1
|
Zhou X, Zhou X, Zhou L, Jia M, Xiong Y. Nanofillers in Novel Food Packaging Systems and Their Toxicity Issues. Foods 2024; 13:2014. [PMID: 38998521 PMCID: PMC11241462 DOI: 10.3390/foods13132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Environmental concerns about petroleum-based plastic packaging materials and the growing demand for food have inspired researchers and the food industry to develop food packaging with better food preservation and biodegradability. Nanocomposites consisting of nanofillers, and synthetic/biopolymers can be applied to improve the physiochemical and antimicrobial properties and sustainability of food packaging. Scope and approach: This review summarized the recent advances in nanofiller and their applications in improved food packaging systems (e.g., nanoclay, carbon nanotubes), active food packaging (e.g., silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs)), intelligent food packaging, and degradable packaging (e.g., titanium dioxide nanoparticles (e.g., TiO2 NPs)). Additionally, the migration processes and related assessment methods for nanofillers were considered, as well as the use of nanofillers to reduce migration. The potential cytotoxicity and ecotoxicity of nanofillers were also reviewed. Key findings: The incorporation of nanofillers may increase Young's modulus (YM) while decreasing the elongation at break (EAB) (y = -1.55x + 1.38, R2 = 0.128, r = -0.358, p = 0.018) and decreasing the water vapor (WVP) and oxygen permeability (OP) (y = 0.30x - 0.57, R2 = 0.039, r = 0.197, p = 0.065). Meanwhile, the addition of metal-based NPs could also extend the shelf-life of food products by lowering lipid oxidation by an average of approx. 350.74% and weight loss by approx. 28.39% during the longest storage period, and significantly increasing antibacterial efficacy against S. aureus compared to the neat polymer films (p = 0.034). Moreover, the migration process of nanofillers may be negligible but still requires further research. Additionally, the ecotoxicity of nanofillers is unclear, as the final distribution of nanocomposites in the environment is unknown. Conclusions: Nanotechnology helps to overcome the challenges associated with traditional packaging materials. Strong regulatory frameworks and safety standards are needed to ensure the appropriate use of nanocomposites. There is also a need to explore how to realize the economic and technical requirements for large-scale implementation of nanocomposite technologies.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Xiaoyu Zhou
- The Fine Arts Academy, Hunan Normal University, Changsha 410012, China;
| | - Longli Zhou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Ming Jia
- College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Xiong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Adeyemi JO, Fawole OA. Metal-Based Nanoparticles in Food Packaging and Coating Technologies: A Review. Biomolecules 2023; 13:1092. [PMID: 37509128 PMCID: PMC10377377 DOI: 10.3390/biom13071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Food security has continued to be a topic of interest in our world due to the increasing demand for food. Many technologies have been adopted to enhance food supply and narrow the demand gap. Thus, the attempt to use nanotechnology to improve food security and increase supply has emerged due to the severe shortcomings of conventional technologies, which have made them insufficient to cater to the continuous demand for food products. Hence, nanoparticles have been identified to play a major role in areas involving food production, protection, and shelf-life extensions. Specifically, metal-based nanoparticles have been singled out to play an important role in manufacturing materials with outstanding properties, which can help increase the shelf-life of different food materials. The physicochemical and biological properties of metal-based nanoparticles, such as the large surface area and antimicrobial properties, have made them suitable and adequately useful, not just as a regular packaging material but as a functional material upon incorporation into biopolymer matrices. These, amongst many other reasons, have led to their wide synthesis and applications, even though their methods of preparation and risk evaluation remain a topic of concern. This review, therefore, briefly explores the available synthetic methods, physicochemical properties, roles, and biological properties of metal-based nanoparticles for food packaging. Furthermore, the associated limitations, alongside quality and safety considerations, of these materials were summarily explored. Although this area of research continues to garner attention, this review showed that metal-based nanoparticles possess great potential to be a leading material for food packaging if the problem of migration and toxicity can be effectively modulated.
Collapse
Affiliation(s)
- Jerry O Adeyemi
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Olaniyi A Fawole
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
3
|
Kumar L, Deshmukh RK, Hakim L, Gaikwad KK. Halloysite Nanotube as a Functional Material for Active Food Packaging Application: A Review. FOOD BIOPROCESS TECH 2023:1-14. [PMID: 37363381 PMCID: PMC10151217 DOI: 10.1007/s11947-023-03092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Halloysite nanotubes (HNTs) are naturally occurring nanomaterials with a tubular shape and high aspect ratio, a promising functional additive for active food packaging applications. HNTs have been shown to possess unique properties such as high surface area, thermal stability, and biocompatibility, making them attractive for active food packaging materials. This review summarizes recent research on the use of HNTs as functional additives in active food packaging applications, including antimicrobial packaging, ethylene scavenging packaging, moisture, and gas barrier packaging. The potential benefits and challenges associated with the incorporation of HNTs into food packaging materials are discussed. The various modification methods, such as the physical, chemical, biological, and electrostatic methods, along with their impact on the properties of HNTs, are discussed. The advantages and challenges associated with each modification approach are also evaluated. Overall, the modification of HNTs has opened new possibilities for the development of advanced packaging materials with improved performance for various functional food packaging materials with enhanced properties and extended shelf life.
