1
|
Nishimura A, Tanahashi R, Nakagami K, Morioka Y, Takagi H. Identification of an arginine transporter in Candida glabrata. J GEN APPL MICROBIOL 2024; 69:229-233. [PMID: 37005249 DOI: 10.2323/jgam.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Arginine is a proteinogenic amino acid that organisms additionally exploit both for nitrogen storage and as a stress protectant. The location of arginine, whether intra- or extracellular, is important in maintaining physiological homeostasis. Here, we identified an arginine transporter ortholog of the emerging fungal pathogenic Candida glabrata. Blast searches revealed that the C. glabrata genome contains two potential orthologs of the Saccharomyces cerevisiae arginine transporter gene CAN1 (CAGL0J08162g and CAGL0J08184g). We then found that CAGL0J08162g is stably located on the plasma membrane and performs cellular uptake of arginine. Moreover, CAGL0J08162-disrupted cells of C. glabrata showed a partial resistance to canavanine, a toxic analog of arginine. Our data suggest that CAGL0J08162g is a key arginine transporter in the pathogenic C. glabrata (CgCan1).
Collapse
Affiliation(s)
- Akira Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| | - Ryoya Tanahashi
- Division for Research Strategy, Institute for Research Initiatives, Nara Institute of Science and Technology
- Department of Food Science and Technology, University of California Davis
| | - Kazuki Nakagami
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| | - Yuto Morioka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| |
Collapse
|
2
|
Zhang J, Wei Y, Qiu H, Han J. TMT-based quantitative proteomics reveals the nutritional and stress resistance functions of anaerobic fungi in yak rumen during passage at different time intervals. Anaerobe 2024; 85:102805. [PMID: 38049048 DOI: 10.1016/j.anaerobe.2023.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES Anaerobic fungi are critical for nutrient digestion in the yak rumen. Although studies have reported the effects of passage at different time intervals on the community structure of yak rumen anaerobic fungi, it is unknown whether passage culture at different time intervals affects the microbial proteins of rumen anaerobic fungi and their functions. METHODS Mycelium was obtained using the anaerobic continuous batch culture (CBC) of yak rumen fluid at intervals of 3 d, 5 d and 7 d. Quantitative analysis of fungal proteins and functional analysis was performed using tandem mass tagging (TMT) and bioinformatics. RESULTS A total of 56 differential proteins (DPs) were found in 5 d vs. 3 d and 7 d vs. 3 d. Gene ontology (GO) enrichment indicated that the up-regulated proteins were mainly involved in biological regulation, cellular process, metabolic process, macromolecular complex, membrane, cell part, organelle, binding, catalytic activity and transporter activity. The downregulated proteins were mainly enriched in metabolic process, cell part, binding and catalytic activity. Furthermore, the downregulated proteins in 7 d vs. 3 d were related to membrane and organelle. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results indicated that DPs were enriched in 14 pathways in 5 d vs. 3 d and 7 d vs. 3 d, mainly including terpenoid backbone biosynthesis, alaine, aspartate and glutamate metabolism, arginine biosynthesis, hypotaurine, cyanoamino acid, glutathione, β-alanine, pyrimidine, purine, galactose and propanate metabolism, steroid biosynthesis, ribosome biogenesis in eukaryotes and aminoacyl tRNA biosynthesis. The DPs were enriched in only 2 pathways in 5 d vs 3 d, lysine biosynthesis and cysteine and methionine metabolism. N-glycan biosynthesis and retinol metabolism are only found in the metabolism of DPs in 7 d vs 3 d. CONCLUSIONS Yak rumen anaerobic fungal proteins are involved in nutrition and stress tolerance during passage at different time intervals.
Collapse
Affiliation(s)
- Jingrong Zhang
- College of Pratacultural, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yaqin Wei
- Institute of Biology, Gansu Academy of Science, Lanzhou, 730030, China
| | - Huizhen Qiu
- College of Pratacultural, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jiayi Han
- Gansu Academy of Science, Lanzhou, 730030, China
| |
Collapse
|
3
|
Liu X, Wang Z, Xiao J, Zhou X, Xu Y. Osmotic stress tolerance and transcriptome analysis of Gluconobacter oxydans to extra-high titers of glucose. Front Microbiol 2022; 13:977024. [PMID: 36033857 PMCID: PMC9412170 DOI: 10.3389/fmicb.2022.977024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Gluconobacter oxydans has been widely acknowledged as an ideal strain for industrial bio-oxidations with fantastic yield and productivity. Even 600 g/L xylose can be catalyzed efficiently in a sealed and compressed oxygen-supplying bioreactor. Therefore, the present study seeks to explore the osmotic stress tolerance against extra-high titer of representative lignocellulosic sugars like glucose. Gluconobacter oxydans can well adapted and fermented with initial 600 g/L glucose, exhibiting the highest bio-tolerance in prokaryotic strains and the comparability to the eukaryotic strain of Saccharomyces cerevisiae. 1,432 differentially expressed genes corresponding to osmotic pressure are detected through transcriptome analysis, involving several genes related to the probable compatible solutes (trehalose and arginine). Gluconobacter oxydans obtains more energy by enhancing the substrate-level phosphorylation, resulting in the increased glucose consumption rate after fermentation adaption phase. This study will provide insights into further investigation of biological tolerance and response to extra-high titers of glucose of G. oxydans.
