1
|
de Andrade AF, da Silva SSS, da Silva DR, Ferreira MPDN, de Melo MGN, da Silva MM, Lira-Nogueira MCDB, Viana-Marques DDA, da Silva TG, Porto ALF, de Paiva-Cavalcanti M, Bezerra RP. Lectin from microalgae: Non-toxic to human cells and effective against Leishmania. Int J Biol Macromol 2025; 288:138630. [PMID: 39675602 DOI: 10.1016/j.ijbiomac.2024.138630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
New leishmanicidal products are needed for the treatment to be effective, since current drugs are toxic to healthy human/animal cells and have low efficacy against the parasite. Bioactive compounds from microalgae, such as lectins, can be explored as new anti-Leishmania candidates. This study aimed to evaluate the cytotoxic and anti-Leishmania action of the cell extract (CE) and lectin (CVU) from Chlorella vulgaris biomass. CVU purified from CE was stable within alkaline pH and temperature below 50 °C. CVU showed specificity to the carbohydrate D-Galactose, which is found in the membrane of Leishmania. CE (IC50 = 161.4 μg/mL) and CVU (IC50 = 66.32 μg/mL) exhibited effects against the promastigotes of L. braziliensis, and scanning electron microscopy confirmed alterations the shape and size in treated parasites. CE showed a higher selectivity index than CVU on L. braziliensis promastigotes. These results demonstrate the potential of C. vulgaris as a source of active molecules that can be investigated as therapeutic candidates.
Collapse
Affiliation(s)
- Alexsandra Frazão de Andrade
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco - UFRPE, Dom Manoel de Medeiros Avenue, 52171-900 Recife, PE, Brazil
| | - Sabrina Swan Souza da Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco - UFRPE, Dom Manoel de Medeiros Avenue, 52171-900 Recife, PE, Brazil
| | - Dayane Rodrigues da Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco - UFRPE, Dom Manoel de Medeiros Avenue, 52171-900 Recife, PE, Brazil
| | | | - Maria Gabriella Nunes de Melo
- Department of Microbiology, Aggeu Magalhães Institute, Fiocruz Pernambuco, Prof. Moraes Rego Avenue, 50740-465 Recife, PE, Brazil
| | - Marllyn Marques da Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco - UFRPE, Dom Manoel de Medeiros Avenue, 52171-900 Recife, PE, Brazil
| | - Mariane Cajubá de Britto Lira-Nogueira
- Nanotechnology, Biotechnology and Cell Culture Laboratory, Vitória Academic Center, Federal University of Pernambuco - UFPE, Alto do Reservatório Street, 55608-680 Vitória de Santo Antão, PE, Brazil
| | | | - Teresinha Gonçalves da Silva
- Departament of Antibiotics, Federal University of Pernambuco - UFPE, Prof. Moraes Rego Avenue, 50740-465 Recife, PE, Brazil
| | - Ana Lúcia Figueiredo Porto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco - UFRPE, Dom Manoel de Medeiros Avenue, 52171-900 Recife, PE, Brazil
| | - Milena de Paiva-Cavalcanti
- Department of Microbiology, Aggeu Magalhães Institute, Fiocruz Pernambuco, Prof. Moraes Rego Avenue, 50740-465 Recife, PE, Brazil
| | - Raquel Pedrosa Bezerra
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco - UFRPE, Dom Manoel de Medeiros Avenue, 52171-900 Recife, PE, Brazil.
| |
Collapse
|
2
|
AbdEl-Halim HF, Afifi MS. Wastewater treatment using Moringa oleifera (Lam.) and Eichhornia crassipes (Mart.) as neutral-carbon options within the framework of COP 27 recommendations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:514-532. [PMID: 39730918 DOI: 10.1007/s11356-024-35659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 11/23/2024] [Indexed: 12/29/2024]
Abstract
Contamination of water by heavy toxic metal ions such as (e.g., Cr6+, Mn2+, Ni2+, Cu2+, Zn2+, As3+ Pb2+, Cd2+, and Ag+) can lead to serious environmental and human health problems because of their acute and chronic toxicity to the biological system. In recent decades, research has been directed to alternative production of cheaper sustainable ecofriendly adsorbents with low carbon footprints. Moringa oleifera as an example for terrestrial plant and Eichhornia crassipes commonly known as water hyacinth (WH) as an aquatic plant, are simple effective natural and powerful adsorbents for heavy metals removal. Both plants have invasive growth tendency. They can be easily utilized in developed communities and in rural areas to produce clean water. This review is a comprehensive summary of M. oleifera (MO) and E. crassipes (WH) uses in impure water treatments with a particular attention to their role in reducing carbon footprint. PubMed, Science Direct and Springer were the search data engines that the article referred to from the years 2009-2023.
Collapse
Affiliation(s)
- Hanan F AbdEl-Halim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Manal S Afifi
- Pharmacognosy Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
3
|
de Barros MC, de Oliveira APS, dos Santos FG, Silva FAC, Menezes TM, Seabra GDM, Yoneda JS, Coelho LCBB, Macedo MLR, Napoleão TH, Lima TDA, Neves JL, Paiva PMG. Carbohydrate-Binding Mechanism of the Coagulant Lectin from Moringa oleifera Seeds (cMoL) Is Related to the Dimeric Protein Structure. Molecules 2024; 29:4615. [PMID: 39407546 PMCID: PMC11477877 DOI: 10.3390/molecules29194615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
This study characterized the binding mechanisms of the lectin cMoL (from Moringa oleifera seeds) to carbohydrates using spectroscopy and molecular dynamics (MD). The interaction with carbohydrates was studied by evaluating lectin fluorescence emission after titration with glucose or galactose (2.0-11 mM). The Stern-Volmer constant (Ksv), binding constant (Ka), Gibbs free energy (∆G), and Hill coefficient were calculated. After the urea-induced denaturation of cMoL, evaluations were performed using fluorescence spectroscopy, circular dichroism (CD), and hemagglutinating activity (HA) evaluations. The MD simulations were performed using the Amber 20 package. The decrease in Ksv revealed that cMoL interacts with carbohydrates via a static mechanism. The cMoL bound carbohydrates spontaneously (ΔG < 0) and presented a Ka on the order of 102, with high selectivity for glucose. Protein-ligand complexes were stabilized by hydrogen bonds and hydrophobic interactions. The Hill parameter (h~2) indicated that the binding occurs through the cMoL dimer. The loss of HA at urea concentrations at which the fluorescence and CD spectra indicated protein monomerization confirmed these results. The MD simulations revealed that glucose bound to the large cavity formed between the monomers. In conclusion, the biotechnological application of cMoL lectin requires specific methods or media to improve its dimeric protein structure.
Collapse
Affiliation(s)
- Matheus Cavalcanti de Barros
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.C.d.B.); (L.C.B.B.C.); (T.H.N.); (T.d.A.L.); (P.M.G.P.)
| | - Ana Patrícia Silva de Oliveira
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.C.d.B.); (L.C.B.B.C.); (T.H.N.); (T.d.A.L.); (P.M.G.P.)
| | - Franciane Gonçalves dos Santos
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (F.G.d.S.); (T.M.M.); (J.L.N.)
| | | | - Thais Meira Menezes
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (F.G.d.S.); (T.M.M.); (J.L.N.)
| | - Gustavo de Miranda Seabra
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainseville, FL 32611, USA;
| | - Juliana Sakamoto Yoneda
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-100, SP, Brazil;
| | | | - Maria Lígia Rodrigues Macedo
- Departamento de Tecnologia de Alimentos e da Saúde, Faculdade de Ciências Farmacêuticas, Alimentos e 22 Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.C.d.B.); (L.C.B.B.C.); (T.H.N.); (T.d.A.L.); (P.M.G.P.)
| | - Thâmarah de Albuquerque Lima
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.C.d.B.); (L.C.B.B.C.); (T.H.N.); (T.d.A.L.); (P.M.G.P.)
| | - Jorge Luiz Neves
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (F.G.d.S.); (T.M.M.); (J.L.N.)
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.C.d.B.); (L.C.B.B.C.); (T.H.N.); (T.d.A.L.); (P.M.G.P.)
| |
Collapse
|
4
|
Raneenga A, Pal S, Dadhich A, Sharma MM. Effect of potassium chloride-induced salt stress on bacoside A biosynthesis in Bacopa monnieri (L.) grown under in vitro and in vivo conditions: a comparative study. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1113-1127. [PMID: 39100875 PMCID: PMC11291840 DOI: 10.1007/s12298-024-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
Bacopa monnieri L. is a highly acclaimed plant species for its diverse pharmaceutical properties and is mostly found in the Indian subcontinent. In this study, the effects of salt (KCl) stress on plant height, biomass, chlorophyll content, and antioxidant enzyme activities of Bacopa monnieri in both in vitro and in vivo conditions were investigated. A significant increase of up to 1.8 folds and 1.3 folds in bacoside-A content at 100 mM KCl was recorded in both in vivo and in vitro grown plants, respectively. Higher salinity (> 100 mM KCl) stress exerted a negative effect on plant height and plant biomass, whereas at levels ≤ 100 KCl, substantial improvement in terms of plant height (PH) and biomass (PB) was recorded in both in vivo (up to 1.6-fold and 1.8-fold high) and in vitro (up to 1.9-fold and 1.7-fold high) conditions. Total chlorophyll content and antioxidant enzyme (CAT, POD) activities were also maximum at 100 mM KCl. However, at higher KCl levels (200 mM), no significant increase in any of the morphophysiological parameters was recorded. Therefore, 100 mM KCl was identified as the optimum salt concentration for enhancing bacoside A content, plant growth, and physiological properties in terms of antioxidant enzyme activity and chlorophyll content in B. monnieri.
