1
|
Hossain MA, Plautz-Ratkovski G, DeGraff J, Dickens TJ, Liang Z, Hill C, Jones J, Ramakrishnan S. Tuning Printability and Adhesion of a Silver-Based Ink for High-Performance Strain Gauges Manufactured via Direct Ink Writing. ACS OMEGA 2025; 10:1429-1439. [PMID: 39829458 PMCID: PMC11739956 DOI: 10.1021/acsomega.4c09042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
Structural health monitoring (SHM) systems are critical in ensuring the safety of space exploration, as spacecraft and structures can experience detrimental stresses and strains. By deploying conventional strain gauges, SHM systems can promptly detect and assess localized strain behaviors in structures; however, these strain gauges are limited by low sensitivity (gauge factor, GF ∼ 2). This study introduces an approach to printing strain gauges with high sensitivity, while also considering stretchability and long-term durability. Through direct ink writing (DIW), these devices can be produced by the extrusion of a wide range of viscoelastic inks. The viscoelastic properties of the ink can be tuned with the help of additives to aid in the processing for a desired application. In this work, a series of inks were prepared from commercially available CB028 (silver ink used in screen printing) by adding a combination of ethyl cellulose (EC) and polyolefin (PO) (additives). With the goal of optimizing the long-term sensing response of the printed strain gauges, a systematic study of the rheological properties (frequency sweep analyses, yield stress, viscoelastic recovery, viscosity measurements, and tack tests) was conducted. A viscoelastic window approach was used to predict the optimal properties of the formulated inks. Using this approach, it was determined that 90% CB028, 5% EC, and 5% PO provided enhanced elastic properties, adhesion, and peel strength compared to commercial CB028. The formulated ink has enhanced tack (129 mN/mm2) and peel strength (23.3 kJ/mm2), which led to a viscoelastic window ideal for direct ink writing of the strain gauges. Printed structures were tested in a three-point bending configuration to record the piezoresistive responses that were correlated to the formulated rheological properties and underlying microstructure. The results revealed gauge factors as high as 106 with stable sensing responses for more than 300 cycles of strain. Scanning electron microscopy analysis also revealed minimal crack formation, which resulted in a stable response. The research demonstrated the feasibility of developing high-performance inks for potential printed strain gauge applications.
Collapse
Affiliation(s)
- Md Alamgir Hossain
- Department
of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Gabriela Plautz-Ratkovski
- Department
of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Joshua DeGraff
- High
Performance Materials Institute, Department of Industrial and Manufacturing
Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Tarik J. Dickens
- High
Performance Materials Institute, Department of Industrial and Manufacturing
Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Zhiyong Liang
- High
Performance Materials Institute, Department of Industrial and Manufacturing
Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Curtis Hill
- Jacobs
Space Exploration Group, NASA, Marshall Space Flight Center, Huntsville, Alabama 35812, United States
| | - Jennifer Jones
- NASA
Marshall Space Flight Center, Huntsville, Alabama 35812, United States
| | - Subramanian Ramakrishnan
- Department
of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| |
Collapse
|
2
|
Ma Y, Ivancic RJS, Obrzut J, Audus DJ, Prabhu VM. Effect of cosolvents on the phase separation of polyelectrolyte complexes. SOFT MATTER 2024; 20:7512-7520. [PMID: 39268689 DOI: 10.1039/d4sm00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Evidence is shown that cosolvent mixtures control the coacervation of mixtures of oppositely charged polyelectrolytes. Binary and ternary solvent mixtures lead to non-monotonic solubility as a function of the average dielectric constants of the solvent mixtures. These data are rationalized by considering both electrostatic-driven phase separation and solvophobic-driven phase separation using group contribution effects on solubility parameters. These estimates are introduced into an effective Flory-Huggins interaction parameter within the framework of Voorn-Overbeek theory with variable dielectric constants and temperature dependences. Despite its simplicity, the model recovers salient experimental observations not only on their coacervate stabilities, but also on their lower critical solution temperature behaviors. These observations highlight the importance of weak van der Waals interactions in determining the phase behaviors of polyelectrolyte complexes relative to electrostatic correlations.
Collapse
Affiliation(s)
- Yuanchi Ma
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China.
| | - Robert J S Ivancic
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA.
| | - Jan Obrzut
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA.
| | - Debra J Audus
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA.
| | - Vivek M Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA.
| |
Collapse
|
3
|
Tan YL, Wong YJ, Ong NWX, Leow Y, Wong JHM, Boo YJ, Goh R, Loh XJ. Adhesion Evolution: Designing Smart Polymeric Adhesive Systems with On-Demand Reversible Switchability. ACS NANO 2024; 18:24682-24704. [PMID: 39185924 DOI: 10.1021/acsnano.4c05598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Smart polymeric switchable adhesives represent a rapidly emerging class of advanced materials, exhibiting the ability to undergo on-demand transitioning between "On" and "Off" adhesion states. By selectively tuning external stimuli triggers (including temperature, light, electricity, magnetism, and chemical agents), we can engineer these materials to undergo reversible changes in their bonding capabilities. The strategic design selection of stimuli is a pivotal factor in the design of switchable adhesive systems. This review outlines recent advancements in the field of smart switchable polymeric adhesives over the past decade with a focus on the selection of stimulus triggers. These systems are further categorized into one of four adhesion switching mechanisms upon initiation by a specific stimuli-trigger: (i) interfacial adhesion, (ii) stiffness, (iii) contact area, or (iv) suction-based switching. Evaluation of adhesion switching performance across systems is primarily made based on three key metrics: (i) maximum adhesion strength, (ii) switch ratio, and (iii) switch time. Different stimuli and mechanisms offer distinct advantages and limitations, influencing the performance characteristics and applicability of these materials across domains such as detachable biomedical devices, robotic grippers, and climbing robots. This review thus offers a perspective on the present advancements and challenges in this emerging field, along with insights into future directions.