Collapse
Affiliation(s)
- Xinlu Liu
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Zhiwei Wang
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Jianjian Xiao
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Yong Xu
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
- *Correspondence: Yong Xu,
| |
Collapse
|
4
|
Effects of tryptophan and phenylalanine on tryptophol production in Saccharomyces cerevisiae revealed by transcriptomic and metabolomic analyses. J Microbiol 2022; 60:832-842. [DOI: 10.1007/s12275-022-2059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
5
|
Kubisch C, Kövilein A, Aliyu H, Ochsenreither K. RNA-Seq Based Transcriptome Analysis of Aspergillus oryzae DSM 1863 Grown on Glucose, Acetate and an Aqueous Condensate from the Fast Pyrolysis of Wheat Straw. J Fungi (Basel) 2022; 8:765. [PMID: 35893132 PMCID: PMC9394295 DOI: 10.3390/jof8080765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Due to its acetate content, the pyrolytic aqueous condensate (PAC) formed during the fast pyrolysis of wheat straw could provide an inexpensive substrate for microbial fermentation. However, PAC also contains several inhibitors that make its detoxification inevitable. In our study, we examined the transcriptional response of Aspergillus oryzae to cultivation on 20% detoxified PAC, pure acetate and glucose using RNA-seq analysis. Functional enrichment analysis of 3463 significantly differentially expressed (log2FC >2 & FDR < 0.05) genes revealed similar metabolic tendencies for both acetate and PAC, as upregulated genes in these cultures were mainly associated with ribosomes and RNA processing, whereas transmembrane transport was downregulated. Unsurprisingly, metabolic pathway analysis revealed that glycolysis/gluconeogenesis and starch and sucrose metabolism were upregulated for glucose, whereas glyoxylate and the tricarboxylic acid (TCA) cycle were important carbon utilization pathways for acetate and PAC, respectively. Moreover, genes involved in the biosynthesis of various amino acids such as arginine, serine, cysteine and tryptophan showed higher expression in the acetate-containing cultures. Direct comparison of the transcriptome profiles of acetate and PAC revealed that pyruvate metabolism was the only significantly different metabolic pathway and was overexpressed in the PAC cultures. Upregulated genes included those for methylglyoxal degradation and alcohol dehydrogenases, which thus represent potential targets for the further improvement of fungal PAC tolerance.
Collapse
Affiliation(s)
- Christin Kubisch
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (A.K.); (H.A.); (K.O.)
| | | | | | | |
Collapse
|
6
|
Segal-Kischinevzky C, Romero-Aguilar L, Alcaraz LD, López-Ortiz G, Martínez-Castillo B, Torres-Ramírez N, Sandoval G, González J. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications. Microorganisms 2022; 10:794. [PMID: 35456844 PMCID: PMC9028089 DOI: 10.3390/microorganisms10040794] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.
Collapse
Affiliation(s)
- Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Blanca Martínez-Castillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados (LIBBA), Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico;
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| |
Collapse
|
7
|
Chen Y, Xu C, Yang H, Liu Z, Zhang Z, Yan R, Zhu D. L-Arginine enhanced perylenequinone production in the endophytic fungus Shiraia sp. Slf14(w) via NO signaling pathway. Appl Microbiol Biotechnol 2022; 106:2619-2636. [PMID: 35291023 DOI: 10.1007/s00253-022-11877-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Perylenequinones (PQ) are natural polyketides used as anti-microbial, -cancers, and -viral photodynamic therapy agents. Herein, the effects of L-arginine (Arg) on PQ biosynthesis of Shiraia sp. Slf14(w) and the underlying molecular mechanism were investigated. The total content of PQ reached 817.64 ± 72.53 mg/L under optimal conditions of Arg addition, indicating a 30.52-fold improvement over controls. Comparative transcriptome analysis demonstrated that Arg supplement promoted PQ precursors biosynthesis of Slf14(w) by upregulating the expression of critical genes associated with the glycolysis pathway, and acetyl-CoA and malonyl-CoA synthesis. By downregulating the expression of genes related to the glyoxylate cycle pathway and succinate dehydrogenase, more acetyl-CoA flow into the formation of PQ. Arg supplement upregulated the putative biosynthetic gene clusters for PQ and activated the transporter proteins (MFS and ABC) for exudation of PQ. Further studies showed that Arg increased the gene transcription levels of nitric oxide synthase (NOS) and nitrate reductase (NR), and activated NOS and NR, thus promoting the formation of nitric oxide (NO). A supplement of NO donor sodium nitroprusside (SNP) also confirmed that NO triggered promoted biosynthesis and efflux of PQ. PQ production stimulated by Arg or/and SNP can be significantly inhibited upon the addition of NO scavenger carboxy-PTIO, NOS inhibitor Nω-nitro-L-arginine, or soluble guanylate cyclase inhibitor NS-2028. These results showed that Arg-derived NO, as a signaling molecule, is involved in the biosynthesis and regulation of PQ in Slf14(W) through the NO-cGMP-PKG signaling pathway. Our results provide a valuable strategy for large-scale PQ production and contribute to further understanding of NO signaling in the fungal metabolite biosynthesis. KEY POINTS: • PQ production of Shiraia sp. Slf14(w) was significantly improved by L-arginine addition. • Arginine-derived NO was firstly reported to be involved in the biosynthesis and regulation of PQ. • The NO-cGMP-PKG signaling pathway was proposed for the first time to participate in PQ biosynthesis.
