1
|
Wang Y, Ji X, Min S, Gao T, Li C, Ge Y. Inhibitory effects of phytic acid on the in vitro and in vivo growth of Trichothecium roseum in apple fruit and the underlying mechanisms involved in its action. Food Chem 2025; 463:141140. [PMID: 39243626 DOI: 10.1016/j.foodchem.2024.141140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
This study evaluated the inhibitory impacts of phytic acid on the growth of T. roseum both in vitro and in apple fruit, as well as elucidated the potential mechanisms underlying its action. Results showed that phytic acid suppressed the lesion diameter caused by T. roseum inoculation in apples, as well as spore germination and mycelial growth of T. roseum in vitro. Phytic acid reduced intracellular conductivity and soluble sugar content, while increasing malondialdehyde and soluble protein contents. Phytic acid treatment inhibited the activities of pectin lyase, pectin methyl polygalacturonase, β-glucosidase, cellulase, xylanase, pectin methyl trans-eliminase, polygalacturonase, and polygalacturonase both in vitro and in apples. In contrast, inoculation of control and phytic acid-treated fruit with T. roseum resulted in increased enzyme activity. These findings suggest that phytic acid decrease the occurrence of heart rot in apples through inducing disruption of the cell membrane of T. roseum and mediating cell wall metabolism.
Collapse
Affiliation(s)
- Yajun Wang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Xiaonan Ji
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Shuang Min
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Tian Gao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Canying Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China..
| | - Yonghong Ge
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China..
| |
Collapse
|
2
|
Yin J, Li J, Xie H, Wang Y, Zhao J, Wang L, Wu L. Unveiling cold Code: Acinetobacter calcoaceticus TY1's adaptation strategies and applications in nitrogen treatment. BIORESOURCE TECHNOLOGY 2024; 413:131449. [PMID: 39244103 DOI: 10.1016/j.biortech.2024.131449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Overcoming low nitrogen removal efficiency at low temperatures is a challenge in biological treatment. This study investigated the cold-tolerant heterotrophic nitrification-aerobic denitrification by Acinetobacter calcoaceticus TY1. Transcriptomic and biochemical analyses indicated that strain TY1 upregulated genes for energy production, assimilation, cell motility, and antioxidant enzyme production under cold stress, maintaining functions such as energy supply, nitrogen utilization, and oxidative defense. Increasing the synthesis of extracellular polysaccharides, unsaturated fatty acids, and medium-chain fatty acids and secreting large amounts of antioxidant enzymes ensured cell membrane flexibility while enhancing the antioxidant system. Immobilization experiments showed that biofilms accelerated the removal of nitrogen pollutants and demonstrated good stability, with carriers being reusable to five times, maintaining high ammonia nitrogen (63.90 %) and total nitrogen (50.66 %) removal rates. These findings reveal the cold tolerance mechanisms of strain TY1 and its excellent practical potential as a candidate for wastewater treatment in cold regions.
Collapse
Affiliation(s)
- Jiahui Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Junyi Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Hongliang Xie
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Yongman Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Jialin Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Linhui Wu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Hohhot 010021, PR China.
| |
Collapse
|
3
|
Ke Z, Peng X, Jia S, Liu S, Zhou X, Ding Y. Mechanisms underlying the potent antimicrobial effects of plasma-activated seawater (PASW) on fish spoilage bacterium Shewanella putrefaciens. Food Chem 2024; 455:140147. [PMID: 38905783 DOI: 10.1016/j.foodchem.2024.140147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Plasma-activated seawater (PASW) presents a promising approach for marine fish preservation, yet its antimicrobial efficacy and mechanisms remain unclear. This study found that PASW exhibits superior bactericidal properties against the fish spoilage bacterium Shewanella putrefaciens compared to plasma-activated water (PAW), and increased effectiveness in preserving fish fillets. To clarify the mechanisms, a detailed investigation was conducted, including the generation of reactive oxygen/nitrogen species (ROS/RNS) and active halogen species in PASW, and their antimicrobial efficacy. Findings showed greater nitrite and hydrogen peroxide production in PASW relative to PAW, as well as the conversion of chloride/bromide ions into active species, which collectively enhanced PASW's antimicrobial activity. The synergistic action of ROS/RNS and active chlorine/bromine species in PASW promoted the generation of intracellular ROS, causing increased membrane damage, redox imbalance, and consequently higher bacterial mortality. This study enhances our understanding of PASW's antimicrobial effects and highlights its potential applications in the seafood industry.
Collapse
Affiliation(s)
- Zhigang Ke
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China.
| | - Xingjian Peng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shiliang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China.
| |
Collapse
|
4
|
Singh VK, Singh R. Role of white rot fungi in sustainable remediation of heavy metals from the contaminated environment. Mycology 2024; 15:585-601. [PMID: 39678632 PMCID: PMC11636154 DOI: 10.1080/21501203.2024.2389290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/30/2024] [Indexed: 12/17/2024] Open
Abstract
Heavy metal contamination has severe impacts on the natural environment. The currently existing physico-chemical methods have certain limitations, restricting their wide-scale application. The use of biological agents like bacteria, algae, and fungi can help eliminate heavy metals without adversely affecting flora and fauna. Due to their inherent ability to withstand adverse environmental conditions, nowadays, mycoremediation approaches are receiving considerable attention for heavy metal removal from contaminated sites. In this review, we emphasised the role of white rot fungi in remediation of heavy metal along with different factors influencing biosorption, effects on exposed fungi, and the mechanisms involved. Bibliometric analysis tools have been applied to literature search and trend analysis of the research on white rot fungi-mediated heavy metal removal. Annual growth rates and average citations per document are 5.08% and 35.48, respectively. Phanerochaete chrysosporium, Pleurotus ostreatus, and Trametes versicolor have been widely explored for the remediation of heavy metals. In addition to providing some prospects, the review also highlighted a few limitations, including inconsistent removal and effects of environmental factors influencing the functioning of white rot fungi. Overall, white rot fungi have been found to have immense potential to be widely utilised for sustainable remediation of heavy metal-contaminated environments.
Collapse
Affiliation(s)
- Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya, Uttar Pradesh, India
| | - Rishikesh Singh
- Amity School of Earth & Environmental Sciences, Amity University Punjab, Mohali, Punjab, India
| |
Collapse
|
5
|
Gao X, Wei M, Zhang X, Xun Y, Duan M, Yang Z, Zhu M, Zhu Y, Zhuo R. Copper removal from aqueous solutions by white rot fungus Pleurotus ostreatus GEMB-PO1 and its potential in co-remediation of copper and organic pollutants. BIORESOURCE TECHNOLOGY 2024; 395:130337. [PMID: 38244937 DOI: 10.1016/j.biortech.2024.130337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Addressing the environmental contamination from heavy metals and organic pollutants remains a critical challenge. This study explored the resilience and removal potential of Pleurotus ostreatus GEMB-PO1 for copper. P. ostreatus GEMB-PO1 showed significant tolerance, withstanding copper concentrations up to 2 mM. Its copper removal efficiency ranged from 64.56 % at 0.5 mM to 22.90 % at 8 mM. Transcriptomic insights into its response to copper revealed a marked upregulation in xenobiotic degradation-related enzymes, such as laccase and type II peroxidases. Building on these findings, a co-remediation system using P. ostreatus GEMB-PO1 was developed to remove both copper and organic pollutants. While this approach significantly enhanced the degradation efficiency of organic contaminants, it concurrently exhibited a diminished efficacy in copper removal within the composite system. This study underscores the potential of P. ostreatus GEMB-PO1 in environmental remediation. Nevertheless, further investigation is required to optimize the simultaneous removal of organic pollutants and copper.
Collapse
Affiliation(s)
- Xuan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China
| | - Mi Wei
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaodan Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yu Xun
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Mifang Duan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Zhilong Yang
- Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China
| | - Mingdong Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China.
| |
Collapse
|
6
|
Teng Y, Yang Y, Wang Z, Guan W, Liu Y, Yu H, Zou L. The cadmium tolerance enhancement through regulating glutathione conferred by vacuolar compartmentalization in Aspergillus sydowii. CHEMOSPHERE 2024; 352:141500. [PMID: 38373444 DOI: 10.1016/j.chemosphere.2024.141500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Aspergillus was found to be a vital hyperaccumulation species for heavy metal removal with admirable tolerance capacity. But the potential tolerance mechanism has not been completely studied. This study quantified the amounts of total cadmium (Cd), Cd2+, glutathione (GSH), and reactive oxygen species (ROS) in the protoplasts and vacuoles of mycelium. We modulated GSH synthesis using buthionine sulfoximine (BSO) and 2-oxothiazolidine-4-carboxylic acid (OTC) to investigate the subcellular regulatory mechanisms of GSH in the accumulation of Cd. The results confirmed that GSH plays a crucial role in vacuolar compartmentalization under Cd stress. GSH and GSSG as a redox buffer to keep the cellular redox state in balance and GSH as a metal chelating agent to reduce toxicity. When regulating the decreased GSH content with BSO, and increased GSH content with OTC, the system of Cd-GSH-ROS can change accordingly, this also supported that vacuolar compartmentalization is a detoxification strategy that can modulate the transport and storage of substances inside and outside the vacuole reasonably. Interestingly, GSH tended to be distributed in the cytoplasm, the battleground of redox takes place in the cytoplasm but not in the vacuole. These finding potentially has implications for the understanding of tolerance behavior and detoxification mechanisms of cells. In the future bioremediation of Cd in soil, the efficiency of soil remediation can be improved by developing organisms with high GSH production capacity.