Collapse
Affiliation(s)
- Aum Raneenga
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007 India
| | - Sanjana Pal
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007 India
| | - Abhishek Dadhich
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007 India
| | - Madan Mohan Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007 India
| |
Collapse
|
5
|
Avazpour S, Noshadi M. Enhancing the coagulation process for the removal of microplastics from water by anionic polyacrylamide and natural-based Moringaoleifera. CHEMOSPHERE 2024; 358:142215. [PMID: 38701865 DOI: 10.1016/j.chemosphere.2024.142215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The existence of microplastics (MPs) in water is a significant global concern since they have the potential to pose a threat to human health. Therefore, there is a need to develop a sustainable treatment technology for MPs removal, as the conventional methods are inadequate to address this problem. Coagulation is a typical process in treatment plants that can capture MPs before releasing them into the environment. In this work, the removal behaviors of polyamide (PA), polystyrene (PS), and polyethylene (PE) MPs were systematically investigated through coagulation processes using aluminum sulfate (Al2(SO4)3) and Moringa oleifera (MO) seeds extract. Subsequently, the coagulation performance of Al2(SO4)3 was improved by the separate addition of anionic polyacrylamide (APAM) and naturally derived MO. Results showed that Al2(SO4)3 in combination with APAM had better performance than Al2(SO4)3 or MO alone. In the Al2(SO4)3+APAM system, the removal efficiencies were 93.47%, 81.25%, and 29.48% for PA, PS, and PE MPs, respectively. Furthermore, the effectiveness of the Al2(SO4)3 and MO blended system was approximately similar to the Al2(SO4)3+APAM system. However, the required amount of Al2(SO4)3 was decreased to 50% in the Al2(SO4)3+MO system compared to the optimal dosage in the Al2(SO4)3 system alone. The combination of 40 mg/L of Al2(SO4)3 and 60 mg/L of MO resulted in removal efficiencies of 92.99%, 80.48%, and 28.94% for PA, PS, and PE MPs, respectively. The high efficacy of these enhanced methods was due to the synergic effects of charge neutralization and agglomeration adsorption, which were validated through zeta potential assessments and visual analysis using scanning electron microscopy (SEM) images. In the case of experimental conditions, initial pH had little impact on removal efficiency, while NaCl salinity and stirring speed directly affected MPs removal. Consequently, this research took a step toward finding a green strategy to remove MPs from water systems.
Collapse
Affiliation(s)
- Saeid Avazpour
- Water Engineering Department, Shiraz University, Shiraz, Iran.
| | - Masoud Noshadi
- Water Engineering Department, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
de Oliveira BF, de Araújo HDA, Neves EF, Napoleão TH, Paiva PMG, de Freitas KCS, de Souza SR, Coelho LCBB. Electrochemical Characterization Using Biosensors with the Coagulant Moringa oleifera Seed Lectin (cMoL). BIOSENSORS 2023; 13:655. [PMID: 37367020 DOI: 10.3390/bios13060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Triturated Moringa oleifera seeds have components that adsorb recalcitrant indigo carmine dye. Coagulating proteins known as lectins (carbohydrate-binding proteins) have already been purified from the powder of these seeds, in milligram amounts. The coagulant lectin from M. oleifera seeds (cMoL) was characterized by potentiometry and scanning electron microscopy (SEM) using MOFs, or metal-organic frameworks, of [Cu3(BTC)2(H2O)3]n to immobilize cMoL and construct biosensors. The potentiometric biosensor revealed an increase in the electrochemical potential resulting from the Pt/MOF/cMoL interaction with different concentrations of galactose in the electrolytic medium. The developed aluminum batteries constructed with recycled cans degraded an indigo carmine dye solution; the oxide reduction reactions of the batteries generated Al(OH)3, promoting dye electrocoagulation. Biosensors were used to investigate cMoL interactions with a specific galactose concentration and monitored residual dye. SEM revealed the components of the electrode assembly steps. Cyclic voltammetry showed differentiated redox peaks related to dye residue quantification by cMoL. Electrochemical systems were used to evaluate cMoL interactions with galactose ligands and efficiently degraded dye. Biosensors could be used for lectin characterization and monitoring dye residues in environmental effluents of the textile industry.
Collapse
Affiliation(s)
- Benny Ferreira de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-420, PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-420, PE, Brazil
| | - Eloisa Ferreira Neves
- Departamento de Química, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, PE, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-420, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-420, PE, Brazil
| | - Katia Cristina Silva de Freitas
- Departamento de Química, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, PE, Brazil
| | - Sandra Rodrigues de Souza
- Departamento de Química, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, PE, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-420, PE, Brazil
| |
Collapse
|
7
|
da Silva SP, da Silva JDF, da Costa CBL, da Silva PM, de Freitas AFS, da Silva CES, da Silva AR, de Oliveira AM, Sá RA, Peixoto AR, de Oliveira APS, Paiva PMG, Napoleão TH. Purification, Characterization, and Assessment of Antimicrobial Activity and Toxicity of Portulaca elatior Leaf Lectin (PeLL). Probiotics Antimicrob Proteins 2023; 15:287-299. [PMID: 34420188 DOI: 10.1007/s12602-021-09837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Lectins are carbohydrate-binding proteins with several bioactivities, including antimicrobial properties. Portulaca elatior is a species found at Brazilian Caatinga and data on the biochemical composition of this plant are scarce. The present work describes the purification of P. elatior leaf lectin (PeLL) as well as the assessment of its antimicrobial activity and toxicity. PeLL, isolated by chromatography on a chitin column, had native liquid charge and subunit composition evaluated by electrophoresis. Hemagglutinating activity (HA) of PeLL was determined in the presence of carbohydrates or divalent cations, as well as after heating and incubation at different pH values. Changes in the lectin conformation were monitored by evaluating intrinsic tryptophan fluorescence and using the extrinsic probe bis-ANS. Antimicrobial activity was evaluated against Pectobacterium strains and Candida species. The minimal inhibitory (MIC), bactericidal (MBC), and fungicidal (MFC) concentrations were determined. Finally, PeLL was evaluated for in vitro hemolytic activity in human erythrocytes and in vivo acute toxicity in mice (5 and 10 mg/kg b.w. per os). PeLL (pI 5.4; 20 kDa) had its HA was inhibited by mannose, galactose, Ca2+, Mg2+, and Mn2+. PeLL HA was resistant to heating at 100 °C, although conformational changes were detected. PeLL was more active in the acidic pH range, in which no conformational changes were observed. The lectin presented MIC and MBC of 0.185 and 0.74 μg/mL for all Pectobacterium strains, respectively; MIC of 1.48 μg/mL for C. albicans, C. tropicalis, and C. krusei; MIC and MFC of 0.74 and 2.96 μg/mL for C. parapsilosis. No hemolytic activity or signs of acute toxicity were observed in the mice. In conclusion, a new, low-toxic, and thermostable lectin was isolated from P. elatior leaves, being the first plant compound to show antibacterial activity against Pectobacterium.
Collapse
Affiliation(s)
- Suéllen Pedrosa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Pollyanna Michelle da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Abdênego Rodrigues da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Roberto Araújo Sá
- Centro Acadêmico Do Agreste, Universidade Federal de Pernambuco, Caruaru, Pernambuco, Brazil
| | - Ana Rosa Peixoto
- Departamento de Tecnologia E Ciências Sociais, Universidade Do Estado da Bahia, Juazeiro, Bahia, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
8
|
Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Zhang J, Liu X, Wang Z, Zhang H, Gao J, Wu Y, Meng X, Zhong Y, Chen H. Potential Allergenicity Response to Moringa oleifera Leaf Proteins in BALB/c Mice. Nutrients 2022; 14:4700. [PMID: 36364962 PMCID: PMC9654714 DOI: 10.3390/nu14214700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 03/08/2024] Open
Abstract
The reported association of Moringa oleifera seeds and allergic disease clinically resembling occupational asthma in cosmetic manufacturing workers has resultedin the need to identify such components in the manufacturing process. However, Moringa oleifera leaves from the same plant, an important food ingredient, have limited immunotoxicity data. This study aimed to determine if Moringa oleifera leafproteins (MLP) can elicit allergic responses in BALB/c mice. The BALB/c mice were sensitized twice and challenged 10 times to evaluate the potential allergenicityof MLP in vivo. The results showed increased levels of mast cells, total and specific IgE and IgG, severe signs of systemic anaphylaxis, and reduced body temperature compared with controls. The sensitized mice serum observed enhanced levels of histamine and Th-related cytokine release. Compared with the control group, increased levels of interleukins IL-4, IL-9, and IL-17A and enhanced expression and secretion of normal T cells were found in the culture supernatant of splenocytes treated with MLP.This study suggeststhat MLPcanelicit allergic responses; this providesmore comprehensive guidance for identifying new allergen candidates and developing hypoallergenic MLP products.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Animal Science and Technology Center, Jiangxi University of Traditional Medicine, Nanchang 330004, China
| | - Xuan Liu
- Animal Science and Technology Center, Jiangxi University of Traditional Medicine, Nanchang 330004, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hua Zhang
- Animal Science and Technology Center, Jiangxi University of Traditional Medicine, Nanchang 330004, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xuanyi Meng
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Youbao Zhong
- Animal Science and Technology Center, Jiangxi University of Traditional Medicine, Nanchang 330004, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| |
Collapse
|
10
|
Roy S, Sarkar T, Chakraborty R. Vegetable seeds: A new perspective in future food development. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| | - Tanmay Sarkar
- Malda Polytechnic West Bengal State Council of Technical Education, Govt. of West Bengal Malda India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| |
Collapse
|
11
|
Konozy EHE, Osman MEFM. Plant lectin: A promising future anti-tumor drug. Biochimie 2022; 202:136-145. [PMID: 35952948 DOI: 10.1016/j.biochi.2022.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Since the early discovery of plant lectins at the end of the 19th century, and the finding that they could agglutinate erythrocytes and precipitate glycans from their solutions, many applications and biological roles have been described for these proteins. Later, the observed erythrocytes clumping features were attributed to the lectin-cell surface glycoconjugates recognition. Neoplastic transformation leads to various cellular alterations which impact the growth of the cell and its persistence, among which is the mutation in the outer surface glycosylation signatures. Quite a few lectins have been found to act as excellent biomarkers for cancer diagnosis while some were presented with antiproliferative activity that initiated by lectin binding to the respective glycocalyx receptors. These properties are blocked by the hapten sugar that is competing for the lectin affinity binding site. In vitro investigations of lectin-cancer cell's glycocalyx interactions lead to a series of immunological reactions that result in autophagy or apoptosis of the transformed cells. Mistletoe lectin, an agglutinin purified from the European Viscum album is the first plant lectin employed in the treatment of cancer to enter into the clinical trial phases. The entrapment of lectin in nanoparticles besides other techniques to promote bioavailability and stability have also been recently studied. This review summarizes our up-to-date understanding of the future applications of plant lectins in cancer prognosis and diagnosis. With the provision of many examples of lectins that exhibit anti-neoplastic properties.