Collapse
Affiliation(s)
- Yunni Chen
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Chenglong Xu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Huilin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhenying Liu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Riming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China.
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
8
|
Wang S, Zhang H, Qi T, Deng L, Yi L, Zeng K. Influence of arginine on the biocontrol efficiency of Metschnikowia citriensis against Geotrichum citri-aurantii causing sour rot of postharvest citrus fruit. Food Microbiol 2021; 101:103888. [PMID: 34579848 DOI: 10.1016/j.fm.2021.103888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
This study investigated the effect of arginine (Arg) on the antagonistic activity of Metschnikowia citriensis against sour rot caused by Geotrichum citri-aurantii in postharvest citrus, and evaluated the possible mechanism therein. Arg treatment up-regulated the PUL genes expression, and significantly induced the pulcherriminic acid (PA) production of M. citriensis, which related to the capability of iron depletion of M. citriensis. By comparing the biocontrol effects of Arg-treated and untreated yeast cells, it was found that Arg treatment significantly enhanced the biocontrol efficacy of M. citriensis, and 5 mmol L-1 Arg exerted the best effect. Additionally, the biofilm formation ability of M. citriensis was greatly enhanced by Arg, and the higher population density of yeast cells in citrus wounds was also observed in Arg treatment groups stored both at 25 °C and 4 °C. Moreover, Arg was shown to function as a cell protectant to elevate antioxidant enzyme activity [including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX)] and intracellular trehalose content to resist oxidative stress damage, that directly helped to enhance colonization ability of yeasts in fruit wounds. These results suggest the application of Arg is a useful approach to improve the biocontrol performance of M. citriensis.
Collapse
Affiliation(s)
- Shupei Wang
- College of Food Science, Southwest University, Chongqing, 400715, PR China; College of Environmental and Life Sciences, Nanning Normal University, Nanning, 530001, PR China
| | - Hongyan Zhang
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Teng Qi
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Plant Hormones and Development Regulation of Chongqing, Chongqing, 401331, PR China
| | - Lanhua Yi
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
9
|
Ji H, Xu K, Dong X, Sun D, Peng R, Lin S, Zhang K, Jin L. Transcriptional profiling reveals molecular basis and the role of arginine in response to low-pH stress in Pichia kudriavzevii. J Biosci Bioeng 2020; 130:588-595. [PMID: 32798135 DOI: 10.1016/j.jbiosc.2020.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
The non-conventional yeast Pichia kudriavzevii is considered to be a promising biotechnological host for the production of organic acids under low-pH conditions. However, little is known about the low-pH stress response in P. kudriavzevii, which significantly restricts its future development. In this study, P. kudriavzevii N-X showed great tolerance to low-pH stress, but the cell aggregation upon extremely acidic conditions might be unfavorable for low-pH fermentation. We therefore conducted RNA-Seq to compare global gene expression of P. kudriavzevii N-X in response to different pH stresses. Totally 434 genes were identified to be differentially expressed genes (DEGs), and annotation and enrichment analysis suggested that multiple genes associated with regulation of membrane lipid composition, filamentous growth and arginine metabolism were differentially expressed. The increased specific activity of arginase and intracellular ammonia concentration of P. kudriavzevii cultured at pH 2.0 further implied potential roles of arginine in response to extreme low-pH conditions. Extracellular supplementation of 5 mM arginine resulted in increased pHi and cell growth at pH 2.0, meanwhile the cell aggregation was partially suppressed. Additionally, overexpression of ARG J involving in arginine synthesis can also enhance the cell growth and reduce the aggregation effect. These results suggested that increasing arginine flux might be an alternative approach in the developing of P. kudriavzevii as a platform host for production of organic acids under low-pH conditions.
Collapse
Affiliation(s)
- Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China.
