1
|
Wang Y, Zhang Z, Yang KL. Catalytic conversion of soluble aniline into insoluble N-phenylphenazine for wastewater treatments. CHEMOSPHERE 2024; 366:143492. [PMID: 39389377 DOI: 10.1016/j.chemosphere.2024.143492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Aniline, a common pollutant in industrial wastewater, requires an effective treatment method with minimal chemical usage. In this study, a two-stage catalytic oligomerization process has been developed to address this issue by converting soluble aniline into insoluble oligomers for wastewater treatment. In the first stage, aniline is oxidized using hydrogen peroxide (H2O2) and a green catalyst, iron tetraamido macrocyclic ligand (Fe-TAML) to form aniline tetramers or pentamers. In the second stage, these oligoanilines undergo further oxidation with H2O2 alone at a higher temperature, resulting in the formation of N-phenylphenazine or its derivatives. These macrocyclic compounds precipitate from the wastewater due to π- π stacking, allowing easy separation through decantation or gravity filtration. After process optimization, only 3 mg/L of Fe-TAML and 2 g/L of H2O2 are required to treat 1 g/L of aniline, achieving a remarkable 96.8% aniline removal efficiency and a 62.5% precipitate yield. This two-stage oxidation approach shows promise for treating aniline and similar aromatic compounds in real industrial wastewater.
Collapse
Affiliation(s)
- Ying Wang
- Department of Materials Science & Engineering, National University of Singapore, 7 Engineering Drive 1, 117574, Singapore
| | - Zhuang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
2
|
Fundneider-Kale S, Kerres J, Engelhart M. Impact of benzalkonium chloride on anaerobic granules and its long-term effects on reactor performance. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135183. [PMID: 39024763 DOI: 10.1016/j.jhazmat.2024.135183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
This study assessed the inhibitory and performance-degrading effects induced by the cationic surfactant benzalkonium chloride (BAC) on anaerobic granules during the long-term operation of a laboratory-scale expanded granular sludge bed (EGSB) reactor. To address the critical scientific problem of how BAC affects the efficiency of EGSB reactors, this research uniquely evaluated the long-term stress response to BAC by systematically comparing continuous and discontinuous inhibitor exposure scenarios. The novel comparison demonstrated that inhibitor concentration is of minor relevance compared to the biomass-specific cumulative inhibitor load in the reactor. After exceeding a critical biomass-specific cumulative inhibitor load of 6.1-6.5 mg BAC/g VS, continuous and discontinuous exposure to BAC caused comparable significant deterioration in reactor performance, including accumulation of volatile fatty acids (VFA), decreased removal efficiency, reduced methane production, as well as the wash-out, flotation, and disintegration of anaerobic granules. BAC exposures had a more detrimental effect on methanogenesis than on acidogenesis. Moreover, long-term stress by BAC led to an inhibition of protein production, resulting in a decreased protein-to-polysaccharide ratio of extracellular polymeric substances (EPS) that promoted destabilizing effects on the granules. Finally, hydrogenotrophic methanogenesis was triggered. Reactor performance could not be restored due to the severe loss of granular sludge.
Collapse
Affiliation(s)
- S Fundneider-Kale
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany.
| | - J Kerres
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - M Engelhart
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| |
Collapse
|
3
|
Foscari A, Seiwert B, Zahn D, Schmidt M, Reemtsma T. Leaching of tire particles and simultaneous biodegradation of leachables. WATER RESEARCH 2024; 253:121322. [PMID: 38387267 DOI: 10.1016/j.watres.2024.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
The fate of organic compounds released from tire wear particle (TWP) in the aquatic environment is still poorly understood. This is especially true near sources where biotic and abiotic transformation and leaching from TWP are simultaneous and competing processes. To address this knowledge-gap an experiment was performed, allowing for biodegradation (a) during the leaching from a suspension of cryo-milled tire tread (CMTT) and (b) subsequent to leaching. Besides measuring the Dissolved Organic Carbon (DOC) content, 19 tire-related chemicals were quantified, and non-target screening was performed by LC-HRMS. The non-inoculated control experiment exhibited a DOC of up to 4 mg g-1, with up to 700 µg g-1 of 1,3-diphenylguanidine (DPG) as the most prominent compound, followed by three benzothiazoles (2-mercaptobenzothiazole (2-MBT), 2-hydroxybenzothiazole (2-OHBT) and benzothiazole-2-sulfonic acid (BTSA); 50 µg g-1 each) and 4-hydroxydiphenylamine (4-HDPA) (50 µg g-1). Biodegradation reduced the DOC by 88 % and the concentration of most organic compounds by more than 85 %. At the end of the experiment hexamethoxymethylmelamine (HMMM) was the most prominent single compounds (18 µg g-1). Non-target screening showed a more complex picture. Another 25 transformation products (TPs) of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) and 44 TPs and derivatives related to DPG were detected in solution, of which 11 and 28 were still present after or formed by biodegradation, respectively. Of these 39 TPs and derivatives, 31 could be detected in road runoff samples. This study provides a more comprehensive picture of the leachables of tire particles that are of environmental relevance. It also outlines that derivatives of tire additives formed during tire production and use may deserve more attention as leachables. The large extent of biodegradation of tire leachables suggests that settling ponds may be a useful treatment option for road runoff.
Collapse
Affiliation(s)
- Aurelio Foscari
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Daniel Zahn
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany.
| |
Collapse
|
4
|
Calarnou L, Traïkia M, Leremboure M, Malosse L, Dronet S, Delort AM, Besse-Hoggan P, Eyheraguibel B. Assessing biodegradation of roadway particles via complementary mass spectrometry and NMR analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165698. [PMID: 37499838 DOI: 10.1016/j.scitotenv.2023.165698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Roadway particles (RP) that can be collected with on-vehicle system, consist of a mixture of Tire and road wear particles (TRWP) with other traffic-derived particles (exhaust or non-exhaust) and/or biogenic compounds and represent a significant source of xenobiotics, susceptible to reach the different environmental compartments. The study of the RP fate is thus a major challenge to tackle in order to understand their degradation and impact. They offer a variety of carbon sources potentially usable by microorganisms, ranging from the tire-derived plasticizers, vulcanizing agents, protective agents and their transformation products, to other traffic, road and environmental-derived contaminants. A multi-analytical approach was implemented to characterize RP and study their biodegradation. Kinetics of RP extractions were monitored during 21 days in water, methanol, acetone and chloroform to identify leaching and extractable compounds and monitor the particle composition. The results confirmed that hundreds of readily leachable chemicals can be extracted from RP directly into water according to a dynamic process with time while additional poorly soluble compounds remain in the particles. Mass spectrometry (LC-HRMS and GC-MS) allowed us to propose 296 putative compounds using an extensive rubber database. The capacity of 6 bacterial strains, belonging to Rhodococcus, Pseudomonas and Streptomyces genera, to biodegrade RP was then evaluated over 14 days of incubation. The selected strains were able to grow on RP using various substrates. Elastomer monitoring by 1H NMR revealed a significant 12 % decrease of the extractable SBR fraction when the particles were incubated with Rhodococcus ruber. After incubation, the biodegradation of 171 compounds among leachable and extractable compounds was evaluated. Fatty acids and alkanes from rubber plasticizers and paraffin waxes were the most degraded putative compounds by the six strains tested, reaching 75 % of biodegradation for some of them.
