from the host, on top of other issues. This review paper will introduce the recent developments in elastomeric polyesters, their synthesis and fabrication techniques, as well as their application in the biomedical field, focusing primarily on tissue engineering in ophthalmology, cardiac and vascular systems. Some of the commercial and near-commercial polyesters used in these tissue engineering fields will also be described.
Collapse
Affiliation(s)
- Hongye Ye
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| | | | | | | | | |
Collapse
|
20
|
Lim J, You M, Li J, Li Z. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629097 DOI: 10.1016/j.msec.2017.05.132] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials.
Collapse
Affiliation(s)
- Janice Lim
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mingliang You
- Cancer Science Institute of Singapore, National University of Singapore, 14 medical drive, Singapore 117599, Singapore
| | - Jian Li
- Center for translational medicine research and development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Guangdong 518055, China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| |
Collapse
|
21
|
Volova TG, Vinogradova ON, Zhila NO, Kiselev EG, Peterson IV, Vasil’ev AD, Sukovatyi AG, Shishatskaya EI. Physicochemical properties of multicomponent polyhydroxyalkanoates: Novel aspects. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17010163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Ray S, Kalia VC. Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers. Indian J Microbiol 2016; 57:39-47. [PMID: 28148978 DOI: 10.1007/s12088-016-0622-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022] Open
Abstract
Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydroxybutyrate (PHB), as a storage material. The biochemical characteristics of PHB such as brittleness, low strength, low elasticity, etc. make these unsuitable for commercial applications. Co-polymers of PHA, have high commercial value as they overcome the limitations of PHBs. Co-polymers can be produced by supplementing the feed with volatile fatty acids or through hydrolysates of different biowastes. In this review, we have listed the potential bacterial candidates and the substrates, which can be co-metabolized to produce PHA co-polymers.
Collapse
Affiliation(s)
- Subhasree Ray
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| |
Collapse
|
23
|
Volova TG, Vinogradova ON, Zhila NO, Peterson IV, Kiselev EG, Vasiliev AD, Sukovatiy AG, Shishatskaya EI. Properties of a novel quaterpolymer P(3HB/4HB/3HV/3HHx). POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int J Biol Macromol 2016; 89:161-74. [PMID: 27126172 DOI: 10.1016/j.ijbiomac.2016.04.069] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 02/02/2023]
Abstract
Traditional mineral oil based plastics are important commodity to enhance the comfort and quality of life but the accumulation of these plastics in the environment has become a major universal problem due to their low biodegradation. Solution to the plastic waste management includes incineration, recycling and landfill disposal methods. These processes are very time consuming and expensive. Biopolymers are important alternatives to the petroleum-based plastics due to environment friendly manufacturing processes, biodegradability and biocompatibility. Therefore use of novel biopolymers, such as polylactide, polysaccharides, aliphatic polyesters and polyhydroxyalkanoates is of interest. PHAs are biodegradable polyesters of hydroxyalkanoates (HA) produced from renewable resources by using microorganisms as intracellular carbon and energy storage compounds. Even though PHAs are promising candidate for biodegradable polymers, however, the production cost limit their application on an industrial scale. This article provides an overview of various substrates, microorganisms for the economical production of PHAs and its copolymers. Recent advances in PHAs to reduce the cost and to improve the performance of PHAs have also been discussed.
Collapse
Affiliation(s)
- Anbreen Anjum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| |
Collapse
|
25
|
Singh M, Kumar P, Ray S, Kalia VC. Challenges and Opportunities for Customizing Polyhydroxyalkanoates. Indian J Microbiol 2015; 55:235-49. [PMID: 26063933 DOI: 10.1007/s12088-015-0528-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/09/2015] [Indexed: 02/01/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) as an alternative to synthetic plastics have been gaining increasing attention. Being natural in their origin, PHAs are completely biodegradable and eco-friendly. However, consistent efforts to exploit this biopolymer over the last few decades have not been able to pull PHAs out of their nascent stage, inspite of being the favorite of the commercial world. The major limitations are: (1) the high production cost, which is due to the high cost of the feed and (2) poor thermal and mechanical properties of polyhydroxybutyrate (PHB), the most commonly produced PHAs. PHAs have the physicochemical properties which are quite comparable to petroleum based plastics, but PHB being homopolymers are quite brittle, less elastic and have thermal properties which are not suitable for processing them into sturdy products. These properties, including melting point (Tm), glass transition temperature (Tg), elastic modulus, tensile strength, elongation etc. can be improved by varying the monomeric composition and molecular weight. These enhanced characteristics can be achieved by modifications in the types of substrates, feeding strategies, culture conditions and/or genetic manipulations.