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Xiameng Dong
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang 325006, PR China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Kailun Zhang
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| |
Collapse
|
10
|
Modulation of Fatty Acid Composition of Aspergillus oryzae in Response to Ethanol Stress. Microorganisms 2019; 7:microorganisms7060158. [PMID: 31159383 PMCID: PMC6616634 DOI: 10.3390/microorganisms7060158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022] Open
Abstract
The koji mold Aspergillus oryzae is widely adopted for producing rice wine, wherein koji mold saccharifies rice starch and sake yeast ferments glucose to ethanol. During rice wine brewing, the accumulating ethanol becomes a major source of stress for A. oryzae, and there is a decline in hydrolysis efficiency. However, the protective mechanisms of A. oryzae against ethanol stress are poorly understood. In the present study, we demonstrate that ethanol adversity caused a significant inhibition of mycelium growth and conidia formation in A. oryzae, and this suppressive effect increased with ethanol concentration. Transmission electron microscopy analysis revealed that ethanol uptake triggered internal cellular perturbations, such as irregular nuclei and the aggregation of scattered vacuoles in A. oryzae cells. Metabolic analysis uncovered an increase in fatty acid unsaturation under high ethanol conditions, in which a large proportion of stearic acid was converted into linoleic acid, and the expression of related fatty acid desaturases was activated. Our results therefore improve the understanding of ethanol adaptation mechanisms in A. oryzae and offer target genes for ethanol tolerance enhancement via genetic engineering.
Collapse
|
11
|
Singh D, Lee S, Lee CH. Fathoming Aspergillus oryzae metabolomes in formulated growth matrices. Crit Rev Biotechnol 2019; 39:35-49. [PMID: 30037282 DOI: 10.1080/07388551.2018.1490246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 01/11/2023]
Abstract
The stochasticity of Aspergillus oryzae (Trivially: the koji mold) pan-metabolomes commensurate with its ubiquitously distributed landscapes, i.e. growth matrices have been seemed uncharted since its food fermentative systems are mostly being investigated. In this review, we explicitly have discussed the likely tendencies of A. oryzae metabolomes pertaining to its growth milieu formulated with substrate matrices of varying nature, composition, texture, and associated physicochemical parameters. We envisaged typical food matrices, namely, meju, koji, and moromi as the semi-natural cultivation models toward delineating the metabolomic patterns of the koji mold, which synergistically influences the organoleptic and functional properties of the end products. Further, we highlighted how tailored conditions in sub-natural growth matrices, i.e. synthetic cultivation media blends, inducers, and growth surfaces, may influence A. oryzae metabolomes and targeted phenotypes. In general, the sequential or synchronous growth of A. oryzae on formulated matrices results in a number of metabolic tradeoffs with its immediate microenvironment influencing its adaptive and regulatory metabolomes. In broader context, evaluating the metabolic plasticity of A. oryzae relative to the tractable variables in formulated growth matrices might help approximate its growth and metabolism in the more complex natural matrices and environs. These approaches may considerably help in the design and manipulation of hybrid cultivation systems towards the efficient harnessing of commercial molds.
Collapse
Affiliation(s)
- Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
12
|
Florencio-Ortiz V, Sellés-Marchart S, Zubcoff-Vallejo J, Jander G, Casas JL. Changes in the free amino acid composition of Capsicum annuum (pepper) leaves in response to Myzus persicae (green peach aphid) infestation. A comparison with water stress. PLoS One 2018; 13:e0198093. [PMID: 29856878 PMCID: PMC5983507 DOI: 10.1371/journal.pone.0198093] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/14/2018] [Indexed: 01/10/2023] Open
Abstract
Amino acids play a central role in aphid-plant interactions. They are essential components of plant primary metabolism, function as precursors for the synthesis of defense-related specialized metabolites, and are major growth-limiting nutrients for aphids. To quantify changes in the free amino acid content of pepper (Capsicum annuum L.) leaves in response to green peach aphid (Myzus persicae Sulzer) feeding, plants were infested with a low (20 aphids/plant) or a high (200 aphids/plant) aphid density in time-course experiments ranging from 3 hours to 7 days. A parallel experiment was conducted with pepper plants that had been subjected to water stress. Factor Analysis of Mixed Data revealed a significant interaction of time x density in the free amino acid response of aphid-infested leaves. At low aphid density, M. persicae did not trigger a strong response in pepper leaves. Conversely, at high density, a large increase in total free amino acid content was observed and specific amino acids peaked at different times post-infestation. Comparing aphid-infested with water-stressed plants, most of the observed differences were quantitative. In particular, proline and hydroxyproline accumulated dramatically in response to water stress, but not in response to aphid infestation. Some additional differences and commonalities between the two stress treatments are discussed.