Collapse
Affiliation(s)
- Laurie Calarnou
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France
| | - Mounir Traïkia
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France
| | - Martin Leremboure
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France
| | - Lucie Malosse
- Manufacture Française des Pneumatiques MICHELIN, Centre de Technologies Ladoux, F-63040 Clermont-Ferrand, France
| | - Séverin Dronet
- Manufacture Française des Pneumatiques MICHELIN, Centre de Technologies Ladoux, F-63040 Clermont-Ferrand, France
| | - Anne-Marie Delort
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France
| | - Pascale Besse-Hoggan
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France
| | - Boris Eyheraguibel
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France.
| |
Collapse
|
5
|
Yin Y, Zhang Q, Peng H. Retrospect and prospect of aerobic biodegradation of aniline: Overcome existing bottlenecks and follow future trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117133. [PMID: 36584469 DOI: 10.1016/j.jenvman.2022.117133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Aniline is a highly bio-toxic industrial product, even at low concentrations, whose related wastewater has been flowing out worldwide on a large scale along with human production. As a green technology, aerobic biological treatment has been widely applied in industrial wastewater and exhibited various characteristics in the field of aniline wastewater. Meanwhile, this technology has shown its potential of synchronous nitrogen removal, but it still consumes energy badly. In the face of resource scarcity, this review comprehensively discusses the existing research in aerobic biodegradation of aniline wastewater to find out the developmental dawn of aerobic biological treatment. Primarily, it put forward the evolution history details of aniline biodegradation from pure culture to mixed culture and then to simultaneous nitrogen removal. On this basis, it presented the existing challenges to further expand the application of aerobic biotechnology, including the confusions of aniline metabolic mechanism, the development of co-degradation of multiple pollutants and the lack of practical experience of bioreactor operation for aniline and nitrogen removal. Additionally, the prospects of the technological shift to meet the needs of an energy-conserving society was described according to existing experiences and feasibility. Including but not limiting to the development of multifunctional bacteria, the reduction of greenhouse gases and the combination of green technologies.
Collapse
Affiliation(s)
- Yixin Yin
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Haojin Peng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
6
|
Biofilm-based technology for industrial wastewater treatment: current technology, applications and future perspectives. World J Microbiol Biotechnol 2023; 39:112. [PMID: 36907929 DOI: 10.1007/s11274-023-03567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
The microbial community in biofilm is safeguarded from the action of toxic chemicals, antimicrobial compounds, and harsh/stressful environmental circumstances. Therefore, biofilm-based technology has nowadays become a successful alternative for treating industrial wastewater as compared to suspended growth-based technologies. In biofilm reactors, microbial cells are attached to static or free-moving materials to form a biofilm which facilitates the process of liquid and solid separation in biofilm-mediated operations. This paper aims to review the state-of-the-art of recent research on bacterial biofilm in industrial wastewater treatment including biofilm fundamentals, possible applications and problems, and factors to regulate biofilm formation. We discussed in detail the treatment efficiencies of fluidized bed biofilm reactor (FBBR), trickling filter reactor (TFR), rotating biological contactor (RBC), membrane biofilm reactor (MBfR), and moving bed biofilm reactor (MBBR) for different types of industrial wastewater treatment. Besides, biofilms have many applications in food and agriculture, biofuel and bioenergy production, power generation, and plastic degradation. Furthermore, key factors for regulating biofilm formation were also emphasized. In conclusion, industrial applications make evident that biofilm-based treatment technology is impactful for pollutant removal. Future research to address and improve the limitations of biofilm-based technology in wastewater treatment is also discussed.
Collapse
|
7
|
Zhang Y, Zhang Q, Peng H, Zhang W, Li M, Feng J, He J, Su J. The changing C/N of aggressive aniline: Metagenomic analysis of pollutant removal, metabolic pathways and functional genes. CHEMOSPHERE 2022; 309:136598. [PMID: 36174730 DOI: 10.1016/j.chemosphere.2022.136598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In order to optimize the degradation of high-concentration aniline wastewater, the operation of sequencing batch bioaugmentation reactors with different aniline concentrations (200 mg/L, 600 mg/L, 1000 mg/L) was studied. The results showed that the removal rates of aniline and COD in the three reactors could reach 100%. When the aniline increased to 600 mg/L, the nitrogen removal efficiency reached the peak (51.85%). The increase of aniline inhibited the nitrification, while denitrification was enhanced due to the increase of C/N ratio. But this change was reversed by the toxicity of high concentrations of aniline. The metagenomic analysis showed that when the aniline concentration was 600 mg/L, the abundance distribution of microbial samples was more uniform. The improved of aniline concentration had led to the increase of aromatic compounds degradation metabolic pathways. In addition, the abundance of aniline degradation and nitrogen metabolism genes (dmpB, xylE, norB) was also promoted.
Collapse
Affiliation(s)
- Yunjie Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Haojin Peng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wenli Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jing He
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Junhao Su
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
8
|
Assessment of Physicochemical Composition of Brewery Effluent and Performance Efficiency Assessment of Wastewater Treatment Plant in Accra, Ghana. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Su J, Zhang Q, Peng H, Feng J, He J, Zhang Y, Lin B, Wu N, Xiang Y. Exploring the impact of intensity and duration of Cu (II) depression on aniline-degrading biosystem: Performance, sludge activity and microbial diversity. BIORESOURCE TECHNOLOGY 2022; 360:127548. [PMID: 35779746 DOI: 10.1016/j.biortech.2022.127548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the ecological risk of aniline wastewater biodegradation, the aniline wastewater (200 mg/L) was treated in this work under the stress of Cu (II) at 3, 6 and 10 mg/L, respectively. The slight fluctuation of aniline-degrading performance and the significant inhibition of nitrogen removal was caused by the Cu (II) stress at below 6 mg/L. Meanwhile, the tolerance of nitrifying performance to Cu (II) was higher than denitrifying. The collapse of biosystem was caused by the Cu (II) stress at 10 mg/L and the decontamination function was disabled within 8 days. The activity and stability of sludge declined under the increase of Cu (II) content. Microbial diversity results demonstrated that the genera with heavy-metal tolerance represented by Zoogloea and Azospira significantly dominated under the continuously Cu (II) stress. Whereas, the biosystem with these dominant genera did not achieve the comparable aniline and nitrogen removal performance as the control group.
Collapse
Affiliation(s)
- Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hainan Research Institute of Wuhan University of Technology, Sanya 572025, PR China.
| | - Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Nanping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yutong Xiang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
10
|
Su J, Zhang Q, Huang W, Song J, Peng H, Feng J, He J, Zhang Y, Wei H. Transfer of functional microorganism: Regulation of N-acyl-homoserine lactones on the microbial community in aniline-degrading sequencing batch biofilm reactor. BIORESOURCE TECHNOLOGY 2022; 351:127052. [PMID: 35337993 DOI: 10.1016/j.biortech.2022.127052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Due to the inhibition of nitrification from aniline toxicity, exogenous N-acyl-homoserine lactones (AHLs) addition was attempted to enhance nitrogen removal in this work. Two sequencing batch biofilm reactors (SBBRs): S1 (the control) and S2 (C6-HSL and 3-oxo-C8-HSL dosing) were used to treat aniline wastewater. The NH4+-N and TN removal rates of S2 were 42.50% and 26.99% higher than S1 in the aerobic phase, respectively. It revealed the nitrogen removal performance of S2 much better than S1. High-throughput sequencing results indicated that many nitrifiers and denitrifiers of S2, such as Nitrosomonas and Thauera, transferred from sludge to biofilm significantly and built closer relationships each other. Overall, main nitrogen removal was contributed by biofilm rather than sludge with the regulation of AHLs. A mild and collaborative environment of biofilms for microorganisms enhanced nitrogen removal. The work provided a new idea for reconciling the contradiction between nitrification and denitrification in aniline wastewater treatment.