Collapse
Affiliation(s)
- Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Lokman Hakim
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| |
Collapse
|
4
|
Singh D, Gurjar BR. Recent innovation and impacts of nano-based technologies for wastewater treatment on humans: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:357. [PMID: 36732372 DOI: 10.1007/s10661-022-10790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
Sustainable wastewater management requires environment-friendly, efficient, and cost-effective methods of water treatment. The ever-growing list of emerging contaminants in municipal wastewater requires advanced, efficient, and cost-effective techniques for its treatment to combat the increasing water demand. The nano-based technologies hold great potential in improving water treatment efficiency and augmenting the water supply. However, the environmental effects of these technologies are still questionable among the public and scientific community. The present review discusses risks to human health due to the use of nano-based technology for the removal of emerging contaminants in water. The discussion will be about the impacts of these technologies on humans. Recommendations about safe and environmentally friendly options for nano-based technology for water treatment have been included. Safest options of nano-based technologies for water treatment and steps to minimize the risk associated with them have also been incorporated in this article. Since all biological systems are different, separate risk analyses should be performed at the environmentally relevant concentration for different durations. There is little/no information on the quantitative impact on humans and requires more understanding. The quantitative measurement of the cellular uptake of nanoparticles is usually difficult. We hope this article will serve its purpose for water researchers, medical researchers, environmentalists, policymakers, and the government.
Collapse
Affiliation(s)
- Divya Singh
- Department of Civil Engineering, IIT Roorkee, Roorkee, India.
| | | |
Collapse
|
5
|
Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Application of Nanomicelles in Enhancing Bioavailability and Biological Efficacy of Bioactive Nutrients. Polymers (Basel) 2022; 14:polym14163278. [PMID: 36015535 PMCID: PMC9415603 DOI: 10.3390/polym14163278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nutraceuticals provide many biological benefits besides their basic nutritional value. However, their biological efficacies are often limited by poor absorption and low bioavailability. Nanomaterials have received much attention as potential delivery systems of nutrients and phytonutrients for multiple applications. Nanomicelles are nanosized colloidal structures with a hydrophobic core and hydrophilic shell. Due to their unique characteristics, they have shown great perspectives in food and nutraceutical science. In this review, we discussed the unique properties of nanomicelles. We also emphasized the latest advances on the design of different nanomicelles for efficient delivery and improved bioavailability of various nutrients. The role of nanomicelles in the efficacy improvement of bioactive components from nutraceutical and health foods has been included. Importantly, the safety concerns on nano-processed food products were highlighted.
Collapse
|
7
|
Rodrigues Arruda T, Campos Bernardes P, Robledo Fialho e Moraes A, de Fátima Ferreira Soares N. Natural bioactives in perspective: The future of active packaging based on essential oils and plant extracts themselves and those complexed by cyclodextrins. Food Res Int 2022; 156:111160. [DOI: 10.1016/j.foodres.2022.111160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
8
|
Onyeaka H, Passaretti P, Miri T, Al-Sharify ZT. The safety of nanomaterials in food production and packaging. Curr Res Food Sci 2022; 5:763-774. [PMID: 35520272 PMCID: PMC9062443 DOI: 10.1016/j.crfs.2022.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Nanotechnology involves developing, characterising, and applying structures ranging in size from 1 to 100 nm. As a key advanced technology, it has contributed to a substantial impact across engineering, medicine, agriculture and food. With regards to their application in food, nanomaterials posses the ability to lead the quantitative and qualitative development of high-quality, healthier, and safer foods by outperforming traditional food processing technologies for increasing shelf life and preventing contaminations. Although rapid progress has been made in nanotechnology in food products, the toxicity of nanoparticles and nanomaterials is not very well known. As a result, nanomaterials are potentially toxic, therefore, considering the constantly increasing employment in food science, they need to be further characterised, and their use must be better regulated. We may face a crisis of nanotoxicity if the molecular mechanisms by which nanoparticles and nanomaterials interact with food and within living organisms is not fully understood. Food safety can be guaranteed only if we are thoroughly aware of nanomaterial properties and potential toxicity. Therefore, it is urgently necessary to have in the food sector a regulatory system capable of managing nanofood risks and nanotechnology, considering the health effects of food processing techniques based on nanotechnology. This present review discusses the impact and role nanotechnology play in food science. The specific application of Nanomaterials in food science, their advantages and disadvantages, the potential risk for human health and the analysis to detect nanocomponents are also highlighted.