Collapse
Affiliation(s)
- Yee Lin Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yi Jing Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Nicholas Wei Xun Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| |
Collapse
|
4
|
Berikbol N, Klivenko A, Markin V, Orazzhanova L, Yelemessova G, Kassymova Z. Development of Interpolyelectrolyte Complex Based on Chitosan and Carboxymethylcellulose for Stabilizing Sandy Soil and Stimulating Vegetation of Scots Pine ( Pinus sylvestris L.). Polymers (Basel) 2024; 16:2373. [PMID: 39204592 PMCID: PMC11359870 DOI: 10.3390/polym16162373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
The issue of water and wind erosion of soil remains critically important. Polymeric materials offer a promising solution to this problem. In this study, we prepared and applied an interpolyelectrolyte complex (IPEC) composed of the biopolymers chitosan and sodium carboxymethyl cellulose (Na-CMC) for the structuring of forest sandy soils and the enhancement of the pre-sowing treatment of Scots pine (Pinus sylvestris L.) seeds. A nonstoichiometric IPEC [Chitosan]:[Na-CMC] = [3:7] was synthesized, and its composition was determined using gravimetry, turbidimetry, and rheoviscosimetry methods. Soil surface treatment with IPEC involved the sequential application of a chitosan polycation (0.006% w/w) and Na-CMC polyanion (0.02% w/w) relative to the air-dry soil weight. The prepared IPEC increased soil moisture by 77%, extended water retention time by sixfold, doubled the content of agronomically valuable soil fractions > 0.25 mm, enhanced soil resistance to water erosion by 64% and wind erosion by 81%, and improved the mechanical strength of the soil-polymer crust by 17.5 times. Additionally, IPEC application resulted in slight increases in the content of humus, mobile potassium, mobile phosphorus, ammonium nitrogen, and mineral salts in the soil while maintaining soil solution pH stability and significantly increasing nitrate nitrogen levels. The novel application technologies of biopolymers and IPEC led to a 16-25% improvement in Scots pine seed germination and seedling growth metrics.
Collapse
Affiliation(s)
- Nazira Berikbol
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Alexey Klivenko
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Vadim Markin
- Department of Organic Chemistry, Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russia;
| | - Lazzyat Orazzhanova
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Gulnur Yelemessova
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Zhanar Kassymova
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| |
Collapse
|
5
|
Li C, Guo Q, Chambers R, Cai S. Asymmetric toughening in the lap shear of metamaterial structural adhesives. SOFT MATTER 2024; 20:6568-6581. [PMID: 39129439 DOI: 10.1039/d4sm00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Metamaterial structural adhesives (MSAs), whose properties primarily rely on structural design, offer promising advantages over traditional adhesives, including asymmetric, switchable, and programmable adhesion. However, the effects of thick backing structures on the adhesion properties remain largely underexplored. Herein, we investigate a series of MSAs featuring a thin adhesive layer and an asymmetric thick beam structure terminated with a film. We conduct lap shear tests on the MSAs with varying terminated film thickness (t) and beam tilting angle (θ) while maintaining an identical adhesive layer. For MSAs with a thick terminated film (t = 2 mm), the effective adhesion energy is double that of solid samples without compromising shear strength, consistent with the theoretical predictions based on the crack trapping mechanism. Conversely, for MSAs with a thin terminated film (t = 0.5 mm), the maximum shear strength and effective adhesion energy are ∼2.8 times and ∼18.6 times those of solid samples, respectively, deviating significantly from the theoretical predictions due to new crack initiations. We further explore adhesion asymmetry by tuning the beam tilting angle (θ). For MSAs with highly tilted beams (θ = 70.3°), we achieve a maximum adhesion strength asymmetry factor of τ2/τ1 ∼ 2.2 for a thick terminated film (t = 2 mm), and a maximum adhesion energy asymmetry factor of Γ1/Γ2 ∼ 5.3 for a thin terminated film (t = 0.5 mm). Our work provides useful insights for designing metamaterial structural adhesives suitable for robotic grippers, wall-climbing robots, and wearable devices, particularly those requiring asymmetric, switchable, and stimuli-responsive adhesion, and adhesives on rough surfaces or in underwater conditions.
Collapse
Affiliation(s)
- Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Qiang Guo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Robert Chambers
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Luo W, Chen W, Liu D, Huang X, Ma B. Effect of temperature and humidity on mechanical properties and constitutive modeling of pressure-sensitive adhesives. Sci Rep 2024; 14:14634. [PMID: 38918527 PMCID: PMC11199615 DOI: 10.1038/s41598-024-64960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Pressure-sensitive adhesives (PSAs) are crucial for the structural and functional integrity of flexible displays. Investigating the intricate mechanical properties of PSAs can help enhance product quality and performance. This study conducts systematic mechanical tests, including uniaxial tensile, compression, planar shear, and stress relaxation, on PSAs at temperatures ranging from - 25 to 85 ℃ and relative humidity levels from 0 to 90%. Our findings reveal that the Anssari-Benam model accurately describes the hyperelastic behavior of PSA materials under large deformation, outperforming the Ogden model by requiring fewer parameters and better preserving convexity. Moreover the results show that temperature markedly affects PSA properties, particularly near the glass transition temperature (Tg), with lower temperatures leading to decreased elasticity and higher temperatures aiding in stress relaxation. Similarly, humidity impacts PSA behavior, increasing elasticity and decreasing stiffness, especially noticeable in stress relaxation tests. These findings highlight the substantial influence of environmental conditions on the material properties of PSAs and underscore the necessity of understanding both hyperelastic and viscoelastic responses for their application in flexible technologies. This research provides critical insights for the optimal utilization of PSAs in the rapidly evolving field of flexible electronics, including OLED displays.
Collapse
Affiliation(s)
- Weiquan Luo
- Center for Engineering Materials and Reliability, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China
| | - Wenzhen Chen
- Center for Engineering Materials and Reliability, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China
| | - Dashun Liu
- Center for Engineering Materials and Reliability, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China
| | - Xiaofeng Huang
- Center for Engineering Materials and Reliability, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China
| | - Baoguang Ma
- Center for Engineering Materials and Reliability, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China.
| |
Collapse
|
7
|
Luo S, Wang N, Pan Y, Zheng B, Li F, Dong S. Supramolecular/Dynamic Covalent Design of High-Performance Pressure-Sensitive Adhesive from Natural Low-Molecular-Weight Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310839. [PMID: 38225689 DOI: 10.1002/smll.202310839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Adhesive materials have played an essential role in the history of humanity. Natural adhesives composed of low-molecular-weight monomers have been overshadowed by modern petroleum-based glues. With the development of green economy, the demand for eco-friendly materials has increased. Herein, two natural biocompatible compounds, namely thioctic acid (TA) and malic acid (MA), are selected to prepare a high-performance pressure-sensitive adhesive poly[TA-MA]. This adhesive can be quantitatively obtained via a simple mixing and heating process. Poly[TA-MA] shows interesting and useful properties, including reversible flexibility, high elongation, and good self-healing, owing to its dynamic polymerization pattern and reversible cross-linking behavior. Poly[TA-MA] exhibits excellent adhesion performance under various extreme conditions, such as at low temperatures and in hot water. High values of shear strength (3.86 MPa), peel strength (7.90 N cm-1), loop tack (10.60 N cm-1), tensile strength (1.02 MPa), and shear resistance (1628 h) demonstrate the strong adhesive effect of poly[TA-MA]. Additionally, TA can be regenerated in the monomer forms from poly[TA-MA] with high recovery rate (>90%). Meanwhile, strong anti-bacterial behavior of poly[TA-MA] is recorded. This study not only reported a new pressure-sensitive adhesive but also fully displayed the feasibility of using natural small molecules to achieve robust surface adhesion.