Collapse
Affiliation(s)
- Mamtesh Singh
- Department of Zoology, Gargi College, University of Delhi, Siri Fort Road, Delhi, 110049 India
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Subhasree Ray
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Vipin C Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| |
Collapse
|
26
|
A glucose-utilizing strain, Cupriavidus euthrophus B-10646: growth kinetics, characterization and synthesis of multicomponent PHAs. PLoS One 2014; 9:e87551. [PMID: 24586280 PMCID: PMC3933330 DOI: 10.1371/journal.pone.0087551] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/22/2013] [Indexed: 12/27/2022] Open
Abstract
This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, γ-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physical-mechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB.
Collapse
|
27
|
Laycock B, Halley P, Pratt S, Werker A, Lant P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.06.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Volova TG, Kiselev EG, Shishatskaya EI, Zhila NO, Boyandin AN, Syrvacheva DA, Vinogradova ON, Kalacheva GS, Vasiliev AD, Peterson IV. Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. BIORESOURCE TECHNOLOGY 2013; 146:215-222. [PMID: 23934338 DOI: 10.1016/j.biortech.2013.07.070] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Synthesis of polyhydroxyalkanoates (PHAs) by a new strain of Cupriavidus - Cupriavidus eutrophus B-10646 - was investigated under autotrophic growth conditions. Under chemostat, at the specific flow rate D=0.1h(-1), on sole carbon substrate (CO2), with nitrogen, sulfur, phosphorus, potassium, and manganese used as growth limiting elements, the highest poly(3-hydroxybutyrate) [P(3HB)] yields were obtained under nitrogen deficiency. In batch autotrophic culture, in the fermenter with oxygen mass transfer coefficient 0.460 h(-1), P(3HB) yields reached 85% of dry cell weight (DCW) and DCW reached 50 g/l. Concentrations of supplementary PHA precursor substrates (valerate, hexanoate, γ-butyrolactone) and culture conditions were varied to produce, for the first time under autotrophic growth conditions, PHA ter- and tetra-polymers with widely varying major fractions of 3-hydroxybutyrate, 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate monomer units. Investigation of the high-purity PHA specimens showed significant differences in their physicochemical and physicomechanical properties.
Collapse
Affiliation(s)
- Tatiana G Volova
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation; Siberian Federal University, Krasnoyarsk, Russian Federation.
| | - Evgeniy G Kiselev
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Ekaterina I Shishatskaya
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation; Siberian Federal University, Krasnoyarsk, Russian Federation
| | - Natalia O Zhila
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Anatoly N Boyandin
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | | | | | - Galina S Kalacheva
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Alexander D Vasiliev
- L.V. Kirenckii Institute of Physics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Ivan V Peterson
- Institute of Chemistry and Chemical Technology of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| |
Collapse
|
29
|
Gao X, Jian J, Li WJ, Yang YC, Shen XW, Sun ZR, Wu Q, Chen GQ. Genomic study of polyhydroxyalkanoates producing Aeromonas hydrophila 4AK4. Appl Microbiol Biotechnol 2013; 97:9099-109. [PMID: 24000047 DOI: 10.1007/s00253-013-5189-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 11/30/2022]
Abstract
The complete genome of Gram-negative Aeromonas hydrophila 4AK4 that has been used for industrial production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) was sequenced and annotated. Its chromosome is 4,527,993 bp in size encoding 4,272 genes, including 28 rRNA genes and 104 tRNA genes. Comparative analysis indicated that genome of A. hydrophila 4AK4 was similar to that of the A. hydrophila ATCC 7966(T), an intensively studied aeromonad for its pathogenicity related to its genomic information. Genes possibly coming from other species or even other genus were identified in A. hydrophila 4AK4. A large number of putative virulent genes were predicted. However, a cytotonic enterotoxin (Ast) is absent in A. hydrophila 4AK4, allowing the industrial strain to be different from other A. hydrophila strains, indicating possible reduced virulence of strain 4AK4, which is very important for industrial fermentation. Genes involved in polyhydroxyalkanoate (PHA) metabolism were predicted and analyzed. The resulting genomic information is useful for improved production of PHA via metabolic engineering of A. hydrophila 4AK4.