Collapse
Affiliation(s)
- Yue Teng
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| | - Yan Yang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenjun Wang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenjie Guan
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yutong Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongyan Yu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Luyi Zou
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Li X, Liang LM, Hua ZB, Zhou XK, Huang Y, Zhou JH, Cao Y, Liu JJ, Liu T, Mo MH. Eco-friendly management of Meloidogyne incognita in cadmium-contaminated soil by using nematophagous fungus Purpureocillium lavendulum YMF1.683: Efficacy and mechanism. ENVIRONMENTAL RESEARCH 2024; 244:117930. [PMID: 38103771 DOI: 10.1016/j.envres.2023.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Root-knot nematodes (RKNs) are distributed globally, including in agricultural fields contaminated by heavy metals (HM), and can cause serious crop damages. Having a method that could control RKNs in HM-contaminated soil while limit HM accumulation in crops could provide significant benefits to both farmers and consumers. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum YMF1.683 exhibited a high nematocidal activity against the RKN Meloidogyne incognita and a high tolerance to CdCl2. Comparing to the P. lavendulum YMF1.838 which showed low tolerance to Cd2+, strain YMF1.683 effectively suppressed M. incognita infection and significantly reduced the Cd2+ uptake in tomato root and fruit in soils contaminated by 100 mg/kg Cd2+. Transcriptome analyses and validation of gene expression by RT-PCR revealed that the mechanisms contributed to high Cd-resistance in YMF1.683 mainly included activating autophagy pathway, increasing exosome secretion of Cd2+, and activating antioxidation systems. The exosomal secretory inhibitor GW4869 reduced the tolerance of YMF1.683 to Cd2+, which firstly demonstrated that fungal exosome was involved in HM tolerance. The up-regulation of glutathione synthesis pathway, increasing enzyme activities of both catalase and superoxide dismutase also played important roles in Cd2+ tolerance of YMF1.683. In Cd2+-contaminated soil, YMF1.683 limited Cd2+-uptake in tomato by up-regulating the genes of ABCC family in favor of HM sequestration in plant, and down-regulating the genes of ZIP, HMA, NRAMP, YSL families associated with HM absorption, transport, and uptake in plant. Our results demonstrated that YMF1.683 could be a promising bio-agent in eco-friendly management of M. incognita in Cd2+ contaminated soils.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Zhi-Bin Hua
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Xin-Kui Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Jin-Hua Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jian-Jin Liu
- Puer Corporation of Yunnan Tobacco Corporation, Puer, 650202, China
| | - Tong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
8
|
Tsai KP. Toxic effects of thallium (Tl +) on prokaryotic alga Microcystis aeruginosa: Short and long-term influences by potassium and humic acid. CHEMOSPHERE 2024; 346:140618. [PMID: 37949181 DOI: 10.1016/j.chemosphere.2023.140618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Thallium (Tl) is a priority pollutant regulated by the US EPA. It is also a critical element commonly used in high technology industries; with an increasing demand for semiconductors nowadays, wastewater discharges from manufacturing plants or metal mining activities may result in elevated levels of thallium in receiving water harming aquatic organisms. Regarding the impact of thallium on freshwater algae, little attention has been paid to prokaryotic physiology through various exposure periods. In this bench-scale study, prokaryotic alga Microcystis aeruginosa PCC 7806 was cultured in modified BG11 medium and exposed to Tl+ (TlNO3) ranging from 250 to 1250 μg/L for 4 and 14 days. Throughout the experiment using flow cytometry assays, algal population, cell membrane integrity, oxidation stress level, and chlorophyll fluorescence were exacerbated following the exposure to 750 μg Tl/L (approximately 4-day effective concentration of Tl+ for reducing 50% of algal population). Potassium and humic acid (HA) (1-5 mg/L) were added to study their influences on the thallium toxicity. With the additions of potassium, thallium toxicities to algal population and physiology were not significantly changed within 4 days, while they were alleviated within 14 days. With the addition of HA at 1 mg/L, cell membrane integrity was significantly attenuated within 4 days; ameliorating effects on algal population and oxidative stress were not observed until day 14. Thallium toxicities on oxidative stress level and photosynthesis activity were exacerbated in the presence of HA at 3-5 mg/L. The study provides useful information for further studies on the mode of toxic action of Tl+ in prokaryotic algae; it also demonstrates the necessity of considering short and long-term exposure durations while incorporating water chemistry into assessment of thallium toxicity to algae.
Collapse
Affiliation(s)
- Kuo-Pei Tsai
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
9
|
Zhang S, Wang J, Sun H, Yang J, Zhao J, Wang Y. Inhibitory effects of hinokitiol on the development and pathogenicity of Colletotrichum gloeosporioides. World J Microbiol Biotechnol 2023; 39:356. [PMID: 37878063 DOI: 10.1007/s11274-023-03810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides is a devastating fungal disease, which causes tremendous quality deterioration and economic losses. Hinokitiol, an environmentally friendly natural compound, is effective in controlling a variety of postharvest fungal diseases. However, there is still a lack of research on the inhibitory effect of hinokitiol on C. gloeosporioides and its possible modes of action. In the present study, the activity of hinokitiol against C. gloeosporioides and its potential mechanisms involved have been investigated. We found that hinokitiol treatment could effectively inhibit the virulence of C. gloeosporioides to harvested mango fruit. After treatment with 8 mg/L hinokitiol, the mycelial growth of C. gloeosporioides was completely inhibited. When the concentration of hinokitiol reached 9 mg/L, the spore germination rate of C. gloeosporioides decreased to 2.43% after 9 h of cultivation. The inhibitory effect is mainly due to the attenuation in cell viability, and impairment in plasma membrane followed by leakage of cytoplasmic contents such as nucleic acids, proteins, and soluble carbohydrates, which ultimately leads to the destruction of cell structure. Furthermore, hinokitiol suppressed the expression of pathogenicity-related genes, leading to reduced infection activity. Collectively, these results suggest that hinokitiol may be an excellent bio-fungicides for the management of mango anthracnose.
Collapse
Affiliation(s)
- Shen Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jingyi Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Huimin Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jing Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jiajia Zhao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Ying Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
10
|
Murthy MK, Khandayataray P, Padhiary S, Samal D. A review on chromium health hazards and molecular mechanism of chromium bioremediation. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:461-478. [PMID: 35537040 DOI: 10.1515/reveh-2021-0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
Living beings have been devastated by environmental pollution, which has reached its peak. The disastrous pollution of the environment is in large part due to industrial wastes containing toxic pollutants. The widespread use of chromium (Cr (III)/Cr (VI)) in industries, especially tanneries, makes it one of the most dangerous environmental pollutants. Chromium pollution is widespread due to ineffective treatment methods. Bioremediation of chromium (Cr) using bacteria is very thoughtful due to its eco-friendly and cost-effective outcome. In order to counter chromium toxicity, bacteria have numerous mechanisms, such as the ability to absorb, reduce, efflux, or accumulate the metal. In this review article, we focused on chromium toxicity on human and environmental health as well as its bioremediation mechanism.
Collapse
Affiliation(s)
| | | | - Samprit Padhiary
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| |
Collapse
|
11
|
Fakhry H, Ghoniem AA, Al-Otibi FO, Helmy YA, El Hersh MS, Elattar KM, Saber WIA, Elsayed A. A Comparative Study of Cr(VI) Sorption by Aureobasidium pullulans AKW Biomass and Its Extracellular Melanin: Complementary Modeling with Equilibrium Isotherms, Kinetic Studies, and Decision Tree Modeling. Polymers (Basel) 2023; 15:3754. [PMID: 37765609 PMCID: PMC10537747 DOI: 10.3390/polym15183754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Melanin as a natural polymer is found in all living organisms, and plays an important role in protecting the body from harmful UV rays from the sun. The efficiency of fungal biomass (Aureobasidium pullulans) and its extracellular melanin as Cr(VI) biosorbents was comparatively considered. The efficiency of Cr(VI) biosorption by the two sorbents used was augmented up to 240 min. The maximum sorption capacities were 485.747 (fungus biomass) and 595.974 (melanin) mg/g. The practical data were merely fitted to both Langmuir and Freundlich isotherms. The kinetics of the biosorption process obeyed the pseudo-first-order. Melanin was superior in Cr(VI) sorption than fungal biomass. Furthermore, four independent variables (contact time, initial concentration of Cr(VI), biosorbent dosage, and pH,) were modeled by the two decision trees (DTs). Conversely, to equilibrium isotherms and kinetic studies, DT of fungal biomass had lower errors compared to DT of melanin. Lately, the DTs improved the efficacy of the Cr(VI) removal process, thus introducing complementary and alternative solutions to equilibrium isotherms and kinetic studies. The Cr(VI) biosorption onto the biosorbents was confirmed and elucidated through FTIR, SEM, and EDX investigations. Conclusively, this is the first report study attaining the biosorption of Cr(VI) by biomass of A. pullulans and its extracellular melanin among equilibrium isotherms, kinetic study, and algorithmic decision tree modeling.
Collapse
Affiliation(s)
- Hala Fakhry
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11865, Egypt
- Department of Aquatic Environmental Science, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Abeer A. Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Fatimah O. Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Mohammed S. El Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Khaled M. Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
12
|
Wang J, Tian Q, Cui L, Cheng J, Zhou H, Zhang Y, Peng A, Shen L. Bioimmobilization and transformation of chromium and cadmium in the fungi-microalgae symbiotic system. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130507. [PMID: 37055953 DOI: 10.1016/j.jhazmat.2022.130507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/19/2023]
Abstract
Microalgae and fungi in the fungi-microalgae symbiotic system(FMSS) can solve the problems of deep purification of heavy metals in wastewater and harvesting of microalgae cell by synergistic interaction. Therefore, it is of great significance to use the FMSS for remediation of heavy metal pollution. However, at present, the immobilization and transformation mechanism of heavy metals in the FMSS is not clear, which limits the development and industrial application of the FMSS with high adsorption performance, high selectivity, and high tolerance. In this study, the FMSS constructed using Aspergillus funigatus and Synechocystis sp. PCC6803, was used as the research object to explore heavy metal adsorption performance. Under optimal conditions, the adsorption efficiencies of Cd(II) and Cr(VI) were as high as 90.02% and 80.03%, respectively. The adsorption process was controlled by both internal and external diffusion. Extracellular absorption was dominant, and intracellular absorption was secondary. XRD, XPS, SEM-EDX and TEM-EDX results revealed that ionic crystals and precipitates (Cd(OH)2, CdCO3, calcium oxalate crystals, Cr(OH)3, Cr2O3, and CrCl3) were formed after adsorption. The adsorption of Cr(VI) involved the reduction of Cr(VI). Functional groups, such as amino, carboxyl, aldehyde, and ether groups, on the cell surface also interact with heavy metal ions. To summarize, by constructing the FMSS, optimizing the symbiosis conditions, exploring the adsorption and accumulation rules of Cd(II) and Cr(VI) inside and outside the cells in the system, and revealing the molecular response mechanism, we were able to establish a theoretical basis for further understanding the interaction between the FMSS and heavy metals.