Collapse
Affiliation(s)
- Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, B15 2TT, Edgbaston, UK
| | - Paolo Passaretti
- School of Chemical Engineering, University of Birmingham, B15 2TT, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, B15 2TT, Edgbaston, UK
| | - Zainab T Al-Sharify
- Department of Environmental Engineering, College of Engineering, University of Al-Mustansiriya, P.O. Box 14150, Bab-al-Mu'adhem, Baghdad, Iraq
| |
Collapse
|
9
|
Gedarawatte ST, Ravensdale JT, Johns ML, Li M, Al-Salami H, Dykes GA, Coorey R. Evaluation of the water-holding and anti-spoilage effect of a bacterial cellulose nanocrystal coating for the storage of vacuum-packaged beef. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Idamokoro EM, Hosu YS. Global Research Trends on the Use of Nanotechnology to Boost Meat Production: A Scientometric Analysis. Front Res Metr Anal 2022; 6:793853. [PMID: 35098014 PMCID: PMC8792895 DOI: 10.3389/frma.2021.793853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Meat production plays a vital socioeconomic role for sustainable development and for promoting food security in most countries. However, not much is known about research agendas done globally and the advancement of knowledge-generating networks in this area of study. The present study aims to reveal and analyze scientific research outputs on meat production linked with recent nanotechnology research work done till date. A compilation of research advancement and development within the sphere was realized through a scientometric study to comprehend the trend of research outputs, scientific impacts, authors' involvement, collaboration networks, and the advancement of knowledge gaps for future research endeavors on the current subject matter. Scholarly published articles were retrieved from the web of science (WOS) and Scopus databases from 1985 to 2020 and they were merged together using bibliometric package in R studio. All duplicated articles (438) from both data bases were excluded. A combination of terms (nano* AND (livestock* OR meat* OR beef* OR mutton* OR pork* OR chevon* OR chicken* OR turkey*)), and conversely analyzed for scientometric indices. A collection of 656 peer-reviewed, research articles were retrieved for the study period and authored by 2,133 researchers with a collaboration index of 3.31. The research outputs were highest in the year 2020 with total research outputs of 140 articles. The topmost three authors' keywords commonly used by authors were nanoparticles, meat, and chitosan with a respective frequency of 75, 62, and 57. China, Iran, and India ranked top in terms of meat production research outputs linked to nanotechnology and total citation with respective article productivity (total citations) of 160 (3,193), 111 (1,765), and 37 (552). Our findings revealed an increasing trend in research (with an annual growth rate of 25.18%) tending toward advancing meat production with the use of nanotechnology. Likewise, there is an increasing pointer to the fact that research work on nanotechnology and meat production has the prospect to influence positively, decision-making on research direction, and collaborations, hereby increasing the production of meat and its products in the future.
Collapse
Affiliation(s)
- Emrobowansan Monday Idamokoro
- Small-Scale Agribusiness and Rural Non-farm Enterprise, Niche Area, Walter Sisulu University, Mthatha, South Africa
- Department of Economics and Business Sciences, Faculty of Commerce and Administration, Walter Sisulu University, Mthatha, South Africa
- *Correspondence: Emrobowansan Monday Idamokoro ;
| | - Yiseyon Sunday Hosu
- Small-Scale Agribusiness and Rural Non-farm Enterprise, Niche Area, Walter Sisulu University, Mthatha, South Africa
- Department of Economics and Business Sciences, Faculty of Commerce and Administration, Walter Sisulu University, Mthatha, South Africa
| |
Collapse
|
11
|
Kitchen Waste Derived Porous Nanocarbon Spheres for Metal Free Degradation of Azo Dyes: An Environmental Friendly, Cost Effective Method. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
A review on recent technologies adopted by food industries and intervention of 2D-inorganic nanoparticles in food packaging applications. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03848-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Verma MK, Shakya S, Kumar P, Madhavi J, Murugaiyan J, Rao MVR. Trends in packaging material for food products: historical background, current scenario, and future prospects. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4069-4082. [PMID: 34538891 PMCID: PMC8405760 DOI: 10.1007/s13197-021-04964-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/26/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The commercial demand for food products and dietary supplements has increased drastically in the last few decades. The packed food products and nutritional supplements have made a profound impact on the modern human lifestyle. Since ancient times, storage and long-term use of food products remain a significant challenge for humans. There are different parameters for the evaluation of food products and dietary supplements broadly categorized as quality control and quality assurance. On an average million tons of food, materials get spoiled daily worldwide due to lack of storage and transportation point out packaging systems inequalities. To ensure the quality of packed food products and nutritional supplements among available measures, packaging remained an important event and had been refined from time to time to provide a standard. Over a period, the packaging industry has evolved using modern technology from the conventional methods of new generation packaging, including glass, wood, and paper to most new biodegradable materials. The ancient pattern of packaging; manual packaging has been taken over by an automated system of packing, resulting in enhanced output with minimal chance of damage to valuable products for humanity. The article will emphasize new insights into current packaging system not only provide the quality of these products but also in aiming new heights beyond conventional technologies and consumer opinions. In the present study, we have given more emphasis on novel methods of packaging, the packaging materials, quality of packed products, and their impacts of food products on the environment.