Collapse
|
12
|
El Bouaidi W, Libralato G, Douma M, Ounas A, Yaacoubi A, Lofrano G, Albarano L, Guida M, Loudiki M. A review of plant-based coagulants for turbidity and cyanobacteria blooms removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42601-42615. [PMID: 35384538 PMCID: PMC9148277 DOI: 10.1007/s11356-022-20036-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the proliferation of Harmful Cyanobacterial Blooms (CyanoHABs) has increased with water eutrophication and climate change, impairing human health and the environment in relation to water supply. In drinking water treatment plants (DWTPs), the bio-coagulation based on natural coagulants has been studied as an eco-friendly alternative technology to conventional coagulants for both turbidity and CyanoHABs removal. Plant-based coagulants have demonstrated their coagulation efficiency in turbidity removal, as reported in several papers but its ability in cyanobacterial removal is still limited. This paper mainly reviewed the application of plant-based coagulants in DWTPs, with focus on turbidity removal, including cyanobacterial cells. The future potential uses of these green coagulants to reduce noxious effects of cyanobacterial proliferation are presented. Green coagulants advantages and limitations in DWTPs are reviewed and discussed summarizing more than 10 years of knowledge.
Collapse
Affiliation(s)
- Widad El Bouaidi
- Laboratory of Water, Biodiversity and Climate Change; Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Department of Biology, Cadi Ayyad University, Av. Prince My Abdellah, P. O Box 2390, 40000 Marrakesh, Morocco
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Mountasser Douma
- Polydisciplinary Faculty of Khouribga (FPK), Sultan Moulay Slimane University, 25000 Khouribga, Morocco
| | - Abdelaziz Ounas
- Laboratory of Applied Organic Chemistry, Faculty of Sciences Semlalia, Department of Chemistry, Cadi Ayyad University, 40000 Marrakesh, Morocco
| | - Abdelrani Yaacoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences Semlalia, Department of Chemistry, Cadi Ayyad University, 40000 Marrakesh, Morocco
| | - Giusy Lofrano
- Dipartimento Di Scienze Motorie, Umane E Della Salute, Università Degli Studi Di Roma Foro Italico, Piazza Lauro De Bosis, 15, 00135 Roma, Italy
| | - Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Mohammed Loudiki
- Laboratory of Water, Biodiversity and Climate Change; Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Department of Biology, Cadi Ayyad University, Av. Prince My Abdellah, P. O Box 2390, 40000 Marrakesh, Morocco
| |
Collapse
|
13
|
Cattan Y, Patil D, Vaknin Y, Rytwo G, Lakemond C, Benjamin O. Characterization of Moringa oleifera leaf and seed protein extract functionality in emulsion model system. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Liu R, Liu J, Huang Q, Liu S, Jiang Y. Moringa oleifera: a systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. J Pharm Pharmacol 2021; 74:296-320. [PMID: 34718669 DOI: 10.1093/jpp/rgab131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Moringa oleifera (M. oleifera) Lam (Moringaceae) is a perennial plant broadly used in South Asia and Africa as a traditional folk medicine to treat many ailments such as paralysis, helminthiasis, sores and skin infections. The review provides a critical and comprehensive evaluation of the botany, traditional uses, phytochemistry, pharmacology, toxicity, agricultural economy and dietary benefit of M. oleifera and its future perspectives. KEY FINDINGS In this review, the entire plant of M. oleifera, containing diverse phytochemicals, is summarized. The 163 chemical components, included flavonoids, carbamates, glucosinolates, phenols, and so on with various bioactivities, such as anti-tumour, antioxidant, anti-inflammatory, and so on. Additionally, M. oleifera is toxic at certain doses; and overuse can cause genotoxicity. SUMMARY Although M. oleifera has been widely used in traditional medicine, the pharmacological studies that have been conducted so far are not sufficient for its use in the setting of evidence-based medicine. Little relevant data from clinical trials of M. oleifera have been reported. The majority of studies of its constituents, such as carbamates and glucosinolates, have been conducted only in vitro. Owing to a lack of available data, the pharmacology, toxicity, agricultural economy and dietary benefit of its constituents and extracts require further evaluation.
Collapse
Affiliation(s)
- Rong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Nubi T, Adewole TS, Agunbiade TO, Osukoya OA, Kuku A. Purification and erythrocyte-membrane perturbing activity of a ketose-specific lectin from Moringa oleifera seeds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00650. [PMID: 34258240 PMCID: PMC8253949 DOI: 10.1016/j.btre.2021.e00650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022]
Abstract
This study purified a hemagglutinating protein (MoL) from Moringa oleifera seed, and investigated its hemolytic activity. Molecular weight and stability of MoL were also determined. Modification of some amino acid residues was carried out and the effect on MoL hemagglutinating activity determined. Other investigated parameters are the effects of temperature, concentration, incubation period, pH, and sugars on the protein's hemagglutinating and hemolytic activities. The native and subunit molecular weights were estimated as 30 and 27.5 kDa respectively. Hemagglutinating activity of MoL was slightly inhibited by fructose and sucrose, stable at temperature up to 90°C and within pH range of 2-4. Modification of tryptophan and arginine residues resulted in partial loss of hemagglutinating activity. The hemolytic activity of MoL was concentration, temperature, pH, and time-dependent. The study concluded that MoL showed hemolytic (membrane-perturbing) activity in moderate acidic conditions. This suggests its potential exploitation in improved intracellular delivery of bioactive compounds.
Collapse
Affiliation(s)
- Tolulope Nubi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University Ile-Ife, PMB 13, Nigeria
| | | | | | | | - Adenike Kuku
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University Ile-Ife, PMB 13, Nigeria
| |
Collapse
|
16
|
Gomes DC, Barros MR, Menezes TM, Neves JL, Paiva PMG, da Silva TG, Napoleão TH, Coriolano MC, Dos Santos Correia MT. A new lectin from the floral capitula of Egletes viscosa (EgviL): Biochemical and biophysical characterization and cytotoxicity to human cancer cells. Int J Biol Macromol 2020; 168:676-685. [PMID: 33220373 DOI: 10.1016/j.ijbiomac.2020.11.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 10/23/2022]
Abstract
Egletes viscosa is a plant with therapeutic value due to its antibacterial, antinociceptive and gastroprotective properties. This study aimed to purify, characterize, and evaluate the cytotoxicity of a lectin (EgviL) from the floral capitula of E. viscosa. The lectin was isolated from saline extract through precipitation with ammonium sulfate followed by Sephadex G-75 chromatography. The molecular mass and isoelectric point (pI) of EgviL were determined as well as its temperature and pH stability. Physical-chemical parameters of interaction between EgviL and carbohydrates were investigated by fluorescence quenching and 1H nuclear magnetic resonance (NMR). Cytotoxicity was investigated against human peripheral blood mononuclear cells (PBMCs) and neoplastic cells. EgviL (28.8 kDa, pI 5.4) showed hemagglutinating activity stable towards heating until 60 °C and at the pH range 5.0-7.0. This lectin is able to interact through hydrophobic and electrostatic bonds with galactose and glucose, respectively. EgviL reduced the viability of PBMCs only at the highest concentration tested (100 μg/mL) while was toxic to Jurkat E6-1 cells with IC50 of 24.1 μg/mL,inducing apoptosis. In summary, EgviL is a galactose/glucose-binding protein with acidic character, stable to heating and with cytotoxic effect on leukemic cells.