Collapse
Affiliation(s)
- Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Linlin Cui
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jinju Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Yejuan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Anan Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
13
|
Effects of mine water on growth characteristics of ryegrass and soil matrix properties. Sci Rep 2022; 12:17758. [PMID: 36273102 PMCID: PMC9588022 DOI: 10.1038/s41598-022-22625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
Irrigation with mine water not only improves water resource utilization rates and alleviates water shortages but can also promote crop growth and yields. However, long-term irrigation with mine water can significantly change the physicochemical properties of soil due to its unique mineral content. In this study, two groups of experiments were conducted (pot experiments and soilless cultivation) using mine water from the Fushun mining area to explore its effects on the physiological and photosynthetic characteristics of ryegrass, as well as soil properties. Mine water irrigation inhibited all of the indicators evaluated in this study, whereas a mixture of clean water and mine water had a stimulatory effect. Interestingly, this stimulatory effect was weakened as the proportion of mine water increased but reached its maximum when the ratio was 2:1. Moreover, the inhibitory effect of the irrigation water was weakened as the proportion of clean water increased. The contents of K+, Na+, Ca2+ and Mg2+ in soil were higher than those in the soil matrix, and the content of the nutrient elements N, P and K, and metal cations increased gradually as the mine water ratio increased, and the electrical conductivity increased significantly. Moreover, the pH of the soil decreased steadily (i.e. acidity increased) with increased soil salinity. Our findings indicated that a mixture of mine water from Fushun mining area and clean water at a 1:2 ratio could improve the physiological, growth, and photosynthetic characteristics of ryegrass by enhancing soil quality. Our study thus provides an experimental precedent for the utilization of mine water in ecological restoration and agricultural irrigation, and could therefore serve as a basis for the development of novel strategies for environmental restoration and the utilization of water resources.
Collapse
|
14
|
Antibacterial effect of Cu2O/TiO2 photocatalytic composite on Pseudomonas marginalis pv. marginalis. Arch Microbiol 2022; 204:462. [DOI: 10.1007/s00203-022-03065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
|
15
|
El-Bondkly AMA, El-Gendy MMAA. Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining wastewater. Heliyon 2022; 8:e09854. [PMID: 35815132 PMCID: PMC9260626 DOI: 10.1016/j.heliyon.2022.e09854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/19/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Myco-remediation of heavy metals using indigenous fungi of different petroleum refining areas in Egypt was applied. Among the physicochemical parameters determined in these refineries effluents, the highest levels of heavy metals were recorded for the most toxic heavy metals Fe3+ and Co2+. The fungal isolates under the isolation codes AHM69 and AHM96 isolated from the mycobiome of Mostorod and Tanta refineries, respectively showed the best bioremoval efficiency toward heavy metals from the real wastewater mixture and polycyclic aromatic hydrocarbons from aqueous solutions. Based on phenotypic and genotypic analysis they were identified as Aspergillus sp. AHM69 and Penicillium sp. AHM96. The optimum conditions for the best bioremoval of Fe3+ and Co2+ from aqueous solutions by Aspergillus sp. AHM69 were live biomass, temperature 45–55 °C, pH 4.5–5.0, contact time 180 min, metal concentration equal to 1000 and 400 mg/L of Fe3+ and Co2+ with live fungal biomass dose of 0.5% and 0.4% with Fe3+ and Co2+, respectively. Concerning to the biomass of Penicillium sp. AHM96, the optimum operation conditions for the best removal of Fe3+ and Co2+ were 45 °C, pH 5.0 and 400 mg/L of Fe3+ with 1.0% biosorbent dosage or 1000 mg/L of Co2+ with 0.5% biosorbent dosage for 180 min as process time. Furthermore, FTIR analysis showed masking, shifting, creating and absenting of different functional groups in the fungal biomass surface of AHM96 and AHM69 strains in the presence of Fe3+ and Co2+ compared to unloaded biomasses. Microscopy with Energy Dispersive X-ray analysis (SEM-EDX) indicated that the removal of Fe3+ and Co2+ by fungi AHM69 and AHM96 was via biosorption and bioaccumulation on the biomass surface. Our results suggested that in the near future, fungal treatment is likely to outperform and replace other chemical and biological treatments in industrial wastewater treatment for oil refining.
Collapse
|
16
|
Sharma KR, Naruka A, Raja M, Sharma RK. White rot fungus mediated removal of mercury from wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10769. [PMID: 35861616 DOI: 10.1002/wer.10769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal contamination creates numerous problems in environment and considered as big challenge for the society. Mercury (Hg) may exert several harmful effects on human heath including nervous system, digestive system, and immune system, along with damage in lungs and kidneys, which might be fatal. In this study, the removal of Hg from the wastewater by using a whiter rot fungus Phlebia floridensis was evaluated in a batch culture system for 7 days. The fungus was also evaluated for the tolerance level of Hg and the morphological changes were studied by SEM-EDX. The fungus could tolerate up to 100 μM of Hg concentration. Scanning electron microscopic images showed changes in the morphology and fine structures of the fungal hyphae. Atomic absorption spectroscopic analyses of the treated water sample revealed that the fungus could remove 70%-84% of Hg depending upon the initial concentration. The pH fluctuation was recorded from 5.8 to 6.8 during the experimental conditions at temperature 28°C ± 2°C. Thus, the study explores the use of this fungus for the application in metal containing wastewater treatment. PRACTITIONER POINTS: Hg contaminated water can be treated by using white rot fungus, Phlebia floridensis. The fungus may accumulate mercury inside as well as on the surface of fungal mycelial biomass. Change in hyphal morphology was observed in the presence of lower concentration of the metal.
Collapse
Affiliation(s)
- Kalu Ram Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Anjali Naruka
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Manokaran Raja
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | | |
Collapse
|
17
|
Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Mattoo A, Arasimowicz-Jelonek M. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus 2022; 13:6. [PMID: 35468869 PMCID: PMC9036806 DOI: 10.1186/s43008-022-00092-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/07/2022] [Indexed: 01/30/2023] Open
Abstract
Heavy metal (HM) contamination of the environment is a major problem worldwide. The rate of global deposition of HMs in soil has dramatically increased over the past two centuries and there of facilitated their rapid accumulation also in living systems. Although the effects of HMs on plants, animals and humans have been extensively studied, yet little is known about their effects on the (patho)biology of the microorganisms belonging to a unique group of filamentous eukaryotic pathogens, i.e., fungi and oomycetes. Much of the literature concerning mainly model species has revealed that HM stress affects their hyphal growth, morphology, and sporulation. Toxicity at cellular level leads to disturbance of redox homeostasis manifested by the formation of nitro-oxidative intermediates and to the induction of antioxidant machinery. Despite such adverse effects, published data is indicative of the fact that fungal and oomycete pathogens have a relatively high tolerance to HMs in comparison to other groups of microbes such as bacteria. Likely, these pathogens may harbor a network of detoxification mechanisms that ensure their survival in a highly HM-polluted (micro)habitat. Such a network may include extracellular HMs immobilization, biosorption to cell wall, and/or their intracellular sequestration to proteins or other ligands. HMs may also induce a hormesis-like phenomenon allowing the pathogens to maintain or even increase fitness against chemical challenges. Different scenarios linking HMs stress and modification of the microorganisms pathogenicity are disscused in this review.
Collapse
|
18
|
Li J, Hao R, Zhang J, Shan B, Xu X, Li Y, Ye Y, Xu H. Proteomics study on immobilization of Pb(II) by Penicillium polonicum. Fungal Biol 2022; 126:449-460. [DOI: 10.1016/j.funbio.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
|
19
|
Feng L, Xu L, Li X, Xue J, Li T, Duan X. A Combined Analysis of Transcriptome and Proteome Reveals the Inhibitory Mechanism of a Novel Oligosaccharide Ester against Penicillium italicum. J Fungi (Basel) 2022; 8:jof8020111. [PMID: 35205865 PMCID: PMC8877838 DOI: 10.3390/jof8020111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/08/2023] Open
Abstract
Blue mold caused by Penicillium italicum is one of the most serious postharvest diseases of citrus fruit. The aim of this study was to investigate the inhibitory effect of a novel oligosaccharide ester, 6-O-β-L-mannopyranosyl-3-O-(2-methylbutanoyl)-4-O-(8-methyldecanoyl)-2-O-(4-methyl-hexanoyl) trehalose (MTE-1), against P. italicum. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM), along with transcriptome and proteome analysis also, were conducted to illuminate the underlying mechanism. Results showed that MTE-1 significantly inhibited P. italicum growth in vitro in a dose-dependent manner. Moreover, MTE-1 suppressed the disease development of citrus fruit inoculated with P. italicum. Furthermore, ultrastructure observation, as well as transcriptome and proteome analysis, indicated that MTE-1 treatment damaged the cell wall and plasma membrane in spores and mycelia of P. italicum. In addition, MTE-1 regulated genes or proteins involved in primary metabolism, cell-wall metabolism, and pathogenicity. These results demonstrate that MTE-1 inhibited P. italicum by damaging cell walls and membranes and disrupting normal cellular metabolism. These findings contribute to the understanding of the possible molecular action of MTE-1. Finally, MTE-1 also provides a new natural strategy for controlling diseases in postharvest fruit.