Collapse
Affiliation(s)
- Sha Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Na Wang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Yanjuan Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Zheng
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
8
|
Generalova AN, Vikhrov AA, Prostyakova AI, Apresyan SV, Stepanov AG, Myasoedov MS, Oleinikov VA. Polymers in 3D printing of external maxillofacial prostheses and in their retention systems. Int J Pharm 2024; 657:124181. [PMID: 38697583 DOI: 10.1016/j.ijpharm.2024.124181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Maxillofacial defects, arising from trauma, oncological disease or congenital abnormalities, detrimentally affect daily life. Prosthetic repair offers the aesthetic and functional reconstruction with the help of materials mimicking natural tissues. 3D polymer printing enables the design of patient-specific prostheses with high structural complexity, as well as rapid and low-cost fabrication on-demand. However, 3D printing for prosthetics is still in the early stage of development and faces various challenges for widespread use. This is because the most suitable polymers for maxillofacial restoration are soft materials that do not have the required printability, mechanical strength of the printed parts, as well as functionality. This review focuses on the challenges and opportunities of 3D printing techniques for production of polymer maxillofacial prostheses using computer-aided design and modeling software. Review discusses the widely used polymers, as well as their blends and composites, which meet the most important assessment criteria, such as the physicochemical, biological, aesthetic properties and processability in 3D printing. In addition, strategies for improving the polymer properties, such as their printability, mechanical strength, and their ability to print multimaterial and architectural structures are highlighted. The current state of the prosthetic retention system is presented with a focus on actively used polymer adhesives and the recently implemented prosthesis-supporting osseointegrated implants, with an emphasis on their creation from 3D-printed polymers. The successful prosthetics is discussed in terms of the specificity of polymer materials at the restoration site. The approaches and technological prospects are also explored through the examples of the nasal, auricle and ocular prostheses, ranging from prototypes to end-use products.
Collapse
Affiliation(s)
- Alla N Generalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, 119333 Moscow, Russia.
| | - Alexander A Vikhrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna I Prostyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Samvel V Apresyan
- Institute of Digital Dentistry, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| | - Alexander G Stepanov
- Institute of Digital Dentistry, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| | - Maxim S Myasoedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vladimir A Oleinikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
9
|
Hwang C, Shin S, Ahn D, Paik HJ, Lee W, Yu Y. Realizing Cross-linking-free Acrylic Pressure-Sensitive Adhesives with Intensive Chain Entanglement through Visible-Light-Mediated Photoiniferter-Reversible Addition-Fragmentation Chain-Transfer Polymerization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58905-58916. [PMID: 38062761 DOI: 10.1021/acsami.3c15002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A versatile and simplified synthesis scheme for intensively entangled acrylic pressure-sensitive adhesives (PSAs) was developed in this study by leveraging visible-light-driven controlled radical polymerization (photoiniferter/reversible addition-fragmentation chain-transfer polymerization) of acrylic copolymers under a controlled manner; the approach was differentiated by a single factor; molecular weight (Mw up to 2.8 MDa) with identical compositions. By manipulating Mw up to ultra-high ranges, PSAs with diversified viscoelastic properties were prepared and then assessed with a focus on realizing PSAs with a maximized degree of entanglement per chain through domination of high Mw contents, to help achieve excellent cohesiveness without a reinforcing cross-linking network. Moreover, fully linear solvent-soluble poly(acrylate)s were synthesized to facilitate reprocessing and reuse, highlighting the sustainability of the devised method and, consequently, its potential to be applied for effectively reducing industrial or daily waste.
Collapse
Affiliation(s)
- Chiwon Hwang
- Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangbin Shin
- Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dowon Ahn
- Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wonjoo Lee
- Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Youngchang Yu
- Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| |
Collapse
|
10
|
Chen H, Zheng C, Zhang F, Zhang Z, Zhang L. One-step synthesis of Janus hydrogel via heterogeneous distribution of sodium α-linoleate driven by surfactant self-aggregation. SCIENCE ADVANCES 2023; 9:eadj3186. [PMID: 37939195 PMCID: PMC10631740 DOI: 10.1126/sciadv.adj3186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
Janus adhesive hydrogels have one-sided adhesive properties and hold promising applications in the health care field. However, a simple method for synthesizing Janus hydrogels is still lacking. In this study, we introduce an innovative method to prepare Janus hydrogels by harnessing a fundamental phenomenon: the self-aggregation of surfactants at high concentrations at the water-air interface. By combining a small amount [0.8 to 3.2 weight %, relative to mass of acrylamide (AM)] of sodium α-linoleate (LAS) with AM through free radical polymerization, we have synthesized Janus adhesive hydrogels. The Janus hydrogels exhibit remarkable adhesive strength and adhesive differences, with the top side (84 J m-2) being 21 times stronger than the bottom side, also an excellent elongation rate. Through comprehensive experiments, including chemical composition, surface morphology, and molecular dynamics (MD) simulations, we thoroughly investigate the mechanisms of the hydrogel's heterogeneous adhesion. This study presents an easy, efficient, and innovative method for preparing one-sided adhesive hydrogels.
Collapse
Affiliation(s)
- Huowen Chen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuchu Zheng
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhuqin Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | | |
Collapse
|
11
|
Chen G. polyGraft 1.0: A program for molecular structure and topology generation of polymer-grafted hybrid nanostructures. J Comput Chem 2023; 44:2230-2239. [PMID: 37596907 DOI: 10.1002/jcc.27206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Polymer-grafted hybrid materials have been ubiquitously employed in various engineering applications. The design of these hybrid materials with superior performances requires a molecularly detailed understanding of the structure and dynamics of the polymer brushes and their interactions with the grafting substrate. Molecular dynamics (MD) simulations are very well suited for the study of these materials which can provide molecular insights into the effects of polymer composition and length, grafting density, substrate composition and curvatures, and nanoconfinement. However, few existing tools are available to generate such systems, which would otherwise reduce the barrier of preparation for such systems to enable high throughput simulations. Here polyGraft, a general, flexible, and easy to use Python program, is introduced for automated generation of molecular structure and topology of polymer grafted hybrid materials for MD simulations purposes, ranging from polymer brushes grafted to hard substrates, to densely grafted bottlebrush polymers. polyGraft is openly accessible on GitHub (https://github.com/nanogchen/polyGraft).