Collapse
Affiliation(s)
- Dayane Correia Gomes
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Marcela Rodrigues Barros
- Laboratório de Química Biológica, Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thaís Meira Menezes
- Laboratório de Química Biológica, Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Jorge Luiz Neves
- Laboratório de Química Biológica, Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Marília Cavalcanti Coriolano
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | |
Collapse
|
17
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. In vitro assessment of dual (antiviral and antitumor) activity of a novel lectin produced by the newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1. J Biomol Struct Dyn 2020; 40:3560-3580. [PMID: 33200676 DOI: 10.1080/07391102.2020.1848632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel lectin was purified from newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1 using affinity chromatography with a molecular weight of 120 kDa under native-PAGE and 30 kDa on reducing-PAGE, represented tetramer nature of this lectin. Oscillatorial lectin showed stability at 60 °C for 30 min, pH-dependent, with the highest activities over the pH range of 6-8, and required zinc ions to express its full activity. Oscillatorial lectin is a glycan-binding protein with a neutral carbohydrate content of 7.0% as evaluated by the phenol-sulfuric acid method. Polyols and α- glycosides polymer of mannose sugar or sugars alcohol were completely inhibited oscillatorial lectin with MIC of 0.195 mM, while β-glycosides sugars did not show any inhibition effect. The oscillatorial lectin has anti-proliferative activity against Huh-7 and MCF-7 cancer cells and inhibited their proliferation with EC50 values of 106.75 µg/ml and 254.14 µg/ml, respectively. Besides the anticancer effect, oscillatorial lectin also has potent antiviral activity against HSV-1 in a dose-dependent manner via virions neutralization and inhibition of viral replication with IC50 values of 90.95 ng/ml and 131.3 ng/ml, respectively. The unique carbohydrate affinity of oscillatorial lectin provides insight into its use as a promising candidate in many biotechnological applications, like fighting viral infection and combating cancer disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.,Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
18
|
El-Fakharany EM, Saad MH, Salem MS, Sidkey NM. Biochemical characterization and application of a novel lectin from the cyanobacterium Lyngabya confervoides MK012409 as an antiviral and anticancer agent. Int J Biol Macromol 2020; 161:417-430. [PMID: 32526302 DOI: 10.1016/j.ijbiomac.2020.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
|
19
|
Medeiros MLS, Alves RRV, Oliveira BF, Napoleão TH, Paiva PMG, Coelho LCBB, Bezerra ACDS, Silva MDC. In vitro effects of Moringa oleifera seed lectins on Haemonchus contortus in larval and adult stages. Exp Parasitol 2020; 218:108004. [PMID: 32961172 DOI: 10.1016/j.exppara.2020.108004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Haemonchus contortus is a hematophagous parasite causing damage to the production of ruminant animals throughout the world. This study evaluated the in vitro effect of proteins from Moringa oleifera (WSMoL - Water Soluble M. oleifera Lectin and cMoL - coagulant M. oleifera Lectin) on the motility of infective larvae and adult male and female worms of H. contortus. The specific activity of total proteases and the morphology of the worms exposed to the lectins were observed. Both lectins inhibited motility of all parasite stages tested. WSMoL and cMoL at 500 μg mL-1 interfered in the motility of larvae. Values of 11.1% and 8.1% were the lowest motility indices of larvae with sheath, and 30.6% and 16.4% were the lowest motility indices of exsheathed larvae treated with WSMoL and cMoL, respectively. In 1 mg mL-1 solutions of WSMoL and of cMoL, the motility index of adult male worms was 23.3% (p < 0.001) and 20% (p < 0.001), while the motility index of adult female worms was 63.3% (p > 0.05) and 26.6% (p < 0.001), respectively. Greater proteolytic activity was detected in extracts obtained from adult worms, male and female, after incubation with the lectins. Morphological changes caused by the lectins were revealed by changes in the crests of the cuticle, in the longitudinal striations and at the vulva.
Collapse
Affiliation(s)
- Mário L S Medeiros
- Departamento de Ciências Biomédicas, Faculdade de Ciências da Saúde, Universidade do Estado do Rio Grande do Norte, Rua Atirador Miguel Antônio da Silva Neto, S/n, Aeroporto, 59607-360, Mossoró, Rio Grande do Norte, Brazil.
| | - Robson R V Alves
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Benny F Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Ana C D S Bezerra
- Departamento de Biociências, Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota 572, Costa e Silva, 59625-900, Mossoró, Rio Grande do Norte, Brazil
| | - Michele D C Silva
- Departamento de Biociências, Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota 572, Costa e Silva, 59625-900, Mossoró, Rio Grande do Norte, Brazil.
| |
Collapse
|
20
|
Taiwo AS, Adenike K, Aderonke O. Efficacy of a natural coagulant protein from Moringa oleifera (Lam) seeds in treatment of Opa reservoir water, Ile-Ife, Nigeria. Heliyon 2020; 6:e03335. [PMID: 32051883 PMCID: PMC7002891 DOI: 10.1016/j.heliyon.2020.e03335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/07/2022] Open
Abstract
Health related and environmental side effects associated with conventional chemical coagulants used in water treatment has prompted the search for natural alternatives, especially of plant origin. This study investigated the water coagulation activities of a purified protein from Moringa oleifera seeds on the water from Opa reservoir of Obafemi Awolowo University, Ile-Ife. M. oleifera coagulant protein (MoCP) was purified via ion exchange and gel filtration chromatography respectively. Subunit and native molecular weight as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration was 14.2 kDa and 30.3 kDa respectively. Modified jar test was used to investigate the coagulation activity of the purified protein in comparison to that of conventional chemical coagulant (aluminium sulphate). MoCP significantly reduced turbidity (p < 0.05) and organic load which contributed to about 58.18% reduction in total coliform of treated water. MoCP also elicited promising antimicrobial activity against bacterial isolates in the water from Opa reservoir.
Collapse
Affiliation(s)
- Adewole Scholes Taiwo
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University Ile-Ife, Osun State, Nigeria
| | - Kuku Adenike
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University Ile-Ife, Osun State, Nigeria
| | - Okoya Aderonke
- Institute of Ecology and Environmental Sciences, Obafemi Awolowo University Ile-Ife, Osun State, Nigeria
| |
Collapse
|
21
|
Dhakad AK, Ikram M, Sharma S, Khan S, Pandey VV, Singh A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother Res 2019; 33:2870-2903. [PMID: 31453658 DOI: 10.1002/ptr.6475] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
The genus Moringa Adans. comprises 13 species, of which Moringa oleifera Lam. native to India and cultivated across the world owing to its drought and frost resistance habit is widely used in traditional phytomedicine and as rich source of essential nutrients. Wide spectrum of phytochemical ingredients among leaf, flower, fruit, seed, seed oil, bark, and root depend on cultivar, season, and locality. The scientific studies provide insights on the use of M. oleifera with different aqueous, hydroalcoholic, alcoholic, and other organic solvent preparations of different parts for therapeutic activities, that is, antibiocidal, antitumor, antioxidant, anti-inflammatory, cardio-protective, hepato-protective, neuro-protective, tissue-protective, and other biological activities with a high degree of safety. A wide variety of alkaloid and sterol, polyphenols and phenolic acids, fatty acids, flavanoids and flavanol glycosides, glucosinolate and isothiocyanate, terpene, anthocyanins etc. are believed to be responsible for the pragmatic effects. Seeds are used with a view of low-cost biosorbent and coagulant agent for the removal of metals and microbial contamination from waste water. Thus, the present review explores the use of M. oleifera across disciplines for its prominent bioactive ingredients, nutraceutical, therapeutic uses and deals with agricultural, veterinarian, biosorbent, coagulation, biodiesel, and other industrial properties of this "Miracle Tree."
Collapse
Affiliation(s)
- Ashok K Dhakad
- Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, India
| | - Mohsin Ikram
- Forest Entomology Division, Forest Research Institute, Dehradun, India
| | - Shivani Sharma
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Salman Khan
- Forest Entomology Division, Forest Research Institute, Dehradun, India
| | - Vijay V Pandey
- Forest Pathology Division, Forest Research Institute, Dehradun, India
| | - Avtar Singh
- Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
22
|
Preparation, characterization and functional properties of Moringa oleifera seed protein isolate. Journal of Food Science and Technology 2019; 56:2093-2104. [PMID: 30996443 DOI: 10.1007/s13197-019-03690-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
Moringa seed protein isolate (MPI) was prepared by aqueous salt extraction followed by watering-out to precipitate proteins. Extraction and precipitation steps were optimized to achieve maximum MPI yield. Besides, MPI was characterized based on its composition and functional properties. Among the multiple salts examined, Na2SO4 (69.9%), KCl (66.2%), NaCl (65.4%), and NaBr (63.5%) displayed better protein extractability as well as higher MPI yield (~ 52%) with a protein content of > 90% d.b. However, NaCl was preferred considering its wider acceptance. Based on response surface methodology analysis, solvent-to-flour ratio, 22:1 (v/w), NaCl concentration, 0.4 M and temperature, 55 °C were found optimal for maximum protein extractability of 70.3%. Subsequent watering-out resulted in a maximum MPI yield of 56% (protein basis). MPI contained all the protein subunits (6.5, 14, 29 kDa) present in its source. It also scored over commercial soy protein isolate in many of the functional properties.
