1
|
Honda Y, Ghosh A, Nishida Y, Honda M. Possibility of refining carotenoid geometrical isomer analysis utilizing DFT-based quantum chemical calculations. Biochem Biophys Res Commun 2024; 735:150858. [PMID: 39442448 DOI: 10.1016/j.bbrc.2024.150858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
We performed quantum chemical calculations based on the density functional theory (DFT) for the all-E- and several Z-isomers of three commercially important carotenoids (lycopene, β-carotene, and astaxanthin) and theoretically obtained the UV-Vis spectrum, response factor (determined from absorption intensities of the all-E- and the Z-isomers), and Q-ratio for each carotenoid isomer. The calculated spectra reproduced the experimental spectral shapes (e.g., the appearance of the Z-peaks and the blue shift of the main peaks for the Z-isomers) very well. The calculated response factors and Q-ratios also showed good agreement with reported values. Notably, response factors, which are difficult to determine experimentally, were well reproduced. These results suggest that quantum chemical calculations can be an effective tool for refining quantitative analysis and obtaining spectral data for carotenoids for which standards are difficult to obtain.
Collapse
Affiliation(s)
- Yasushi Honda
- West Japan Office, HPC Systems Inc., 646 Nijohanjikicho, Shimogyo-ku, Kyoto, 600-8412, Japan.
| | - Antara Ghosh
- Department of Chemistry, Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama, 930-0405, Japan
| | - Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
2
|
Mussagy CU, Farias FO, Tropea A, Santi L, Mondello L, Giuffrida D, Meléndez-Martínez AJ, Dufossé L. Ketocarotenoids adonirubin and adonixanthin: Properties, health benefits, current technologies, and emerging challenges. Food Chem 2024; 443:138610. [PMID: 38301562 DOI: 10.1016/j.foodchem.2024.138610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/08/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Given their multifaceted roles, carotenoids have garnered significant scientific interest, resulting in a comprehensive and intricate body of literature that occasionally presents conflicting findings concerning the proper characterization, quantification, and bioavailability of these compounds. Nevertheless, it is undeniable that the pursuit of novel carotenoids remains a crucial endeavor, as their diverse properties, functionalities and potential health benefits make them invaluable natural resources in agri-food and health promotion through the diet. In this framework, particular attention is given to ketocarotenoids, viz., astaxanthin (one of them) stands out for its possible multifunctional role as an antioxidant, anticancer, and antimicrobial agent. It has been widely explored in the market and utilized in different applications such as nutraceuticals, food additives, among others. Adonirubin and adonixanthin can be naturally found in plants and microorganisms. Due to the increasing significance of natural-based products and the remarkable opportunity to introduce these ketocarotenoids to the market, this review aims to provide an expert overview of the pros and cons associated with adonirubin and adonixanthin.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba/PR, Brazil
| | - Alessia Tropea
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Viterbo, Italy
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy; Chromaleont s.r.l., c/o Messina Institute of technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 - Messina, Italy
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | | | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, France
| |
Collapse
|
3
|
Osawa Y, Kuwahara D, Honda M. Enhanced Z-Isomerization of Astaxanthin in Paracoccus carotinifaciens via Microwave Drying. J Oleo Sci 2024; 73:163-168. [PMID: 38311406 DOI: 10.5650/jos.ess23093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
The effects of microwave drying conditions of a Paracoccus carotinifaciens culture solution on astaxanthin Z-isomerization and degradation were investigated. The microwave drying significantly increase the ratio of astaxanthin Z-isomers, and the higher the microwave power and the longer the drying time, the higher the total Z-isomer ratio of astaxanthin, but such conditions also accelerated astaxanthin degradation. We found that the addition of powdered oils enhanced the Z-isomerization reaction. For example, when the P. carotinifaciens culture solution was dried at 1000 W power for 5 min without and with powdered rapeseed oil, total Z-isomer ratios of astaxanthin in resulting dried powder were 14.9 and 47.4%, respectively. Furthermore, the storage test of the dried P. carotinifaciens powder showed that astaxanthin Z- isomers were stable at 4℃ in a low-oxygen atmosphere. As astaxanthin Z-isomers have greater bioavailability and potentially exhibit superior biological activities than the all-E-isomer, the dried P. carotinifaciens powder obtained by the method of this study is expected to be used as a value-added astaxanthin source.
Collapse
Affiliation(s)
| | | | - Masaki Honda
- Faculty of Science & Technology, Meijo University
| |
Collapse
|
4
|
Osawa Y, Nishi R, Kuwahara D, Haga Y, Honda M. Improved Flesh Pigmentation of Rainbow Trout (Oncorhynchus mykiss) by Feeding Z-Isomer-Rich Astaxanthin Derived from Natural Origin. J Oleo Sci 2024; 73:35-43. [PMID: 38171729 DOI: 10.5650/jos.ess23064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
The use of Paracoccus carotinifaciens-derived natural astaxanthin as an alternative to synthetic astaxanthin has attracted considerable attention from the aquaculture industry. Furthermore, to enhance the bioavailability of astaxanthin, its "Z-isomerization" has been actively studied in recent years. This study investigated the effects of feeding a diet containing astaxanthin rich in the all-E- or Z-isomers derived from P. carotinifaciens on the pigmentation and astaxanthin concentration in rainbow trout (Oncorhynchus mykiss) flesh. Z-Isomer-rich astaxanthin was prepared from the P. carotinifaciens-derived all-E-isomer by thermal treatment in fish oil, and the prepared all-E-isomer-rich astaxanthin diet (E-AST-D; total Z-isomerratio = 9.1%) and Z-isomer-rich astaxanthin diet (Z-AST-D; total Z-isomer ratio of astaxanthin = 56.6%) were fed to rainbow trout for 8 weeks. The feeding of Z-AST-D resulted in greater pigmentation and astaxanthin accumulation efficiency in the flesh than those fed E-AST-D. Specifically, when E-AST-D was fed to rainbow trout, the SalmoFan score and astaxanthin concentration of the flesh were 22.1±1.4 and 1.36±0.71 μg/g wet weight, respectively, whereas when Z-AST-D was fed, their values were 26.0±2.5 and 5.33±1.82 μg/g wet weight, respectively. These results suggest that P. carotinifaciens-derived astaxanthin Z- isomers prepared by thermal isomerization are more bioavailable to rainbow trout than the all-E-isomer.