Collapse
Affiliation(s)
- M. K. Verma
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522019 India
| | - S. Shakya
- Indian Institute of Technology, Indore, Madhya Pradesh India
| | - P. Kumar
- Avalon School of Medicine, Avalon University, Willemstad, Curaçao
| | - J. Madhavi
- Department of Microbiology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522019 India
| | - J. Murugaiyan
- Department of Biology/Biotechnology, SRM University Amravati, Guntur, Andhra Pradesh 522502 India
| | - M. V. R. Rao
- Apollo Institute of Medical Sciences and Research, Hyderabad, Telangana India
| |
Collapse
|
14
|
Wang J, Qu Y, Liu Z, Zhou H. Formation, Analytical Methods, Change Tendency, and Control Strategies of Biogenic Amines in Canned Aquatic Products: A Systematic Review. J Food Prot 2021; 84:2020-2036. [PMID: 34233360 DOI: 10.4315/jfp-21-120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Biogenic amines (BAs) are organic compounds with low molecular weight and can be used as indicators of the quality and safety of canned aquatic products during processing and storage. However, excess of these amines can cause foodborne poisoning. Therefore, the determination, analysis, and prevention of BAs are of great importance. This article focuses on the sources, formation, and pretreatment methods, as well as analytical techniques, change tendency, and control techniques of BAs, with the aim of promoting more appropriate analysis of canned aquatic products to provide a reference for the food industries. HIGHLIGHTS
Collapse
Affiliation(s)
- Jingyu Wang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 200120, People's Republic of China
| | - Yinghong Qu
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 200120, People's Republic of China
| | - Zhidong Liu
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affair, East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, People's Republic of China
| | - Huimin Zhou
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 200120, People's Republic of China
| |
Collapse
|
15
|
Taherimehr M, YousefniaPasha H, Tabatabaeekoloor R, Pesaranhajiabbas E. Trends and challenges of biopolymer-based nanocomposites in food packaging. Compr Rev Food Sci Food Saf 2021; 20:5321-5344. [PMID: 34611989 DOI: 10.1111/1541-4337.12832] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023]
Abstract
The ultimate goal of new food packaging technologies, in addition to maintaining the quality and safety of food for the consumer, is to consider environmental concerns and reduce its impacts. In this regard, one of the solutions is to use eco-friendly biopolymers instead of conventional petroleum-based polymers. However, the challenges of using biopolymers in the food packaging industry should be carefully evaluated, and techniques to eliminate or minimize their disadvantages should be investigated. Many studies have been conducted to improve the properties of biopolymer-based packaging materials to produce a favorable product for the food industry. This article reviews the structure of biopolymer-based materials and discusses the trends and challenges of using these materials in food packaging technologies with the focus on nanotechnology and based on recent studies.
Collapse
Affiliation(s)
- Masoumeh Taherimehr
- Department of Chemistry, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran
| | - Hassan YousefniaPasha
- Department of Agricultural Machinery Engineering, Faculty of Agriculture Engineering and Technology, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Reza Tabatabaeekoloor
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | |
Collapse
|
16
|
M. Rangaraj V, Rambabu K, Banat F, Mittal V. Natural antioxidants-based edible active food packaging: An overview of current advancements. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Tan C, Han F, Zhang S, Li P, Shang N. Novel Bio-Based Materials and Applications in Antimicrobial Food Packaging: Recent Advances and Future Trends. Int J Mol Sci 2021; 22:9663. [PMID: 34575828 PMCID: PMC8470619 DOI: 10.3390/ijms22189663] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 01/20/2023] Open
Abstract
Food microbial contamination not only poses the problems of food insecurity and economic loss, but also contributes to food waste, which is another global environmental problem. Therefore, effective packaging is a compelling obstacle for shielding food items from outside contaminants and maintaining its quality. Traditionally, food is packaged with plastic that is rarely recyclable, negatively impacting the environment. Bio-based materials have attracted widespread attention for food packaging applications since they are biodegradable, renewable, and have a low carbon footprint. They provide a great opportunity to reduce the extensive use of fossil fuels and develop food packaging materials with good properties, addressing environmental problems and contributing significantly to sustainable development. Presently, the developments in food chemistry, technology, and biotechnology have allowed us to fine-tune new methodologies useful for addressing major safety and environmental concerns regarding packaging materials. This review presents a comprehensive overview of the development and potential for application of new bio-based materials from different sources in antimicrobial food packaging, including carbohydrate (polysaccharide)-based materials, protein-based materials, lipid-based materials, antibacterial agents, and bio-based composites, which can solve the issues of both environmental impact and prevent foodborne pathogens and spoilage microorganisms. In addition, future trends are discussed, as well as the antimicrobial compounds incorporated in packaging materials such as nanoparticles (NPs), nanofillers (NFs), and bio-nanocomposites.