Collapse
Affiliation(s)
- Victoria Florencio-Ortiz
- Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Carretera de San Vicente del Raspeig, s/n, San Vicente del Raspeig, Alicante, Spain
| | - Susana Sellés-Marchart
- Genomics and Proteomics Unit, Servicios Técnicos de Investigación, University of Alicante, Carretera de San Vicente del Raspeig, s/n, San Vicente del Raspeig, Alicante, Spain
| | - José Zubcoff-Vallejo
- Departamento de Ciencias del Mar y Biología Aplicada, University of Alicante, Carretera de San Vicente del Raspeig, s/n, San Vicente del Raspeig, Alicante, Spain
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States of America
| | - José L. Casas
- Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Carretera de San Vicente del Raspeig, s/n, San Vicente del Raspeig, Alicante, Spain
- * E-mail:
| |
Collapse
|
13
|
Ji H, Lu X, Zong H, Zhuge B. γ-aminobutyric acid accumulation enhances the cell growth of Candida glycerinogenes under hyperosmotic conditions. J GEN APPL MICROBIOL 2018. [PMID: 29526924 DOI: 10.2323/jgam.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
γ-aminobutyric acid (GABA) is an important non-protein amino acid involved in the response to various environmental stresses in plant cells. The objectives of this study was to test the hypothesis that intracellular accumulation of GABA improves osmotic tolerance in the unconventional yeast Candida glycerinogenes. In C. glycerinogenes, the expression of UGA4 encoding GABA-specific permease is highly induced by hyperosmotic stress. Exogenous GABA application enhanced intracellular GABA accumulation and promoted cell growth under hyperosmotic conditions. Overexpression of the glutamate decarboxylase gene GAD1 resulted in an increased intracellular GABA and improvement in cell growth under hyperosmotic conditions. These results indicated that improving intracellular GABA accumulation of C. glycerinogenes, either through exogenous application or cellular synthesis, is available for improving the tolerance to hyperosmotic stress. We demonstrate that GABA accumulation plays an important role in osmotic stress resistance of the unconventional yeast C. glycerinogenes.
Collapse
Affiliation(s)
- Hao Ji
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Xinyao Lu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Hong Zong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Bin Zhuge
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| |
Collapse
|
14
|
Enhanced arginine biosynthesis and lower proteolytic profile as indicators of Saccharomyces cerevisiae stress in stationary phase during fermentation of high sugar grape must: A proteomic evidence. Food Res Int 2018; 105:1011-1018. [DOI: 10.1016/j.foodres.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 11/19/2022]
|
15
|
Luo Z, Liu S, Du G, Xu S, Zhou J, Chen J. Enhanced pyruvate production in Candida glabrata
by carrier engineering. Biotechnol Bioeng 2017; 115:473-482. [DOI: 10.1002/bit.26477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Zhengshan Luo
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Song Liu
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; Jiangnan University; Wuxi Jiangsu China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; Jiangnan University; Wuxi Jiangsu China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi Jiangsu China
| |
Collapse
|
16
|
Deep sequencing analysis of transcriptomes in Aspergillus oryzae in response to salinity stress. Appl Microbiol Biotechnol 2017; 102:897-906. [PMID: 29101425 DOI: 10.1007/s00253-017-8603-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
Characterization of the changes after various stimuli is crucial to comprehend the adaptation of cells to the changing condition. Aspergillus oryzae is widely used for the industrial production of soy sauce, which always encounter changes within a complex environment, such as salinity stress. However, the protective biochemical mechanisms of A. oryzae against salinity stress are poorly understood. In this study, we successfully characterized the fermentative behavior, transcriptomic profiles, and metabolite changes of A. oryzae in response to salinity stress. The results showed that salt treatment of A. oryzae inhibited the fungal development and conidia formation. Transcriptomic analysis showed an upregulated expression of the genes related to arginine accumulation and oleic acid synthesis. The results of qRT-PCR were further confirmed by the reliability and availability of the differentially expressed genes obtained from the transcriptome analysis. Metabolomic analysis revealed that the corresponding intracellular accumulation of arginine and oleic acid were also increased in response to the salinity stress. All of the results provide a global transcriptome characterization of the salt adaptation process in A. oryzae, and offer multiple target genes for salt tolerance improvement via genetic engineering.
Collapse
|
17
|
Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 2017; 101:3991-4008. [PMID: 28409384 DOI: 10.1007/s00253-017-8264-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Environmental stresses are usually active during the process of microbial fermentation and have significant influence on microbial physiology. Microorganisms have developed a series of strategies to resist environmental stresses. For instance, they maintain the integrity and fluidity of cell membranes by modulating their structure and composition, and the permeability and activities of transporters are adjusted to control nutrient transport and ion exchange. Certain transcription factors are activated to enhance gene expression, and specific signal transduction pathways are induced to adapt to environmental changes. Besides, microbial cells also have well-established repair mechanisms that protect their macromolecules against damages inflicted by environmental stresses. Oxidative, hyperosmotic, thermal, acid, and organic solvent stresses are significant in microbial fermentation. In this review, we summarize the modus operandi by which these stresses act on cellular components, as well as the corresponding resistance mechanisms developed by microorganisms. Then, we discuss the applications of these stress resistance mechanisms on the production of industrially important chemicals. Finally, we prospect the application of systems biology and synthetic biology in the identification of resistant mechanisms and improvement of metabolic robustness of microorganisms in environmental stresses.