Collapse
Affiliation(s)
- Xue Gao
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Volova TG, Zhila NO, Shishatskaya EI, Mironov PV, Vasil’ev AD, Sukovatyi AG, Sinskey AJ. The physicochemical properties of polyhydroxyalkanoates with different chemical structures. POLYMER SCIENCE SERIES A 2013. [DOI: 10.1134/s0965545x13070080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Studies on the Microbial Synthesis and Characterization of Polyhydroxyalkanoates Containing 4-Hydroxyvalerate Using γ-Valerolactone. Appl Biochem Biotechnol 2013; 170:1194-215. [DOI: 10.1007/s12010-013-0247-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
32
|
Laycock B, Halley P, Pratt S, Werker A, Lant P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2012.06.003] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Rathi DN, Amir HG, Abed RMM, Kosugi A, Arai T, Sulaiman O, Hashim R, Sudesh K. Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats. J Appl Microbiol 2012. [PMID: 23176757 DOI: 10.1111/jam.12083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Halophilic micro-organisms have received much interest because of their potential biotechnological applications, among which is the capability of some strains to synthesize polyhydroxyalkanoates (PHA). Halomonas sp. SK5, which was isolated from hypersaline microbial mats, accumulated intracellular granules of poly(3-hydroxybutyrate) [P(3HB)] in modified accumulation medium supplemented with 10% (w/v) salinity and 3% (w/v) glucose. METHODS AND RESULTS A cell density of approximately 3.0 g l(-1) was attained in this culture which yielded 48 wt% P(3HB). The bacterial strain was also capable of synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] when cofed with relevant precursors. Feeding with sodium valerate (0.7 mol l(-1) carbon) at various time intervals within 36 h resulted in 3HV molar fractions ranging from 6 up to 54 mol%. Oil palm trunk sap (OPTS) and seawater as the carbon source and culture medium respectively facilitated a significant accumulation of P(3HB). Simplified downstream processing based on osmotic lysis in the presence of alkali/detergent for both dry and wet biomass resulted in approximately 90-100% recovery of polymers with purity as high as 90%. Weight-average molecular weight (M(w) ) of the polymers recovered was in the range of 1-2 × 10(6) . CONCLUSIONS Halomonas sp. SK5 was able to synthesize P(3HB) homopolymer as well as P(3HB-co-3HV) copolymer from various carbon sources. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time a comprehensive study of both production and downstream processing is reported for Halomonas spp.
Collapse
Affiliation(s)
- D-N Rathi
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen BY, Shiau TJ, Wei YH, Chen WM, Yu BH, Yen CY, Hsueh CC. Feasibility study of polyhydroxyalkanote production for materials recycling using naturally occurring pollutant degraders. J Taiwan Inst Chem Eng 2012. [DOI: 10.1016/j.jtice.2011.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Chen Z, Cheng S, Li Z, Xu K, Chen GQ. Synthesis, Characterization and Cell Compatibility of Novel Poly(ester urethane)s Based on Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Prepared by Melting Polymerization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:1451-71. [DOI: 10.1163/092050609x12457419007621] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zhifei Chen
- a Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Shaoting Cheng
- b Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Zibiao Li
- c Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Kaitian Xu
- d Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Guo-Qiang Chen
- e Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
36
|
Biosynthesis and characterization of novel polyhydroxyalkanoate polymers with high elastic property by Cupriavidus necator PHB−4 transformant. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2010.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Ye HM, Wang Z, Wang HH, Chen GQ, Xu J. Different thermal behaviors of microbial polyesters poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). POLYMER 2010. [DOI: 10.1016/j.polymer.2010.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Jian J, Li ZJ, Ye HM, Yuan MQ, Chen GQ. Metabolic engineering for microbial production of polyhydroxyalkanoates consisting of high 3-hydroxyhexanoate content by recombinant Aeromonas hydrophila. BIORESOURCE TECHNOLOGY 2010; 101:6096-6102. [PMID: 20236821 DOI: 10.1016/j.biortech.2010.02.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/16/2010] [Accepted: 02/22/2010] [Indexed: 05/28/2023]
Abstract
Polyhydroxyalkanoate synthase gene phaC(ah) in Aeromonas hydrophila strain 4AK4 was deleted and its function was replaced by phaC1(ps) cloned from Pseudomonas stutzeri strain 1317 which favors 3-hydroxyhexanoate (3HHx) and longer chain length monomers. Genes fadD and fadL encoding Escherichia coli acyl-CoA synthase and Pseudomonas putida KT2442 fatty acid transport protein, respectively, were introduced into the recombinant with new phaC1(ps). Accumulation of a series of novel medium-chain-length polyhydroxyalkanoates (mcl-PHA) consisting of 80-94 mol% 3HHx were observed. The recombinant accumulated 54% poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) in cell dry weight consisting of 94.5 mol% 3HHx or 51% poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) consisting of 82 mol% 3HHx and 16 mol% of 3HO during a two-step cultivation process under nitrogen limitation when grown on sodium hexanoate or sodium octanoate. The two polyesters containing high percentage of 3HHx are physically characterized. They could be used as biodegradable pressure sensitive adhesives, coatings, polymer binding agents in organic-solvent-free paints or a source for chiral R-3-hydroxyhexanoate.