Collapse
Affiliation(s)
- Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shiqi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pinglan Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
18
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J Nanobiotechnology 2021; 19:256. [PMID: 34446005 PMCID: PMC8393480 DOI: 10.1186/s12951-021-00996-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/13/2021] [Indexed: 02/04/2023] Open
Abstract
Due to the global rise of the human population, one of the top-most challenges for poor and developing nations is to use the food produces safely and sustainably. In this regard, the storage of surplus food (and derived products) without loss of freshness, nutrient stability, shelf life, and their parallel efficient utilization will surely boost the food production sector. One of the best technologies that have emerged within the last twenty years with applications in the packaging of food and industrial materials is the use of green mode-based synthesized nanoparticles (NPs). These NPs are stable, advantageous as well as eco-friendly. Over the several years, numerous publications have confirmed that these NPs exert antibacterial, antioxidant, and antifungal activity against a plethora of pathogens. The storage in metal-based NPs (M-NPs) does not hamper the food properties and packaging efficiency. Additionally, these M-NPs help in the improvement of properties including freshness indicators, mechanical properties, antibacterial and water vapor permeability during food packaging. As a result, the nano-technological application facilitates a simple, alternate, interactive as well as reliable technology. It even provides positive feedback to food industries and packaging markets. Taken together, the current review paper is an attempt to highlight the M-NPs for prominent applications of antimicrobial properties, nanosensors, and food packaging of food items. Additionally, some comparative reports associated with M-NPs mechanism of action, risks, toxicity, and overall future perspectives have also been made.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia
| |
Collapse
|
19
|
Anvar AA, Ahari H, Ataee M. Antimicrobial Properties of Food Nanopackaging: A New Focus on Foodborne Pathogens. Front Microbiol 2021; 12:690706. [PMID: 34322104 PMCID: PMC8312271 DOI: 10.3389/fmicb.2021.690706] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Food products contaminated by foodborne pathogens (bacteria, parasites, and viruses) cause foodborne diseases. Today, great efforts are being allocated to the development of novel and effective agents against food pathogenic microorganisms. These efforts even might have a possible future effect in coronavirus disease 2019 (COVID-19) pandemic. Nanotechnology introduces a novel food packaging technology that creates and uses nanomaterials with novel physiochemical and antimicrobial properties. It could utilize preservatives and antimicrobials to extend the food shelf life within the package. Utilizing the antimicrobial nanomaterials into food packaging compounds typically involves incorporation of antimicrobial inorganic nanoparticles such as metals [Silver (Ag), Copper (Cu), Gold (Au)], and metal oxides [Titanium dioxide (TiO2), Silicon oxide (SiO2), Zinc oxide (ZnO)]. Alternatively, intelligent food packaging has been explored for recognition of spoilage and pathogenic microorganisms. This review paper focused on antimicrobial aspects of nanopackaging and presented an overview of antibacterial properties of inorganic nanoparticles. This article also provides information on food safety during COVID-19 pandemic.
Collapse
Affiliation(s)
- Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Ataee
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Study of Hematological Parameters and Morphometric Indices of Erythrocytes in Rats Exposed to Calcium Oxide Nanoparticles. Bull Exp Biol Med 2021; 170:665-668. [PMID: 33788109 DOI: 10.1007/s10517-021-05128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 10/21/2022]
Abstract
In female Wistar rats, we studied the effects of daily 20-day administration of intragastric suspension of nanosized calcium oxide on hematological indices (the counts of erythrocytes, leukocytes, platelets, hemoglobin, hematocrit, basophils, lymphocytes, monocytes, stab/segmented neutrophils, and the eosinophil-to-lymphocyte ratio) and morphometric parameters of erythrocytes (equivalent Feret's diameter, sphericity, aspect ratio, and convexity). The study revealed significantly (up to 3.1 times) decreased levels of hemoglobin, platelets, hematocrit, averaged content of hemoglobin in erythrocyte, and platelet volume relatively to the control values. The established morphometric parameters of blood erythrocytes attested to predominance of spherocytes, which can be regarded as systemic response of the body to calcium oxide nanoparticles fraught with possible deterioration of perfusion in microvasculature and hypoxia in the tissues.
Collapse
|
21
|
Patiño-Ruiz D, Meramo-Hurtado SI, Mehrvar M, Rehmann L, Quiñones-Bolaños E, González-Delgado ÁD, Herrera A. Environmental and Exergetic Analysis of Large-Scale Production of Citric Acid-Coated Magnetite Nanoparticles via Computer-Aided Process Engineering Tools. ACS OMEGA 2021; 6:3644-3658. [PMID: 33585745 PMCID: PMC7876683 DOI: 10.1021/acsomega.0c05184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Considering that functional magnetite (Fe3O4) nanoparticles with exceptional physicochemical properties can be highly applicable in different fields, scaling-up strategies are becoming important for their large-scale production. This study reports simulations of scaled-up production of citric acid-coated magnetite nanoparticles (Fe3O4-cit), aiming to evaluate the potential environmental impacts (PEIs) and the exergetic efficiency. The simulations were performed using the waste reduction algorithm and the Aspen Plus software. PEI and energy/exergy performance are calculated and quantified. The inlet and outlet streams are estimated by expanding the mass and energy flow, setting operating parameters of processing units, and defining a thermodynamic model for properties estimation. The high environmental performance of the production process is attributed to the low outlet rate of PEI compared to the inlet rate. The product streams generate low PEI contribution (-3.2 × 103 PEI/y) because of the generation of environmentally friendlier substances. The highest results in human toxicity potential (3.2 × 103 PEI/y), terrestrial toxicity potential (3.2 × 103 PEI/y), and photochemical oxidation potential (2.6 × 104 PEI/y) are attributed to the ethanol within the waste streams. The energy source contribution is considerably low with 27 PEI/y in the acidification potential ascribed to the elevated levels of hydrogen ions into the atmosphere. The global exergy of 1.38% is attributed to the high irreversibilities (1.7 × 105 MJ/h) in the separation stage, especially, to the centrifuge CF-2 (5.07%). The sensitivity analysis establishes that the global exergy efficiency increases when the performance of the centrifuge CF-2 is improved, suggesting to address enhancements toward low disposal of ethanol in the wastewater.