Collapse
Affiliation(s)
- Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
18
|
Korte J, Alber M, Trujillo CM, Syson K, Koliwer-Brandl H, Deenen R, Köhrer K, DeJesus MA, Hartman T, Jacobs WR, Bornemann S, Ioerger TR, Ehrt S, Kalscheuer R. Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice. PLoS Pathog 2016; 12:e1006043. [PMID: 27936238 PMCID: PMC5148154 DOI: 10.1371/journal.ppat.1006043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/04/2016] [Indexed: 01/13/2023] Open
Abstract
Trehalose biosynthesis is considered an attractive target for the development of antimicrobials against fungal, helminthic and bacterial pathogens including Mycobacterium tuberculosis. The most common biosynthetic route involves trehalose-6-phosphate (T6P) synthase OtsA and T6P phosphatase OtsB that generate trehalose from ADP/UDP-glucose and glucose-6-phosphate. In order to assess the drug target potential of T6P phosphatase, we generated a conditional mutant of M. tuberculosis allowing the regulated gene silencing of the T6P phosphatase gene otsB2. We found that otsB2 is essential for growth of M. tuberculosis in vitro as well as for the acute infection phase in mice following aerosol infection. By contrast, otsB2 is not essential for the chronic infection phase in mice, highlighting the substantial remodelling of trehalose metabolism during infection by M. tuberculosis. Blocking OtsB2 resulted in the accumulation of its substrate T6P, which appears to be toxic, leading to the self-poisoning of cells. Accordingly, blocking T6P production in a ΔotsA mutant abrogated otsB2 essentiality. T6P accumulation elicited a global upregulation of more than 800 genes, which might result from an increase in RNA stability implied by the enhanced neutralization of toxins exhibiting ribonuclease activity. Surprisingly, overlap with the stress response caused by the accumulation of another toxic sugar phosphate molecule, maltose-1-phosphate, was minimal. A genome-wide screen for synthetic lethal interactions with otsA identified numerous genes, revealing additional potential drug targets synergistic with OtsB2 suitable for combination therapies that would minimize the emergence of resistance to OtsB2 inhibitors. Trehalose biosynthesis is considered an attractive target for the development of new drugs against various microbial pathogens including Mycobacterium tuberculosis. In this human pathogen, two partially redundant pathways mediate trehalose biosynthesis. The OtsA-OtsB2 pathway, which dominates in culture, involves trehalose-6-phosphate (T6P) synthase OtsA and T6P phosphatase OtsB2. While OtsA is dispensable, OtsB2 is strictly essential for growth of M. tuberculosis. Using conditional gene silencing, we here show that essentiality of OtsB2 is linked to accumulation of its substrate T6P, which exhibits direct or indirect toxic effects. Regulated gene expression in vivo revealed that OtsB2 is required to establish an acute infection of M. tuberculosis in a mouse infection model, but is surprisingly fully dispensable during the chronic infection phase. This highlights that trehalose metabolism of M. tuberculosis is substantially remodelled during infection.
Collapse
Affiliation(s)
- Jan Korte
- Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marina Alber
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carolina M. Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Hendrik Koliwer-Brandl
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael A. DeJesus
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
| | - Travis Hartman
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Rainer Kalscheuer
- Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
19
|
Liu B, Lei C, Jin J, Guan Y, Li S, Zhang Y, Liu W. Physiological responses of two moss species to the combined stress of water deficit and elevated N deposition (II): Carbon and nitrogen metabolism. Ecol Evol 2016; 6:7596-7609. [PMID: 30128114 PMCID: PMC6093146 DOI: 10.1002/ece3.2521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 11/08/2022] Open
Abstract
Nitrogen (N) deposition levels and frequencies of extreme drought events are increasing globally. In efforts to improve understanding of plants' responses to associated stresses, we have investigated responses of mosses to drought under elevated nitrogen conditions. More specifically, we exposed Pogonatum cirratum subsp. fuscatum and Hypnum plumaeforme to various nitrate (KNO 3) or ammonium (NH 4Cl) treatments, with and without water deficit stress and monitored indices related to carbon (C) and N metabolism both immediately after the stress and after a short recovery period. The results show that N application stimulated both C and N assimilation activities, including ribulose-1,5-bisphosphate carboxylase, glutamine synthetase/glutamate synthase (GS/GOGAT), and glutamate dehydrogenase (GDH) activities, while water deficit inhibited C and N assimilation. The mosses could resist stress caused by excess N and water deficit by increasing their photorespiration activity and proline (Pro) contents. However, N supply increased their sensitivity to water stress, causing sharper reductions in C and N assimilation rates, and further increases in photorespiration and Pro contents, indicating more serious oxidative or osmotic stress in the mosses. In addition, there were interspecific differences in N assimilation pathways, as the GS/GOGAT and GDH pathways were the preferentially used ammonium assimilation pathways in P. cirratum and H. plumaeforme when stressed, respectively. After rehydration, both mosses exhibited overcompensation effects for most C and N assimilation activities, but when supplied with N, the activities were generally restored to previous levels (or less), indicating that N supply reduced their ability to recover from water deficit stress. In conclusion, mosses can tolerate a certain degree of water deficit stress and possess some resilience to environmental fluctuations, but elevated N deposition reduces their tolerance and ability to recover.