Collapse
Affiliation(s)
- Jia Jian
- Department of Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
39
|
Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2009.12.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. J Biotechnol 2010; 147:172-9. [DOI: 10.1016/j.jbiotec.2010.03.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/26/2010] [Accepted: 03/31/2010] [Indexed: 11/21/2022]
|
41
|
Chen GQ. Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates. MICROBIOLOGY MONOGRAPHS 2010. [DOI: 10.1007/978-3-642-03287-5_2] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Liu Q, Cheng S, Li Z, Xu K, Chen GQ. Characterization, biodegradability and blood compatibility of poly[(R)-3-hydroxybutyrate] based poly(ester-urethane)s. J Biomed Mater Res A 2009; 90:1162-76. [PMID: 18671259 DOI: 10.1002/jbm.a.32180] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Poly(ester-urethane)s (PUs) were synthesized using hexamethylene diisocyanate (HDI) or toluene diisocyanate (TDI) to join short chains (M(n) = 2000) of poly(R-3-hydroxybutyrate) (PHB) diols and poly(epsilon-caprolactone) (PCL) diols with different feed ratios under different reaction conditions. The multiblock copolymers were characterized by nuclear magnetic resonance spectrometer (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), X-ray diffraction (XRD), and scanning electron microscope (SEM). XRD spectra and second DSC heat thermograms of the multiblock copolymers revealed that the crystallization of both PHB and PCL segments was mutually restricted, and, especially, the PCL segment limited the cold crystallization of the PHB segment. The SEM of platelet adhesion experiments showed that the hemocompatibility was affected to some extent by the chain flexibility of the polymers. Hydrolysis studies demonstrated that the hydrolytic degradation of PUs was generated from the scission of their ester bonds or/and urethane bonds. Simultaneously, the rate of ester bond scission was determined to some extent by the crystallization degree, which was further affected by the configuration of polymer chains. These highly elastic multiblock copolymers combining hemocompatibility and biodegradability may be developed into blood contact implant materials for biomedical applications.
Collapse
Affiliation(s)
- Qiaoyan Liu
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
| | | | | | | | | |
Collapse
|
43
|
Zhang HF, Ma L, Wang ZH, Chen GQ. Biosynthesis and characterization of 3-hydroxyalkanoate terpolyesters with adjustable properties byAeromonas hydrophila. Biotechnol Bioeng 2009; 104:582-9. [DOI: 10.1002/bit.22409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Ji GZ, Wei X, Chen GQ. Growth of human umbilical cord Wharton's Jelly-derived mesenchymal stem cells on the terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2009; 20:325-39. [PMID: 19192359 DOI: 10.1163/156856209x412191] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a new member of the polyhydroxyalkanoate (PHA) family, the terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx) was evaluated for its biocompatibility for human umbilical cord Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). More WJ-MSC adhesion and proliferation were observed on PHBVHHx film compared with films made of poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Higher DNA synthesis by WJ-MSCs was detected on PHBVHHx film than on PLA, PHBV and PHBHHx films. PHBVHHx film had a rougher surface and more adsorption of extracellular matrix (ECM) proteins including collagen I, fibronectin and vitronectin, compared with PLA, PHBV and PHBHHx films. PHBVHHx film was also more hydrophobic than PLA and PHBV. These results demonstrated that PHBVHHx could be a promising biomaterial in medical implant applications for supporting the growth of cells, including WJ-MSCs.