Collapse
Affiliation(s)
- David
Alfonso Patiño-Ruiz
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| | - Samir Isaac Meramo-Hurtado
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Industrial, Grupo de Investigación de
Productividad y Gestión Empresarial, Fundación Universitaria Colombo Internacional, 130001 Cartagena, Colombia
| | - Mehrab Mehrvar
- Department
of Chemical Engineering, Ryerson University, M5B 2K3 Toronto, Ontario, Canada
| | - Lars Rehmann
- Department
of Chemical and Biochemical Engineering, University of Western Ontario, N6A 3K7 London, Ontario, Canada
| | - Edgar Quiñones-Bolaños
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Civil, Grupo de Investigación de Modelación
Ambiental, Universidad de Cartagena, 130001 Cartagena, Colombia
| | - Ángel Dario González-Delgado
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| | - Adriana Herrera
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| |
Collapse
|
22
|
Czyżowska A, Barbasz A. Cytotoxicity of zinc oxide nanoparticles to innate and adaptive human immune cells. J Appl Toxicol 2020; 41:1425-1437. [PMID: 33368402 DOI: 10.1002/jat.4133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 11/06/2022]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are widely used in almost every area of life. Therefore, exposure to them is unavoidable, which makes it necessary to assess their safety for humans. This paper aims to determine toxicity of ZnO-NPs of two diameters toward human immune cells responsible for: innate response (U-937 and HL-60) and acquired response (COLO-720L and HUT-78). Mitochondrial activity, membrane integrity, degree of cellular lipid oxidation, induction of inflammation, and activation of the apoptosis pathway were evaluated to determine differences in cellular response to the tested nanoparticles. ZnO-NPs with a diameter of 100 and 130 nm cause significant cell mortality at 25 and 12 mg/L, respectively. Mitochondrial damage leads to the activation of the caspase cascade and, consequently, to cell apoptosis. ZnO-NPs also cause peroxidation of membrane lipids. Due to the photocatalytic properties of ZnO-NPs, the effect of ultraviolet (UV) irradiation on the degree of their toxicity was also investigated. However, UV irradiation enhances the toxic effect of nanoparticles mainly by weakening the cell's defense capabilities. ZnO-NPs are cytotoxic to human immune system, and they may cause both long-term and short-term negative effects.
Collapse
Affiliation(s)
- Agnieszka Czyżowska
- Department of Biochemistry and Biophysics, Institute of Biology, Pedagogical University of Cracow, Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, Pedagogical University of Cracow, Kraków, Poland
| |
Collapse
|
23
|
Czyżowska A, Dyba B, Rudolphi-Szydło E, Barbasz A. Structural and biochemical modifications of model and native membranes of human immune cells in response to the action of zinc oxide nanoparticles. J Appl Toxicol 2020; 41:458-469. [PMID: 33103261 DOI: 10.1002/jat.4057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
Abstract
The development of nanotechnology has led to the increased production of zinc oxide nanoparticles (ZnO-NPs) and their application in a wide variety of everyday products. It creates the need for a full assessment of their safety for humans. The aim of the study was to assess the toxic effects of ZnO-NPs on model human cells of the immune system: U-937, HL-60, HUT-78, and COLO-720L. Particular attention was paid to the direct interaction of the nanoparticles with membrane lipids and the role of zinc ions in the mechanism of their toxicity. Cell viability, lipid peroxidation, cell membrane integrity, and the amount of zinc ions released from nanoparticles were tested. Disruption in cell metabolism was noted for ZnO-NPs concentrations from 6.25 mg/L. Contact with ZnO-NPs caused lipid peroxidation of all cells and correlated with membrane disruption of HL-60, HUT-78, and COLO-720L cells. Model monolayers (Langmuir technique) were used to assess the interaction of the nanoparticles with the studied lipids. Physicochemical parameters, such as the area per molecule at maximal layer compression, the pressure at which the monolayer collapses, and the static compression modulus, were calculated. The models of the HL-60 and U-937 cell membranes under ZnO-NPs treatment reacted in a different way. It has also been shown that Zn2+ are not the main causative factor of ZnO-NPs toxicity. Investigating the early stages of mechanism of nanoparticles toxicity will allow for a more complete risk assessment and development of methods for a safer synthesis of engineering nanomaterials.