Collapse
Affiliation(s)
- Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Wansong Huang
- Hubei Jianke International Construction Ltd.co, Wuhan 430223, PR China
| | - Jianyang Song
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, PR China
| | - Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hua Wei
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
11
|
Alvillo-Rivera AJ, Garrido-Hoyos SE, Buitrón G. Cyanide treatment of mining tailings using suspended biomass and moving bed biomass reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37458-37470. [PMID: 35066824 DOI: 10.1007/s11356-021-18166-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Mexico is the top producer of silver and is on the eighth place from producing gold in the world. For instance, the hydrometallurgical extraction process produces wastewater (mining tailing) characterized by being composed with varying concentrations of cyanide and heavy metals. The purpose of this research was to study the biodegradation of cyanide contained in mining tailings by means of a bacterial consortium isolated from a tailings dam. For this purpose, three types of Eckendfelder reactors were used, one with suspended biomass (BS) and two moving bed biofilter reactors, one with biomass immobilized on Kaldnes (BK) supports, and the other on polyurethane cubes (BCP). Three experimental stages were worked; in each of them, the concentrations of total cyanide were varied. In the first one, it was 26 ± 2 mg·L-1; in the second one 40 ± 4 mg·L-1; and the third one 55 ± 4 mg·L-1. During the whole operation, the pH and temperature were maintained at 9.5 units and 25 °C. After 141 days of operation, biodegradation of the total cyanide contained in the mining tailings was 69% (17 mg·L-1) in the BS reactor, while in the BK reactor, it was 93% (3.9 mg·L-1) and in the BCP reactor 95% (2.5 mg·L-1). The predominant families in each of the reactors, as well as their respective relative abundances, were for the BS and for the BK of Cyclobacteriaceae (20.65% and 24.64%) and Rhizobiaceae (18.48% and 14.01%) and Halomonadaceae (46.97%) and Hyphomonadaceae (24.94%) in the BCP.
Collapse
Affiliation(s)
- Angélica Julieta Alvillo-Rivera
- Facultad de Ingeniería, Universidad Nacional Autónoma de México, Campus Morelos (Instituto Mexicano de Tecnología del Agua), Jiutepec, Morelos, México.
| | | | - Germán Buitrón
- Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro, México
| |
Collapse
|
12
|
Zhang Y, Zhang Q, Peng H, Wei H, Feng J, Su J, He J. An attempt to stimulate aniline degrading bioreactor by exogenous auto-inducer: Decontamination performance, sludge characteristics, and microbial community structure response. BIORESOURCE TECHNOLOGY 2022; 347:126675. [PMID: 35007739 DOI: 10.1016/j.biortech.2022.126675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
To break the contradiction between aniline and nitrogen metabolism in activated sludge reactor by influencing microbial interspecific communication, Auto-inducer C6-HSL and 3-oxo-C8-HSL were selected in this study to interfere with aniline degradation system. The two Auto-inducers enhanced the aniline degradation rate and ammonia removal efficiency of the systems, especially C6-HSL. Meanwhile, the main ammonia removal way was assimilation. Exogenous Auto-inducer effectively stabilized the sludge structure and activity from the destruction of aniline, and promoted EPS secretion. Microbial diversity analysis showed that most of functional microflora of seed sludge gradually deactivated with the operation of the reactor, while Rhodococcus, Leucobacter, g_norank_f_Saprospiraceae proliferated wildly under the action of Auto-inducer. Additionally, the interspecific relationship also demonstrated a different trend. Exogenous Auto-inducer was proved to exert positive effects on aniline degradation system to a certain extent, providing new insights in the field of aniline wastewater bio-degradation.
Collapse
Affiliation(s)
- Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hua Wei
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
13
|
Mahto KU, Das S. Bacterial biofilm and extracellular polymeric substances in the moving bed biofilm reactor for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2022; 345:126476. [PMID: 34864174 DOI: 10.1016/j.biortech.2021.126476] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Among the several biofilm-based bioreactors, moving bed biofilm reactors (MBBR) have been extensively used for wastewater treatment due to low operational costs, technical feasibility, and stability. Biofilm forming strains, e.g., Stenotrophomonas maltophila DQ01, achieved 94.21% simultaneous nitrification and denitrification (SND) and 94.43% removal of total nitrogen (TN) at a cycle time of 7 h, and a biofilm consortium consisting of Chryseobacteriumsp. andRhodobactersp. achieved 86.8% removal of total organic carbon (TOC) at hydraulic retention time (HRT) of 24 h using lab-scale MBBR. Modifications in the surface properties of the biocarrier materials achieved 99.5 ± 1.1% chemical oxygen demand (COD) and 93.6 ± 2.3% NH4+-N removal, significantly higher than the conventional commercial carrier. This review article summarizes the application of MBBR technology for wastewater treatment. The importance of bacterial biofilm and extracellular polymeric substances (EPS), anammox-n-DAMO coupled processes, and carrier surface modifications in MBBR technology have also been discussed.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
14
|
Effect of biofilm media application on biomass characteristics and membrane permeability in the biological spatiotemporal phase-separation process. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Peng H, Zhang Y, Zhang Q, Zhang W, Li M, Feng J, Su J, He J, Zhong M. Control of aeration time in the aniline degrading-bioreactor with the analysis of metagenomic: Aniline degradation and nitrogen metabolism. BIORESOURCE TECHNOLOGY 2022; 344:126281. [PMID: 34752880 DOI: 10.1016/j.biortech.2021.126281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The strategy of adjusting aeration time (5 h/6 h/7 h) was applied to the sequential batch reactors to optimize the treatment of aniline wastewater (600 mg/L) conveniently and economically. Three reactors degraded aniline effectively. The nitrogen removal ability of system with 6 h aeration time was better, performing the similar denitrification property as 5 h and nitrification performance as 7 h. Meanwhile, longer aeration time potentially damaged the sludge structure. The metagenomic analysis explained the micro-mechanism for the better performance of the system with 6 h aeration time. Appropriate aeration time was conducive to the enrichment of synergistic microflora, including aniline degrading-bacteria, heterotrophic nitrifiers and denitrifiers. Then, the tilt of environmental resources to these floras in the system was beneficial to the maximum value utilization of living substrates. Accordingly, these bacteria were more closely related to genes, resulting in higher expression of functional genes in the system.
Collapse
Affiliation(s)
- Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Wenli Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Min Zhong
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
16
|
Meena M, Yadav G, Sonigra P, Shah MP. A comprehensive review on application of bioreactor for industrial wastewater treatment. Lett Appl Microbiol 2021; 74:131-158. [PMID: 34469596 DOI: 10.1111/lam.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
In the recent past, wastewater treatment processes performed a pivotal role in accordance with maintaining the sustainable environment and health of mankind at a proper hygiene level. It has been proved indispensable by government regulations throughout the world on account of the importance of preserving freshwater bodies. Human activities, predominantly from industrial sectors, generate an immeasurable amount of industrial wastewater loaded with toxic chemicals, which not only cause dreadful environmental problems, but also leave harmful impacts on public health. Hence, industrial wastewater effluent must be treated before being released into the environment to restrain the problems related to industrial wastewater discharged to the environment. Nowadays, biological wastewater treatment methods have been considered an excellent approach for industrial wastewater treatment process because of their cost-effectiveness in the treatment, high efficiency and their potential to counteract the drawbacks of conventional wastewater treatment methods. Recently, the treatment of industrial effluent through bioreactor has been proved as one of the best methods from the presently available methods. Reactors are the principal part of any biotechnology-based method for microbial or enzymatic biodegradation, biotransformation and bioremediation. This review aims to explore and compile the assessment of the most appropriate reactors such as packed bed reactor, membrane bioreactor, rotating biological contactor, up-flow anaerobic sludge blanket reactor, photobioreactor, biological fluidized bed reactor and continuous stirred tank bioreactor that are extensively used for distinct industrial wastewater treatment.
Collapse
Affiliation(s)
- M Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - G Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - P Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - M P Shah
- Environmental Technology Lab, Bharuch, Gujarat, India
| |
Collapse
|
17
|
Nechanická M, Dolinová I, Špánek R, Tomešová D, Dvořák L. Application of nanofiber carriers for sampling of microbial biomass from contaminated groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146518. [PMID: 34030297 DOI: 10.1016/j.scitotenv.2021.146518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Sampling of microbial biomass is crucial for understanding and controlling remediation processes ongoing at contaminated sites in general, particularly when molecular genetic analyses are employed. In this study, fiber-based carriers with a nanofiber layer were developed and tested as a method to sample microbial biomass in groundwater for molecular genetic analysis. Nanofiber carriers, varying in the shape and the linear density of nanofibers, were examined throughout a 27-month monitoring period in groundwater contaminated with benzene, toluene, ethylbenzene and xylene isomers (BTEX), and chlorinated ethenes. The effect of carrier shape and nanofiber layer density on the microbial surface colonization and composition of the microbial biofilm was determined using real-time PCR and next-generation sequencing (NGS) analysis. Differences in microbial community composition between nanofiber carriers, groundwater, and soil samples were also analyzed to assess the applicability of carriers for biomass sampling at contaminated sites. The nanofiber carriers showed their applicability as a sampling tool, particularly because of their easy manipulation that facilitates DNA isolation. The majority of taxa (Proteobacteria, Firmicutes, and Bacteroidetes) present on the carrier surfaces were also detected in the groundwater. Moreover, the microbial community on all nanofiber carriers reflected the changes in the chemical composition of groundwater. Although the carrier characteristics (shape, nanofiber layer) did not substantially influence the microbial community on the carrier surface, the circular and planar carriers with a nanofiber layer displayed faster microbial surface colonization. However, the circular carrier was the most suitable for biomass sampling in groundwater because of its high contact area and because it does not require pre-treatment prior to DNA extraction.