Collapse
Affiliation(s)
| | - Ryuta Nishi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | | | - Yutaka Haga
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | - Masaki Honda
- Faculty of Science & Technology, Meijo University
| |
Collapse
|
5
|
Osawa Y, Kuwahara D, Hayashi Y, Honda M. Effects of Astaxanthin Preparation Form on the Efficiency of Egg Yolk Pigmentation in Laying Hens. J Oleo Sci 2024; 73:25-34. [PMID: 38171728 DOI: 10.5650/jos.ess23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
This study investigated the effects of the preparation form of astaxanthin on egg yolk pigmentation and egg quality in laying hens. The following four astaxanthin sources were prepared in this study: (1) dried cell powder of Paracoccus carotinifaciens (Panaferd-AX), (2) fine cell powder of P. carotinifaciens (Panaferd-P), (3) astaxanthin oil suspension, and (4) water-soluble astaxanthin powder. These astaxanthin preparations were added to the basal diet at a final concentration of 2 mg/kg and fed to White Leghorn laying hens for 14 days. Although the administration of these astaxanthin preparations did not largely affect egg quality (i.e., egg weight, yolk weight, albumen height, and Haugh unit), feeding significantly improved astaxanthin concentration and yolk color fan score. When water-soluble astaxanthin powder was fed, the yolk astaxanthin concentration and color fan score were most improved, followed by Panaferd-P. These results indicated that astaxanthin pulverization and water solubilization significantly improved its bioavailability in laying hens. Furthermore, although diets rich in (all-E)-astaxanthin were fed to the hens, approximately 30% of astaxanthin was present as the Z-isomers in the egg yolk. These findings may contribute to improving not only the egg quality but the nutritional value of hen eggs.
Collapse
Affiliation(s)
| | | | | | - Masaki Honda
- Faculty of Science & Technology, Meijo University
| |
Collapse
|
6
|
Zhang Y, Takahama K, Osawa Y, Kuwahara D, Yamada R, Oyama KI, Honda M. Characteristics of LED light-induced geometrical isomerization and degradation of astaxanthin and improvement of the color value and crystallinity of astaxanthin utilizing the photoisomerization. Food Res Int 2023; 174:113553. [PMID: 37986432 DOI: 10.1016/j.foodres.2023.113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
The effects of light-emitting diode (LED) irradiation characterized by different emission wavelengths on the E/Z-isomerization and degradation of astaxanthin were investigated. LED irradiation slightly promoted Z-isomerization of astaxanthin, whereas the all-E-isomerization was highly efficiently promoted at specific wavelengths, especially at 365 nm. Astaxanthin isomers did not degrade significantly when dissolved in ethanol and subjected to LED irradiation conditions for 300 min. However, significant degradation was achieved when ethyl acetate was used for dissolution, and the samples were irradiated at the wavelength of 405 nm. The addition of α-tocopherol suppressed the photodegradation of astaxanthin. LED irradiation significantly affected the physical properties of astaxanthin Z-isomers. Irradiation with 365, 405, and 470 nm LEDs enhanced the color value (redness) and crystallinity of the Z-isomers via an all-E-isomerization reaction. These findings can contribute to the development of technologies that can arbitrarily control the E/Z-isomer ratio and physical properties of astaxanthin.
Collapse
Affiliation(s)
- Yelin Zhang
- Department of Chemistry, Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan; Department of Materials Process Engineering, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Kentaro Takahama
- Technical Center, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Yukiko Osawa
- Biotechnology R&D Group, ENEOS Corporation, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa 231-0815, Japan
| | - Daichi Kuwahara
- Biotechnology R&D Group, ENEOS Corporation, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa 231-0815, Japan
| | - Rio Yamada
- Chemical Instrumentation Facility, Research Center for Materials Science, Nagoya University, Furo-cho, Nagoya, Aichi 464-8602, Japan
| | - Kin-Ichi Oyama
- Chemical Instrumentation Facility, Research Center for Materials Science, Nagoya University, Furo-cho, Nagoya, Aichi 464-8602, Japan
| | - Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan.
| |
Collapse
|
7
|
Dansou DM, Zhang H, Yu Y, Wang H, Tang C, Zhao Q, Qin Y, Zhang J. Carotenoid enrichment in eggs: From biochemistry perspective. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:315-333. [PMID: 37635928 PMCID: PMC10448277 DOI: 10.1016/j.aninu.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 08/29/2023]
Abstract
The emergence of safe and functional eggs for consumer acceptance has gained focus. The production of carotenoid-enriched eggs has received attention due to its multifunctional biological properties. Nutritional modification of laying hens' diet can be a strategy to produce such eggs. This review presents the chemistry of carotenoids in nature and eggs, the accumulation process of carotenoids into eggs, and the functions of carotenoids in eggs. Our findings showed that carotenoids can be deposited into the egg and contribute to improving its nutritive value. The biosynthesis, chemical structure, and metabolism pathways of carotenoids lead to the deposition of carotenoids into eggs in their original or metabolized forms. Also, some factors modulate the efficiency of carotenoids in fowls before accumulation into eggs. Carotenoid-enriched eggs may be promising, ensuring the availability of highly nutritive eggs. However, further studies are still needed to comprehend the full metabolism process and the extensive functions of carotenoids in eggs.