Collapse
Affiliation(s)
- Bin‐yang Liu
- Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- The State Key Laboratory of Vegetation and Environment ChangeInstitute of BotanyThe Chinese Academy of SciencesBeijingChina
| | - Chun‐yi Lei
- Heishiding Nature Reserve of Guangdong ProvinceZhaoqingChina
| | - Jian‐hua Jin
- Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yi‐yun Guan
- Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Shan Li
- Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yi‐shun Zhang
- Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wei‐qiu Liu
- Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
20
|
Xu S, Zhang GY, Zhang H, Kitajima T, Nakanishi H, Gao XD. Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae. Microb Cell Fact 2016; 15:179. [PMID: 27769287 PMCID: PMC5073930 DOI: 10.1186/s12934-016-0575-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/03/2016] [Indexed: 11/14/2022] Open
Abstract
Background To humanize yeast N-glycosylation pathways, genes involved in yeast specific hyper-mannosylation must be disrupted followed by the introduction of genes catalyzing the synthesis, transport, and addition of human sugars. However, deletion of these genes, for instance, OCH1, which initiates hyper-mannosylation, could cause severe defects in cell growth, morphogenesis and response to environmental challenges. Results In this study, overexpression of RHO1, which encodes the Rho1p small GTPase, is confirmed to partially recover the growth defect of Saccharomyces cerevisiae Δalg3Δoch1 double mutant strain. In addition, transmission electron micrographs indicated that the cell wall structure of RHO1-expressed cells have an enhanced glucan layer and also a recovered mannoprotein layer, revealing the effect of Rho1p GTPase on cell wall biosynthesis. Similar complementation phenotypes have been confirmed by overexpression of the gene that encodes Fks2 protein, a catalytic subunit of a 1,3-β-glucan synthase. Besides the recovery of cell wall structure, the RHO1-overexpressed Δalg3Δoch1 strain also showed improved abilities in temperature tolerance, osmotic potential and drug sensitivity, which were not observed in the Δalg3Δoch1-FKS2 cells. Moreover, RHO1 overexpression could also increase N-glycan site occupancy and the amount of secreted glycoproteins. Conclusions Overexpression of RHO1 in ‘humanized’ glycoprotein producing yeasts could significantly facilitate its future industrial applications for the production of therapeutic glycoproteins. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0575-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sha Xu
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ge-Yuan Zhang
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Huijie Zhang
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Toshihiko Kitajima
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Hideki Nakanishi
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiao-Dong Gao
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
21
|
Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress. Sci Rep 2016; 6:31311. [PMID: 27507154 PMCID: PMC4979094 DOI: 10.1038/srep31311] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/18/2016] [Indexed: 11/09/2022] Open
Abstract
Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation.
Collapse
|
22
|
Holmstrup M, Slotsbo S, Rozsypal J, Henriksen PG, Bayley M. Accumulation of free amino acids during exposure to drought in three springtail species. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:114-21. [PMID: 26428866 DOI: 10.1016/j.jinsphys.2015.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 05/12/2023]
Abstract
Springtails are closely related to insects, but they differ from these with respect to water balance, in particular because springtails are small and have high integumental permeability to water. Here we report a series of experiments addressing the dynamics of osmoregulation, water content and accumulation of free amino acids (FAAs) in three springtail species during exposure to a gradually increasing environmental desiccation simulating conditions in drought exposed soil. Folsomia candida and Protaphorura fimata (both living in the deeper soil layers; euedaphic species) were active throughout the 3week exposure, with the developing drought regime ending at -3.56MPa (the soil water activity at the permanent wilting point of plants is -1.5MPa) and remained hyperosmotic (having an body fluid osmolality higher than the corresponding environment) to their surrounding air. Sinella curviseta (living in upper soil/litter layers; hemiedaphic species) also survived this exposure, but remained hypoosmotic throughout (i.e. with lower osmolality than the environment). The body content of most FAAs increased in response to drought in all three species. Alanine, proline and arginine were the most significantly upregulated FAAs. By combining our results with data in the literature, we could account for 82% of the observed osmolality at -3.56MPa in F. candida and 92% in P. fimata. The osmolality of S. curviseta was only slightly increased under drought, but here FAAs were considerably more important as osmolytes than in the two other species. We propose that FAAs probably have general importance in drought tolerance of springtails.