Collapse
Affiliation(s)
- Magda Nechanická
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Iva Dolinová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic; Department of Biochemistry, Liberec Regional Hospital, Husova 357/10, 460 01 Liberec, Czech Republic
| | - Roman Špánek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Denisa Tomešová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Lukáš Dvořák
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic.
| |
Collapse
|
18
|
Bai C, Liu Y, Wang C, Zhang XC, Wu JX, Ren HT, Han X. Conversion of aniline contaminant to valuable polyaniline polymers from wastewater under alkaline conditions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Preparation of a Novel Cellulose-Styrene Copolymer Adsorbent and Its Adsorption of Nitrobenzene from Aqueous Solutions. Polymers (Basel) 2021; 13:polym13040609. [PMID: 33670572 PMCID: PMC7922655 DOI: 10.3390/polym13040609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022] Open
Abstract
A novel cellulose–styrene copolymer adsorbent (cellulose-St) was prepared using free radical polymerization. Successful polymerization was confirmed through Fourier Transform Infrared Spectroscopy (FTIR), Carbon 13 Solid Nuclear Magnetic Resonance (13C NMR) Spectroscopy, Scanning Electron Microscopy (SEM), etc. Cellulose-St possessed good hydrophobicity, and the best water contact angle of cellulose-St samples could reach 146°. It had the ability of adsorption for nitrobenzene (NB), and the adsorption process could be well described by the pseudo-second-order (R2 > 0.99) and three-stage intraparticle diffusion (R2 > 0.99) kinetic models. Furthermore, the dynamic adsorption experiments revealed that cellulose-St had the potential for continuous separation of NB in water, and the breakthrough point for the initial NB concentration of 10 mg/L reached 1.275 L/g. Moreover, cellulose-St exhibited excellent environmental adaptability that it could maintain its hydrophobicity and adsorption ability for NB in strong acids, strong alkalis, or organic solvents. The used cellulose-St could be reused after washing with ethanol and keep almost constant adsorption capacity after ten cycles.
Collapse
|
20
|
Xie HN, Li J, Wang YE, Zhao W, Zhang LH, Li J. Influencing factors for the Fenton-like of biological sponge iron system and its degradation mechanism of aniline. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Zhang W, Zhang Q, Li M, Wang H, Li Y, Peng H, Feng J. Microbial community and function evaluation in the start-up period of bioaugmented SBR fed with aniline wastewater. BIORESOURCE TECHNOLOGY 2021; 319:124148. [PMID: 32987279 DOI: 10.1016/j.biortech.2020.124148] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
An enhanced sequencing batch reactor (SBR) system was developed to treat synthetic wastewater rich in 600 mg/L aniline. The aniline degradation efficiency was almost 100%, and the total nitrogen (TN) removal rate was more than 50%. Metagenomics technology revealed the community structure, functional genes and metabolic mechanism during the start-up of the enhanced reactor. Sequencing results showed that Proteobacteria, Bacteroidetes, Chloroflexi and Actinobacteria were dominant phylum. The proportion of degradation of aromatic compounds function increased gradually, but the proportion of nitrogen metabolism function changed little. Functional genes involved in aniline degradation including benA-xylX and dmpB/xylE were detected. The functional genes of nitrogen metabolism were involved in complete nitrification, traditional denitrification, assimilation nitrate reduction and dissimilation nitrate reduction. The functional contribution analysis and network analysis showed that the cooperation and competition of Thauera, Delftia, Diaphorobacter, Micavibrio and Azoarcus ensured the effective removal of aniline and nitrogen.
Collapse
Affiliation(s)
- Wenli Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Yao Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Haojin Peng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
22
|
Liu X, Wu Y, Sun R, Hu S, Qiao Z, Wang S, Mi X. NH 4+-N/NO 3--N ratio controlling nitrogen transformation accompanied with NO 2--N accumulation in the oxic-anoxic transition zone. ENVIRONMENTAL RESEARCH 2020; 189:109962. [PMID: 32980029 DOI: 10.1016/j.envres.2020.109962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Although nitrogen (N) transformations have been widely studied under oxic or anoxic condition, few studies have been carried out to analyze the transformation accompanied with NO2--N accumulation. Particularly, the control of mixed N species in N-transformation remains unclear in an oxic-anoxic transition zone (OATZ), a unique and ubiquitous redox environment. To bridge the gap, in this study, OATZ microcosms were simulated by surface water and sediments of a shallow lake. The N-transformation processes and rates at different NH4+-N/NO3--N ratios, and NO2--N accumulations in these processes were evaluated. N-transformation process exhibited a turning point. Simultaneous nitrification and denitrification occurred in its early stage (first 10 days, dissolved oxygen (DO) ≥ 2 mg/L) and then denitrification dominated (after 10 days, DO < 2 mg/L), which were not greatly affected by the NH4+-N/NO3--N ratio, on the contrary, the transformation rates of NH4+-N and NO3--N were distinctly affected. The NH4+-N transformation rates were positively correlated with the NH4+-N/NO3--N ratio. The highest NO3--N transformation rate was observed at an NH4+-N/NO3--N ratio of 1:1 with organic carbon/NO3--N of 3.09. The NO2--N accumulation, which increased with the decrease in NH4+-N/NO3--N ratio, was also controlled by organic carbon concentration and type. The peak concentration of NO2--N accumulation occurred only when the NO3--N transformation rate was particularly low. Thus, NO2--N accumulation may be reduced by adjusting the control parameters related to N and organic carbon sources, which enhances the theoretical insights for N-polluted aquatic ecosystem bioremediation.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yaoguo Wu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Ran Sun
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Sihai Hu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zixia Qiao
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Sichang Wang
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaohui Mi
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
23
|
Dong K, Xie F, Chang Y, Chen C, Wang W, Lu D, Gu X. A novel strategy for the efficient decomposition of toxic sodium cyanate by hematite. CHEMOSPHERE 2020; 256:127047. [PMID: 32446000 DOI: 10.1016/j.chemosphere.2020.127047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Toxic sodium cyanate is always present in cyanide-contaminated waste. A new technology for the efficient decomposition of toxic sodium cyanate by hematite was first proposed in this study. The decomposition of sodium cyanate under various atmospheres has been studied. Studies show that sodium cyanate decomposes above 782 °C in Ar and above 627 °C in air. Sodium cyanate does not decompose even roasted at 400 °C for 120 min in air. Hematite does not promote the decomposition of sodium cyanate in Ar. However, almost all sodium cyanate decomposes efficiently at 400 °C and the mass ration of hematite to sodium cyanate of 1:1 for 30 min in air or oxygen atmosphere. The increased mass ratio of hematite to sodium cyanate and roasting temperature can both favor the efficient decomposition of sodium cyanate. The efficient decomposition of sodium cyanate occurs within 30 min, and it is almost stagnant with the prolongation of roasting time. When roasted in air or oxygen in the presence of hematite, sodium cyanate decomposes to Na2CO3, CO2 and N2 and a small amount of NaNO3 and NOx. The optimal efficient decomposition of sodium cyanate is to roast above 400 °C for 30 min in air or O2 at a mass ration of hematite to sodium cyanate greater than 1:1.