Collapse
Affiliation(s)
- Dieudonné M. Dansou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Mussagy CU, Pereira JFB, Dufossé L. Astaxanthin production using Paracoccus carotinifaciens: a way forward? Trends Biotechnol 2023; 41:996-999. [PMID: 36775777 DOI: 10.1016/j.tibtech.2023.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 02/12/2023]
Abstract
Paracoccus carotinifaciens could be considered a key microbial factory for obtaining healthier natural products such as astaxanthin (AXT), thus contributing to a bioeconomy. Short cultivation time, high production titers, and thin cell wall are the main advantages that make this bacterium promising in the development of sustainable third-generation biorefineries.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Jorge F B Pereira
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744, Saint-Denis, France
| |
Collapse
|
9
|
Yu J, Chen X, Chen B, Mao Y, Shao P. Lycopene in hydrophobic deep eutectic solvent with natural catalysts: A promising strategy to simultaneously promote lycopene Z-isomerization and extraction. Food Chem 2023; 426:136627. [PMID: 37356240 DOI: 10.1016/j.foodchem.2023.136627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Lycopene Z-isomerization and degradation in a series of hydrophobic natural deep eutectic solvents (HNDES) was firstly studied. The highest lycopene retention (about 84.6%) was found in HNDES composed of thymol and menthol (TM), and fatty acid-based HNDES promoted lycopene Z-isomerization (about 70% for total Z-isomers) and degradation. The addition of allyl isothiocyanate (AITC), diallyl disulfide (DADS) and capric acid into TM promoted Z-isomerization of lycopene (80% for total Z-isomers), especially 5Z-isomer (>30%), while lycopene remaining rate in TM/-capric acid was below 20%. During lycopene extraction from tomato power and watermelon juice by TM, the ratios of Z-isomer significantly (p < 0.05) increased especially with AITC and DADS (up to about 80%), and extraction yields increased even > 100% with capric acid. Lycopene in TM/-capric acid extracts showed low degradation with Z-isomers increasing during storage. TM with capric acid could simultaneously promote lycopene Z-isomerization and extraction.
Collapse
Affiliation(s)
- Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinxin Chen
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bilian Chen
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Yanqing Mao
- Hangzhou Johncan Mushroom Bio-technology CO., LTD, Hangzhou 310015, China
| | - Ping Shao
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
10
|
Honda M, Nishida Y. In Vitro Evaluation of Skin-Related Physicochemical Properties and Biological Activities of Astaxanthin Isomers. ACS OMEGA 2023; 8:19311-19319. [PMID: 37305308 PMCID: PMC10249140 DOI: 10.1021/acsomega.2c08173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
Dietary astaxanthin exists predominantly as the all-E-isomer; however, certain amounts of the Z-isomers are universally present in the skin, whose roles remain largely unknown. The aim of this study was to investigate the effects of the astaxanthin E/Z-isomer ratio on skin-related physicochemical properties and biological activities using human dermal fibroblasts and B16 mouse melanoma cells. We revealed that astaxanthin enriched in Z-isomers (total Z-isomer ratio = 86.6%) exhibited greater UV-light-shielding ability and skin antiaging and skin-whitening activities, such as anti-elastase and anti-melanin formation activities, than the all-E-isomer-rich astaxanthin (total Z-isomer ratio = 3.3%). On the other hand, the all-E-isomer was superior to the Z-isomers in singlet oxygen scavenging/quenching activity, and the Z-isomers inhibited type I collagen release into the culture medium in a dose-dependent manner. Our findings help clarify the roles of astaxanthin Z-isomers in the skin and would help in the development of novel skin health-promoting food ingredients.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty
of Science & Technology, Meijo University, Shiogamaguchi,
Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Yasuhiro Nishida
- Fuji
Chemical Industries, Co., Ltd., Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| |
Collapse
|
11
|
Honda M, Zhang Y, Goto M. Isothiocyanate-functionalized silica as an efficient heterogeneous catalyst for carotenoid isomerization. Food Chem 2023; 410:135388. [PMID: 36621332 DOI: 10.1016/j.foodchem.2023.135388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Daily consumption of carotenoids is associated with multiple health benefits, but their bioavailability is generally extremely low. In this context, the Z-isomerization is receiving attention as a method for increasing carotenoid bioavailability because this approach is superior to conventional physical approaches. Here we investigated the feasibility of using isothiocyanate-functionalized silica (Si-NCS) as a heterogeneous catalyst for carotenoid isomerization. We found that this catalyst promoted Z-isomerization of (all-E)-carotenoids with high efficiency, e.g., when lycopene and astaxanthin solutions were incubated at 50 °C with 10 mg/mL Si-NCS, their total Z-isomer ratios increased by approximately 80 and 50 %, respectively. Furthermore, the Z-isomerization was successfully performed continuously by introducing carotenoid solution into a column packed with Si-NCS. Materials rich in carotenoid Z-isomers have not been used in practical applications due to high production cost and quality limitations (e.g., low Z-isomer ratio). The use of Si-NCS has sufficient potential to solve both these issues.