Collapse
Affiliation(s)
- Linyan Feng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.F.); (J.X.)
| | - Liangxiong Xu
- School of Life Sciences, Huizhou University, Huizhou 510607, China; (L.X.); (X.L.)
| | - Xiaojie Li
- School of Life Sciences, Huizhou University, Huizhou 510607, China; (L.X.); (X.L.)
| | - Jinghua Xue
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.F.); (J.X.)
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.F.); (J.X.)
- Correspondence: (T.L.); (X.D.)
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.F.); (J.X.)
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Correspondence: (T.L.); (X.D.)
| |
Collapse
|
20
|
Zeng L, Zhou J, Wang X, Zhang Y, Wang M, Su P. Cadmium attenuates testosterone synthesis by promoting ferroptosis and blocking autophagosome-lysosome fusion. Free Radic Biol Med 2021; 176:176-188. [PMID: 34610361 DOI: 10.1016/j.freeradbiomed.2021.09.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
Ferroptosis is a newly defined programmed cell death pathway characterized by iron overload and lipid peroxidation. Increasing studies show that autophagy regulates testosterone synthesis and promotes ferroptosis. Testosterone is essential for sexual development and the maintenance of male characteristics. The deficiency of testosterone induced by cadmium (Cd) can severely affect male fertility. However, the underlying mechanism of testosterone reduction after Cd exposure remains blurry. In this study, we found that Cd affected iron homeostasis and elicited ferroptosis, ultimately reducing testosterone production. Mechanically, our findings revealed that Cd-induced ferroptosis depended upon the excessive activation of Heme oxygenase 1 (HMOX1) and the release of free iron from heme. Additionally, Cd exposure promoted autophagosome formation but blocked autophagosome-lysosome fusion, which attenuated the absorption of total cholesterol and triglycerides, further aggravating testosterone synthesis disorder. Collectively, Cd induced ferroptosis by iron homeostasis dysregulation, mediated by excessive activation of HMOX-1. The disruption of autophagy flow contributed to Cd-induced testicular dysfunction and attenuated testosterone synthesis.
Collapse
Affiliation(s)
- Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
21
|
Chen A, Li W, Zhang X, Shang C, Luo S, Cao R, Jin D. Biodegradation and detoxification of neonicotinoid insecticide thiamethoxam by white-rot fungus Phanerochaete chrysosporium. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126017. [PMID: 34004582 DOI: 10.1016/j.jhazmat.2021.126017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The extensive use of neonicotinoid pesticides in the past two decades caused serious impacts on many kinds of living beings. Therefore, it has been strongly suggested to detoxify and eliminate neonicotinoids' residual levels in environment. Here, the degradation and detoxification of thiamethoxam (THX) by white-rot fungus Phanerochaete chrysosporium was conducted. Results shown that P. chrysosporium can tolerate THX and degraded 49% of THX after incubation for 15 days, and then 98% for 25 days at the initial concentration of 10 mg/L, which indicates the excellent degradation ability of this fungus to THX. Based on the by-products identified, THX underwent dechlorination, nitrate reduction, and C-N cleavage between the 2-chlorothiazole ring and oxadiazine. (Z)-N-(3-methyl-1,3,5-oxadiazinan-4-ylidene)nitramide and 3-methyl-1,3,5-oxadiazinan-4-imine were identified as the main metabolites. The impacts of THX and its corresponding degradation intermediates on the growth of E. coil and Microcystis aeruginosa as well as the germination of rape and cabbage demonstrated that P. chrysosporium effectively degrades THX into metabolites and reduces its biotoxicity. The present work demonstrates that P. chrysosporium can be effectively used for degradation and detoxification of THX.
Collapse
Affiliation(s)
- Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Wenjie Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaoxiao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Ruoyu Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Doudou Jin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
22
|
Cao R, Qin P, Li W, Shang C, Chai Y, Jin D, Chen A. Hydrogen sulfide and calcium effects on cadmium removal and resistance in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 2021; 105:6451-6462. [PMID: 34357427 DOI: 10.1007/s00253-021-11461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022]
Abstract
Hydrogen sulfide (H2S), an emerging gas transmitter, has been shown to be involved in multiple intracellular physiological and biochemical processes. In this study, the effects of hydrogen sulfide coupled with calcium on cadmium removal and resistance in Phanerochaete chrysosporium were examined. The results revealed that H2S enhanced the uptake of calcium by P. chrysosporium to resist cadmium stress. The removal and accumulation of cadmium by the mycelium was reduced by H2S and Ca2+ pretreatment. Moreover, oxidative damage and membrane integrity were alleviated by H2S and Ca2+. Corresponding antioxidative enzyme activities and glutathione were also found to positively respond to H2S and Ca2+, which played an important role in the resistance to cadmium-induced oxidative stress. The effects of hydroxylamine (HA; a hydrogen sulfide inhibitor) and ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA; a calcium chelator) toward H2S and Ca2+ and their cross-interactions confirmed the positive roles and the potential crosstalk of H2S and Ca2+ in cadmium stress resistance. These findings imply that the protective effects of H2S in P. chrysosporium under cadmium stress may occur through a reduction in the accumulation of cadmium and promotion of the antioxidant system, and the H2S-regulated pathway may be associated with the intracellular calcium signaling system.Key points• Altered monoterpenoid tolerance mainly related to altered activity of efflux pumps.• Increased tolerance to geranic acid surprisingly caused by decreased export activity.• Reduction of export activity can be beneficial for biotechnological conversions.
Collapse
Affiliation(s)
- Ruoyu Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Pufeng Qin
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenjie Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Youzheng Chai
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Doudou Jin
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
23
|
Xu H, Guo J, Meng Q, Xie Z. Morphological changes and bioaccumulation in response to cadmium exposure in Morchella spongiola, a fungus with potential for detoxification. Can J Microbiol 2021; 67:789-798. [PMID: 34228941 DOI: 10.1139/cjm-2020-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Morchella is a genus of edible fungi with strong resistance to Cd and the ability to accumulate it in the mycelium. However, the mechanisms conferring Cd resistance in Morchella are unknown. In the present study, morphological and physiological responses to Cd were evaluated in the mycelia of Morchella spongiola. Variations in hyphal micro-morphology including twisting, folding and kinking in mycelia exposed to different Cd concentrations (0.15, 0.9, 1.5, 2.4, 5.0 mg/L) were observed using scanning electron microscopy. Deposition of Cd precipitates on cell surfaces (at Cd concentrations > 2.4 mg/L) was shown by SEM-EDS. Transmission electron microscopy analysis of cells exposed to different concentrations of Cd revealed the loss of intracellular structures and the localization of Cd depositions inside/outside the cell. FTIR analysis showed that functional groups such as C=O, -OH, -NH and -CH could be responsible for Cd binding on the cell surface of M. spongiola. In addition, intracellular accumulation was observed in cultures at low Cd concentrations (< 0.9 mg/L), while extracellular adsorption occurred at higher concentrations. These results provide valuable information on the Cd tolerance mechanism in M. spongiola and constitute a robust foundation for further studies on fungal bioremediation strategies.
Collapse
Affiliation(s)
- Hongyan Xu
- Qinghai University, 207475, Xining, Qinghai, China;
| | - Jing Guo
- Qinghai University, 207475, Xining, Qinghai, China;
| | - Qing Meng
- Qinghai University, 207475, Xining, Qinghai, China;
| | - Zhanling Xie
- Qinghai University, 207475, Xining, Qinghai, China, 810016;
| |
Collapse
|
24
|
Hu L, Liu B, Li S, Zhong H, He Z. Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. CHEMOSPHERE 2021; 269:128741. [PMID: 33127119 DOI: 10.1016/j.chemosphere.2020.128741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/22/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The bioreduction of Cr(VI) and Hg(II) has become a hot topic in the field of heavy metals bioremediation. However, the mechanism of antioxidant stress in Cr(VI) and Hg(II) reducing bacteria is still not clear. In this work, a novel Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1, was isolated from chromium landfill at a chromate factory, which was used to investigate the mechanism of antioxidant stress during the Cr(VI) and Hg(II) reduction process. The results demonstrated that the removal of Cr(VI) and Hg(II) by A. indicus yy-1 from solution was through reduction rather than biosorption. The reduction rates of Cr(VI) and Hg(II) by resting cells reached 59.71% and 31.73% at 24 h with initial concentration of 10 mg L-1, respectively. X-ray photoelectron spectroscopy (XPS) analysis further showed that Cr(III) and Hg(0) were mainly the Cr(VI)- and Hg(II)-reduced productions, respectively. Results of physiological assays showed Hg(II) was more toxic to A. indicus yy-1 than Cr(VI), and the activities of antioxidant enzymes (SOD and CAT) were significantly increased in A. indicus yy-1 for relieving the oxidative stress. The transcriptional level of genes related to Cr(VI) and Hg(II) reductases and antioxidant enzymes were up-regulated, indicating that the reductases have participated in the reduction of Cr(VI) and Hg(II), and SOD and CAT served as the vital antioxidant enzymes for defending the oxidative stress. This work provides a deep insight into the mechanism of antioxidant stress in Cr(VI) and Hg(II) reducing bacteria, which helps seek the highly resistant heavy metal reducing bacteria.