Collapse
|
23
|
|
24
|
da Silva JDF, da Silva SP, da Silva PM, Vieira AM, de Araújo LCC, de Albuquerque Lima T, de Oliveira APS, do Nascimento Carvalho LV, da Rocha Pitta MG, de Melo Rêgo MJB, Pinheiro IO, Zingali RB, do Socorro de Mendonça Cavalcanti M, Napoleão TH, Paiva PMG. Portulaca elatior root contains a trehalose-binding lectin with antibacterial and antifungal activities. Int J Biol Macromol 2018; 126:291-297. [PMID: 30583005 DOI: 10.1016/j.ijbiomac.2018.12.188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Lectins are carbohydrate-binding proteins broadly distributed in plants and have several biological functions, including antimicrobial action. Portulaca elatior is a Caatinga plant whose chemical composition and biotechnological potential have not been extensively studied. In this work, a lectin was isolated from P. elatior root extract and evaluated for antimicrobial activity. The P. elatior root lectin (PeRoL) showed native molecular mass of 33 kDa, pI 3.8 and is comprised of two subunits of 15 kDa linked by disulfide bonds. No sequence similarities with Viridiplantae proteins were observed. The PeRoL hemagglutinating activity (HA) was not affected by heating and was detected in a pH ranging from 4.0 to 8.0. Trehalose was identified as an endogenous inhibitor of PeRoL present in the roots. Bacteriostatic activity was detected against Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus (minimal inhibitory concentration of 8.1, 32.5 and 4.06 μg/mL, respectively). PeRoL induced the death of Candida albicans, Candida parapsilosis, Candida krusei, and Candida tropicalis cells, with a minimal fungicidal concentration of 16 μg/mL. The lectin (100 μg/mL) was not cytotoxic to human peripheral blood mononuclear cells (PBMCs) and did not show hemolytic activity. In conclusion, the roots of P. elatior contain a trehalose-binding, thermostable, and antimicrobial lectin.
Collapse
Affiliation(s)
| | - Suéllen Pedrosa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Pollyanna Michelle da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Amanda Mota Vieira
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Thâmarah de Albuquerque Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Maira Galdino da Rocha Pitta
- Departamento de Inovação Terapêutica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
25
|
Gupta N, Gautam AK, Bhagyawant SS. Biochemical characterisation of lectin from wild chickpea (Cicer reticulatum L.) with potential inhibitory action against human cancer cells. J Food Biochem 2018; 43:e12712. [PMID: 31353649 DOI: 10.1111/jfbc.12712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/10/2018] [Accepted: 09/27/2018] [Indexed: 11/28/2022]
Abstract
A wild chickpea lectin (WCL) from the seeds of Cicer reticulatum L. was chromato-purified using DEAE-Cellulose and SP-Sephadex ion exchange chromatography. WCL was thermostable upto 60°C with broad pH optima (pH 5-9) and various divalent metal ions did not influence its activity. WCL demonstrated DNA protection in a dose-dependent manner. The lectin exerted antifungal activity against diverse fungal pathogens. WCL augmented the mitogenic response of mouse spleen cells at 10 µg/ml concentration and showed an inhibition of HIV-1 reverse transcriptase at IC50 of 200 µM. Against human cancer cell lines, lectin demonstrated anticancer potential. The cell viability assay in HepG2, Ishikawa, MCF-7 and MDA-MB-231 cell line demonstrated IC50 values of 61.8, 54.4, 37.5 and 44.2 µg/ml respectively. PRACTICAL APPLICATIONS: WCL exhibited distinct medicinal properties vis-à-vis antiproliferative, mitogenic, antifungal/bacterial and HIV-1 reverse transcriptase inhibiting activities. The potential of WCL can be a subject of exploration from a pharmacological standpoint.
Collapse
Affiliation(s)
- Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | - Ajay Kumar Gautam
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | | |
Collapse
|
26
|
Pecora HB, Dilarri G, Mendes CR, Corso CR. Bioassays and coagulation studies using Moringa oleifera seeds for the removal of textile dyes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1679-1692. [PMID: 30500792 DOI: 10.2166/wst.2018.446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this work was to evaluate the removal of three different textile dyes through the coagulation action of the powder and supernatant of Moringa oleifera seeds. The pH of the solution and mass concentrations of the adsorbent were varied. Fourier transform infrared (FT-IR) spectrophotometry was used to evaluate the main interaction sites of the M. oleifera coagulants with the dyes. Bioassays were also conducted with Lactuca sativa and Eruca sativa seeds to evaluate the toxicity of the M. oleifera coagulants and dyes. Each dye interacted differently with the M. oleifera powder and supernatant; however, dye removal rates were higher than 70% even when varying the pH of the solution. FT-IR spectrophotometry revealed that the linkage of the dyes with the M. oleifera coagulants occurs through chemical interactions, and the coagulating protein of M. oleifera was confirmed as the removing agent. Depending on the dye molecule, the pH of the solution also exerted a strong influence on coagulation. The phytotoxicity tests showed that the coagulants in the seeds of M. oleifera are more toxic than the dyes tested. In conclusion, although efficient and economically feasible, the application of M. oleifera coagulants requires further investigation, especially with regard to ecotoxicology.
Collapse
Affiliation(s)
- Hengli Barbosa Pecora
- Department of Biochemistry and Microbiology, São Paulo State University (UNESP), 24-A Avenue, n° 1515, Postal Code: 13506-900, Rio Claro-SP, Brazil E-mail:
| | - Guilherme Dilarri
- Department of Biochemistry and Microbiology, São Paulo State University (UNESP), 24-A Avenue, n° 1515, Postal Code: 13506-900, Rio Claro-SP, Brazil E-mail:
| | - Carolina Rosai Mendes
- Department of Biochemistry and Microbiology, São Paulo State University (UNESP), 24-A Avenue, n° 1515, Postal Code: 13506-900, Rio Claro-SP, Brazil E-mail:
| | - Carlos Renato Corso
- Department of Biochemistry and Microbiology, São Paulo State University (UNESP), 24-A Avenue, n° 1515, Postal Code: 13506-900, Rio Claro-SP, Brazil E-mail:
| |
Collapse
|
27
|
Saucedo-Pompa S, Torres-Castillo J, Castro-López C, Rojas R, Sánchez-Alejo E, Ngangyo-Heya M, Martínez-Ávila G. Moringa plants: Bioactive compounds and promising applications in food products. Food Res Int 2018; 111:438-450. [DOI: 10.1016/j.foodres.2018.05.062] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/01/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
|
28
|
Delelegn A, Sahile S, Husen A. Water purification and antibacterial efficacy of Moringa oleifera Lam. ACTA ACUST UNITED AC 2018. [DOI: 10.1186/s40066-018-0177-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Gupta S, Jain R, Kachhwaha S, Kothari S. Nutritional and medicinal applications of Moringa oleifera Lam.—Review of current status and future possibilities. J Herb Med 2018. [DOI: 10.1016/j.hermed.2017.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Moringa oleifera seed lectin inhibits Ehrlich ascites carcinoma cell growth by inducing apoptosis through the regulation of Bak and NF-κB gene expression. Int J Biol Macromol 2018; 107:1936-1944. [DOI: 10.1016/j.ijbiomac.2017.10.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/22/2023]
|
31
|
Ibrahim AM, Abdalla AM. Impact of Moringa oleifera seed aqueous extract on some biological, biochemical, and histological aspects of Biomphalaria alexandrina snails. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28072-28078. [PMID: 28994007 DOI: 10.1007/s11356-017-0397-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Schistosomiasis is one of the neglected tropical diseases. It is a snail-borne trematode infection, and Biomphalaria alexandrina snails are the intermediate host of Schistosoma mansoni in Egypt. The objective of this study is to evaluate the molluscicidal activity of the aqueous seed extract of Moringa oleifera against B. alexandrina snails. The results showed that this aqueous extract was lethal for B. alexandrina snails (LC50 0.27 g/l; LC90 0.41 g/l). Exposure of snails to the sublethal concentrations of this aqueous extract caused a considerable reduction in survival rates and hatchability rates of eggs of these snails. Moreover, it negatively affected some biochemical aspects, where it increased the levels of transaminases (ALT and AST), while it decreased the concentrations of total protein, albumin, and globulin concentration. Histological examinations of the digestive gland of snails exposed to the sublethal concentrations of aqueous seed extract of M. oleifera revealed severe damage in the digestive cells, where they lost their tips and some were degenerated, while the secretory cells increased in number. Regarding the hermaphrodite gland, there were losses of connective tissues and irregular sperms, and the eggs were degenerated. These findings prove the potent activity of aqueous seed extract of M. oleifera against the intermediate hosts of Schistosoma mansoni and provide a considerable scope in exploiting local indigenous resources for snails' molluscicidal agents.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt.
| | - Aboelfetoh M Abdalla
- Technology of Horticulture Crops Department, National Research Center, Giza, Egypt
| |
Collapse
|
32
|
de Oliveira CFR, de Moura MC, Napoleão TH, Paiva PMG, Coelho LCBB, Macedo MLR. A chitin-binding lectin from Moringa oleifera seeds (WSMoL) impairs the digestive physiology of the Mediterranean flour larvae, Anagasta kuehniella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:67-76. [PMID: 29107249 DOI: 10.1016/j.pestbp.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 06/07/2023]
Abstract
Biotechnological techniques allow the investigation of alternatives to outdated chemical insecticides for crop protection; some investigations have focused on the identification of molecules tailored from nature for this purpose. We, herein, describe the negative effects of water-soluble lectin from Moringa oleifera seeds (WSMoL) on Anagasta kuehniella development. The chitin-binding lectin, WSMoL, impaired the larval weight gain by 50% and affected the activity of the pest's major digestive enzymes. The commitment of the digestive process became evident after controlled digestion studies, where the capacity of protein digestion was compromised by >90%. Upon acute exposure, the lectin was not resistant to digestion; however, chronic ingestion of WSMoL was able to reverse this feature. Thus, we show that resistance to digestion may not be a prerequisite for a lectin's ability to exert negative effects on larval physiology. The mechanism of action of WSMoL involves binding to chitin with possible disruption to the peritrophic membrane, causing disorder between the endo- and ectoperitrophic spaces. Additionally, results suggest that WSMoL may trigger apoptosis in gut cells, leading to the lower enzymatic activity observed in WSMoL-fed larvae. Although assays employing an artificial diet did not demonstrate effects of WSMoL on A. kuehniella mortality, this lectin may hold potential for exerting insecticide effects on other pest insects, as well for use in other experimental approaches, such as WSMoL-expressing plants. Moreover, the use of WSMoL with other biotechnological tools, such as 'pyramid' crops, may represent a strategy for delaying the evolution of pest resistance to transgenic crops, since its multiple site targets could act in synergism with other insecticide compounds.