Collapse
Affiliation(s)
- Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan.
| | - Yelin Zhang
- Department of Chemistry, Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan; Department of Materials Process Engineering, Nagoya University, Furo-cho, Nagoya, Aichi 464-8603, Japan
| | - Motonobu Goto
- Department of Materials Process Engineering, Nagoya University, Furo-cho, Nagoya, Aichi 464-8603, Japan; Super Critical Technology Centre Co. Ltd., Hanowari, Ooaza Izumi, Kuwana-shi, Mie 511-0838, Japan
| |
Collapse
|
12
|
Mussagy CU, Dufossé L. A review of natural astaxanthin production in a circular bioeconomy context using Paracoccus carotinifaciens. BIORESOURCE TECHNOLOGY 2023; 369:128499. [PMID: 36535613 DOI: 10.1016/j.biortech.2022.128499] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Astaxanthin (AXT) is a ketocarotenoid with several properties, including antioxidant, antidiabetic and anticancer with a wide range of applications in cosmeceutical, feed, food and pharmaceuticals sectors. The large fraction of AXT available in the market is obtained by chemical route, but the consumers preference for natural products are changing the global market of AXT, and due to that several companies are looking for potential alternative sources such as Gram-negative bacteria Paracoccus carotinifaciens (P. carotinifaciens) to obtain natural AXT. The aim of this critical review is to provide a comprehensive overview of the latest AXT research findings and characteristics of the hyperproducer-AXT P. carotinifaciens. Moreover, a brief description of the potential application of P. carotinifaciens for the production of natural AXT at industrial scale for commercial purposes and the latest advancements in the upstream and downstream procedures following the biorefinery and circular economy percepts are considered.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, France
| |
Collapse
|
13
|
Sapone V, Iannone A, Alivernini A, Cicci concenptualization A, Philip Jessop G, Bravi concenptualization M. An innovative simplified one-pot process for Astaxanthin purification from Paracoccus carotinifaciens. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Hirakida H, Nakamura S, Inagaki S, Tsuji S, Hayashi M, Shimazawa M, Hara H. Anti-diabetic effects of astaxanthin-rich extract derived from Paracoccus carotinifaciens on pancreatic β cells. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Sun J, Yan J, Dong H, Gao K, Yu K, He C, Mao X. Astaxanthin with different configurations: sources, activity, post-modification and application in foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Oral Supplementation with Z-Isomer-Rich Astaxanthin Inhibits Ultraviolet Light-Induced Skin Damage in Guinea Pigs. Mar Drugs 2022; 20:md20070414. [PMID: 35877706 PMCID: PMC9315510 DOI: 10.3390/md20070414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
The effect of oral supplementation with astaxanthin of different Z-isomer ratios on ultraviolet (UV) light-induced skin damage in guinea pigs was investigated. Astaxanthin with a high Z-isomer content was prepared from the all-E-isomer via thermal isomerization. Intact (all-E)-astaxanthin and the prepared Z-isomer-rich astaxanthin were suspended in soybean oil and fed to guinea pigs for three weeks. The UV-light irradiation was applied to the dorsal skin on the seventh day after the start of the test diet supplementation, and skin parameters, such as elasticity, transepidermal water loss (TEWL), and pigmentation (melanin and erythema values), were evaluated. The accumulation of astaxanthin in the dorsal skin was almost the same after consumption of the all-E-isomer-rich astaxanthin diet (E-AST-D; total Z-isomer ratio = 3.2%) and the Z-isomer-rich astaxanthin diet (Z-AST-D; total Z-isomer ratio = 84.4%); however, the total Z-isomer ratio of astaxanthin in the skin was higher in the case of the Z-AST-D supplementation. Both diets inhibited UV light-induced skin-damaging effects, such as the reduction in elasticity and the increase in TEWL level. Between E-AST-D and Z-AST-D, Z-AST-D showed better skin-protective ability against UV-light exposure than E-AST-D, which might be because of the greater UV-light-shielding ability of astaxanthin Z-isomers than the all-E-isomer. Furthermore, supplementation with Z-AST-D resulted in a greater reduction in skin pigmentation caused by astaxanthin accumulation compared to that of E-AST-D. This study indicates that dietary astaxanthin accumulates in the skin and appears to prevent UV light-induced skin damage, and the Z-isomers are more potent oral sunscreen agents than the all-E-isomer.
Collapse
|
17
|
Honda M, Murakami K, Osawa Y, Kawashima Y, Wasai M, Hirasawa K, Kuroda I. Supercritical CO
2
Extraction of Carotenoids (Astaxanthin, Adonirubin, and Adonixanthin) from
Paracoccus carotinifaciens
: Improved
Z
‐isomer ratio and Recovery of Carotenoids via High‐Temperature Extraction. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology Meijo University Nagoya Aichi 468–8502 Japan
| | - Kazuya Murakami
- Faculty of Science & Technology Meijo University Nagoya Aichi 468–8502 Japan
| | - Yukiko Osawa
- Biotechnology R&D Group ENEOS Corporation Yokohama Kanagawa 231–0815 Japan
| | - Yuki Kawashima
- Biotechnology R&D Group ENEOS Corporation Yokohama Kanagawa 231–0815 Japan
| | - Masafumi Wasai
- Biotechnology R&D Group ENEOS Corporation Yokohama Kanagawa 231–0815 Japan
| | - Kazuaki Hirasawa
- Biotechnology R&D Group ENEOS Corporation Yokohama Kanagawa 231–0815 Japan
| | - Ikuo Kuroda
- Biotechnology R&D Group ENEOS Corporation Yokohama Kanagawa 231–0815 Japan
| |
Collapse
|
18
|
Yu J, Liu X, Zhang L, Shao P, Wu W, Chen Z, Li J, Renard CM. An overview of carotenoid extractions using green solvents assisted by Z-isomerization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Grewal J, Woła̧cewicz M, Pyter W, Joshi N, Drewniak L, Pranaw K. Colorful Treasure From Agro-Industrial Wastes: A Sustainable Chassis for Microbial Pigment Production. Front Microbiol 2022; 13:832918. [PMID: 35173704 PMCID: PMC8841802 DOI: 10.3389/fmicb.2022.832918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Colors with their attractive appeal have been an integral part of human lives and the easy cascade of chemical catalysis enables fast, bulk production of these synthetic colorants with low costs. However, the resulting hazardous impacts on the environment and human health has stimulated an interest in natural pigments as a safe and ecologically clean alternative. Amidst sources of natural producers, the microbes with their diversity, ease of all-season production and peculiar bioactivities are attractive entities for industrial production of these marketable natural colorants. Further, in line with circular bioeconomy and environmentally clean technologies, the use of agro-industrial wastes as feedstocks for carrying out the microbial transformations paves way for sustainable and cost-effective production of these valuable secondary metabolites with simultaneous waste management. The present review aims to comprehensively cover the current green workflow of microbial colorant production by encompassing the potency of waste feedstocks and fermentation technologies. The commercially important pigments