Collapse
Affiliation(s)
- Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Bang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
25
|
Ahad RIA, Syiem MB. Analyzing dose dependency of antioxidant defense system in the cyanobacterium Nostoc muscorum Meg 1 chronically exposed to Cd 2. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108950. [PMID: 33310062 DOI: 10.1016/j.cbpc.2020.108950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to analyze the dose dependency of oxidant-antioxidant homeostasis in Cd2+ exposed Nostoc muscorum Meg 1 cells. Quantification of percent DNA loss, protein oxidation and lipid peroxidation was carried out to assess Cd2+ induced ROS mediated damages to the organism. The countermeasures adopted by the cyanobacterium were also evaluated by computing various components of both enzymatic and non-enzymatic antioxidants. Exposure to different Cd2+ (0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 2.5, 3 ppm) doses showed substantial increase in ROS content in the ranges of 20-181% and 116-323% at the end of first and seventh day. The DNA damage, protein oxidation and lipid peroxidation were increased by 11-62%, 7-143% and 13-183% with increasing Cd2+ concentrations at the end of seven days. TEM images clearly showed damages to the cell wall, cell membrane and thylakoid organization at higher Cd2+ (0.5-3 ppm) concentrations. Cd2+ exposure up to 0.5 ppm registered increase in contents of antioxidative enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)) and in non-enzymatic antioxidants (glutathione, total thiol, phytochelatin and proline) indicating stimulation of ROS mitigating machinery. However, toxicity of Cd2+ was evident as at higher concentrations the cellular morphology and ultra-structures were negatively affected and the capacities of the cells to generate various antioxidant measures were highly compromised. The organism registered 96-98% sorption ability from a solution supplemented with 0.3 ppm Cd2+ and thus show realistic potential as Cd2+ bioremediator in wastewater treatment.
Collapse
Affiliation(s)
- Rabbul Ibne A Ahad
- Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Mayashree B Syiem
- Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
26
|
Azish M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal activity and mechanism of action of dichloromethane extract fraction A from Streptomyces libani against Aspergillus fumigatus. J Appl Microbiol 2021; 131:1212-1225. [PMID: 33590651 DOI: 10.1111/jam.15040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022]
Abstract
AIMS This study aimed to investigate the mechanism of antifungal action of Streptomyces libani dichloromethane extract fraction A (DCEFA) against Aspergillus fumigatus and the host cytotoxicity. METHODS AND RESULTS DCEFA was purified from S. libani by autobiography and showed strong antifungal activity against A. fumigatus. A combination of electron microscopy, cell permeability assays, total oxidant status (TOS) assay, cell cytotoxicity assay and haemolysis activity was carried out to determine the target site of DCEFA. Exposure of A. fumigatus to DCEFA caused the damage to membranous cellular structures and increased release of cellular materials, potassium ions and TOS production. DCEFA was bound to ergosterol but did not affect fungal cell wall and ergosterol content. DCEFA did not show any obvious haemolytic activity for RBCs and toxicity against HEK-293 cell line. CONCLUSIONS DCEFA may inhibit A. fumigatus growth by targeting fungal cell membrane which results in the leakage of potassium ions and other cellular components, TOS production and final cell death. SIGNIFICANCE AND IMPACT OF THE STUDY DCEFA of S. libani could be considered as a potential source of novel antifungals which may be useful for drug development against A. fumigatus as a life-threatening human pathogen.
Collapse
Affiliation(s)
- M Azish
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Shams-Ghahfarokhi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
27
|
Susceptibility of dairy associated molds towards microbial metabolites with focus on the response to diacetyl. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Tang X, Huang Y, Li Y, Wang L, Pei X, Zhou D, He P, Hughes SS. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111699. [PMID: 33396030 DOI: 10.1016/j.ecoenv.2020.111699] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Extensive industrial activities have led to an increase of the content of chromium in the environment, which causes serious pollution to the surrounding water, soil and atmosphere. The enrichment of chromium in the environment through the food chain ultimately affects human health. Therefore, the remediation of chromium pollution is crucial to development of human society. A lot of scholars have paid attention to bioremediation technology owing to its environmentally friendly and low-cost. Previous reviews mostly involved pure culture of microorganisms and rarely discussed the optimization of bioreduction conditions. To make up for these shortcomings, we not only introduced in detail the conditions that affect microbial reduction but also innovatively introduced consortium which may be the cornerstone for future treatment of complex field environments. The aim of this study is to summary chromium toxicity, factors affecting microbial remediation, and methods for enhancing bioremediation. However, the actual application of bioremediation technology is still facing a major challenge. This study also put forward the current research problems and proposed future research directions, providing theoretical guidance and scientific basis for the application of bioremediation technology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
| | - Ying Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Li Wang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangjun Pei
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Dan Zhou
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Peng He
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
29
|
Jiang X, Xing X, Zhang Y, Zhang C, Wu Y, Chen Y, Meng R, Jia H, Cheng Y, Zhang Y, Su J. Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111231. [PMID: 32916527 DOI: 10.1016/j.ecoenv.2020.111231] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Lead, a common metallic contaminant, is widespread in the living environment, and has deleterious effects on the reproductive systems of humans and animals. Although numerous toxic effects of lead have been reported, the effects and underlying mechanisms of the impacts of lead exposure on the female reproductive system, especially oocyte maturation and fertility, remain unknown. In this study, mice were treated by gavage for seven days to evaluate the reproductive damage and role of Nrf2-mediated defense responses during lead exposure. Lead exposure significantly reduced the maturation and fertilization of oocytes in vivo. Additionally, lead exposure triggered oxidative stress with a decreased glutathione level, increased amount of reactive oxygen species, and abnormal mitochondrial distribution. Moreover, lead exposure caused histopathological and ultrastructural changes in oocytes and ovaries, along with decreases in the activities of catalase, glutathione peroxidase, total superoxide dismutase, and glutathione-S transferase, and increases in the levels of malonaldehyde in mouse ovaries. Further experiments demonstrated that lead exposure activated the Nrf2 signaling pathway to protect oocytes against oxidative stress by enhancing the transcription levels of antioxidant enzymes. In conclusion, our study demonstrates that lead activates the Nrf2/Keap1 pathway and impairs oocyte maturation and fertilization by inducing oxidative stress, leading to a decrease in the fertility of female mice.
Collapse
Affiliation(s)
- Xianlei Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yingbing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Chengtu Zhang
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai Province, 810003, PR China
| | - Ying Wu
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai Province, 810003, PR China
| | - Yongzhong Chen
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai Province, 810003, PR China
| | - Ru Meng
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai Province, 810003, PR China
| | - Huiqun Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yuyao Cheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
30
|
Kharbech O, Sakouhi L, Ben Massoud M, Jose Mur LA, Corpas FJ, Djebali W, Chaoui A. Nitric oxide and hydrogen sulfide protect plasma membrane integrity and mitigate chromium-induced methylglyoxal toxicity in maize seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:244-255. [PMID: 33152643 DOI: 10.1016/j.plaphy.2020.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/18/2020] [Indexed: 05/07/2023]
Abstract
The present study aims to analyse the potential crosstalk between nitric oxide (NO) and hydrogen sulfide (H2S) in triggering resilience of maize (Zea mays L.) seedlings to hexavalent chromium (Cr VI). Exogenous application of 500 μM sodium nitroprusside (SNP, as a NO donor) or sodium hydrosulfide (NaHS, as a H2S donor) to 9-day-old maize seedlings, countered a Cr (200 μM) -elicited reduction in embryonic axis biomass. Cr caused cellular membrane injury by enhancing the levels of superoxide and hydroxyl radicals as well as methylglyoxal, and 4-hydroxy-2-nonenal. The application of SNP or NaHS considerably improved the endogenous NO and H2S pool, decreased oxidative stress and lipid peroxidation by suppressing lipoxygenase activity and improving some antioxidant enzymes activities in radicles and epicotyls. Radicles were more affected than epicotyls by Cr-stress with enhanced electrolyte leakage and decreased proton extrusion as indicated by lesser H+-ATPase activity. H2S appeared to mitigate Cr toxicity through up-regulated H+-ATPase and glyoxalase pathways and by maintaining optimal GSH levels as downstream effects of ROS and MG suppression. Hence, H2S-mediated the regeneration of GSH pool is associated with the attenuation of MG toxicity by enhancing S-lactoglutathione and D-lactate production. Taken together, our results indicate complementary roles for H2S and GSH to strengthen membrane integrity against Cr stress in maize seedlings.
Collapse
Affiliation(s)
- Oussama Kharbech
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia; Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Penglais Campus, SY23 2DA, Aberystwyth, Wales, UK; Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080, Granada, Spain.
| | - Lamia Sakouhi
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia
| | - Marouane Ben Massoud
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia; School of Biological, Earth & Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 N73K, Ireland
| | - Luis Alejandro Jose Mur
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Penglais Campus, SY23 2DA, Aberystwyth, Wales, UK
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080, Granada, Spain
| | - Wahbi Djebali
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia
| | - Abdelilah Chaoui
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia
| |
Collapse
|
31
|
Structural and functional characterization of the glutathione peroxidase-like thioredoxin peroxidase from the fungus Trichoderma reesei. Int J Biol Macromol 2020; 167:93-100. [PMID: 33259843 DOI: 10.1016/j.ijbiomac.2020.11.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022]
Abstract
Glutathione peroxidases (GPx) are a family of enzymes with the ability to reduce organic and inorganic hydroperoxides to the corresponding alcohols using glutathione or thioredoxin as an electron donor. Here, we report the functional and structural characterization of a GPx identified in Trichoderma reesei (TrGPx). TrGPx was recombinantly expressed in a bacterial host and purified using affinity. Using a thioredoxin coupled assay, TrGPx exhibited activity of 28 U and 12.5 U in the presence of the substrates H2O2 and t-BOOH, respectively, and no activity was observed when glutathione was used. These results indicated that TrGPx is a thioredoxin peroxidase and hydrolyses H2O2 better than t-BOOH. TrGPx kinetic parameters using a pyrogallol assay resulted at Kmapp = 11.7 mM, Vmaxapp = 10.9 IU/μg TrGPx, kcat = 19 s-1 and a catalytic efficiency of 1.6 mM-1 s-1 to H2O2 as substrate. Besides that, TrGPx demonstrated an optimum pH ranging from 9.0-12.0 and a half-life of 36 min at 80 °C. TrGPx 3D-structure was obtained in a reduced state and non-catalytic conformation. The overall fold is similar to the other phospholipid-hydroperoxide glutathione peroxidases. These data contribute to understand the antioxidant mechanism in fungi and provide information for using antioxidant enzymes in biotechnological applications.