Collapse
Affiliation(s)
- Caio Fernando Ramalho de Oliveira
- Laboratório de Purificação de Proteínas e suas Funções Biológicas-LPPFB, Unidade de Tecnologia de Alimentos e Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil; Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Maiara Celine de Moura
- Departmento de Bioquímica e Biofísica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departmento de Bioquímica e Biofísica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas-LPPFB, Unidade de Tecnologia de Alimentos e Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
33
|
de Andrade Luz L, Rossato FA, Costa RAPE, Napoleão TH, Paiva PMG, Coelho LCBB. Cytotoxicity of the coagulant Moringa oleifera lectin (cMoL) to B16-F10 melanoma cells. Toxicol In Vitro 2017. [DOI: 10.1016/j.tiv.2017.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Sánchez-Muñoz MA, Valdez-Solana MA, Avitia-Domínguez C, Ramírez-Baca P, Candelas-Cadillo MG, Aguilera-Ortíz M, Meza-Velázquez JA, Téllez-Valencia A, Sierra-Campos E. Utility of Milk Coagulant Enzyme of Moringa oleifera Seed in Cheese Production from Soy and Skim Milks. Foods 2017; 6:foods6080062. [PMID: 28783066 PMCID: PMC5575637 DOI: 10.3390/foods6080062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022] Open
Abstract
In this study, the potential use of Moringa oleifera as a clotting agent of different types of milk (whole, skim, and soy milk) was investigated. M. oleifera seed extract showed high milk-clotting activity followed by flower extract. Specific clotting activity of seed extract was 200 times higher than that of flower extract. Seed extract is composed by four main protein bands (43.6, 32.2, 19.4, and 16.3 kDa). Caseinolytic activity assessed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and tyrosine quantification, showed a high extent of casein degradation using M. oleifera seed extract. Milk soy cheese was soft and creamy, while skim milk cheese was hard and crumbly. According to these results, it is concluded that seed extract of M. oleifera generates suitable milk clotting activity for cheesemaking. To our knowledge, this study is the first to report comparative data of M. oleifera milk clotting activity between different types of soy milk.
Collapse
Affiliation(s)
- María Alejandra Sánchez-Muñoz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - Mónica Andrea Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N Col. Centro, Durango, Dgo, CP 34000, Mexico.
| | - Patricia Ramírez-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - María Guadalupe Candelas-Cadillo
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - Miguel Aguilera-Ortíz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - Jorge Armando Meza-Velázquez
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N Col. Centro, Durango, Dgo, CP 34000, Mexico.
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango, CP 35010, Mexico.
| |
Collapse
|
35
|
Abstract
Moringa oleifera is a rich source of bioactive compounds and is widely used in traditional medicine and food for its nutritional value; however, the protein and peptide components of different tissues are rarely discussed. Here, we describe the first investigation of M. oleifera proteomes using mass spectrometry and bioinformatics methods. We aimed to elucidate the protein profiles of M. oleifera leaves, stem, bark, and root. Totally 202 proteins were identified from four vegetative organs. We identified 101 proteins from leaves, 51 from stem, 94 from bark and 67 from root, finding that only five proteins existed in both four vegetative parts. The calculated pI of most of the proteins is distributed in 5-10 and the molecular weight distributed below 100 kDa. Functional classification analysis revealed that proteins which are involved in catalytic activities are the most abundant both in leaves, stem, bark and root. Identification of several heat shock proteins in four vegetative tissues might be adaptive for resistance to high temperature environmental stresses of tropical or subtropical areas. Some enzymes involved in antioxidant processes were also identified in M. oleifera leaves, stem, bark and root. Among the four tissues studies here, leaves protein content and molecular diversity were the highest. The identification of the flocculating protein MO2.1 and MO2.2 in the bark and root provides clue to clarify the antimicrobial molecular mechanisms of root and bark. This study provides information on the protein compositions of M. oleifera vegetative tissues that will be beneficial for potential drug and food supplement development and plant physiology research.
Collapse
|
36
|
Baptista ATA, Silva MO, Gomes RG, Bergamasco R, Vieira MF, Vieira AMS. Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.02.040] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Saini RK, Sivanesan I, Keum YS. Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech 2016; 6:203. [PMID: 28330275 PMCID: PMC5033775 DOI: 10.1007/s13205-016-0526-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
Moringa oleifera Lam., also known as the ‘drumstick tree,’ is recognized as a vibrant and affordable source of phytochemicals, having potential applications in medicines, functional food preparations, water purification, and biodiesel production. The multiple biological activities including antiproliferation, hepatoprotective, anti-inflammatory, antinociceptive, antiatherosclerotic, oxidative DNA damage protective, antiperoxidative, cardioprotective, as well as folk medicinal uses of M. oleifera (MO) are attributed to the presence of functional bioactive compounds, such as phenolic acids, flavonoids, alkaloids, phytosterols, natural sugars, vitamins, minerals, and organic acids. The low molecular weight of M. oleifera cationic proteins (MOCP) extracted from the seeds is very useful and is used in water purification, because of its potent antimicrobial and coagulant properties. Also, the M. oleifera methyl esters (MOME) produced from the oil of the seeds meet the major specifications of the biodiesel standard of Germany, Europe, and United States (US). Thus, MO is emerging as one of the prominent industrial crops for sustainable biodiesel production in tropical and subtropical countries. In view of the high nutritional, nutraceutical, and industrial values, it is important to compile an updated comprehensive review on the related aspects of this multipurpose and miracle tree. Hence, the present study is focused on the nutritionally significant bioactives and medicinal and biological properties, to explore the potential applications of MO in nutritionally rich food preparations. Furthermore, water coagulation, proteins, and fatty acid methyl esters from the MO seeds are reviewed, to explore their possible industrial applications in biodiesel production and water purification. In addition, the future perspectives in these areas are suggested.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science, College of Life and Environmental Sciences, Konkuk University, Seoul, 143-701, Korea.
| | - Iyyakkannu Sivanesan
- Department of Molecular Biotechnology, College of Life and Environmental Sciences, Konkuk University, Seoul, 143-701, Korea
| | - Young-Soo Keum
- Department of Bioresources and Food Science, College of Life and Environmental Sciences, Konkuk University, Seoul, 143-701, Korea.
| |
Collapse
|
38
|
Freitas JHES, de Santana KV, do Nascimento ACC, de Paiva SC, de Moura MC, Coelho LCBB, de Oliveira MBM, Paiva PMG, do Nascimento AE, Napoleão TH. Evaluation of using aluminum sulfate and water-soluble Moringa oleifera seed lectin to reduce turbidity and toxicity of polluted stream water. CHEMOSPHERE 2016; 163:133-141. [PMID: 27526060 DOI: 10.1016/j.chemosphere.2016.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Aluminum salts are used as coagulants in water treatment; however, the exposure to residual aluminum has been associated with human brain lesions. The water-soluble Moringa oleifera lectin (WSMoL), which is extracted with distilled water and isolated by chitin chromatography, has coagulant activity and is able to reduce the concentration of metal ions in aqueous solutions. This study evaluated the potential of using aluminum sulfate and WSMoL to reduce the turbidity and toxicity of water from the Cavouco stream located in Recife, Pernambuco, Brazil. The water sample used (called P1) was collected from the stream source, which was found to be strongly polluted based on physicochemical and water quality analyses, as well as ecotoxicity assays with Artemia salina and seeds of Eruca sativa and Lactuca sativa. The assays combining WSMoL and aluminum sulfate were more efficient than those that used these agents separately. Furthermore, the greatest reduction in turbidity (96.8%) was obtained with the treatment using aluminum sulfate followed by WSMoL, compared to when they were applied simultaneously (91.3%). In addition, aluminum sulfate followed by WSMoL treatment resulted in residual aluminum concentration (0.3 mg/L) that was much lower than that recorded after the treatment using only the salt (35.5 mg/L). The ecotoxicity of P1 was also strongly reduced after the treatments. In summary, the combined use of aluminum sulfate and WSMoL was efficient in promoting a strong reduction of turbidity and ecotoxicity of a polluted water sample, without resulting in a high residual aluminum concentration at the conclusion of the treatment.