Collapse
Affiliation(s)
- Martin Holmstrup
- Aarhus University, Department of Bioscience, Vejlsøvej 25, PO Box 314, 8600 Silkeborg, Denmark.
| | - Stine Slotsbo
- Aarhus University, Department of Bioscience, Vejlsøvej 25, PO Box 314, 8600 Silkeborg, Denmark
| | - Jan Rozsypal
- Institute of Entomology, Biology Centre of The Czech Academy of Sciences, Branišovská, 370 05 České Budějovice, Czech Republic
| | - Per G Henriksen
- Aarhus University, Department of Bioscience, C.F. Møllers Allé, Universitetsparken, 8000 Aarhus C, Denmark
| | - Mark Bayley
- Aarhus University, Department of Bioscience, C.F. Møllers Allé, Universitetsparken, 8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Hatzios SK, Baer CE, Rustad TR, Siegrist MS, Pang JM, Ortega C, Alber T, Grundner C, Sherman DR, Bertozzi CR. Osmosensory signaling in Mycobacterium tuberculosis mediated by a eukaryotic-like Ser/Thr protein kinase. Proc Natl Acad Sci U S A 2013; 110:E5069-77. [PMID: 24309377 PMCID: PMC3876250 DOI: 10.1073/pnas.1321205110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bacteria are able to adapt to dramatically different microenvironments, but in many organisms, the signaling pathways, transcriptional programs, and downstream physiological changes involved in adaptation are not well-understood. Here, we discovered that osmotic stress stimulates a signaling network in Mycobacterium tuberculosis regulated by the eukaryotic-like receptor Ser/Thr protein kinase PknD. Expression of the PknD substrate Rv0516c was highly induced by osmotic stress. Furthermore, Rv0516c disruption modified peptidoglycan thickness, enhanced antibiotic resistance, and activated genes in the regulon of the alternative σ-factor SigF. Phosphorylation of Rv0516c regulated the abundance of EspA, a virulence-associated substrate of the type VII ESX-1 secretion system. These findings identify an osmosensory pathway orchestrated by PknD, Rv0516c, and SigF that enables adaptation to osmotic stress through cell wall remodeling and virulence factor production. Given the widespread occurrence of eukaryotic-like Ser/Thr protein kinases in bacteria, these proteins may play a broad role in bacterial osmosensing.
Collapse
Affiliation(s)
| | - Christina E. Baer
- Molecular and Cell Biology, California Institute for Quantitative Biosciences (QB3), and
| | - Tige R. Rustad
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
- Department of Global Health, University of Washington, Seattle, WA 98195
| | | | - Jennifer M. Pang
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Corrie Ortega
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Tom Alber
- Molecular and Cell Biology, California Institute for Quantitative Biosciences (QB3), and
| | - Christoph Grundner
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - David R. Sherman
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Carolyn R. Bertozzi
- Departments of Chemistry and
- Molecular and Cell Biology, California Institute for Quantitative Biosciences (QB3), and
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
24
|
Li S, Chen X, Liu L, Chen J. Pyruvate production inCandida glabrata: manipulation and optimization of physiological function. Crit Rev Biotechnol 2013; 36:1-10. [DOI: 10.3109/07388551.2013.811636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Xu N, Liu L, Zou W, Liu J, Hua Q, Chen J. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. ACTA ACUST UNITED AC 2013; 9:205-16. [DOI: 10.1039/c2mb25311a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Kovács Z, Simon-Sarkadi L, Vashegyi I, Kocsy G. Different accumulation of free amino acids during short- and long-term osmotic stress in wheat. ScientificWorldJournal 2012; 2012:216521. [PMID: 22919298 PMCID: PMC3415181 DOI: 10.1100/2012/216521] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/15/2012] [Indexed: 11/21/2022] Open
Abstract
The effect of wheat chromosome 5A on free amino acid accumulation induced by osmotic stress was compared in chromosome 5A substitution lines with different freezing tolerance. Treatment with 15% polyethylene glycol (PEG) resulted in greater total free amino acid content even after 3 days compared to the controls. The ratio of amino acids belonging to various amino acid families differed after 3-week treatment in the control and PEG-treated plants only in the case of the freezing-sensitive substitution line. There was a transient increase with a maximum after 3 days in the amounts of several amino acids, after which their concentrations exhibited a more gradual increase. During the first days of osmotic stress the Glu, Gln, Asp, Asn, Thr, Ser, Leu, and His concentrations were greater in the tolerant substitution line than in the sensitive one, while the opposite relationship was observed at the end of the PEG treatment. The coordinated changes in the levels of individual amino acids indicated that they are involved in both the short- and long-term responses to osmotic stress. The alterations differed in the two chromosome 5A substitution lines, depending on the stress tolerance of the chromosome donor genotype.
Collapse
Affiliation(s)
- Zita Kovács
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, P.O. Box 91, 1521 Budapest, Hungary
| | | | | | | |
Collapse
|