Collapse
|
32
|
Cadmium Stress Reprograms ROS/RNS Homeostasis in Phytophthora infestans (Mont.) de Bary. Int J Mol Sci 2020; 21:ijms21218375. [PMID: 33171629 PMCID: PMC7664633 DOI: 10.3390/ijms21218375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Heavy metal pollution causes many soils to become a toxic environment not only for plants, but also microorganisms; however, little is known how heavy metal contaminated environment affects metabolism of phytopathogens and their capability of infecting host plants. In this study the oomycete Phytophthora infestans (Mont.) de Bary, the most harmful pathogen of potato, growing under moderate cadmium stress (Cd, 5 mg/L) showed nitro-oxidative imbalance associated with an enhanced antioxidant response. Cadmium notably elevated the level of nitric oxide, superoxide and peroxynitrite that stimulated nitrative modifications within the RNA and DNA pools in the phytopathogen structures. In contrast, the protein pool undergoing nitration was diminished confirming that protein tyrosine nitration is a flexible element of the oomycete adaptive strategy to heavy metal stress. Finally, to verify whether Cd is able to modify P. infestans pathogenicity, a disease index and molecular assessment of disease progress were analysed indicating that Cd stress enhanced aggressiveness of vr P. infestans towards various potato cultivars. Taken together, Cd not only affected hyphal growth rate and caused biochemical changes in P. infestans structures, but accelerated the pathogenicity as well. The nitro-oxidative homeostasis imbalance underlies the phytopathogen adaptive strategy and survival in the heavy metal contaminated environment.
Collapse
|
33
|
Kovač V, Poljšak B, Primožič J, Jamnik P. Are Metal Ions That Make up Orthodontic Alloys Cytotoxic, and Do They Induce Oxidative Stress in a Yeast Cell Model? Int J Mol Sci 2020; 21:ijms21217993. [PMID: 33121155 PMCID: PMC7662645 DOI: 10.3390/ijms21217993] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Compositions of stainless steel, nickel-titanium, cobalt-chromium and β-titanium orthodontic alloys were simulated with mixtures of Fe, Ni, Cr, Co, Ti and Mo metal ions as potential oxidative stress-triggering agents. Wild-type yeast Saccharomyces cerevisiae and two mutants ΔSod1 and ΔCtt1 were used as model organisms to assess the cytotoxicity and oxidative stress occurrence. Metal mixtures at concentrations of 1, 10, 100 and 1000 µM were prepared out of metal chlorides and used to treat yeast cells for 24 h. Every simulated orthodontic alloy at 1000 µM was cytotoxic, and, in the case of cobalt-chromium alloy, even 100 µM was cytotoxic. Reactive oxygen species and oxidative damage were detected for stainless steel and both cobalt-chromium alloys at 1000 µM in wild-type yeast and 100 µM in the ΔSod1 and ΔCtt1 mutants. Simulated nickel-titanium and β-titanium alloy did not induce oxidative stress in any of the tested strains.
Collapse
Affiliation(s)
- Vito Kovač
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (V.K.); (B.P.)
| | - Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (V.K.); (B.P.)
| | - Jasmina Primožič
- Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-3203-729
| |
Collapse
|
34
|
Sharma KR, Giri R, Sharma RK. Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora. Lett Appl Microbiol 2020; 71:637-644. [PMID: 32785942 DOI: 10.1111/lam.13372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/27/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Abstract
Widespread of heavy metals contamination has led to several environmental problems. Some biological methods to remove heavy metals from contaminated wastewater are being widely explored. In the present study, the efficiency of a white-rot fungus, Phlebia brevispora to remove different metals (Pb, Cd and Ni) has been evaluated. Atomic absorption spectroscopy of treated and untreated metal containing water revealed that all the metals were efficiently removed by the fungus. Among all the used metals, cadmium was the most toxic metal for fungal growth. Phlebia brevispora removed maximum Pb (97·5%) from 100 mmol l-1 Pb solution, which was closely followed by Cd (91·6%) and Ni (72·7%). Scanning electron microscopic images revealed that the presence of metal altered the morphology and fine texture of fungal hyphae. However, the attachment of metal on mycelia surface was not observed during energy-dispersive X-ray analysis, which points towards the intracellular compartmentation of metals in vacuoles. Thus, the study demonstrated an application of P. brevispora for efficient removal of Pb, Cd and Ni from the metal contaminated water, which can further be applied for bioremediation of heavy metals present in the industrial effluent.
Collapse
Affiliation(s)
- K R Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - R Giri
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - R K Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
35
|
Yu Y, Yin H, Huang W, Peng H, Lu G, Dang Z. Cellular changes of microbial consortium GY1 during decabromodiphenyl ether (BDE-209) biodegradation and identification of strains responsible for BDE-209 degradation in GY1. CHEMOSPHERE 2020; 249:126205. [PMID: 32086068 DOI: 10.1016/j.chemosphere.2020.126205] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Microbial consortium remediation has been considered to be a promising technique for BDE-209 elimination in water, soil and sediment. Herein, we studied malondialdehyde (MDA), membrane potential (MP), and reactive active species (ROS) of a microbial consortium GY1 exposed to BDE-209. The results indicated that the microbial antioxidant defense system was vulnerable by BDE-209. Both early and late apoptosis of microbial consortium induced by BDE-209 were observed. The sequencing results revealed that Stenotrophomonas, Microbacterium and Sphingobacterium in GY1 played major roles in BDE-209 degradation. Moreover, a novel facultative anaerobic BDE-209 degrading strain named Microbacterium Y2 was identified from GY1, by which approximately 56.1% of 1 mg/L BDE-209 was degraded within 7 days, and intracellular enzymes of which contributed great to the result. Overall, the current study provided new insights to deeply understand the mechanisms of BDE-209 degradation by microbial consortium.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Wantang Huang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
36
|
Hu L, Zhong H, He Z. Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11116-11126. [PMID: 31955336 DOI: 10.1007/s11356-019-07468-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Quantum dots (QDs) have caused large challenges in clinical tests and biomedical applications due to their potential toxicity from nanosize effects and heavy metal components. In this study, the physiological responses of Phanerochaete chrysosporium (P. chrysosporium) to CdSe/ZnS QDs with either an inorganic sulfide NaHS or an organic sulfide cysteine as antidote have been investigated. Scanning electron microscope analysis showed that the hyphal structure and morphology of P. chrysosporium have obviously changed after exposure to 100 nM of COOH CdSe/ZnS 505, NH2 CdSe/ZnS 505, NH2 CdSe/ZnS 565, or NH2 CdSe/ZnS 625. Fourier transform infrared spectroscopy analysis indicated that the existence of hydroxyl, amino, and carboxyl groups on cell surface could possibly conduct the stabilization of QDs in an aqueous medium. However, after NaHS or cysteine treatment, the cell viability of P. chrysosporium exposed to CdSe/ZnS QDs increased as compared to control group, since NaHS and cysteine have assisted P. chrysosporium to alleviate oxidative damage by regulating lipid peroxidation and superoxide production. Meanwhile, NaHS and cysteine have also stimulated P. chrysosporium to produce more antioxidant enzymes (superoxide dismutase and catalase), which played significant roles in the defense system. In addition, NaHS and cysteine were used by P. chrysosporium as sulfide sources to promote the glutathione biosynthesis to relieve CdSe/ZnS QDs-induced oxidative stress. This work revealed that sulfide sources (NaHS and cysteine) exerted a strong positive effect in P. chrysosporium against the toxicity induced by CdSe/ZnS QDs.
Collapse
Affiliation(s)
- Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
37
|
Huang Z, Zeng Z, Song Z, Chen A, Zeng G, Xiao R, He K, Yuan L, Li H, Chen G. Antimicrobial efficacy and mechanisms of silver nanoparticles against Phanerochaete chrysosporium in the presence of common electrolytes and humic acid. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121153. [PMID: 31518805 DOI: 10.1016/j.jhazmat.2019.121153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, influences of cations (Na+, K+, Ca2+, and Mg2+), anions (NO3-, Cl-, and SO42-), and humic acid (HA) on the antimicrobial efficacy of silver nanoparticles (AgNPs)/Ag+ against Phanerochaete chrysosporium were investigated by observing cell viability and total Ag uptake. K+ enhanced the antimicrobial toxicity of AgNPs on P. chrysosporium, while divalent cations decreased the toxicity considerably, with preference of Ca2+ over Mg2+. Impact caused by a combination of monovalent and divalent electrolytes was mainly controlled by divalent cations. Compared to AgNPs, however, Ag+ with the same total Ag content exhibited stronger antimicrobial efficacy towards P. chrysosporium, regardless of the type of electrolytes. Furthermore, HA addition induced greater microbial activity under AgNP stress, possibly originating from stronger affinity of AgNPs over Ag+ to organic matters. The obtained results suggested that antimicrobial efficacy of AgNPs was closely related to water chemistry: addition of divalent electrolytes and HA reduced the opportunities directly for AgNP contact and interaction with cells through formation of aggregates, complexes, and surface coatings, leading to significant toxicity reduction; however, in monovalent electrolytes, the dominating mode of action of AgNPs could be toxic effects of the released Ag+ on microorganisms due to nanoparticle dissolution.