Collapse
Affiliation(s)
- Kaiwei Dong
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Feng Xie
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China.
| | - Yongfeng Chang
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Chunlin Chen
- CSIRO Minerals Resources, Clayton, Victoria, 3168, Australia
| | - Wei Wang
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China.
| | - Diankun Lu
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Xiaowei Gu
- Science and Technology Innovation Center of Smart Water and Resource Environment, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| |
Collapse
|
24
|
Lian Z, Xu Y, Zuo J, Qian H, Luo Z, Wei W. Preparation of PP-g-(AA-MAH) Fibers Using Suspension Grafting and Melt-Blown Spinning and its Adsorption for Aniline. Polymers (Basel) 2020; 12:E2157. [PMID: 32971766 PMCID: PMC7569868 DOI: 10.3390/polym12092157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
This paper uses polypropylene (PP) as the matrix and acrylic acid (AA) and maleic anhydride (MAH) as functional monomers to prepare PP-g-(AA-MAH) fibers by suspension grafting and melt-blown spinning technology that are easy to industrially scale-up. The fibers can be used to adsorb aniline. Results showed that the grafting ratio reached the maximum of 12.47%. The corresponding optimal conditions were grafting time of 3 h, AA: MAH = 0.75, total monomer content of 55%, benzoyl peroxide 1.4%, xylene concentration of 6 mL/g PP, and deionized water content of 8 mL/g PP. Owing to its good fluidity and thermal stability, the product of suspension grafting can be used for melt-blown spinning. Infrared spectroscopic and nuclear magnetic resonance spectroscopic analyses indicated that AA and MAH were successfully grafted onto PP fibers. After grafting, the hydrophilicity of PP-g-(AA-MAH) fiber increased. Therefore, it had higher absorptivity for aniline and the adsorption capacity could reach 42.2 mg/g at 45 min and pH = 7. Moreover, the PP-g-(AA-MAH) fibers showed good regeneration performance.
Collapse
Affiliation(s)
- Zhouyang Lian
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.X.); (J.Z.); (H.Q.); (Z.L.); (W.W.)
| | | | | | | | | | | |
Collapse
|
25
|
Shahid MK, Kashif A, Rout PR, Aslam M, Fuwad A, Choi Y, Banu J R, Park JH, Kumar G. A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110909. [PMID: 32721343 DOI: 10.1016/j.jenvman.2020.110909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 05/25/2023]
Abstract
This review summarizes the recent development and studies of anaerobic membrane bioreactor (AnMBR) to control fouling issues. AnMBR is an emerging waste water treatment technology mainly because of its low sludge residual, high volumetric organic removal rate, complete liquid-solid separation, better effluent quality, efficient resource recovery and the small footprint. This paper surveys the fundamental aspects of AnMBRs, including its applications, membrane configurations, and recent progress for enhanced reactor performance. Furthermore, the membrane fouling, a major restriction in the practical application of AnMBR, its mechanism and antifouling strategies like membrane cleaning, quorum quenching, ultrasonic treatment, membrane modifications, and antifouling agents are briefly discussed. Based on the review, the key issues that require urgent attention to facilitate large scale and integrated application of AnMBR technology are identified and future research perspectives relating to the prevalent issues are proposed.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Department of Environmental Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Ayesha Kashif
- Department of Senior Health Care, Eulji University, Daejeon, Republic of Korea
| | - Prangya Ranjan Rout
- Department of Environmental Engineering, Inha University, Incheon, Republic of Korea
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
| | - Younggyun Choi
- Department of Environmental Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Rajesh Banu J
- Department of Civil Engineering, Anna University, Tamilnadu, India
| | - Jeong Hoon Park
- Department of Civil Engineering, Anam Campus, Korea University, Seoul, Republic of Korea
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Norway.
| |
Collapse
|
26
|
Ashrafi E, Allahyari E, Torresi E, Andersen HR. Effect of slow biodegradable substrate addition on biofilm structure and reactor performance in two MBBRs filled with different support media. ENVIRONMENTAL TECHNOLOGY 2020; 41:2750-2759. [PMID: 30734662 DOI: 10.1080/09593330.2019.1581261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
In this study, two moving-bed biofilm reactors (MBBR1 and MBBR2) filled with different size of carrier media (Kaldnes K1 and Kaldnes K1 micro, respectively) were subjected to soluble (sugar and sodium acetate (Ac)) substrate and mixture of soluble and particulate (particulate potato starch (PS)) substrate in a very high organic loading rate (12 kgCOD/m3·d) at different temperatures (26 and 15°C, in MBBR1 and MBBR2, respectively). The effects of carrier type and substrate on biofilm structure and reactor performance have been studied. Starch was removed by adsorption at the biofilm surface and hydrolyzed which caused substrate gradient in MBBR1, however, hydrolyzed uniformly within biofilm in MBBR2. The biofilm of MBBR1 was irregular due to filamentous structure growth due to the substrate gradient, while, it was regular in MBBR2 due to uniform distribution of substrate. The performance of both MBBRs in ammonium, COD and TN removal decreased significantly when the amount of small particles in the reactor increased owing to feeding by starch, which led to biomass density decline. The type of media affected the quantity and distribution of attached biomass, which in turn influenced the activity of specific microbial functional groups in the biofilm. The biofilm in MBBR2 was thicker and consequently nitrogen removal by denitrification was much higher. The lower temperature did not affect negatively the reactor performance in MBBR2.
Collapse
Affiliation(s)
- Elham Ashrafi
- Biochemical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran, Iran
- Water Lab, Sanitary Section, Department of Civil Engineering and Geoscience, Delft University of Technology, Delft, Netherlands
| | - Edris Allahyari
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Elena Torresi
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
27
|
Source-related smart suspect screening in the aqueous environment: search for tire-derived persistent and mobile trace organic contaminants in surface waters. Anal Bioanal Chem 2020; 412:4909-4919. [PMID: 32382968 PMCID: PMC7334239 DOI: 10.1007/s00216-020-02653-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 12/04/2022]
Abstract
A variant of suspect screening by liquid chromatography–high-resolution mass spectrometry (LC-HRMS) is proposed in this study: Samples of a potential source of contamination and of an environmental sample close to this source are first analyzed in a non-targeted manner to select source-related suspects and to identify them. The suspect list compiled from such an exercise is then applied to LC-HRMS data of environmental samples to ascribe and to identify persistent and mobile contaminants in the water cycle that may originate from the source under study. This approach was applied to tire crumb rubber (source) and road dust (close to source); by comparison of the two data sets, 88% of the features detected in tire leachate could be excluded. Of the 48 suspects remaining, a total of 41 could be tentatively identified as either related to hexamethoxymethyl melamine or cyclic amines, benzothiazoles, or glycols. Subsequently, environmental samples were searched for these suspects: 85% were determined in an urban creek after a combined sewer overflow and 67% in the influent of a municipal wastewater treatment plant (WWTP). These exceptionally high rates of positive findings prove that this source-related smart suspect screening effectively directs the effort of selecting and identifying unknown contaminants to those related to the source of interest. The WWTP effluent and the urban creek during dry weather also showed the presence of numerous contaminants that may stem from tire and road wear particles (TRWP) in road runoff. Contribution from other sources, however, cannot be ruled out. Graphical abstract ![]()
Collapse
|
28
|
Qi Y, Guo C, Xu X, Gao B, Yue Q, Jiang B, Qian Z, Wang C, Zhang Y. Co/Fe and Co/Al layered double oxides ozone catalyst for the deep degradation of aniline: Preparation, characterization and kinetic model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136982. [PMID: 32014786 DOI: 10.1016/j.scitotenv.2020.136982] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
In this work, Co/Fe and Co/Al layered double oxides (Co/Fe-LDO and Co/Al- LDO)ozone catalysts were obtained from Co/Fe and Co/Al layered double hydroxides intermediates (Co/Fe-LDH and Co/Al-LDH). Firstly, the optimal preparation parameters of the two intermediates were determined, then the morphology and mineralogy microstructure of the derived Co/Fe-LDO and Co/Al- LDO ozone catalysts were systematically studied. Finally, the reaction kinetics of the two ozone catalysts for the deep degradation of aniline wastewater in catalysts/ozone systems were established. The results showed that the optimal preparation conditions were set as pH 12, temperature 60 °C, cobalt‑iron ratio 3:1 for Co/Fe-LDH intermediate, and pH 12, temperature 70 °C, cobalt‑aluminum ratio 3:1 for Co/Al-LDH intermediate. During calcination treatment, the dehydration and recrystallization effect impelled LDH intermediate to form LDO catalyst. The derived ozone catalysts Co/Fe-LDO and Co/Al-LDO possess layered structure, and Co species was mainly based on Co3O4 as the main mineral phase of the two ozone catalysts. The addition of catalyst can realize the deep ozonation catalysis of aniline wastewater. The kinetic models established on the aniline oxidized by ozone or catalyst/ozone systems were both fitted the first-order reactions, and the reaction activation energy for CODCr and TOC degradation were significantly reduced in catalyst/ozone system.