Collapse
Affiliation(s)
- Guang Chen
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
12
|
Back JH, Kwon Y, Cho H, Lee H, Ahn D, Kim HJ, Yu Y, Kim Y, Lee W, Kwon MS. Visible-Light-Curable Acrylic Resins toward UV-Light-Blocking Adhesives for Foldable Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204776. [PMID: 35901501 DOI: 10.1002/adma.202204776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Current technological advances in the organic light-emitting diode panel design of foldable smartphones demand advanced adhesives with UV-blocking abilities, beyond their conventional roles of bonding objects and relieving deformation stress. However, optically clear adhesives (OCAs) with UV-blocking ability cannot be prepared using conventional UV-curing methods relying on a photoinitiator. Herein, a new acrylic resin that can be efficiently cured using visible light without oxygen removal is presented, which may be used to develop UV-blocking OCAs for use in current flexible displays. A novel photocatalyst and a specific combination of additives facilitate sufficiently rapid curing under visible light in the presence of UV-absorbers. Only a very small amount of the highly active photocatalyst is required to prepare UV-blocking OCA films with very high transparency in the visible region. Using this system, a UV-blocking OCA that nearly meets the specifications of an OCA used in commercialized foldable smartphones is realized. This technology can also be utilized in other applications that require highly efficient visible light curing, such as optically clear resins, dental resins, and 3D/4D-printable materials.
Collapse
Affiliation(s)
- Jong-Ho Back
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyeju Cho
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Huesoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Dowon Ahn
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Hyun-Joong Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngchang Yu
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Youngdo Kim
- Samsung Display Co., Ltd., Cheonan, 31086, Republic of Korea
| | - Wonjoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
13
|
Li B, Li Y, Tong Z, Yang H, Du S, Zhang Z. Thermal decomposition reaction kinetics and storage life prediction of polyacrylate pressure-sensitive adhesive. E-POLYMERS 2023. [DOI: 10.1515/epoly-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Abstract
The thermal decomposition behavior of polyacrylate pressure-sensitive adhesive (PSA) at heating rates of 4, 6, 8, and 10 K·min−1 was measured by thermogravimetric analysis (TGA). The kinetic parameters for thermal decomposition reaction of the polyacrylate adhesive were obtained from TG profile by differential method and integral method (Kissinger, general integral, MacCallum–Tanner, Šatava–Šesták, Agrawal, and Flynn–Wall–Ozawa), the results show that the main decomposition stage of the polyacrylate adhesive starts at 301°C and its activation energy is 142.68 kJ·mol−1, the pre exponential factor is 109.55, the decomposition mechanism obeys Avrami–Erofeev equation and its decomposition kinetic equation can be expressed as: dα/dT = (109.55/β)[(1 − α)/2][−ln(1 − α)]−1exp(−1.7161 × 104/T). The storage life of PSA at 25°C was predicted to be about 19 years by isoconversional method.
Collapse
Affiliation(s)
- Bingjun Li
- Metals and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited , Beijing 100081 , China
| | - Yingzi Li
- Metals and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited , Beijing 100081 , China
| | - Zongwen Tong
- Metals and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited , Beijing 100081 , China
| | - Hongbin Yang
- Metals and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited , Beijing 100081 , China
| | - Sensen Du
- Metals and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited , Beijing 100081 , China
| | - Zhuozhen Zhang
- Metals and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited , Beijing 100081 , China
| |
Collapse
|
14
|
Melekhina VY, Kostyuk AV, Smirnova NM, Ilyin SO. Asphaltene-Stabilized Polyisobutylene Pressure-Sensitive Adhesives for Ultraviolet Protection and Surface Bonding. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031209. [PMID: 36770215 PMCID: PMC9921999 DOI: 10.3390/ma16031209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 05/27/2023]
Abstract
The usual way to protect indoor areas from solar UV radiation is to use UV-absorbing materials, which are applied as a thin film on the surface of the windowpane. Asphaltenes are useless wastes from crude oil refining that absorb UV radiation well, which gave the idea of their use in protective coatings. Pressure-sensitive adhesives based on polyisobutylene containing from 5 to 30 wt% of asphaltenes were obtained. Deterioration of the adhesive properties with the introduction of 5-20 wt% of asphaltenes was shown by adhesion tests, which can be associated with the plasticization of the polymer matrix. At the same time, the use of 30 wt% of asphaltenes leads to the polymer matrix reinforcement with the restoration of adhesive properties to the original level or even slightly higher. The rheological study of adhesives at 25 °C and 120 °C showed the structural network formation by asphaltenes at a content of 30 wt%, explaining the increase in adhesion performance. According to microscopy, asphaltenes are flat brown glass shards in a polymer matrix. They absorb electromagnetic radiation, predominantly in the UV range, while maintaining relative translucency in the visible range. This makes it possible to obtain thin films from the asphaltene-filled adhesive for bonding glass sheets to produce UV-blocked and tinted windowpanes.
Collapse
|
15
|
Moll P, Salminen H, Rausch A, Schmitt C, Weiss J. Adjusting the stickiness of concentrated pea protein – apple pectin systems via the biopolymer mixing ratio. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
16
|
Ilyin SO, Melekhina VY, Kostyuk AV, Smirnova NM. Hot-Melt and Pressure-Sensitive Adhesives Based on Styrene-Isoprene-Styrene Triblock Copolymer, Asphaltene/Resin Blend and Naphthenic Oil. Polymers (Basel) 2022; 14:4296. [PMID: 36297874 PMCID: PMC9606934 DOI: 10.3390/polym14204296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 08/13/2023] Open
Abstract
Asphaltene/resin blend (ARB) extracted from heavy crude oil was used to modify poly(styrene-block-isoprene-block-styrene) (SIS) to make it an adhesive. There were prepared double and triple mixtures containing 10-60% SIS, 10-40% ARB, and 10-50% naphthenic oil used as an additional plasticizer. The viscoelasticity of the mixtures at 25 °C and 120 °C was studied, their flow curves were obtained, and the temperature dependences of the loss tangent and the components of the complex modulus were measured. In addition, the mixtures were used as hot-melt adhesives (HMAs) and pressure-sensitive adhesives (PSAs) in the shear, peel, and pull-off tests of the adhesive bonds that they formed with steel. Both naphthenic oil and ARB act as plasticizers for SIS and make it sticky. However, only the combined use of ARB and the oil allows for achieving the best set of adhesive properties of the SIS-based mixture. High-quality HMA requires low oil content (optimal SIS/ARB/oil ratio is 50/40/10, pull-off adhesion strength (τt) of 1990 kPa), whereas a lot of the oil is needed to give SIS characteristics of a PSA (SIS/ARB/oil is 20/40/40, τt of 100 kPa). At the same time, the resulting PSA can be used as a hot-melt pressure-sensitive adhesive (HMPSA) that has many times lower viscosity than HMA (13.9 Pa·s versus 2640 Pa·s at 120 °C and 1 s-1) but provides a less strong adhesive bond (τt of 960 kPa).