Collapse
Affiliation(s)
- Guang-Zhen Ji
- Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong, P. R. China
| | | | | |
Collapse
|
45
|
Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 2009; 38:2434-46. [PMID: 19623359 DOI: 10.1039/b812677c] [Citation(s) in RCA: 728] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biopolyesters polyhydroxyalkanoates (PHA) produced by many bacteria have been investigated by microbiologists, molecular biologists, biochemists, chemical engineers, chemists, polymer experts and medical researchers. PHA applications as bioplastics, fine chemicals, implant biomaterials, medicines and biofuels have been developed and are covered in this critical review. Companies have been established or involved in PHA related R&D as well as large scale production. Recently, bacterial PHA synthesis has been found to be useful for improving robustness of industrial microorganisms and regulating bacterial metabolism, leading to yield improvement on some fermentation products. In addition, amphiphilic proteins related to PHA synthesis including PhaP, PhaZ or PhaC have been found to be useful for achieving protein purification and even specific drug targeting. It has become clear that PHA and its related technologies are forming an industrial value chain ranging from fermentation, materials, energy to medical fields (142 references).
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Dept Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
46
|
Hu YJ, Wei X, Zhao W, Liu YS, Chen GQ. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Acta Biomater 2009; 5:1115-25. [PMID: 18976972 DOI: 10.1016/j.actbio.2008.09.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 08/26/2008] [Accepted: 09/23/2008] [Indexed: 12/12/2022]
Abstract
As a new member of the polyhydroxyalkanoate (PHA) family, poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx) was produced by recombinant Aeromonas hydrophila 4AK4. PHBVHHx showed a rougher surface and had higher hydrophobicity than the well-studied polymers poly(L-lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Human bone marrow mesenchymal stem cells (MSCs) adhered better on PHBVHHx film than on tissue culture plates (TCPs), PLA film and PHBHHx film. The cell number on the PHBVHHx film was 115% higher than that on the TCPs, 66% higher than on the PHBHHx film and 263% higher than on the PLA film (p<0.01). PHBVHHx also supported the osteogenic differentiation of MSCs. Previous studies have shown that all PHA polymers tested were either poorer than or equal to TCPs for supporting cell growth. PHBVHHx is the only PHA polymer to significantly increase cell numbers compared with TCPs. These data demonstrate that PHBVHHx could be a promising biomaterial for bone tissue engineering.
Collapse
|
47
|
Pijuan M, Casas C, Baeza JA. Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.09.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Interactions between a poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Biomaterials 2008; 29:3807-14. [PMID: 18597841 DOI: 10.1016/j.biomaterials.2008.06.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/10/2008] [Indexed: 01/27/2023]
Abstract
A new member of polyhydroxyalkanoates (PHA) family, namely, a terpolyester abbreviated as PHBVHHx consisting of 3-hydroxybutyrate (HB), 3-hydroxyvalerate (HV) and 3-hydroxyhexanoate (HHx) that can be produced by recombinant microorganisms, was found to have proper thermo- and mechanical properties for possible skin tissue engineering, as demonstrated by its strong ability to support the growth of human keratinocyte cell line HaCaT. In this study, HaCaT cells showed the strongest viability and the highest growth activity on PHBVHHx film compared with PLA, PHB, PHBV, PHBHHx and P3HB4HB, even the tissue culture plates were grown with less HaCaT cells compared with that on PHBVHHx. To understand its superior biocompatibility, PHBVHHx nanoparticles ranging from 200 to 350nm were prepared. It was found that the nanoparticles could increase the cellular activities by stimulating a rapid increase of cytosolic calcium influx in HaCaT cells, leading to enhanced cell growth. At the same time, 3-hydroxybutyrate (HB), a degradation product and the main component of PHBVHHx, was also shown to promote HaCaT proliferation. Morphologically, under the same preparation conditions, PHBVHHx film showed the most obvious surface roughness under atomic force microscopy (AFM), accompanied by the lowest surface energy compared with all other well studied biopolymers tested above. These results explained the superior ability for PHBVHHx to grow skin HaCaT cells. Therefore, PHBVHHx possesses the suitability to be developed into a skin tissue-engineered material.
Collapse
|
49
|
Bhubalan K, Lee WH, Loo CY, Yamamoto T, Tsuge T, Doi Y, Sudesh K. Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym Degrad Stab 2008. [DOI: 10.1016/j.polymdegradstab.2007.11.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|