viz. astaxanthin, prodigiosin, canthaxanthin, lycopene, and β-carotene produced by native and engineered bacterial, fungal, or yeast strains have been elaborately discussed with their versatile applications in food, pharmaceuticals, textiles, cosmetics, etc. The limitations and their economic viability to meet the future market demands have been envisaged. The most recent advances in various molecular approaches to develop engineered microbiological systems for enhanced pigment production have been included to provide new perspectives to this burgeoning field of research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Honda M. Application of E/Z-Isomerization Technology for Enhancing Processing Efficiency, Health-Promoting Effects, and Usability of Carotenoids: A Review and Future Perspectives. J Oleo Sci 2022; 71:151-165. [PMID: 35034944 DOI: 10.5650/jos.ess21338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carotenoids are naturally occurring pigments whose presence in the diet is beneficial to human health. Moreover, they have a wide range of applications in the food, cosmetic, and animal feed industries. As carotenoids contain multiple conjugated double bonds in the molecule, a large number of geometric (E/Z, trans/cis) isomers are theoretically possible. In general, (all-E)-carotenoids are the most predominant geometric isomer in nature, and they have high crystallinity and low solubility in various mediums, resulting in their low processing efficiency and bioavailability. Technological developments for improving the processing efficiency and bioavailability of carotenoids utilizing the Z-isomerization have recently been gaining traction. Namely, Z-isomerization of carotenoids induces a significant change in their physicochemical properties (e.g., solubility and crystallinity), leading to improved processing efficiency and bioavailability as well as several biological activities. For the practical use of isomerization technology for carotenoids, the development of efficient isomerization methods and an acute understanding of the changes in biological activity are required. This review highlights the recent advancements in various conventional and unconventional methods for carotenoid isomerization, such as thermal treatment, light irradiation, microwave irradiation, and catalytic treatment, as well as environment-friendly isomerization methods. Current progress in the improvement of processing efficiency and biological activity utilizing isomerization technology and an application development of carotenoid Z-isomers for the feed industry are also described. In addition, future research challenges in the context of carotenoid isomerization have been elaborated upon.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University
| |
Collapse
|
21
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
22
|
Honda M, Murakami K, Zhang Y, Goto M. Rapid and Continuous Astaxanthin Isomerization in Subcritical Ethanol. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Kazuya Murakami
- Faculty of Science & Technology, Meijo University, Nagoya, Aichi 468-8502, Japan
- Department of Materials Process Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yelin Zhang
- Faculty of Science & Technology, Meijo University, Nagoya, Aichi 468-8502, Japan
- Department of Materials Process Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Motonobu Goto
- Department of Materials Process Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
23
|
Guerra AS, Hoyos CG, Molina-Ramírez C, Velásquez-Cock J, Vélez L, Gañán P, Eceiza A, Goff HD, Zuluaga R. Extraction and preservation of lycopene: A review of the advancements offered by the value chain of nanotechnology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Honda M, Kawashima Y, Hirasawa K, Uemura T, Sun J, Hayashi Y. Astaxanthin Z-isomer-rich diets enhance egg yolk pigmentation in laying hens compared to that in all-E-isomer-rich diets. Anim Sci J 2021; 92:e13512. [PMID: 33522058 DOI: 10.1111/asj.13512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
The effects of feeding diets containing astaxanthin with different Z-isomer ratios to laying hens on egg qualities, such as astaxanthin concentration in egg yolk and yolk color, were investigated. As the astaxanthin source, a natural microorganism Paracoccus carotinifaciens was used. Astaxanthin with different Z-isomer ratios was prepared by thermal treatment with different conditions and then added to the basal diet at a final astaxanthin concentration of 8 mg/kg. We found that, as the Z-isomer ratios of astaxanthin in the diet increased, the astaxanthin concentration in egg yolk and the yolk color fan score also increased significantly. Importantly, feeding a 50.6% Z-isomer ratio diet increased astaxanthin concentration in egg yolk by approximately fivefold and the color fan score by approximately 2 compared to that in hens fed an all-E-isomer-rich diet. Moreover, we showed that feeding Z-isomer-rich astaxanthin to laying hens increased plasma astaxanthin concentration by more than five times in comparison to that in hens fed an all-E-isomer-rich diet. These results indicate that Z-isomers of astaxanthin have higher bioavailability than that of the all-E-isomer and thus they exhibit greater egg yolk-accumulation efficiency.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Nagoya, Japan
| | - Yuki Kawashima
- Biotechnology R&D Group, ENEOS Corporation, Yokohama, Japan
| | | | - Takeshi Uemura
- Biotechnology R&D Group, ENEOS Corporation, Yokohama, Japan
| | - Jinkun Sun
- Experimental Farm, Faculty of Agriculture, Meijo University, Kasugai, Japan
| | - Yoshiaki Hayashi
- Experimental Farm, Faculty of Agriculture, Meijo University, Kasugai, Japan
| |
Collapse
|
25
|
Viazau YV, Goncharik RG, Kulikova IS, Kulikov EA, Vasilov RG, Selishcheva AA. E/Z isomerization of astaxanthin and its monoesters in vitro under the exposure to light or heat and in overilluminated Haematococcus pluvialis cells. BIORESOUR BIOPROCESS 2021; 8:55. [PMID: 38650253 PMCID: PMC10992054 DOI: 10.1186/s40643-021-00410-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Thermo- and photoisomerization of astaxanthin was investigated in a model system (solutions in methanol and chloroform), and the dynamics of astaxanthin isomers and esters content was analyzed in Haematococcus pluvialis green algal cells exposed to factors inducing astaxanthin accumulation. In both systems, the astaxanthin isomerization process seems to be defined by a) the action of light (or heat), and b) the dielectric constant of the surrounding medium. Upon heating, the accumulation of Z-isomers occurred in a model system during the entire incubation period. For the first 5 h of illumination, both Z-isomers accumulated in the solutions up to 5%, and then their content decreased. The accumulated amount of the Z-isomers in the cells of H. pluvialis was found to reach 42% of the total content of astaxanthin initially, and then it decreased during the experiment. The results lead to a conclusion that both cultivation of H. pluvialis culture in specific conditions and heat treatment of the resulting extracts from it might be efficient for obtaining large amounts of economically useful astaxanthin Z-isomer.