Collapse
Affiliation(s)
- Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhongxian Song
- Faculty of Environmental and Municipal Engineering, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Kai He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Lei Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
38
|
Kumar V, Dwivedi SK. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. CHEMOSPHERE 2019; 237:124567. [PMID: 31549665 DOI: 10.1016/j.chemosphere.2019.124567] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Hexavalent chromium reduction by microbes can mitigate the chromium toxicity to the environment. In the present study Cr[VI] tolerant fungal isolate (CR500) was isolated from electroplating wastewater, was able to tolerate 800 mg/L of Cr[VI. Based on the ITS region sequencing, the isolate was identified as Aspergillus flavus CR500, showed multifarious biochemical (reactive oxygen species, antioxidants response and non-protein thiol) and morphological (protrusion less, constriction and swelling/outwards growth in mycelia) response under Cr[VI] stress. Batch experiment was conducted at different Cr[VI] concentration (0-200 mg/L) to optimize the Cr[VI] reduction and removal ability of isolate CR500; results showed 89.1% reduction of Cr[VI] to Cr[III] within 24 h and 4.9 ± 0.12 mg of Cr per gram of dried biomass accumulation within 144 h at the concentration of 50 mg/L of Cr[VI]. However, a maximum of 79.4% removal of Cr was recorded at 5 mg/L within 144 h. Fourier-transform infrared spectroscopy, energy dispersive x-ray spectroscopy and X-ray diffraction analysis revealed that chromium removal also happened via adsorption/precipitation on the mycelia surface. Fungus treated and without treated 100 mg/L of Cr[VI] solution was subjected to phytotoxicity test using Vigna radiata seeds and result revealed that A. flavus CR500 successfully detoxified the Cr[VI] via reduction and removal mechanisms. Isolate CR500 also exhibited efficient bioreduction potential at different temperature (20-40 °C), pH (5.0-9.0), heavy metals (As, Cd, Cu, Mn, Ni and Pb), metabolic inhibitors (phenol and EDTA) and in sterilized tannery effluent that make it a potential candidate for Cr[VI] bioremediation.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| | - S K Dwivedi
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
39
|
Zhang H, Zhai Y. Integrated transcriptomic and proteomic analyses of the tissues from the digestive gland of
Chlamys farreri
following cadmium exposure. J Cell Biochem 2019; 121:974-983. [DOI: 10.1002/jcb.29254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/08/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Zhang
- Institute of Metabolic Diseases Qingdao University Qingdao Shandong China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality Ministry of Agriculture Qingdao Shandong China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences National Center for Quality Supervision and Test of Aquatic Products Qingdao Shandong China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products (Qingdao) Ministry of Agriculture Qingdao Shandong China
| |
Collapse
|
40
|
Photobiosynthesis of Silver Nanoparticle Using Extract of Aspergillus flavus CR500: Its Characterization, Antifungal Activity and Mechanism Against Sclerotium rolfsii and Rhizoctonia solani. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01709-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Feng M, Li H, You S, Zhang J, Lin H, Wang M, Zhou J. Effect of hexavalent chromium on the biodegradation of tetrabromobisphenol A (TBBPA) by Pycnoporus sanguineus. CHEMOSPHERE 2019; 235:995-1006. [PMID: 31561316 DOI: 10.1016/j.chemosphere.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The influence of Cr(VI) on the degradation of tetrabromobisphenol A (TBBPA) by a typical species of white rot fungi, Pycnoporus sanguineus, was investigated in this study. The results showed that P. sanguineus together with its intracellular and extracellular enzyme could effectively degrade TBBPA. The degradation efficiency of TBBPA by both P. sanguineus and its enzymes decreased significantly when Cr(VI) concentration increased from 0 to 40 mg/L. The subsequent analysis about cellular distribution of TBBPA showed that the extracellular amount of TBBPA increased with the increment of Cr(VI) concentration, but the content of TBBPA inside fungal cells exhibited an opposite variation tendency. The inhibition of TBBPA degradation by P. sanguineus was partly attributed to the increase of cell membrane permeability and the decrease of cell membrane fluidity caused by Cr(VI). In addition, the decline of H+-ATPase and Mg2+-ATPase activities was also an important factor contributing to the suppression of TBBPA degradation in the system containing concomitant Cr(VI). Moreover, the activities of two typical extracellular lignin-degrading enzymes of P. sanguineus, MnP and Lac, were found to descend with ascended Cr(VI) level. Cr(VI) could also obviously suppress the gene expression of four intracellular enzymes implicated in TBBPA degradation, including two cytochrome P450s, glutathione S-transferases and pentachlorophenol 4-monooxygenase, which resulted in a decline of TBBPA degradation efficiency by fungal cells and intracellular enzyme in the presence of Cr(VI). Overall, this study provides new insights into the characteristics and mechanisms involved in TBBPA biodegradation by white rot fungi in an environment where heavy metals co-exist.
Collapse
Affiliation(s)
- Mi Feng
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China.
| | - Haixiang Li
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Shaohong You
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Jun Zhang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Hua Lin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Meiqian Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jiahua Zhou
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| |
Collapse
|
42
|
Hu L, Zhong H, He Z. The cytotoxicities in prokaryote and eukaryote varied for CdSe and CdSe/ZnS quantum dots and differed from cadmium ions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:336-344. [PMID: 31202934 DOI: 10.1016/j.ecoenv.2019.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/27/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
The present study focused on the bioaccumulation and cytotoxicities of Cd2+, CdSe quantum dots (QDs) and CdSe/ZnS QDs in Escherichia coli (E. coli, represents prokaryotic system) and Phanerochaete chrysosporium (P. chrysosporium, represents eukaryotic system), respectively. Two types of QDs were characterized by transmission electron microscopy (TEM) and dynamic light scattering. The inductively coupled plasma optical emission spectrometer results showed that the bioaccumulation amounts of CdSe QDs by E. coli and P. chrysosporium were larger than those of CdSe/ZnS QDs due to the smaller particle size and less negative surface charges of CdSe QDs. Confocal microscopy and TEM results showed that there was an interaction between QDs and cells, and QDs have entered into the cells eventually, leading to the change of cell morphology. Plasma membrane fluidities and membrane H+-ATPase activities of E. coli and P. chrysosporium decreased gradually with the increasing concentrations of Cd2+, CdSe and CdSe/ZnS QDs. Results of the cell viabilities and intracellular reactive oxygen species levels indicated that the induced cytotoxicities were decreased as follows: CdSe QDs > CdSe/ZnS QDs > Cd2+. These findings suggested that the cytotoxicity of QDs was not only attributed to their heavy metal components, but also related to their nanosize effects which could induce particle-specific toxicity. The above results offer valuable information for exploring the cytotoxicity mechanism of QDs in prokaryote and eukaryote.
Collapse
Affiliation(s)
- Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
43
|
Guo J, Qin S, Rengel Z, Gao W, Nie Z, Liu H, Li C, Zhao P. Cadmium stress increases antioxidant enzyme activities and decreases endogenous hormone concentrations more in Cd-tolerant than Cd-sensitive wheat varieties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:380-387. [PMID: 30731269 DOI: 10.1016/j.ecoenv.2019.01.069] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 05/24/2023]
Abstract
The different wheat varieties have different tolerance to cadmium stress, while the mechanisms underlying the Cd tolerance are still poorly understood. A pot experiment was conducted to study the changes of antioxidant enzyme activities and endogenous hormones in wheat (Triticum aestivum) genotypes differing in cadmium (Cd) accumulation (low = Pingan 8 and high = Bainong 160) in different growth stages under Cd stress. The Cd treatment (3 mg/kg) increased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and concentrations of malondialdehyde (MDA) and abscisic acid (ABA); in contrast, it reduced the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular carbon dioxide concentration (Ci) and the concentrations of gibberellin (GA3), auxin (IAA) and zeatin nucleoside (ZR) in wheat leaves compared to the CK (without Cd). The antioxidant enzyme activities were higher in Bainong 160 than Pingan 8 under Cd stress. In addition, the changes in endogenous hormone concentration were smaller in Bainong 160 than Pingan 8 leaves. The correlation coefficients of Bainong 160 and Pingan 8 were 0.87 and 0.66, respectively. Our results suggest that high Cd accumulation (greater Cd tolerance) in Bainong 160 is associated with higher photosynthetic parameters, higher activities of antioxidant enzyme and higher concentration of hormones than Pingan 8.