Collapse
Affiliation(s)
- Yuanfeng Qi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China; School of Environmental Science and Technology, Shandong University, Qingdao, 266237, PR China; Zhejiang Heze Envrionmental Tech Shares Co.,LTD, Huzhou, 313100, PR China.
| | - Ce Guo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xing Xu
- School of Environmental Science and Technology, Shandong University, Qingdao, 266237, PR China; Zhejiang Heze Envrionmental Tech Shares Co.,LTD, Huzhou, 313100, PR China
| | - Baoyu Gao
- School of Environmental Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Qinyan Yue
- School of Environmental Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Zhou Qian
- Zhejiang Heze Envrionmental Tech Shares Co.,LTD, Huzhou, 313100, PR China; Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou 310007, PR China
| | - Changzhi Wang
- Zhejiang Heze Envrionmental Tech Shares Co.,LTD, Huzhou, 313100, PR China; Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou 310007, PR China
| | - Yanqing Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| |
Collapse
|
29
|
Tang W, An Y, Row KH. Recoverable deep eutectic solvent-based aniline organic pollutant separation technology using choline salt as adsorbent. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112910] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Asraful Alam M, Mehmood MA. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135303. [PMID: 31818584 DOI: 10.1016/j.scitotenv.2019.135303] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Water shortage is one of the leading global problems along with the depletion of energy resources and environmental deterioration. Recent industrialization, global mobility, and increasing population have adversely affected the freshwater resources. The wastewater sources are categorized as domestic, agricultural and industrial effluents and their disposal into water bodies poses a harmful impact on human and animal health due to the presence of higher amounts of nitrogen, phosphorus, sulfur, heavy metals and other organic/inorganic pollutants. Several conventional treatment methods have been employed, but none of those can be termed as a universal method due to their high cost, less efficiency, and non-environment friendly nature. Alternatively, wastewater treatment using microalgae (phycoremediation) offers several advantages over chemical-based treatment methods. Microalgae cultivation using wastewater offers the highest atmospheric carbon fixation rate (1.83 kg CO2/kg of biomass) and fastest biomass productivity (40-50% higher than terrestrial crops) among all terrestrial bio-remediators with concomitant pollutant removal (80-100%). Moreover, the algal biomass may contain high-value metabolites including omega-3-fatty acids, pigments, amino acids, and high sugar content. Hence, after extraction of high-value compounds, residual biomass can be either directly converted to energy through thermochemical transformation or can be used to produce biofuels through biological fermentation or transesterification. This review highlights the recent advances in microalgal biotechnology to establish a biorefinery approach to treat wastewater. The articulation of wastewater treatment facilities with microalgal biorefinery, the use of microalgal consortia, the possible merits, and demerits of phycoremediation are also discussed. The impact of wastewater-derived nutrient stress and its exploitation to modify the algal metabolite content in view of future concerns of cost-benefit ratios of algal biorefineries is also highlighted.
Collapse
Affiliation(s)
- Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sana Malik
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Jianren Xu
- College of Bioscience and Engineering, North Minzu University, Yinchuan 750021, Ningxia, China
| | - Muhammad Zohaib Nawaz
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Department of Computer Science, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
31
|
Wang J, Liu Q, Li X, Ma S, Hu H, Wu B, Zhang XX, Ren H. In-situ monitoring AHL-mediated quorum-sensing regulation of the initial phase of wastewater biofilm formation. ENVIRONMENT INTERNATIONAL 2020; 135:105326. [PMID: 31794939 DOI: 10.1016/j.envint.2019.105326] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/05/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Initial attachment plays an important role in biofilm formation in wastewater treatment processes. However, the initial attachment process mediated by N-acyl-homoserine lactones (AHLs) is difficult to be fully understood due to the lack of non-invasive and on-line investigation techniques. In this study, the AHL-regulated wastewater biofilm attachment was quantified using ultrasonic time-domain reflectometry (UTDR) as an in-situ and non-invasive monitoring technique. Results demonstrated that the reversible adhesion time in municipal and industrial wastewaters was significantly decreased in the presence of exogenous AHLs. Biofilm thickness in municipal and industrial wastewaters increased significantly with the addition of exogenous AHLs. Also, the addition of acylase delayed the initial biofilm formation (lengthened reversible adhesion time and decreased biofilm thickness and density). Compared with biofilm behavior in the presence of low concentrations of AHLs (4.92 ± 0.17 μg/L), both reversible adhesion time and biofilm thickness were not significantly increased (p > 0.05) with an increase in AHL concentration (9.75 ± 0.41 μg/L). Furthermore, the addition of exogenous AHLs resulted in significant changes in the attached bacterial community structures, in which both QS and quorum-quenching (QQ) bacteria were stimulated. The current work presents an effective approach to in-situ monitoring of the regulation of AHL-mediated QS in the initial attachment of biofilms, especially in the reversible adhesion process, which may provide a potential strategy to facilitate biofilm establishment in wastewater treatment processes.
Collapse
Affiliation(s)
- Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xianhui Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
32
|
Chen WS, Shih YC. Mineralization of aniline in aqueous solution by sono-activated peroxydisulfate enhanced with PbO semiconductor. CHEMOSPHERE 2020; 239:124686. [PMID: 31494321 DOI: 10.1016/j.chemosphere.2019.124686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Oxidative degradation of aniline in aqueous solution was performed by the sono-activated peroxydisulfate coupled with PbO process, wherein a dramatic synergistic effect was found. Experiments were carried out in the batch-wise mode to investigate the influence of various operation parameters on the sonocatalytic behavior, such as ultrasonic power intensity, peroxydisulfate anion concentrations and PbO dosages. According to the scavenging effect of ethanol, methanol and tert-butyl alcohol, the principal oxidizing agents were presumed to be sulfate radicals descended from peroxydisulfate anions, activated via ultrasound or sonocatalysis of PbO. Based on the results attained from gas chromatograph-mass spectrometer, it was hypothesized that aniline was initially oxidized into iminobenzene radicals, followed with formation of nitrosobenzene, p-benzoquinonimine and nitrobenzene respectively. Condensation of nitrosobenzene with aniline generated azobenzene. Phenol was detected as one of degradation intermediates, which was sequentially converted into hydroquinone and p-benzoquinone.
Collapse
Affiliation(s)
- Wen-Shing Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science & Technology, 123 University Road, Section 3, Douliou, Yunlin, 640, Taiwan.
| | - Yu-Cheng Shih
- Department of Chemical and Materials Engineering, National Yunlin University of Science & Technology, 123 University Road, Section 3, Douliou, Yunlin, 640, Taiwan
| |
Collapse
|
33
|
Ding J, Zhong Y, Li H, Chen Z, Yu W. Valorization of poly(ethylene)terephthalate wastes into nanoporous carbons for the adsorption of 1,3-diphenylguanidine from an aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/c9nj06367f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon prepared by using MgO templating and KOH activation has a better absorption capacity for DPG.