Collapse
Affiliation(s)
- Yauhen V Viazau
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072, Minsk, Belarus.
| | - Ruslan G Goncharik
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072, Minsk, Belarus
| | - Irina S Kulikova
- National Research Center Kurchatov Institute, Akademika Kurchatova Sq. 1, Moscow, 123182, Russia
| | - Evgeny A Kulikov
- National Research Center Kurchatov Institute, Akademika Kurchatova Sq. 1, Moscow, 123182, Russia
| | - Raif G Vasilov
- National Research Center Kurchatov Institute, Akademika Kurchatova Sq. 1, Moscow, 123182, Russia
| | - Alla A Selishcheva
- National Research Center Kurchatov Institute, Akademika Kurchatova Sq. 1, Moscow, 123182, Russia
- Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
| |
Collapse
|
26
|
Enriched (Z)-lycopene in Tomato Extract via Co-Extraction of Tomatoes and Foodstuffs Containing Z-isomerization-accelerating Compounds. Catalysts 2021. [DOI: 10.3390/catal11040462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to promote the Z-isomerization of lycopene in its extraction process from tomato pulp by adding foodstuffs containing Z-isomerization-accelerating compounds. The addition of onion, broccoli, mustard, makonbu (Saccharina japonica), or shiitake mushroom (Lentinus edodes) to the ethyl acetate extraction process significantly accelerated the Z-isomerization of lycopene. For example, when lycopene was extracted from tomato pulp at 70 °C without foodstuffs, the total Z-isomer ratio of lycopene in the extract was 38.4 ± 0.5%, whereas when onion, broccoli, mustard, makonbu, and shiitake mushroom were added to the process and the extraction was performed using the same procedure, the total Z-isomer ratios significantly increased to 53.6 ± 0.4, 47.9 ± 0.3, 48.2 ± 0.1, 41.5 ± 0.9, and 42.0 ± 1.2%, respectively. Since the above foodstuffs contain large amounts of carotenoid Z-isomerization-accelerating catalysts, i.e., polysulfides, isothiocyanates, or iodine, those components would promote Z-isomerization of lycopene in the extraction process. Since lycopene Z-isomers potentially have higher bioavailability and biological effects than the all-E-isomer, lycopene extraction with foodstuffs having a Z-isomerization-promoting effect in ethyl acetate should enhance the health benefits of tomato extracts.
Collapse
|
27
|
Honda M, Murakami K, Osawa Y, Kawashima Y, Hirasawa K, Kuroda I. Z-Isomers of Astaxanthin Exhibit Greater Bioavailability and Tissue Accumulation Efficiency than the All- E-Isomer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3489-3495. [PMID: 33689342 DOI: 10.1021/acs.jafc.1c00087] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purpose of the present study was to clarify the differences in the bioavailability and tissue accumulation efficiency between (all-E)- and (Z)-astaxanthin. Astaxanthin with a high proportion of the Z-isomer (especially rich in the 9Z- and 13Z-isomers) was prepared from (all-E)-astaxanthin by thermal treatment and solid-liquid separation. The all-E-isomer- or Z-isomer-rich diet was fed to male rats for 2 weeks. After the feeding period, blood and tissue samples were collected, and their astaxanthin levels were evaluated. The Z-isomer-rich astaxanthin diet resulted in higher levels of astaxanthin in blood and many tissues (in particular, skin, lung, prostate, and eye) compared to the all-E-isomer-rich diet. Moreover, the Z-isomer-rich diet enhanced the level of the 13Z-isomer in blood and tissues rather than that of the 9Z-isomer. These results strongly supported that astaxanthin Z-isomers have greater bioavailability and tissue accumulation efficiency than the all-E-isomer. Moreover, (13Z)-astaxanthin would have higher bioavailability and tissue accumulation than the other isomers.
Collapse
Affiliation(s)
- Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Kazuya Murakami
- Department of Chemistry, Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
- Department of Materials Process Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yukiko Osawa
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| | - Yuki Kawashima
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| | - Kazuaki Hirasawa
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| | - Ikuo Kuroda
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| |
Collapse
|
28
|
Honda M, Kageyama H, Hibino T, Osawa Y, Kawashima Y, Hirasawa K, Kuroda I. Evaluation and improvement of storage stability of astaxanthin isomers in oils and fats. Food Chem 2021; 352:129371. [PMID: 33706139 DOI: 10.1016/j.foodchem.2021.129371] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/11/2020] [Accepted: 02/12/2021] [Indexed: 11/26/2022]
Abstract
Astaxanthin Z-isomers potentially have greater bioavailability and biological activity than (all-E)-astaxanthin. However, the stability of the Z-isomers is lower than the all-E-isomer, which is a serious problem affecting its practical use. In this study, we investigated the impacts of different suspension media (oils and fats) and additives on astaxanthin isomer stability and identified suitable ones for astaxanthin stabilization. The evaluations showed that several vegetable oils and antioxidants significantly improved astaxanthin isomer stability, e.g., when soybean and sunflower oils were used as the suspension medium, astaxanthin isomers were hardly degraded; however the total Z-isomer ratio decreased from ~80% to ~50% during 6-week storage at 30 °C. Moreover, it was revealed that (9Z)-astaxanthin showed higher stability than the 13Z- and 15Z-isomers. Hence, to maintain astaxanthin concentration and the Z-isomer ratio over long periods, it is important to use suitable suspension mediums and antioxidants, and select a Z-isomerization method that increases (9Z)-astaxanthin ratio.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan.