Collapse
Affiliation(s)
- Agnieszka Czyżowska
- Department of Biochemistry and Biophysics, Institute of Biology, Pedagogical University of Cracow, Kraków, Poland
| | - Barbara Dyba
- Department of Biochemistry and Biophysics, Institute of Biology, Pedagogical University of Cracow, Kraków, Poland
| | - Elżbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, Pedagogical University of Cracow, Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, Pedagogical University of Cracow, Kraków, Poland
| |
Collapse
|
24
|
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020; 9:E1438. [PMID: 33050581 PMCID: PMC7601795 DOI: 10.3390/foods9101438] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package's antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Durmuş Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31030 Antakya Hatay, Turkey;
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
25
|
Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
|
27
|
Shafiq M, Anjum S, Hano C, Anjum I, Abbasi BH. An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry. Foods 2020; 9:E148. [PMID: 32028580 PMCID: PMC7074443 DOI: 10.3390/foods9020148] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 12/31/2022] Open
Abstract
The efficient progress in nanotechnology has transformed many aspects of food science and the food industry with enhanced investment and market share. Recent advances in nanomaterials and nanodevices such as nanosensors, nano-emulsions, nanopesticides or nanocapsules are intended to bring about innovative applications in the food industry. In this review, the current applications of nanotechnology for packaging, processing, and the enhancement of the nutritional value and shelf life of foods are targeted. In addition, the functionality and applicability of food-related nanotechnologies are also highlighted and critically discussed in order to provide an insight into the development and evaluation of the safety of nanotechnology in the food industry.
Collapse
Affiliation(s)
- Mehwish Shafiq
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France;
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
28
|
The emerging role of metallic nanoparticles in food. Appl Microbiol Biotechnol 2020; 104:2373-2383. [PMID: 31989225 DOI: 10.1007/s00253-020-10372-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Nanotechnology is widely used in biomedical applications, engineering sciences, and food technology. The application of nanocompounds play a pivotal role in food protection, preservation, and increasing its shelf life. The changing lifestyle, use of pesticides, and biological and/or chemical contaminants present in food directly affect its quality. Metallic nanoparticles (MNPs) are useful to develop products with antimicrobial activity and with the potential to improve shelf life of food and food products. Due to the prevention of microbial growth, MNPs have attracted the attention of researchers. Biopolymers/polymers can be easily combined with different MNPs which act as a vehicle not only for one type of particles but also as a hybrid system that allows a combination of natural compounds with metallic nanocompounds. However, there is a need for risk evaluation to use nanoparticles in food packaging. In this review, we aim to discuss how MNPs incorporated into polymers/biopolymers matrices can be used for food preservation, considering the quality and safety, which are desirable in food technology.
Collapse
|
29
|
Barroso da Silva FL, Carloni P, Cheung D, Cottone G, Donnini S, Foegeding EA, Gulzar M, Jacquier JC, Lobaskin V, MacKernan D, Mohammad Hosseini Naveh Z, Radhakrishnan R, Santiso EE. Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from Experiments and Computer Simulations. Annu Rev Food Sci Technol 2020; 11:365-387. [PMID: 31951485 DOI: 10.1146/annurev-food-032519-051640] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structure and interactions of proteins play a critical role in determining the quality attributes of many foods, beverages, and pharmaceutical products. Incorporating a multiscale understanding of the structure-function relationships of proteins can provide greater insight into, and control of, the relevant processes at play. Combining data from experimental measurements, human sensory panels, and computer simulations through machine learning allows the construction of statistical models relating nanoscale properties of proteins to the physicochemical properties, physiological outcomes, and tastes of foods. This review highlights several examples of advanced computer simulations at molecular, mesoscale, and multiscale levels that shed light on the mechanisms at play in foods, thereby facilitating their control. It includes a practical simulation toolbox for those new to in silico modeling.
Collapse
Affiliation(s)
- Fernando Luís Barroso da Silva
- School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, BR-14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Paolo Carloni
- Institute for Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - David Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Grazia Cottone
- Department of Physics and Chemistry, University of Palermo, 90128 Palermo, Italy
| | - Serena Donnini
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - E Allen Foegeding
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Muhammad Gulzar
- UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | | | | | - Donal MacKernan
- UCD School of Physics, University College Dublin, Dublin 4, Ireland
| | | | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Erik E Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
30
|
Bimetallic and Trimetallic Nanoparticles for Active Food Packaging Applications: A Review. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02370-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Abstract
PurposeNanotechnology as an emerging area if adequately harnessed could revolutionise food packaging and food processing industry worldwide. Although several benefits of nano-materials or particles in food packaging have been suggested, potential risks and health hazards of nano-materials or particles are possible as a result of migration of their particles into food materials. The purpose of this review therefore assessed nanotechnology and its applications in food packaging, consumer acceptability of nano-packaged foods and potential hazards and safety issues in nano-packaged foods.Design/methodology/approachThis review takes a critical assessment of previous literature on nanotechnology and its impact on food packaging, consumer health and safety.FindingsApplications of nanotechnology in food packaging could be divided into three main divisions: improved packaging, which involves mixing nano-materials into polymers matrix to improve temperature, humidity and gas barrier resistance of the packaging materials. Active packaging deals with direct interaction between nano-materials used for packaging and the food to protect it as anti-microbial or oxygen or ultra violet scavengers. Smart packaging could be used to sense biochemical or microbial changes in foods, as well as a tracker for food safety, to prevent food counterfeit and adulteration. The review also discussed bio-based food packaging which is biodegradable. Bio-based packaging could serve as veritable alternative to conventional packaging which is non-degradable plastic polymers which are not environmental friendly and could pose a threat to the environment. However, bio-based packaging could reduce material waste, elongate shelf life and enhance food quality. However, several challenges are envisaged in the use of nano-materials in food packaging due to knowledge gaps, possible interaction with food products and possible health risks that could result from the nano-materials used for food packaging.Originality/valueThe increase in growth and utilisation of nanotechnology signifies wide use of nano-materials especially in the food sector with arrays of potential benefits in the areas of food safety and quality, micronutrients and bioactive ingredients delivery, food processing and in packaging Active studies are being carried out to develop innovative packages such as smart, intelligent and active food packaging to enhance effective and efficient packaging, as well as balanced environmental issues. This review looks at the future of nano-packaged foodsvis-à-visthe roles played by stakeholders such as governments, regulatory agencies and manufacturers in looking into consumer health and safety issues related to the application of nano-materials in food packaging.