Collapse
Affiliation(s)
- Junwei Ding
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Yuan Zhong
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Hui Li
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Zhe Chen
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Wenlong Yu
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| |
Collapse
|
34
|
Amenorfenyo DK, Huang X, Zhang Y, Zeng Q, Zhang N, Ren J, Huang Q. Microalgae Brewery Wastewater Treatment: Potentials, Benefits and the Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1910. [PMID: 31151156 PMCID: PMC6603649 DOI: 10.3390/ijerph16111910] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022]
Abstract
Concerns about environmental safety have led to strict regulations on the discharge of final brewery effluents into water bodies. Brewery wastewater contains huge amounts of organic compounds that can cause environmental pollution. The microalgae wastewater treatment method is an emerging environmentally friendly biotechnological process. Microalgae grow well in nutrient-rich wastewater by absorbing organic nutrients and converting them into useful biomass. The harvested biomass can be used as animal feed, as an alternative energy source for biodiesel production and as biofertilizer. This review discusses conventional and current brewery wastewater treatment methods, and the application and potential of microalgae in brewery wastewater treatment. This study also discusses the benefits as well as challenges associated with microalgae brewery and other industrial wastewater treatments.
Collapse
Affiliation(s)
- David Kwame Amenorfenyo
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Xianghu Huang
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Yulei Zhang
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Qitao Zeng
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Ning Zhang
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Jiajia Ren
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Qiang Huang
- SDIC Guangdong Bio-Energy Co., Ltd., Zhanjiang 524025, China.
| |
Collapse
|
35
|
Jiang Y, Wei L, Yang K, Wang H. Investigation of rapid granulation in SBRs treating aniline-rich wastewater with different aniline loading rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:841-849. [PMID: 30064110 DOI: 10.1016/j.scitotenv.2018.07.313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/22/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
In this work, aerobic granules were cultivated in two reactors which were denoted as RL and RH under 0.6 and 1.8 kg m-3 d-1 of aniline loading rates, respectively. The aerobic granular sludge (AGS) in the two sequential batch reactors for treating aniline-rich wastewater was compared. The results showed that the AGS could be rapidly formed with sludge volume index below 30 mL g-1. The AGS in RL had more filamentous bacteria than that in RH by microstructural observations while the secretion of protein in extracellular polymeric substances was improved in RH and in turn increased relative hydrophobicity of AGS. Within 4-h cycle, the excellent removal of aniline and chemical oxygen demand (COD) were achieved in the two reactors. The removal efficiencies of aniline and COD were consistently over 99.7%, 89.6%, respectively in RL and 98.6%, 86.6%, respectively in RH. As for nitrogen removal, NH4+-N released from aniline biodegradation could also be reduced efficiently via nitrification and no nitrite accumulation occurred in both the reactors. Total nitrogen removal performance in RH was better, due to a more compact structure of AGS. The investigation of microbial community succession by pyrosequencing showed that the diversity of microorganisms decreased when AGS was developed. Proteobacteria especially Gammaproteobacteria significantly increased during aerobic granulation in both reactors. It was also found that the relative abundance of Actinobacteria was higher in RH than that in RL. Furthermore, the strains responsible for aniline biodegradation, nitrification, denitrification, and phosphorous accumulation were detected in the systems.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
36
|
Li C, Sun Y, Yue Z, Huang M, Wang J, Chen X, An X, Zang H, Li D, Hou N. Combination of a recombinant bacterium with organonitrile-degrading and biofilm-forming capability and a positively charged carrier for organonitriles removal. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:372-380. [PMID: 29684889 DOI: 10.1016/j.jhazmat.2018.03.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/24/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The immobilization of organonitrile-degrading bacteria via the addition of biofilm-forming bacteria represents a promising technology for the treatment of organonitrile-containing wastewater, but biofilm-forming bacteria simply mixed with degrading bacteria may reduce the biodegradation efficiency. Nitrile hydratase and amidase genes, which play critical roles in organonitriles degradation, were cloned and transformed into the biofilm-forming bacterium Bacillus subtilis N4 to construct a recombinant bacterium B. subtilis N4/pHTnha-ami. Modified polyethylene carriers with positive charge was applied to promote bacterial adherence and biofilm formation. The immobilized B. subtilis N4/pHTnha-ami was resistant to organonitriles loading shocks and could remove organic cyanide ion with a initial concentration of 392.6 mg/L for 24 h in a moving bed biofilm reactor. The imputed quorum-sensing signal and the high-throughput sequencing analysis of the biofilm indicated that B. subtilis N4/pHTnha-ami was successfully immobilized and became dominant. The successful application of the immobilized recombinant bacterium offers a novel strategy for the biodegradation of recalcitrant compounds.
Collapse
Affiliation(s)
- Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yueling Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Zhenlei Yue
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Mingyan Huang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Jinming Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xi Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xuejiao An
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
37
|
Tu Y, Liu XP, Li HQ, Yang P. Biological treatment of fracturing waste liquid in a membrane-coupled internal circulation aerobic biological fluidized bed with the assistance of coagulation. ENVIRONMENTAL TECHNOLOGY 2017; 38:3074-3083. [PMID: 28142646 DOI: 10.1080/09593330.2017.1290141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fracturing waste liquid (FWL) is generated during shale gas extraction and contains high concentrations of suspended solid, salinity and organic compounds, which needs proper management to prevent excessive environmental disruption. Biological treatment of the FWL was attempted in this study using a membrane-coupled internal circulation aerobic biological fluidized bed (MC-ICABFB) after being treated by coagulation. The results showed that poly aluminum chloride (PAC) of 30 g/L, polyacrylamide (PAM) of 20 mg/L and pH of 7.0 were suitable choices for coagulation. The pretreated FWL mixed with synthetic wastewater at different ratios were used as the influent wastewater for the reactor. The MC-ICABFB had relatively good performance on COD and NH4+-N removal and the main residual organic compound in the effluent was phthalates according to the analysis of GC-MC profiles. In addition, a suitable pretreatment process for the FWL to facilitate biological treatment of the wastewater needs further research.
Collapse
Affiliation(s)
- Yizhou Tu
- a College of Architecture and Environment , Sichuan University , Chengdu , China
| | - Xing-Peng Liu
- b College of Communication Engineering , Chengdu Technological University , Chengdu , China
| | - Hui-Qiang Li
- a College of Architecture and Environment , Sichuan University , Chengdu , China
| | - Ping Yang
- a College of Architecture and Environment , Sichuan University , Chengdu , China
| |
Collapse
|
38
|
Shokoohi R, Torkshavand Z, Zolghadnasab H, Alikhani MY, Hemmat MS. Study of the efficiency of moving bed biofilm reactor (MBBR) in LAS Anionic Detergent removal from hospital wastewater: determination of removing model according to response surface methodology (RSM). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 2017:1-7. [PMID: 29698215 DOI: 10.2166/wst.2018.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detergents are considered one of the important pollutants in hospital wastewater. Achieving efficient and bio-friendly methods for the removal of these pollutants is considered as a concern for environmental researchers. This study aims at studying the efficiency of a moving bed biofilm reactor (MBBR) system for removing linear alkyl benzene sulfonate (LAS) from hospital wastewater with utilization of response surface methodology (RSM). The present study was carried out on a reactor with continuous hydraulic flow using media k1 at pilot scale to remove detergent from hospital wastewater. The effect of independent variables including contact time, percentage of media filling and mixed liquor suspended solids (MLSS) concentration of 1000-3000 mg/l on the system efficiency were assessed. Methylene blue active substances (MBAS) and chemical oxygen demand (COD) 750-850 mg/l were used by closed laboratory method in order to measure the concentration of LAS. The results revealed that the removal efficiency of LAS detergent and COD using media k1, retention time of 24 hours, and MLSS concentration of around 3,000 mg/l were 92.3 and 95.8%, respectively. The results showed that the MBBR system as a bio-friendly compatible method has high efficiency in removing detergents from hospital wastewater and can achieve standard output effluent in acceptable time.