| | - Hakuto Kageyama
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Takashi Hibino
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Yukiko Osawa
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan.
| | - Yuki Kawashima
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| | - Kazuaki Hirasawa
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| | - Ikuo Kuroda
- Biotechnology R&D Group, ENEOS Corporation, Chidoricho, Naka-ku, Yokohama 231-0815, Japan
| |
Collapse
|
29
|
Rodríguez-Sifuentes L, Marszalek JE, Hernández-Carbajal G, Chuck-Hernández C. Importance of Downstream Processing of Natural Astaxanthin for Pharmaceutical Application. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.601483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Astaxanthin (ASX) is a xanthophyll pigment considered as a nutraceutical with high antioxidant activity. Several clinical trials have shown the multiple health benefits of this molecule; therefore, it has various pharmaceutical industry applications. Commercial astaxanthin can be produced by chemical synthesis or through biosynthesis within different microorganisms. The molecule produced by the microorganisms is highly preferred due to its zero toxicity and superior therapeutic properties. However, the biotechnological production of the xanthophyll is not competitive against the chemical synthesis, since the downstream process may represent 70–80% of the process production cost. These operations denote then an opportunity to optimize the process and make this alternative more competitive. Since ASX is produced intracellularly by the microorganisms, high investment and high operational costs, like centrifugation and bead milling or high-pressure homogenization, are mainly used. In cell recovery, flocculation and flotation may represent low energy demanding techniques, whereas, after cell disruption, an efficient extraction technique is necessary to extract the highest percentage of ASX produced by the cell. Solvent extraction is the traditional method, but large-scale ASX production has adopted supercritical CO2 (SC-CO2), an efficient and environmentally friendly technology. On the other hand, assisted technologies are extensively reported since the cell disruption, and ASX extraction can be carried out in a single step. Because a high-purity product is required in pharmaceuticals and nutraceutical applications, the use of chromatography is necessary for the downstream process. Traditionally liquid-solid chromatography techniques are applied; however, the recent emergence of liquid-liquid chromatography like high-speed countercurrent chromatography (HSCCC) coupled with liquid-solid chromatography allows high productivity and purity up to 99% of ASX. Additionally, the use of SC-CO2, coupled with two-dimensional chromatography, is very promising. Finally, the purified ASX needs to be formulated to ensure its stability and bioavailability; thus, encapsulation is widely employed. In this review, we focus on the processes of cell recovery, cell disruption, drying, extraction, purification, and formulation of ASX mainly produced in Haematococcus pluvialis, Phaffia rhodozyma, and Paracoccus carotinifaciens. We discuss the current technologies that are being developed to make downstream operations more efficient and competitive in the biotechnological production process of this carotenoid.
Collapse
|
30
|
Honda M, Ichihashi K, Takada W, Goto M. Production of ( Z)-Lycopene-Rich Tomato Concentrate: A Natural Catalyst-Utilized and Oil-Based Study for Practical Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11273-11281. [PMID: 32929966 DOI: 10.1021/acs.jafc.0c04892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since lycopene Z-isomers exhibit greater bioavailability and biological activity than the naturally occurring all-E-isomer, efficient manufacturing methods for (Z)-lycopene-rich materials are urgently needed. Herein, a method was developed for Z-isomerization of (all-E)-lycopene in tomato oleoresin using heat treatment and a natural catalyst, viz. allyl isothiocyanate (AITC). For practical application of this isomerization technology, no organic solvents were used, and instead, oils and fats were used as the reaction medium. The Z-isomerization of (all-E)-lycopene was promoted by heating (>120 °C) even when oil and fat media were used. Allyl isothiocyanate enhanced thermal Z-isomerization and improved the (5Z)-lycopene content, which shows higher biological activity compared to the other Z-isomers. The thermal isomerization efficiency with AITC was further improved by using certain vegetable oils such as argan and olive oils. In addition, the storage stability of (Z)-lycopene-rich tomato concentrates dispersed in olive oil was evaluated. The total Z-isomer ratio and lycopene concentration decreased with longer storage periods, and it was revealed that (5Z)-lycopene showed excellent storage stability among the mono-Z-isomers.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Kohei Ichihashi
- Innovation Division, Kagome Company, Limited, Nishitomiyama, Nasushiobara 329-2762, Japan
| | - Wataru Takada
- Innovation Division, Kagome Company, Limited, Nishitomiyama, Nasushiobara 329-2762, Japan
| | - Motonobu Goto
- Department of Materials Process Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
31
|
Possibility of Using Astaxanthin-Rich Dried Cell Powder from Paracoccus carotinifaciens to Improve Egg Yolk Pigmentation of Laying Hens. Symmetry (Basel) 2020. [DOI: 10.3390/sym12060923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The study investigated egg quality aspects such as astaxanthin concentration, E/Z-isomer ratio, and yolk color in laying hens fed with astaxanthin-containing diets. Dried Paracoccus carotinifaciens cell powder (Panaferd-AX) and fine cell powder (Panaferd-P) were used as sources of astaxanthin, with average particle diameters of approximately 100 μm and 10 μm, respectively. Paracoccus carotinifaciens contains valuable rare carotenoids such as adonirubin and adonixanthin, and thus the concentrations of these carotenoids in egg yolk were also evaluated. The E/Z-isomer ratios of the egg yolk carotenoids were determined by normal-phase high-performance liquid chromatography (HPLC) with an improved solvent system. Feeding diets containing P. carotinifaciens resulted in increased concentrations of astaxanthin, adonirubin, and adonixanthin in egg yolk, as well as a marked increase in the yolk color fan score; values associated with the Panaferd-P-containing diet were higher than those associated with the Panaferd-AX-containing diet. For example, the astaxanthin concentration in egg yolks of hens fed with the Panaferd-AX- and Panaferd-P-containing diets for 21 days were 1.21 μg/g and 1.85 μg/g, respectively. This indicates that the pulverization treatment of the P. carotinifaciens powder increased the efficiency of carotenoid accumulation in the egg yolk. Moreover, more than 95% of astaxanthin in P. carotinifaciens was present as the all-E-isomer. However, approximately 25% of astaxanthin in egg yolk was present as the Z-isomers. In recent years, astaxanthin Z-isomers have attracted substantial attention as they exhibit a greater bioavailability and bioactivity than the all-E-isomer. These data are important not only for understanding egg yolk pigmentation but also for improving the nutritional value of hens’ egg yolk through the addition of P. carotinifaciens to their diet.