Collapse
Affiliation(s)
- Sergey O. Ilyin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| | | | | | | |
Collapse
|
17
|
Concentrated pea protein – apple pectin mixtures as food glue: Influence of biopolymer concentration and pH on stickiness. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Chen J, Dong Z, Li M, Li X, Chen K, Yin P. Ultra‐Strong and Proton Conductive Aqua‐Based Adhesives from Facile Blending of Polyvinyl Alcohol and Tungsten Oxide Clusters. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202111892] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 09/11/2024]
Abstract
AbstractThe explosive growth of binder industry spurs the development of strong adhesives with the integration of multi‐functionalities as well as cost‐effective and eco‐friendly processability. Here, polyvinyl alcohol (PVA) and sub‐nanoscale metal oxide cluster, phosphotungstic acid (PTA), both with broad commercial availability, are complexed through hydrogen bonding in water. The obtained nanocomposites demonstrate promising light transmittance and proton conductivity, and most importantly, unprecedentedly high adhesive strengths as ≈4 kN m–1 for peeling strength and 8.2 ± 1.7 MPa for single lap shear strength on typical glass substrate. The supramolecular complexation of PVA with PTA can significantly reduce its crystallinity and accelerate PVA chain dynamics for negligible internal stress and membrane shrinkage upon drying, leading to close contact with glass substrates for strong adhesion. Meanwhile, the supramolecular interaction between PVA and PTA contributes to the nanocomposites’ enhanced mechanical strength and resolves the issue of cohesion failure to ensure high adhesive strengths. The fast chain dynamics also benefit rapid proton transportation, contributing to the high proton conductivities. The binder design protocol can be extended to general polymer systems integrated with desired functionalities and allows scale up processing, providing great opportunities for functional adhesives for safety glass and electronic industry.
Collapse
Affiliation(s)
- Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Zhenchuan Dong
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Mu Li
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Xinpei Li
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Kun Chen
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
19
|
Feng X, Li G. UV curable, flame retardant, and pressure-sensitive adhesives with two-way shape memory effect. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Camadanli S, Hisir A, Dural S. Synthesis and performance of moisture curable solvent free silane terminated polyurethanes for coating and sealant applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.51722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Ma Y, Ali S, Prabhu VM. Enhanced Concentration Fluctuations in Model Polyelectrolyte Coacervate Mixtures along a Salt Isopleth Phase Diagram. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Samim Ali
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
22
|
Xia Y, Sun X, Han J, Cheng F, He W. Complexation of tannic acid with polyoxypropylene diamine in water and application for the preparation of hierarchically structured functional surfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Bok G, Lee CJ, Lee H, Kim Y. Fabrication of flexible electrodes using peelable pressure-sensitive adhesives containing methacrylic-modified cyclic siloxanes. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Hayashi H, Tachi H, Suyama K. Synthesis of Photo-degradable Polyphthalaldehyde Macromonomer and Adhesive Property Changes of its Copolymer with Butyl Acrylate on UV-irradiation. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hirokazu Hayashi
- Research Division of Applied Material Chemistry, Izumi Center, Osaka Research Institute of Industrial Science and Technology (ORIST)
| | - Hideki Tachi
- Research Division of Polymer Functional Materials, Izumi Center, Osaka Research Institute of Industrial Science and Technology (ORIST)
| | - Kanji Suyama
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University
| |
Collapse
|
25
|
Prabhu VM. Interfacial tension in polyelectrolyte systems exhibiting associative liquid–liquid phase separation. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Park Y, Byun H, An J, Kim S, Lee JH. Large-scale fabrication of a highly flexible and transparent adhesive film embedded with elastic hybrid nanoparticles. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Hou C, Xu C, Yi B, Huang X, Cao C, Lee Y, Chen S, Yao X. Mechano-Induced Assembly of a Nanocomposite for "Press-N-Go" Coatings with Highly Efficient Surface Disinfection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19332-19341. [PMID: 33871976 DOI: 10.1021/acsami.1c03156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using antimicrobial coatings to control the spread of pathogenic microbes is appreciated in public and healthcare settings, but the performance of most antimicrobial coatings could not fulfill the increasing requirements, particularly the ease of preparation, high durability, rapid response, and high killing efficiency. Herein, we develop a new type of mechano-induced assembly of nanocomposite coating by simple "Press-N-Go" procedures on various substrates such as glassware, gloves, and fabrics, in which the coating shows strong adhesion, high shear stability, and high stiffness, making it durable in daily use to withstand common mechanical deformation and scratches. The coating also shows remarkable disinfection effectiveness over 99.9% to clinically significant multiple drug-resistant bacterial pathogens upon only 6 s near-infrared irradiation, which can be further improved to over 99.9999% upon another 6 s treatment. We envision that the coating can provide convenience and values to control pathogen spread for easily contaminated substrates in high-risk areas.
Collapse
Affiliation(s)
- Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Chen Xu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Bo Yi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Xin Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Youngjin Lee
- Department of Neuroscience, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518075, P. R. China
| |
Collapse
|
28
|
Bae JH, Won JC, Lim WB, Kim BJ, Lee JH, Min JG, Seo MJ, Mo YH, Huh P. Tacky-Free Polyurethanes Pressure-Sensitive Adhesives by Molecular-Weight and HDI Trimer Design. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2164. [PMID: 33922818 PMCID: PMC8123004 DOI: 10.3390/ma14092164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Polyurethane pressure-sensitive adhesives (PU-PSAs) with satisfactory tack, cohesion, and removability were newly developed through the synthetic process by reacting methylene diisocyanate, poly(ethylene glycol) (PEG), and a 1,4-butanediol chain extender based on the different HDI/HDI trimer ratios. The sticking properties of PU-PSAs depended on both the HDI/HDI trimer ratio and crosslinking-agent composition in the formulation. The molecular weight (MW) dependence of adhesion in PU-PSA was observed in the range of 1000 < Mn < 3000, suggesting that the increase in MW limits the pressure-sensitive adhesion of these samples. The differences in the crosslinking-density significantly affected the cohesion, adhesion, and tack in PU-PSA. The formulation of 50 wt.% 600PEG and 50 wt.% crosslinking-agent and an HDI/HDI trimer ratio of 1.0 led to the optimal balance between the adhesion and cohesion properties owing to the sufficient tack, high 180-peel strength, and good cohesion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - PilHo Huh
- Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Korea; (J.-H.B.); (J.C.W.); (W.B.L.); (B.J.K.); (J.H.L.); (J.G.M.); (M.J.S.); (Y.H.M.)