Collapse
Affiliation(s)
- Jiajia Guo
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiyu Qin
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zed Rengel
- Department of Agriculture and Environmental Sciences, the University of Western Australia, Perth 6000, Australia
| | - Wei Gao
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaojun Nie
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongen Liu
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chang Li
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Peng Zhao
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
44
|
Wang C, Niu Y, Meng Q, Zhang L. Ethyl pyruvate (EP) suppressed post-harvest blue mold of sweet cherry fruit by inhibiting the growth of Penicillium oxalicum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3517-3524. [PMID: 30623442 DOI: 10.1002/jsfa.9571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/15/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The shelf-life of fresh sweet cherry is relatively short due to fungal decay during post-harvest storage. To investigate the effect and the mechanism of action of ethyl pyruvate (EP) against blue mold of sweet cherry fruit caused by Penicillium oxalicum, the spores were treated with 25 mg L-1 EP. The spore germination rate of P. oxalicum, the integrities of the cell wall and plasma membrane, reactive oxygen species (ROS) and malondialdehyde (MDA) were evaluated. RESULTS EP treatment significantly suppressed post-harvest blue mold of sweet cherry fruit. We found that the treatment of 25 mg L-1 EP significantly suppressed blue mold of post-harvest sweet cherry fruit by directly inhibiting germination and the mycelial growth of P. oxalicum. After co-inoculation with EP for 30 min, the spore germination rate of P. oxalicum was reduced by 83.5%. In addition, the pH of the EP solution was found to affect its antimicrobial activity. After treatment with EP, the cell surface structures of the spores of P. oxalicum were much more incomplete, and higher ROS and MDA values were recorded in the spores. CONCLUSIONS The results suggested that EP treatment destroyed the integrities of the cell surface structures and caused oxidative damage of the spores of P. oxalicum. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chu Wang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yu Niu
- Institute of Agricultural Resources and Economy, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Qiuxia Meng
- Institute of Agricultural Environment and Resources, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
45
|
Role of the antioxidant defense system during the production of lignocellulolytic enzymes by fungi. Int Microbiol 2018; 22:255-264. [PMID: 30810986 DOI: 10.1007/s10123-018-00045-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
Fungi are used for the production of several compounds and the efficiency of biotechnological processes is directly related to the metabolic activity of these microorganisms. The reactions catalyzed by lignocellulolytic enzymes are oxidative and generate reactive oxygen species (ROS). Excess of ROS can cause serious damages to cells, including cell death. Thus, the objective of this work was to evaluate the lignocellulolytic enzymes produced by Pleurotus sajor-caju CCB020, Phanerochaete chrysosporium ATCC 28326, Trichoderma reesei RUT-C30, and Aspergillus niger IZ-9 grown in sugarcane bagasse and two yeast extract (YE) concentrations and characterize the antioxidant defense system of fungal cells by the activities of superoxide dismutase (SOD) and catalase (CAT). Pleurotus sajor-caju exhibited the highest activities of laccase and peroxidase in sugarcane bagasse with 2.6 g of YE and an increased activity of manganese peroxidase in sugarcane bagasse with 1.3 g of YE was observed. However, P. chrysosporium showed the highest activities of exoglucanase and endoglucanase in sugarcane bagasse with 1.3 g of YE. Lipid peroxidation and variations in SOD and CAT activities were observed during the production of lignocellulolytic enzymes and depending on the YE concentrations. The antioxidant defense system was induced in response to the oxidative stress caused by imbalances between the production and the detoxification of ROS.
Collapse
|
46
|
Huang Z, He K, Song Z, Zeng G, Chen A, Yuan L, Li H, Hu L, Guo Z, Chen G. Antioxidative response of Phanerochaete chrysosporium against silver nanoparticle-induced toxicity and its potential mechanism. CHEMOSPHERE 2018; 211:573-583. [PMID: 30092538 DOI: 10.1016/j.chemosphere.2018.07.192] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Antioxidative response of Phanerochaete chrysosporium induced by silver nanoparticles (AgNPs) and their toxicity mechanisms were comprehensively investigated in a complex system with 2,4-dichlorophenol (2,4-DCP) and Ag+. Malondialdehyde content was elevated by 2,4-DCP, AgNPs, and/or Ag+ in concentration- and time-dependent manners within 24 h, indicating an increase in lipid peroxidation. However, beyond 48 h of exposure, lipid peroxidation was alleviated by upregulation of intracellular protein production and enhancement in the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Comparatively, POD played more major roles in cell protection against oxidative damage. Furthermore, the dynamic change in reactive oxygen species (ROS) level was parallel to that of oxidized glutathione (GSSG), and ROS levels correlated well with GSSG contents (R2 = 0.953) after exposure to AgNPs for 24 h. This finding suggested that elimination of oxidative stress resulted in depletion of reduced glutathione. Coupled with the analyses of anoxidative responses of P. chrysosporium under the single and combined treatments of AgNPs and Ag+, HAADF-STEM, SEM, and EDX demonstrated that AgNP-induced cytotoxicity could originate from the original AgNPs, rather than dissolved Ag+ or the biosynthesized AgNPs.
Collapse
Affiliation(s)
- Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Kai He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhongxian Song
- Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| | - Lei Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hui Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhi Guo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
47
|
Ye B, Luo Y, He J, Sun L, Long B, Liu Q, Yuan X, Dai P, Shi J. Investigation of lead bioimmobilization and transformation by Penicillium oxalicum SL2. BIORESOURCE TECHNOLOGY 2018; 264:206-210. [PMID: 29803812 DOI: 10.1016/j.biortech.2018.05.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Fungi Penicillium oxalicum SL2 was applied for Pb2+ bioremediation in aqueous solution in this study. After 7 days of incubation at different initial concentrations of Pb2+ (0, 100, 500 and 2500 mg L-1), most of Pb2+ were removed (90, 98.3, and 86.2%), the maximum Pb content in mycelium reached about 155.6 mg g-1 dw. Meanwhile, the formation of extracellular secondary minerals and intracellular Pb-complex were observed and identified, the speciation of Pb in mycelium was also detected by X-ray absorption near-edge structure (XANES) spectroscopy, i.e., Pb-oxalate, Pb-citrate, Pb-hydrogen phosphate and Pb-glutathione analogues. In addition, content of glutathione and oxidized glutathione was increased under the exposure of Pb2+, which implied that glutathione might play a key role in Pb immobilization and detoxification in P. oxalicum SL2. This study elucidated partial mechanisms of Pb immobilization and speciation transformation of this strain, providing an alternative biomaterial in the bioremediation of Pb-contaminated wastewater.
Collapse
Affiliation(s)
- Binhui Ye
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Junyu He
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Lijuan Sun
- Institute of ECO-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Bibo Long
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Qinglin Liu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Peibin Dai
- Department of Applied Engineering, Zhejiang Economic and Trade Polytechnic, Hangzhou, 310018, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
48
|
Zhang X, Shao J, Chen A, Shang C, Hu X, Luo S, Lei M, Peng L, Zeng Q. Effects of cadmium on calcium homeostasis in the white-rot fungus Phanerochaete chrysosporium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:95-101. [PMID: 29609109 DOI: 10.1016/j.ecoenv.2018.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Due to the widespread application of white-rot fungi for the treatment of pollutants, it's crucial to exploit the special effects of pollutants on the microbes. Here, we studied the effects of cadmium on calcium homeostasis in the most studied white-rot fungus Phanerochaete chrysosporium. The response of P. chrysosporium to cadmium stress is concentration-dependent. A high concentration of cadmium caused the release of calcium from P. chrysosporium, while a hormesis effect was observed at a lower cadmium concentration (10 μM), which resulted in a significant increase in calcium uptake and reversed the decrease in cell viability. Calcium (50 μM) promoted cell viability (127.2% of control), which reflects that calcium can protect P. chrysosporium from environmental stress. Real-time changes in the Ca2+ and Cd2+ fluxes of P. chrysosporium were quantified using the noninvasive microtest technique. Ca2+ influx decreased significantly under cadmium exposure, and the Ca2+ channel was involved in Ca2+ and Cd2+ influx. The cadmium and/or calcium uptake results coupled with the real-time Ca2+ and Cd2+ influxes microscale signatures can enhance our knowledge of the homeostasis of P. chrysosporium with respect to cadmium stress, which may provide useful information for improving the bioremediation process.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
49
|
Huang Z, Zeng Z, Chen A, Zeng G, Xiao R, Xu P, He K, Song Z, Hu L, Peng M, Huang T, Chen G. Differential behaviors of silver nanoparticles and silver ions towards cysteine: Bioremediation and toxicity to Phanerochaete chrysosporium. CHEMOSPHERE 2018; 203:199-208. [PMID: 29614413 DOI: 10.1016/j.chemosphere.2018.03.144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Potential transformations of silver nanoparticles (AgNPs) upon interaction with naturally ubiquitous organic ligands in aquatic environments influence their transport, persistence, bioavailability, and subsequent toxicity to organisms. In this study, differential behaviors of AgNPs and silver ions (Ag+) towards cysteine (Cys), an amino acid representative of thiol ligands that easily coordinate to Ag+ and graft to nanoparticle surfaces, were investigated in the aspects of bioremediation and their toxicity to Phanerochaete chrysosporium. Total Ag removal, 2,4-dichlorophenol (2,4-DCP) degradation, extracellular protein secretion, and cellular viability were enhanced to some extent after supplement of various concentrations of cysteine under stress of AgNPs and Ag+. However, an obvious decrease in total Ag uptake was observed after 5-50 μM cysteine addition in the groups treated with 10 μM AgNPs and 1 μM Ag+, especially at a Cys:Ag molar ratio of 5. More stabilization in uptake pattern at this ratio was detected under Ag+ exposure than that under AgNP exposure. Furthermore, in the absence of cysteine, all Ag+ treatments stimulated the generation of reactive oxygen species (ROS) more significantly than high-dose AgNPs did. However, cysteine supply under AgNP/Ag+ stress aggravated ROS levels, albeit alleviated at 100 μM Ag+, indicating that the toxicity profiles of AgNPs and Ag+ to P. chrysosporium could be exacerbated or marginally mitigated by cysteine. The results obtained were possibly associated with the lability and bioavailability of AgNP/Ag+-cysteine complexes.
Collapse
Affiliation(s)
- Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Kai He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhongxian Song
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Min Peng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Tiantian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
50
|
Van Impe J, Smet C, Tiwari B, Greiner R, Ojha S, Stulić V, Vukušić T, Režek Jambrak A. State of the art of nonthermal and thermal processing for inactivation of micro-organisms. J Appl Microbiol 2018; 125:16-35. [DOI: 10.1111/jam.13751] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 02/03/2023]
Affiliation(s)
- J. Van Impe
- Department of Chemical Engineering; KU Leuven; Leuven Belgium
| | - C. Smet
- Department of Chemical Engineering; KU Leuven; Leuven Belgium
| | - B. Tiwari
- Department of Food Biosciences; Teagasc - Irish Agriculture and Food Development Authority; Carlow Ireland
| | - R. Greiner
- Department of Food Technology and Bioprocess Engineering; Max Rubner-Institut; Karlsruhe Germany
| | - S. Ojha
- Department of Food Biosciences; Teagasc - Irish Agriculture and Food Development Authority; Carlow Ireland
| | - V. Stulić
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| | - T. Vukušić
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| | - A. Režek Jambrak
- Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| |
Collapse
|