Collapse
|
32
|
Wang PL, Xie LH, Joseph EA, Li JR, Su XO, Zhou HC. Metal-Organic Frameworks for Food Safety. Chem Rev 2019; 119:10638-10690. [PMID: 31361477 DOI: 10.1021/acs.chemrev.9b00257] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Food safety is a prevalent concern around the world. As such, detection, removal, and control of risks and hazardous substances present from harvest to consumption will always be necessary. Metal-organic frameworks (MOFs), a class of functional materials, possess unique physical and chemical properties, demonstrating promise in food safety applications. In this review, the synthesis and porosity of MOFs are first introduced by some representative examples that pertain to the field of food safety. Following that, the application of MOFs and MOF-based materials in food safety monitoring, food processing, covering preservation, sanitation, and packaging is overviewed. Future perspectives, as well as potential opportunities and challenges faced by MOFs in this field will also be discussed. This review aims to promote the development and progress of MOF chemistry and application research in the field of food safety, potentially leading to novel solutions.
Collapse
Affiliation(s)
- Pei-Long Wang
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China.,Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Elizabeth A Joseph
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Xiao-Ou Su
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| |
Collapse
|
33
|
Pavlović M, Ivanović S, Pavlović I, Rokvić N, Radosavljević V, Vasilev D. Histamine levels in fish samples collected from Serbian market in 2018. FOOD AND FEED RESEARCH 2019. [DOI: 10.5937/ffr1901037p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
34
|
Saratale RG, Karuppusamy I, Saratale GD, Pugazhendhi A, Kumar G, Park Y, Ghodake GS, Bharagava RN, Banu JR, Shin HS. A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids Surf B Biointerfaces 2018; 170:20-35. [DOI: 10.1016/j.colsurfb.2018.05.045] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/18/2023]
|
35
|
Ceylan Z, Unal Sengor GF, Basahel A, Yilmaz MT. Determination of quality parameters of gilthead sea bream (
Sparus aurata
) fillets coated with electrospun nanofibers. J Food Saf 2018. [DOI: 10.1111/jfs.12518] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zafer Ceylan
- Faculty of Fisheries, Department of Seafood Processing TechnologyVan Yüzüncü Yıl University Van Turkey
| | - Gulgun F. Unal Sengor
- Faculty of Aquatic Sciences, Department of Seafood Processing TechnologyIstanbul University İstanbul Turkey
| | - Abdulrahman Basahel
- King Abdulaziz University, Engineering Faculty, Department of Industrial Engineering, Jeddah 21589, Saudi Arabia
| | - Mustafa Tahsin Yilmaz
- King Abdulaziz University, Engineering Faculty, Department of Industrial Engineering, Jeddah 21589, Saudi Arabia
- Chemical and Metallurgical Engineering Faculty, Department of Food EngineeringYıldız Technical University İstanbul Turkey
| |
Collapse
|
36
|
Sharma C, Dhiman R, Rokana N, Panwar H. Nanotechnology: An Untapped Resource for Food Packaging. Front Microbiol 2017; 8:1735. [PMID: 28955314 PMCID: PMC5601076 DOI: 10.3389/fmicb.2017.01735] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 08/25/2017] [Indexed: 11/24/2022] Open
Abstract
Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.
Collapse
Affiliation(s)
- Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Romika Dhiman
- Department of Microbiology, D.A.V. College for GirlsYamuna Nagar, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| |
Collapse
|
37
|
Enhancing the Durability of Calcareous Stone Monuments of Ancient Egypt Using CaCO3 Nanoparticles. SUSTAINABILITY 2017. [DOI: 10.3390/su9081392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Ceylan Z, Sengor GFU, Yilmaz MT. A Novel Approach to Limit Chemical Deterioration of Gilthead Sea Bream (Sparus aurata) Fillets: Coating with Electrospun Nanofibers as Characterized by Molecular, Thermal, and Microstructural Properties. J Food Sci 2017; 82:1163-1170. [DOI: 10.1111/1750-3841.13688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Zafer Ceylan
- Dept. of Seafood Processing Technology; Istanbul Univ., Faculty of Fisheries; İstanbul Turkey
| | - Gulgun F. Unal Sengor
- Dept. of Seafood Processing Technology; Istanbul Univ., Faculty of Fisheries; İstanbul Turkey
| | - Mustafa Tahsin Yilmaz
- Dept. of Food Engineering; Yıldız Technical Univ., Chemical and Metallurgical Engineering Faculty; 34210 İstanbul Turkey
| |
Collapse
|