| |
Collapse
|
29
|
Biobased Alkali Soluble Resins promoting supramolecular interactions in sustainable waterborne Pressure-Sensitive Adhesives: High performance and removability. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Park Y, Byun H, Lee JH. Highly Stretchable and Transparent Optical Adhesive Films Using Hierarchically Structured Rigid-Flexible Dual-Stiffness Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1493-1502. [PMID: 33382572 DOI: 10.1021/acsami.0c18488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The demand for new forms of flexible electronic devices has led to the evolution of individual components comprising optical adhesive films that provide excellent optical transparency and high bonding strength while offering remarkable elasticity with high strain and recovery properties. Herein, a new type of highly elastic and transparent adhesive film is proposed using tailored rigid-flexible dual-stiffness nanoparticles (DSNs) composed of a rigid inorganic core and an elastic reactive coil shell. The hierarchically structured nanoparticles were prepared from SiO2 nanoparticles via the sequential surface modification with photoreactive flexible chains. The fabricated elastic adhesive film containing DSNs with an average diameter of 20 nm showed a high optical transmittance of 92% and adhesion strength of 19.9 N/25 mm. Increasing the content of the tailored nanoparticles in the adhesive film improved the elastic properties of the film such as elastic modulus (7.0 kPa), stress relaxation ratio (18.4%), and strain recovery rate (73.6%) due to the efficient elastic motion of the embedded DSNs. In addition, as the surface grafting density of elastic coil groups in the nanoparticle increased, a stronger bonding network was formed between the nanoparticles and the acrylic polymer matrix, thereby further improving the stress relaxation ratio (18.0%) and strain recovery rate (77.1%) of the optical film. Thus, the utilization of novel dual-stiffness nanoparticles produces optical adhesive films with high elasticity and optical transparency that are capable of withstanding external forces such as folding and stretching, which is essential for flexible electronic devices.
Collapse
Affiliation(s)
- Yoongook Park
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Hoyun Byun
- Module Research Team, Samsung Display, Yongin 17113, Republic of Korea
| | - Jun Hyup Lee
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
31
|
Gadgeel AA, Mhaske ST. Incorporation of flame retardancy in bio‐resourced mannitol based curing agent for clear pressure‐sensitive adhesive. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A. A Gadgeel
- Department of Polymer and Surface Engineering Institute of Chemical Technology Mumbai Maharashtra India
| | - S. T Mhaske
- Department of Polymer and Surface Engineering Institute of Chemical Technology Mumbai Maharashtra India
| |
Collapse
|
32
|
Park Y, Lee JH. Facile separation of optically transparent adhesive films by heat-triggered gas generation of vaporizable core–shell nanocapsules embedded with benzenesulfonyl hydrazide. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Tasche J, Sabattié EFD, Thompson RL, Campana M, Wilson MR. Oligomer/Polymer Blend Phase Diagram and Surface Concentration Profiles for Squalane/Polybutadiene: Experimental Measurements and Predictions from SAFT-γ Mie and Molecular Dynamics Simulations. Macromolecules 2020; 53:2299-2309. [PMID: 32308214 PMCID: PMC7161083 DOI: 10.1021/acs.macromol.9b02155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/12/2020] [Indexed: 01/16/2023]
Abstract
The compatibility and surface behavior of squalane-polybutadiene mixtures are studied by experimental cloud point and neutron reflectivity measurements, statistical associating fluid theory (SAFT), and molecular dynamics (MD) simulations. A SAFT-γ Mie model is shown to be successful in capturing the cloud point curves of squalane-polybutadiene and squalane-cis-polybutadiene binary mixtures, and the same SAFT-γ Mie model is used to develop a thermodynamically consistent top-down coarse-grained force field to describe squalane-polybutadiene. Coarse-grained molecular dynamics simulations are performed to study surface behavior for different concentrations of squalane, with the system exhibiting surface enrichment and a wetting transition. Simulated surface profiles are compared with those obtained by fitting to neutron reflectivity data obtained from thin films composed of deuterated squalane (d-sq)-polybutadiene. The presented top-down parametrization methodology is a fast and thermodynamically reliable approach for predicting properties of oligomer-polymer mixtures, which can be challenging for either theory or MD simulations alone.
Collapse
Affiliation(s)
- Jos Tasche
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Elise F D Sabattié
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Richard L Thompson
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Mario Campana
- Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Mark R Wilson
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
34
|
Fuensanta M, Vallino-Moyano MA, Martín-Martínez JM. Balanced Viscoelastic Properties of Pressure Sensitive Adhesives Made with Thermoplastic Polyurethanes Blends. Polymers (Basel) 2019; 11:polym11101608. [PMID: 31623318 PMCID: PMC6835935 DOI: 10.3390/polym11101608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
Pressure sensitive adhesives made with blends of thermoplastic polyurethanes (TPUs PSAs) with satisfactory tack, cohesion, and adhesion have been developed. A simple procedure consisting of the physical blending of methyl ethyl ketone (MEK) solutions of two thermoplastic polyurethanes (TPUs) with very different properties—TPU1 and TPU2—was used, and two different blending procedures have been employed. The TPUs were characterized by infra-red spectroscopy in attenuated total reflectance mode (ATR-IR spectroscopy), differential scanning calorimetry, thermal gravimetric analysis, and plate-plate rheology (temperature and frequency sweeps). The TPUs PSAs were characterized by tack measurement, creep test, and the 180° peel test at 25 °C. The procedure for preparing the blends of the TPUs determined differently their viscoelastic properties, and the properties of the TPUs PSAs as well, the blending of separate MEK solutions of the two TPUs imparted higher tack and 180° peel strength than the blending of the two TPUs in MEK. TPU1 + TPU2 blends showed somewhat similar contributions of the free and hydrogen-bonded urethane groups and they had an almost similar degree of phase separation, irrespective of the composition of the blend. Two main thermal decompositions at 308–317 °C due to the urethane hard domains and another at 363–373 °C due to the soft domains could be distinguished in the TPU1 + TPU2 blends, the weight loss of the hard domains increased and the one of the soft domains decreased by increasing the amount of TPU2 in the blends. The storage moduli of the TPU1 + TPU2 blends were similar for temperatures lower than 20 °C and the moduli at the cross over of the moduli were lower than in the parent TPUs. The improved properties of the TPU1 + TPU2 blends derived from the creation of a higher number of hydrogen bonds upon removal of the MEK solvent, which lead to a lower degree of phase separation between the soft and the hard domains than in the parent TPUs. As a consequence, the properties of the TPU1 + TPU2 PSAs were improved because good tack, high 180° peel strength, and sufficient cohesion were obtained, particularly in 70 wt% TPU1 + 30 wt% TPU2 PSA.