Collapse
Affiliation(s)
- José Henrique Edmilson Souza Freitas
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil; Núcleo de Pesquisas em Ciências Ambientais e Biotecnologia, Universidade Católica de Pernambuco, 50050-590, Recife, Pernambuco, Brazil
| | - Keissy Vanderley de Santana
- Núcleo de Pesquisas em Ciências Ambientais e Biotecnologia, Universidade Católica de Pernambuco, 50050-590, Recife, Pernambuco, Brazil
| | | | - Sérgio Carvalho de Paiva
- Laboratório de Análises Químicas, Universidade Católica de Pernambuco, 50050-590, Recife, Pernambuco, Brazil
| | - Maiara Celine de Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | | | - Maria Betânia Melo de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Aline Elesbão do Nascimento
- Núcleo de Pesquisas em Ciências Ambientais e Biotecnologia, Universidade Católica de Pernambuco, 50050-590, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
39
|
Anudeep S, Prasanna VK, Adya SM, Radha C. Characterization of soluble dietary fiber from Moringa oleifera seeds and its immunomodulatory effects. Int J Biol Macromol 2016; 91:656-62. [DOI: 10.1016/j.ijbiomac.2016.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 12/01/2022]
|
40
|
|
41
|
de Moura KS, da Silva HRC, Dornelles LP, Coelho LCBB, Napoleão TH, de Oliveira MDL, Paiva PMG. Coagulant Activity of Water-Soluble Moringa oleifera Lectin Is Linked to Lowering of Electrical Resistance and Inhibited by Monosaccharides and Magnesium Ions. Appl Biochem Biotechnol 2016; 180:1361-1371. [DOI: 10.1007/s12010-016-2172-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/20/2016] [Indexed: 11/25/2022]
|
42
|
Campos JKL, Araújo CSF, Araújo TFS, Santos AFS, Teixeira JA, Lima VLM, Coelho LCBB. Anti-inflammatory and antinociceptive activities of Bauhinia monandra leaf lectin. BIOCHIMIE OPEN 2016; 2:62-68. [PMID: 29632839 PMCID: PMC5889483 DOI: 10.1016/j.biopen.2016.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
A galactose-specific lectin from Bauhinia monandra leaves (BmoLL) has been purified through ammonium sulfate fractionation followed by guar gel affinity chromatography column. This study aimed to evaluate the potential anti-inflammatory and antinociceptive activity of pure BmoLL in mice. Anti-inflammatory activity was evaluated by 1% carrageenan-induced inflammation in mice treated with BmoLL. Acetic acid-induced abdominal writhing and hot plate methods evaluated antinociceptive activity. BmoLL significantly inhibited the carrageenan-induced paw edema by 47% (30 mg/kg) and 60.5% (60 mg/kg); acetylsalicylic acid (ASA, 100 mg/kg) showed inhibition of 70.5%, in comparison to controls. Leukocyte migration, an immune response to the inflammation process, was significantly reduced in presence of BmoLL; in mice treated with ASA the decrease in leukocyte migration was similar to 15 mg/kg of the lectin. BmoLL at doses of 15, 30 and 60 mg/kg significantly reduced the number of animal contortions by 43.1, 50.1 and 71.3%, respectively. BmoLL leukocyte migration was significantly reduced; in mice treated with ASA the decrease in leukocyte migration was similar to 15 mg/kg of the lectin. BmoLL at doses of 15, 30 and 60 mg/kg significantly reduced the number of animal contortions by 43.1, 50.1 and 71.3%, respectively. The lectin (30 and 60 mg/kg) showed a significant effect in the hot plate assay. BmoLL anti-inflammatory and antinociceptive effects were dose-dependent. The search for new and natural compounds, with minimal side effects, to control pain and inflammation, is constantly increasing. BmoLL has great potential as a natural anti-inflammatory product that can be explored for pharmacological purposes. BmoLL inhibited the carrageenan-induced paw edema. BmoLL significantly reduced the number of animal contortions. BmoLL anti-inflammatory and antinociceptive effects in a dose dependent manner.
Collapse
Affiliation(s)
- Janaína K L Campos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Chrisjacele S F Araújo
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Tiago F S Araújo
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Andréa F S Santos
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Vera L M Lima
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| |
Collapse
|
43
|
Vallabha VS, Tapal A, Sukhdeo SV, K G, Tiku PK. Effect of arginine : lysine ratio in free amino acid and protein form onl-NAME induced hypertension in hypercholesterolemic Wistar rats. RSC Adv 2016. [DOI: 10.1039/c6ra13632j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arginine : lysine in the ratio of 5 : 1 plays an important role in cardiovascular diseases, especially as a nitric oxide precursor leading to vasodilation and inhibiting angiotensin-I converting enzyme in renin angiotensin system.
Collapse
Affiliation(s)
- Vishwanath S. Vallabha
- Department of Protein Chemistry and Technology
- CSIR-Central Food Technological Research Institute
- Mysuru-570 020
- India
| | - Arun Tapal
- Department of Protein Chemistry and Technology
- CSIR-Central Food Technological Research Institute
- Mysuru-570 020
- India
| | - Shinde Vijay Sukhdeo
- Animal House Facility
- CSIR-Central Food Technological Research Institute
- Mysuru-570 020
- India
| | - Govindaraju K
- Department of Protein Chemistry and Technology
- CSIR-Central Food Technological Research Institute
- Mysuru-570 020
- India
| | - Purnima Kaul Tiku
- Department of Protein Chemistry and Technology
- CSIR-Central Food Technological Research Institute
- Mysuru-570 020
- India
| |
Collapse
|
44
|
Santos AFS, Matos M, Sousa Â, Costa C, Nogueira R, Teixeira JA, Paiva PMG, Parpot P, Coelho LCBB, Brito AG. Removal of tetracycline from contaminated water by Moringa oleifera seed preparations. ENVIRONMENTAL TECHNOLOGY 2015; 37:744-751. [PMID: 26264037 DOI: 10.1080/09593330.2015.1080309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate tetracycline antibiotic (TA) removal from contaminated water by Moringa oleifera seed preparations. The composition of synthetic water approximate river natural contaminated water and TA simulated its presence as an emerging pollutant. Interactions between TA and protein preparations (extract; fraction and lectin) were also evaluated. TA was determined by solid-phase extraction followed by high-performance liquid chromatography-mass spectrometry. Moringa extract and flour removed TA from water. The extract removed TA in all concentrations, and better removal (40%) was obtained with 40 mg L(-1); seed flour (particles < 5 mm), 1.25 and 2.50 g L(-1) removed 28% and 29% of tetracycline, respectively; particles > 5 mm (0.50 g L(-1)) removed 55% of antibiotic. Interactions between TA and seed preparations were assayed by haemagglutinating activity (HA). Specific HA (SHA) of extract (pH 7) was abolished with tetracycline (5 mg L(-1)); fraction (75%) and lectin HA (97%) were inhibited with TA. Extract SHA decreased by 75% at pH 8. Zeta potential (ZP) of extract 700 mg L(-1) and tetracycline 50 mg L(-1) , pH range 5-8, showed different results. Extract ZP was more negative (-10.73 to -16.00 mV) than tetracycline ZP (-0.27 to -20.15 mV); ZP difference was greater in pH 8. The focus of this study was achieved since Moringa preparations removed TA from water and compounds interacting with tetracycline involved at least lectin-binding sites. This is a natural process, which do not promote environmental damage.
Collapse
Affiliation(s)
- Andréa F S Santos
- a CEB-Centre of Biological Engineering , University of Minho , Braga , Portugal
| | - Maria Matos
- a CEB-Centre of Biological Engineering , University of Minho , Braga , Portugal
| | - Ângela Sousa
- a CEB-Centre of Biological Engineering , University of Minho , Braga , Portugal
| | - Cátia Costa
- a CEB-Centre of Biological Engineering , University of Minho , Braga , Portugal
| | - Regina Nogueira
- b ISAH-Institute of Sanitary Engineering and Waste Management , University of Hannover , Hannover , Germany
| | - José A Teixeira
- a CEB-Centre of Biological Engineering , University of Minho , Braga , Portugal
| | - Patrícia M G Paiva
- c Departamento de Bioquímica , Universidade Federal de Pernambuco , Recife , Brazil
| | - Pier Parpot
- d Centre of Chemistry , University of Minho , Braga , Portugal
| | - Luana C B B Coelho
- c Departamento de Bioquímica , Universidade Federal de Pernambuco , Recife , Brazil
| | - António G Brito
- e Department of Biosystems Sciences and Engineering, School of Agronomy , University of Lisbon , Lisbon , Portugal
| |
Collapse
|
45
|
Rocha-Filho CAA, Albuquerque LP, Silva LRS, Silva PCB, Coelho LCBB, Navarro DMAF, Albuquerque MCPA, Melo AMMA, Napoleão TH, Pontual EV, Paiva PMG. Assessment of toxicity of Moringa oleifera flower extract to Biomphalaria glabrata, Schistosoma mansoni and Artemia salina. CHEMOSPHERE 2015; 132:188-192. [PMID: 25867917 DOI: 10.1016/j.chemosphere.2015.03.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
This study reports the effect of an aqueous extract from Moringa oleifera Lam. flowers on Biomphalaria glabrata embryos and adults and on Schistosoma mansoni adult worms. The extract contains tannins, saponins, flavones, flavonols, xanthones, and trypsin inhibitor activity. The toxicity of the extract on Artemia salina larvae was also investigated to determine the safety of its use for schistosomiasis control. After incubation for 24h, the flower extract significantly (p<0.05) delayed the development of B. glabrata embryos and promoted mortality of adult snails (LC50: 2.37±0.5mgmL(-1)). Furthermore, treatment with the extract disrupted the development of embryos generated by snails, with most of them remaining in the blastula stage while control embryos were already in the gastrula stage. Flower extract killed A. salina larvae with a LC50 value (0.2±0.015mgmL(-1)) lower than that determined for snails. A small reduction (17%) in molluscicidal activity was detected when flower extract (2.37mgmL(-1)) was exposed to tropical environmental conditions (UVI index ranging from 1 to 14, temperature from 25 to 30°C, and 65% relative humidity). Toxicity to A. salina was also reduced (LC50 value of 0.28±0.01mgmL(-1)). In conclusion, M. oleifera flower extract had deleterious effects on B. glabrata adults and embryos. However, unrestricted use to control schistosomiasis should be avoided due to the toxicity of this extract on A. salina.