Collapse
Affiliation(s)
- Reza Shokoohi
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran E-mail:
| | - Zahra Torkshavand
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran E-mail:
| | - Hassan Zolghadnasab
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran E-mail:
| | | | - Meisam Sedighi Hemmat
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran E-mail:
| |
Collapse
|
39
|
Castro FD, Bassin JP, Dezotti M. Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6307-6316. [PMID: 27388593 DOI: 10.1007/s11356-016-7119-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
In this study, an aqueous solution containing the azo dye Reactive Orange 16 (RO16) was subjected to two sequential treatment processes, namely: ozonation and biological treatment in a moving-bed biofilm reactor (MBBR). The most appropriate ozonation pretreatment conditions for the biological process and the toxicity of the by-products resulting from RO16 ozone oxidation were evaluated. The results showed that more than 97 % of color removal from the dye solutions with RO16 concentrations ranging from 25 to 100 mg/L was observed in 5 min of ozone exposure. However, the maximum total organic carbon removal achieved by ozonation was only 48 %, indicating partial mineralization of the dye. Eleven intermediate organic compounds resulting from ozone treatment of RO16 solution were identified by LC/MS analyses at different contact times. The toxicity of the dye-containing solution decreased after 2 min of ozonation, but increased at longer contact times. The results further demonstrated that the ozonolysis products did not affect the performance of the subsequent MBBR, which achieved an average chemical oxygen demand (COD) and ammonium removal of 93 ± 1 and 97 ± 2 %, respectively. A second MBBR system fed with non-ozonated dye-containing wastewater was run in parallel for comparison purposes. This reactor also showed an appreciable COD (90 ± 1 %) and ammonium removal (97 ± 2 %), but was not effective in removing color, which remained practically invariable over the system. The use of short ozonation times (5 min) and a compact MBBR has shown to be effective for the treatment of the simulated textile wastewater containing the RO16 azo dye.
Collapse
Affiliation(s)
- Francine D Castro
- Federal University of Rio de Janeiro, COPPE-Chemical Engineering Program, Rio de Janeiro, Brazil
| | - João Paulo Bassin
- Federal University of Rio de Janeiro, COPPE-Chemical Engineering Program, Rio de Janeiro, Brazil.
- Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, Rio de Janeiro, 21941-972, Brazil.
| | - Márcia Dezotti
- Federal University of Rio de Janeiro, COPPE-Chemical Engineering Program, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Khaniabadi YO, Heydari R, Nourmoradi H, Basiri H, Basiri H. Low-cost sorbent for the removal of aniline and methyl orange from liquid-phase: Aloe Vera leaves wastes. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.09.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Li C, Yue Z, Feng F, Xi C, Zang H, An X, Liu K. A novel strategy for acetonitrile wastewater treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability. CHEMOSPHERE 2016; 161:224-232. [PMID: 27434252 DOI: 10.1016/j.chemosphere.2016.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/01/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-β-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater.
Collapse
Affiliation(s)
- Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Zhenlei Yue
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Fengzhao Feng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xuejiao An
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Keran Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| |
Collapse
|
42
|
Specifically Grafting Hematin on MPTS-Coated Carbon Nanotubes for Catalyzing the Oxidation of Aniline. Catalysts 2016. [DOI: 10.3390/catal6080123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
43
|
Jiang Y, Wang H, Shang Y, Yang K. Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor. BIORESOURCE TECHNOLOGY 2016; 207:422-9. [PMID: 26906036 DOI: 10.1016/j.biortech.2016.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 05/24/2023]
Abstract
The high removal efficiencies of traditional biological aniline-degrading systems always lead to accumulation of ammonium. In this study, simultaneous removal of aniline, nitrogen and phosphorus in a single sequencing batch reactor was achieved by using anaerobic/aerobic/anoxic (A/O/A) operational process. The removal efficiencies of COD, NH4(+)-N, TN, TP were over 95.80%, 83.03%, 87.13%, 90.95%, respectively in most cases with 250mgL(-1) of initial aniline at 6h cycle when DO was 5.5±0.5mgL(-1). Aniline was able to be completely degraded when initial concentrations were less than 750mgL(-1). When DO increased, the removal rate of NH4(+)-N and TP slightly increased along with the moderate decrease of removal efficiencies of TN. The variation of HRT had obvious influence on removal performance of pollutants. The system showed high removal efficiencies of aniline, COD and nutrients during the variation of operating conditions, which might contribute to disposal of aniline-rich industrial wastewater.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yu Shang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
44
|
Xue JQ, Liu NN, Li GP, Dang LT. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:779-786. [PMID: 27533852 DOI: 10.2166/wst.2016.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.
Collapse
Affiliation(s)
- Juan Qin Xue
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| | - Ni Na Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| | - Guo Ping Li
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| | - Long Tao Dang
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| |
Collapse
|
45
|
Li G, Xue J, Liu N, Yu L. Treatment of cyanide wastewater by bulk liquid membrane using tricaprylamine as a carrier. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:2888-2895. [PMID: 27332833 DOI: 10.2166/wst.2016.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The transport of cyanide from wastewater through a bulk liquid membrane (BLM) containing tricaprylamine (TOA) as a carrier was studied. The effect of cyanide concentration in the feed solution, TOA concentration in the organic phase, the stirring speed, NaOH concentration in the stripping solution and temperature on cyanide transport was determined through BLM. Mass transfer of cyanide through BLM was analyzed by following the kinetic laws of two consecutive irreversible first-order reactions, and the kinetic parameters (k(1), k(2), R(m)(max), t(max), J(a)(max), J(d)(max)) were also calculated. Apparently, increase in membrane entrance (k(1)) and exit rate (k(2)) constants was accompanied by a rise in temperature. The values of activation energies were obtained as 35.6 kJ/mol and 18.2 kJ/mol for removal and recovery, respectively. These values showed that both removal and recovery steps in cyanide transport is controlled by the rate of the chemical complexation reaction. The optimal reaction conditions were determined by BLM using trioctylamine as the carrier: feed phase: pH 4, carrier TOA possession ratio in organic phase: 2% (V/V), stripping phase concentration of NaOH: 1% (W/V), reaction time: 60 min, stirring speed: 250 r/min. Under the above conditions, the removal rate was up to 92.96%. The experiments demonstrated that TOA was a good carrier for cyanide transport through BLM in this study.
Collapse
Affiliation(s)
- Guoping Li
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| | - Juanqin Xue
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| | - Nina Liu
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| | - Lihua Yu
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| |
Collapse
|
46
|
Torrellas SA, Escudero GO, Rodriguez AR, Rodriguez JG. Degradation of phenylamine by catalytic wet air oxidation using metal catalysts with modified supports. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:372-377. [PMID: 25723063 DOI: 10.1080/10934529.2015.987529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effect of acid treatments with HCl and HNO3 on the surface area and surface chemistry of three granular activated carbons was studied. These supports were characterized and the hydrochloric acid treatment leads to the best activated carbon support (AC2-C). The catalytic behavior of Pt, Ru and Fe (1 wt.%) supported on granular activated carbon treated with HCl was tested in the phenylamine continuous catalytic wet air oxidation in a three-phase, high-pressure catalytic reactor over a range of reaction temperatures 130-170ºC and total pressure of 1.0-3.0 MPa at LHSV = 0.4-1 h(-1), whereas the phenylamine concentration range and the catalyst loading were 5-16 mol.m(-3) and 0.5-1.5 g, respectively. Activity as well as conversion varied as a function of the metal, the catalyst preparation method and operation conditions. Higher activities were obtained with Pt incorporated on hydrochloric acid -treated activated carbon by the ion exchange method. In steady state, approximately 98% phenylamine conversion, 77% of TOC and 94% of COD removal, was recorded at 150ºC, 11 mol m(-3) of phenylamine concentration and 1.5 g of catalyst, and the selectivity to non-organic compounds was 78%. Several reaction intermediaries were detected. A Langmuir-Hinshelwood model gave an excellent fit of the kinetic data of phenylamine continuous catalytic wet air oxidation over the catalysts of this work.
Collapse
Affiliation(s)
- Silvia A Torrellas
- a Catalysis and Separation Process Group (CyPS), Chemical Engineering Department, Faculty of Chemistry , Complutense University of Madrid , Madrid , Spain
| | | | | | | |
Collapse
|