Collapse
Affiliation(s)
- Mónica Fuensanta
- Adhesion and Adhesives Laboratory, University of Alicante, 03080 Alicante, Spain.
| | | | | |
Collapse
|
35
|
|
36
|
Hofman AH, van Hees IA, Yang J, Kamperman M. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704640. [PMID: 29356146 DOI: 10.1002/adma.201704640] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/02/2017] [Indexed: 05/25/2023]
Abstract
Nature has developed protein-based adhesives whose underwater performance has attracted much research attention over the last few decades. The adhesive proteins are rich in catechols combined with amphiphilic and ionic features. This combination of features constitutes a supramolecular toolbox, to provide stimuli-responsive processing of the adhesive, to secure strong adhesion to a variety of surfaces, and to control the cohesive properties of the material. Here, the versatile interactions used in adhesives secreted by sandcastle worms and mussels are explored. These biological principles are then put in a broader perspective, and synthetic adhesive systems that are based on different types of supramolecular interactions are summarized. The variety and combinations of interactions that can be used in the design of new adhesive systems are highlighted.
Collapse
Affiliation(s)
- Anton H Hofman
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ilse A van Hees
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Juan Yang
- Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Singapore, 637460, Singapore
| | - Marleen Kamperman
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
37
|
Lee BK, Ryu JH, Baek IB, Kim Y, Jang WI, Kim SH, Yoon YS, Kim SH, Hong SG, Byun S, Yu HY. Silicone-Based Adhesives with Highly Tunable Adhesion Force for Skin-Contact Applications. Adv Healthc Mater 2017; 6. [PMID: 28795496 DOI: 10.1002/adhm.201700621] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/30/2017] [Indexed: 11/10/2022]
Abstract
A fundamental approach to fabricating silicone-based adhesives with highly tunable adhesion force for the skin-contact applications is presented. Liquid blends consisting of vinyl-multifunctional polydimethylsiloxane (V-PDMS), hydride-terminated PDMS (H-PDMS), and a tackifier composed of a silanol-terminated PDMS/MQ resin mixture and the MQ resin are used as the adhesive materials. The peel adhesion force of addition-cured adhesives on the skin is increased by increasing the H-PDMS molecular weights and the tackifier content, and decreasing the H-PDMS/V-PDMS ratio. There is an inverse relationship between the adhesion force and the Young's modulus. The low-modulus adhesives with a low H-PDMS/V-PDMS ratio exhibit enhanced adhesion properties. The low-modulus adhesives with the high MQ resin content show significantly enhanced adhesion properties. These adhesives exhibit a wide range of modulus (2-499 kPa), and their adhesion force (0.04-5.38 N) is superior to commercially available soft silicone adhesives (0.82-2.79 N). The strong adhesives (>≈2 N) provide sufficient adhesion for fixing the flexible electrocardiogram (ECG) device to the skin in most daily activity. The human ECG signals are successfully recorded in real time. These results suggest that the silicone-based adhesives should be useful as an atraumatic adhesive for the skin-contact applications.
Collapse
Affiliation(s)
- Bong Kuk Lee
- Electronics & Telecommunications Research Institute; 218 Gajeong-ro Yuseong-gu Daejeon 34129 South Korea
| | - Jin Hwa Ryu
- Electronics & Telecommunications Research Institute; 218 Gajeong-ro Yuseong-gu Daejeon 34129 South Korea
| | - In-Bok Baek
- Electronics & Telecommunications Research Institute; 218 Gajeong-ro Yuseong-gu Daejeon 34129 South Korea
| | - Yarkyeon Kim
- Electronics & Telecommunications Research Institute; 218 Gajeong-ro Yuseong-gu Daejeon 34129 South Korea
| | - Won Ick Jang
- Electronics & Telecommunications Research Institute; 218 Gajeong-ro Yuseong-gu Daejeon 34129 South Korea
| | - Sang-Hyeob Kim
- Electronics & Telecommunications Research Institute; 218 Gajeong-ro Yuseong-gu Daejeon 34129 South Korea
| | - Yong Sun Yoon
- Electronics & Telecommunications Research Institute; 218 Gajeong-ro Yuseong-gu Daejeon 34129 South Korea
| | - Seung Hwan Kim
- Electronics & Telecommunications Research Institute; 218 Gajeong-ro Yuseong-gu Daejeon 34129 South Korea
| | - Seong-Gu Hong
- Korea Research Institute of Standards and Science (KRISS); 267 Gajeong-ro Yuseong-gu Daejeon 34113 South Korea
| | - Sangwon Byun
- Department of Electronics Engineering; Incheon National University; Incheon 22012 South Korea
| | - Han Young Yu
- Electronics & Telecommunications Research Institute; 218 Gajeong-ro Yuseong-gu Daejeon 34129 South Korea
| |
Collapse
|
38
|
Bovaldinova KA, Feldstein MM, Sherstneva NE, Moscalets AP, Khokhlov AR. Thermo-switchable pressure-sensitive adhesives with strong tunable adhesion towards substrate surfaces of different hydrophilicity. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Yuan Y, Zhang Y, Fu X, Kong W, Liu Z, Hu K, Jiang L, Lei J. Molecular design for silane-terminated polyurethane applied to moisture-curable pressure-sensitive adhesive. J Appl Polym Sci 2017. [DOI: 10.1002/app.45292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ye Yuan
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Yanyan Zhang
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Xiaowei Fu
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Weibo Kong
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Zhimeng Liu
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Kai Hu
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| |
Collapse
|
40
|
Sing CE. Development of the modern theory of polymeric complex coacervation. Adv Colloid Interface Sci 2017; 239:2-16. [PMID: 27161661 DOI: 10.1016/j.cis.2016.04.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/10/2016] [Accepted: 04/19/2016] [Indexed: 11/15/2022]
Abstract
Oppositely charged polymers can undergo the process of complex coacervation, which refers to a liquid-liquid phase separation driven by electrostatic attraction. These materials have demonstrated considerable promise as the basis for complex, self-assembled materials. In this review, we provide a broad overview of the theoretical tools used to understand the physical properties of polymeric coacervates. In particular, we discuss historic theories (Voorn-Overbeek, Random Phase Approximation), and then describe recent developments in the field (Field Theoretic, Counterion Release, Molecular Simulation, and Polymer Reference Interaction Site Model methods). We provide context for these methods, and map out the patchwork of theoretical models that are used to describe a diverse array of coacervate systems. We use this review of the literature to clarify a number of important theoretical challenges remaining in our physical understanding of complex coacervation.