Collapse
Affiliation(s)
| | - Lidiane P Albuquerque
- Departamento de Bioquímica e Farmacologia, Universidade Federal do Piauí, Teresina, PI, Brazil
| | - Luanna R S Silva
- Departamento de Biofísica e Radiobiologia-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Patrícia C B Silva
- Departamento de Química Fundamental-CCEN, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Daniela M A F Navarro
- Departamento de Química Fundamental-CCEN, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Monica C P A Albuquerque
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ana Maria M A Melo
- Departamento de Biofísica e Radiobiologia-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Emmanuel V Pontual
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
46
|
Hong J, Chen TT, Hu L, Yang J, Hu P, Wang SY. Purification and characterization of a novel lectin from Chinese leek seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1488-1495. [PMID: 25569192 DOI: 10.1021/jf5046014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel lectin, CLSL, was purified from Chinese leek seeds by ion exchange chromatography on SP Sephadex C-25 and gel filtration chromatography on Sephadex G50. The lectin had a molecular weight of 23.6 kDa and was composed of two identical subunits linked by disulfide bonds, a conclusion based on SDS-PAGE under reducing and nonreducing conditions. CLSL was a glycoprotein with a carbohydrate content of 3.6%. It exerted potent agglutinating activity against rat red blood cells at a concentration of 8.9 μg/mL. Hemagglutination of rat erythrocytes was inhibited by d-fructose, mannitol, and sorbose at the concentration of 20 mM. The hemagglutinating activity of CLSL was maintained at 100 °C for 60 min and under acidic pH conditions but was lost at neutral and alkaline pH conditions. The hemagglutinating activity was stimulated by Ca(2+), Fe(2+), and Cu(2+) but inactivated by Ba(2+) at a concentration of 10 mM. Ba(2+)-mediated inactivation of CLSL was caused by CLSL conformational change induced by barium ions, according to the results of circular dichroism and fluorescence spectroscopy. Deconvolution of the CLSL circular dichroism indicated that it was an α-helical lectin with α-helix and β-fold contents of 35.8% and 8.6%, respectively. CLSL could also selectively inhibit cell proliferation.
Collapse
Affiliation(s)
- Jing Hong
- College of Biological Science and Technology, Fuzhou University , 2 Xue Yuan Road, University Town, Fuzhou, Fujian 350108, China
| | | | | | | | | | | |
Collapse
|
47
|
Carvalho ADS, da Silva MV, Gomes FS, Paiva PMG, Malafaia CB, da Silva TD, Vaz AFDM, da Silva AG, Arruda IRDS, Napoleão TH, Carneiro-da-Cunha MDG, Correia MTDS. Purification, characterization and antibacterial potential of a lectin isolated from Apuleia leiocarpa seeds. Int J Biol Macromol 2015; 75:402-8. [PMID: 25668321 DOI: 10.1016/j.ijbiomac.2015.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 01/11/2023]
Abstract
Apuleia leiocarpa is a tree found in Caatinga that has great value in the timber industry. Lectins are carbohydrate-binding proteins with several biotechnological applications. This study shows the isolation, characterization, and antibacterial activity of A. leiocarpa seed lectin (ApulSL). The lectin was chromatographically isolated from a crude extract (in 150 mM NaCl) by using a chitin column. ApulSL adsorbed to the matrix and was eluted using 1.0 M acetic acid. Native ApulSL was characterized as a 55.8-kDa acidic protein. SDS-PAGE showed three polypeptide bands, whereas two-dimensional electrophoresis revealed four spots. The peptides detected by MALDI TOF/TOF did not show sufficient homology (<30%) with the database proteins. Circular dichroism spectroscopy suggested a disordered conformational structure, and fluorescence spectrum showed the presence of tyrosine residues in the hydrophobic core. The hemagglutinating activity of ApulSL was present even after heating to 100 °C, was Mn(2+)-dependent, and inhibited by N-acetylglucosamine, D(-)-arabinose, and azocasein. ApulSL demonstrated bacteriostatic and bactericide effects on gram-positive and gram-negative species, being more effective against three varieties of Xanthomonas campestris (MIC ranging from 11.2 to 22.5 μg/mL and MBC of 22.5 μg/mL). The results of this study reinforce the importance of biochemical prospecting of Caatinga by revealing the antibacterial potential of ApulSL.
Collapse
Affiliation(s)
- Aline de Souza Carvalho
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Márcia Vanusa da Silva
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Francis Soares Gomes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-900 Maceió, Alagoas, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Carolina Barbosa Malafaia
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Tulio Diego da Silva
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Antônio Fernando de Melo Vaz
- Centro de Saúde e Tecnologia Rural, Universidade Federal de Campina Grande, Jatobá, 58700-970 Patos, Paraíba, Brazil
| | - Alexandre Gomes da Silva
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Isabel Renata de Souza Arruda
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil.
| | | | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Cidade Universitária, 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
48
|
Akrem A, Yousef N, Begum A, Negm A, Meyer A, Perbandt M, Buck F, Betzel C. Preliminary crystallographic analysis of a cruciferin protein from seeds of Moringa oleifera. Protein J 2014; 33:253-7. [PMID: 24705831 DOI: 10.1007/s10930-014-9558-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 55 kDa cruciferin protein has been purified and characterized from seeds of Moringa oleifera plant. Protein blast of N-terminal amino-acid sequence showed 60 % sequence similarity with cruciferin from Brassica napus. The M. oleifera protein has been crystallized applying the sitting drop method using 5 % polyethylene glycol 8,000, 38.5 % 3-methyl-1,5-pentanediol and 0.1 M sodium cacodylate pH 6.5. The crystals belonged to the P6322 hexagonal space group with cell dimensions, a = b = 98.4, c = 274.3 Å. Initial diffraction data have been collected to a resolution of 6 Å.
Collapse
Affiliation(s)
- Ahmed Akrem
- Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, c/o DESY, University of Hamburg, Notkestrasse 85, 22603, Hamburg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Al-Anizi AA, Hellyer MT, Zhang D. Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter. WATER RESEARCH 2014; 56:77-87. [PMID: 24657325 DOI: 10.1016/j.watres.2014.02.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Moringa oleifera has been used as a coagulation reagent for drinking water purification, especially in developing countries such as Malawi. This research revealed the cytoxicity and genotoxicity of M. oleifera by Acinetobacter bioreporter. The results indicated that significant cytoxicity effects were observed when the powdered M. oleifera seeds concentration is from 1 to 50 mg/L. Through direct contact, ethanolic-water extraction and hexane extraction, the toxic effects of hydrophobic and hydrophilic components in M. oleifera seeds were distinguished. It suggested that the hydrophobic lipids contributed to the dominant cytoxicity, consequently resulting in the dominant genotoxicity in the water-soluble fraction due to limited dissolution when the M. oleifera seeds granule concentration was from 10 to 1000 mg/L. Based on cytoxicity and genotoxicity model, the LC50 and LC90 of M. oleifera seeds were 8.5 mg/L and 300 mg/L respectively and their genotoxicity was equivalent to 8.3 mg mitomycin C per 1.0 g dry M. oleifera seed. The toxicity of M. oleifera has also remarkable synergistic effects, suggesting whole cell bioreporter as an appropriate and complementary tool to chemical analysis for environmental toxicity assessment.
Collapse
Affiliation(s)
| | | | - Dayi Zhang
- Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
50
|
Araújo LCC, Aguiar JS, Napoleão TH, Mota FVB, Barros ALS, Moura MC, Coriolano M, Coelho LCBB, Silva TG, Paiva PMG. Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds. PLoS One 2013; 8:e81973. [PMID: 24349164 PMCID: PMC3857229 DOI: 10.1371/journal.pone.0081973] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/18/2013] [Indexed: 01/03/2023] Open
Abstract
Background The extract from Moringa oleifera seeds is used worldwide, especially in rural areas of developing countries, to treat drinking water. M. oleifera seeds contain the lectins cmol and WSMoL, which are carbohydrate-binding proteins that are able to reduce water turbidity because of their coagulant activity. Studies investigating the ability of natural products to damage normal cells are essential for the safe use of these substances. This study evaluated the cytotoxic and anti-inflammatory properties of the aqueous seed extract, the extract used by population to treat water (named diluted seed extract in this work), and the isolated lectins cmol and WSMoL. Methodology/Principal Findings The data showed that the aqueous seed extract and cmol were potentially cytotoxic to human peripheral blood mononuclear cells, while WSMoL and diluted seed extract were not cytotoxic. The M. oleifera aqueous seed extract and the lectins cmol and WSMoL were weakly/moderately cytotoxic to the NCI-H292, HT-29 and HEp-2 cancer cell lines and were not hemolytic to murine erythrocytes. Evaluation of acute toxicity in mice revealed that the aqueous seed extract (2.000 mg/kg) did not cause systemic toxicity. The aqueous seed extract, cmol and WSMoL (6.25 µg/mL) and diluted seed extract at 50 µg/mL exhibited anti-inflammatory activity on lipopolyssaccharide-stimulated murine macrophages by regulating the production of nitric oxide, TNF-α and IL-1β. The aqueous seed extract reduced leukocyte migration in a mouse model of carrageenan-induced pleurisy; the myeloperoxidase activity and nitric oxide, TNF-α and IL-1β levels were similarly reduced. Histological analysis of the lungs showed that the extract reduced the number of leukocytes. Conclusion/Significance This study shows that the extract prepared according to folk use and WSMoL may be non-toxic to mammalian cells; however, the aqueous seed extract and cmol may be cytotoxic to immune cells which may explain the immunosuppressive potential of the extract.
Collapse
Affiliation(s)
- Larissa Cardoso Corrêa Araújo
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Jaciana Santos Aguiar
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Fernanda Virgínia Barreto Mota
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - André Luiz Souza Barros
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Maiara Celine Moura
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Marília Cavalcanti Coriolano
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | - Teresinha Gonçalves Silva
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
- * E-mail:
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| |
Collapse
|