Collapse
|
32
|
Ashraf W, Latif A, Lianfu Z, Jian Z, Chenqiang W, Rehman A, Hussain A, Siddiquy M, Karim A. Technological Advancement in the Processing of Lycopene: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1749653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Anam Latif
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zhang Lianfu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhang Jian
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wang Chenqiang
- Technical Center, Guannong Fruit & Antler Co.,Ltd, Korla City, Xinjiang, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arif Hussain
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Mahbuba Siddiquy
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
33
|
One-Step Preparation of Z-Isomer-Rich β-Carotene Nanosuspensions Utilizing a Natural Catalyst, Allyl Isothiocyanate, via Supercritical CO2. Symmetry (Basel) 2020. [DOI: 10.3390/sym12050777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aims to improve the production efficiency of β-carotene suspensions using a naturally occurring Z-isomerization-accelerating catalyst, allyl isothiocyanate (AITC), via supercritical CO2 (SC-CO2). Namely, utilizing solubility improvement of β-carotene with the Z-isomerization by adding AITC in the SC-CO2-used dispersion process, the encapsulation efficiency of β-carotene was enhanced. The dispersion of β-carotene was conducted by ultrasonic treatment, and there was no involvement of organic solvents in the whole process. When 100 mg of AITC was added in the dispersion process, the encapsulation efficiency (β-carotene content in resulting suspension) was approximately 3.5 times higher than that without addition of the catalyst. Moreover, the Z-isomer ratio of β-carotene in the suspensions significantly improved, that is, it was approximately 12 times higher than the raw β-carotene material. Since Z-isomers of β-carotene are known to have higher antiatherosclerotic and antiatherogenic activities compared to the all-E-isomer, this one-step method not only efficiently produces β-carotene suspensions without organic solvents but also enhances the bioactivities of them.
Collapse
|
34
|
Honda M, Sowa T, Kawashima Y. Thermal‐ and Photo‐Induced Isomerization of All‐
E
‐ and
Z
‐Isomer‐Rich Xanthophylls: Astaxanthin and Its Structurally‐Related Xanthophylls, Adonirubin, and Adonixanthin. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Masaki Honda
- Faculty of Science & TechnologyMeijo University Shiogamaguchi Tempaku‐ku Nagoya 468‐8502 Japan
| | - Toshiyasu Sowa
- Biotechnology R&D GroupJXTG Nippon Oil & Energy Corporation Chidoricho Naka‐ku Yokohama 231‐0815 Japan
| | - Yuki Kawashima
- Biotechnology R&D GroupJXTG Nippon Oil & Energy Corporation Chidoricho Naka‐ku Yokohama 231‐0815 Japan
| |
Collapse
|
35
|
Honda M, Kageyama H, Hibino T, Ichihashi K, Takada W, Goto M. Isomerization of Commercially Important Carotenoids (Lycopene, β-Carotene, and Astaxanthin) by Natural Catalysts: Isothiocyanates and Polysulfides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3228-3237. [PMID: 32074447 DOI: 10.1021/acs.jafc.0c00316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effects of natural catalysts, isothiocyanates and polysulfides, on Z-isomerization and decomposition of (all-E)-carotenoids (lycopene, β-carotene, and astaxanthin) after heat treatment were investigated. When isothiocyanates were added to (all-E)-carotenoid solutions and heated, Z-isomerization and decomposition of carotenoids were enhanced and the degree differed depending on the isothiocyanate type. Interestingly, when polysulfides were applied in the same manner, in addition to promoting the Z-isomerization reaction, they markedly improved the thermal stability of carotenoids. Successively, we investigated the reaction characteristics of allyl isothiocyanate (AITC) and diallyl disulfide (DADS) using (all-E)-lycopene; that is, effects of the amount added, solvent used, and reaction temperature and time, as well as the combination use on Z-isomerization and decomposition of lycopene, were investigated. With increases in the amount added and reaction temperature and time, Z-isomerization of lycopene was promoted for both catalysts. The high-temperature treatment tests clearly showed that AITC induced thermal decomposition of lycopene, whereas DADS improved the lycopene stability. Moreover, the simultaneous use of AITC and DADS resulted in a synergetic effect on the Z-isomerization efficiency.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Hakuto Kageyama
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Takashi Hibino
- Faculty of Science & Technology, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| | - Kohei Ichihashi
- Innovation Division, Kagome Company, Ltd., Nishitomiyama, Nasushiobara 329-2762, Japan
| | - Wataru Takada
- Innovation Division, Kagome Company, Ltd., Nishitomiyama, Nasushiobara 329-2762, Japan
| | - Motonobu Goto
- Department of Materials Process Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|