Collapse
Affiliation(s)
- Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave. Urbana IL, 61801, United States.
| |
Collapse
|
41
|
Lytle TK, Radhakrishna M, Sing CE. High Charge Density Coacervate Assembly via Hybrid Monte Carlo Single Chain in Mean Field Theory. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02159] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Mithun Radhakrishna
- Department
of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gujarat, India
| | | |
Collapse
|
42
|
Callies X, Herscher O, Fonteneau C, Robert A, Pensec S, Bouteiller L, Ducouret G, Creton C. Combined Effect of Chain Extension and Supramolecular Interactions on Rheological and Adhesive Properties of Acrylic Pressure-Sensitive Adhesives. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33307-33315. [PMID: 27934152 DOI: 10.1021/acsami.6b11045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new approach for the elaboration of low molecular weight pressure-sensitive adhesives based on supramolecular chemistry is explored. The synthesis of model systems coupled with probe-tack tests and rheological experiments highlights the influence of the transient network formed by supramolecular bonds on the adhesion energy. The first step of our approach consists of synthesizing poly(butyl acrylate-co-glycidyl methacrylate) copolymers from a difunctional initiator able to self-associate by four hydrogen bonds between urea groups. Linear copolymers with a low dispersity (Mn = 10 kg/mol, Ip < 1.4) have been synthesized via atom transfer radical polymerization. Films of the copolymers were then partially cross-linked through reaction of the epoxy functions with a diamine. The systematic variation of the average ratio of glycidyl methacrylate and diamine per copolymer shed light on the respective role played by the supramolecular interactions (between bis-urea groups and with the side chains) and by the chain extension and branching induced by the diamine/epoxy reaction. In this strategy, the adhesive performance can be optimized by modifying the strength of "stickers" (via the structure of the supramolecular initiator, for instance) and the polymer network (e.g., via the length and level of branching of the copolymer chains) in order to approach commercial PSA-like properties (high debonding energy and clean removal).
Collapse
Affiliation(s)
- Xavier Callies
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS, ESPCI Paris, PSL Research University , 10 Rue Vauquelin, Paris, France
- Laboratoire Sciences et Ingénierie de la Matière Molle, Université Pierre et Marie Curie, Sorbonne-Universités , 10 Rue Vauquelin, Paris, France
| | - Olivier Herscher
- UPMC Univ Paris 06, CNRS, IPCM, Chimie des Polymères, Sorbonne Universités , F-75005 Paris, France
| | - Cécile Fonteneau
- UPMC Univ Paris 06, CNRS, IPCM, Chimie des Polymères, Sorbonne Universités , F-75005 Paris, France
| | - Alexis Robert
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS, ESPCI Paris, PSL Research University , 10 Rue Vauquelin, Paris, France
- Laboratoire Sciences et Ingénierie de la Matière Molle, Université Pierre et Marie Curie, Sorbonne-Universités , 10 Rue Vauquelin, Paris, France
| | - Sandrine Pensec
- UPMC Univ Paris 06, CNRS, IPCM, Chimie des Polymères, Sorbonne Universités , F-75005 Paris, France
| | - Laurent Bouteiller
- UPMC Univ Paris 06, CNRS, IPCM, Chimie des Polymères, Sorbonne Universités , F-75005 Paris, France
| | - Guylaine Ducouret
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS, ESPCI Paris, PSL Research University , 10 Rue Vauquelin, Paris, France
- Laboratoire Sciences et Ingénierie de la Matière Molle, Université Pierre et Marie Curie, Sorbonne-Universités , 10 Rue Vauquelin, Paris, France
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS, ESPCI Paris, PSL Research University , 10 Rue Vauquelin, Paris, France
- Laboratoire Sciences et Ingénierie de la Matière Molle, Université Pierre et Marie Curie, Sorbonne-Universités , 10 Rue Vauquelin, Paris, France
| |
Collapse
|
43
|
Callies X, Fonteneau C, Pensec S, Bouteiller L, Ducouret G, Creton C. Adhesion and non-linear rheology of adhesives with supramolecular crosslinking points. SOFT MATTER 2016; 12:7174-7185. [PMID: 27498899 DOI: 10.1039/c6sm01154c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soft supramolecular materials are promising for the design of innovative and highly tunable adhesives. These materials are composed of polymer chains functionalized by strongly interacting moieties, sometimes called "stickers". In order to systematically investigate the effect of the presence of associative groups on the debonding properties of a supramolecular adhesive, a series of supramolecular model systems has been characterized by probe-tack tests. These model materials, composed of linear and low dispersity poly(butylacrylate) chains functionalized in the middle by a single tri-urea sticker, are able to self-associate by six hydrogen bonds and range in molecular weight (Mn) between 5 and 85 kg mol(-1). The linear rheology and the nanostructure of the same materials (called "PnBA3U") were the object of a previous study. At room temperature, the association of polymers via hydrogen bonds induces the formation of rod-like aggregates structured into bundles for Mn < 40 kg mol(-1) and the behavior of a soft elastic material was observed (G'≪G'' and G'∼ω(0)). For higher Mn materials, the filaments were randomly oriented and the polymers displayed a crossover towards viscous behavior although terminal relaxation was not reached in the experimental frequency window. All these materials show, however, similar adhesive properties characterized by a cohesive mode of failure and low debonding energies (Wadh < 40 J m(-2) for a debonding speed of 100 μm s(-1)). The debonding mechanisms observed during the adhesion tests have been investigated in detail with an Image tools analysis developed by our group. The measure of the projected area covered by cavities growing in the adhesive layer during debonding can be used to estimate the true stress in the walls of the cavities and thus to characterize the in situ large strain deformation of the thin layer during the adhesion test itself. This analysis revealed in particular that the PnBA3U materials with Mn < 40 kg mol(-1) soften very markedly at large deformation like yield stress fluids, explaining the low adhesion energies measured for these viscoelastic gels.
Collapse
Affiliation(s)
- X Callies
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, ESPCI Paris, PSL Research University, 10 rue Vauquelin, F-75231 Paris cedex 05, France.
| | | | | | | | | | | |
Collapse
|
44
|
Yuan Y, Zhang Y, Fu X, Jiang L, Liu Z, Hu K, Wu B, Lei J, Zhou C. Silane-terminated polyurethane applied to a moisture-curable pressure-sensitive adhesive using triethoxysilane. RSC Adv 2016. [DOI: 10.1039/c6ra19883j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Preparation scheme of SPU films.
Collapse
Affiliation(s)
- Ye Yuan
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Yanyan Zhang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Xiaowei Fu
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Zhimeng Liu
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Kai Hu
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Bo Wu
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Jinxin Lei
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Changlin Zhou
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
45
|
Ghasemirad S, Mohammadi N. Active layer thickness across the crack plane and fracture energy consumption in polymer nanocomposites: adhesion against tear strength. RSC Adv 2015. [DOI: 10.1039/c5ra21937j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The active layer thickness of the nanocomposites in tear strength tests was 2 orders of magnitude higher than in adhesion tests.
Collapse
Affiliation(s)
- S. Ghasemirad
- Nano and Smart Polymers Centre of Excellence
- Department of Polymer Engineering and Colour Technology
- Amirkabir University of Technology
- Tehran
- Iran
| | - N. Mohammadi
- Nano and Smart Polymers Centre of Excellence
- Department of Polymer Engineering and Colour Technology
- Amirkabir University of Technology
- Tehran
- Iran
| |
Collapse
|