1
|
Udriște AS, Burdușel AC, Niculescu AG, Rădulescu M, Balaure PC, Grumezescu AM. Organic Nanoparticles in Progressing Cardiovascular Disease Treatment and Diagnosis. Polymers (Basel) 2024; 16:1421. [PMID: 38794614 PMCID: PMC11125450 DOI: 10.3390/polym16101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiovascular diseases (CVDs), the world's most prominent cause of mortality, continue to be challenging conditions for patients, physicians, and researchers alike. CVDs comprise a wide range of illnesses affecting the heart, blood vessels, and the blood that flows through and between them. Advances in nanomedicine, a discipline focused on improving patient outcomes through revolutionary treatments, imaging agents, and ex vivo diagnostics, have created enthusiasm for overcoming limitations in CVDs' therapeutic and diagnostic landscapes. Nanomedicine can be involved in clinical purposes for CVD through the augmentation of cardiac or heart-related biomaterials, which can be functionally, mechanically, immunologically, and electrically improved by incorporating nanomaterials; vasculature applications, which involve systemically injected nanotherapeutics and imaging nanodiagnostics, nano-enabled biomaterials, or tissue-nanoengineered solutions; and enhancement of sensitivity and/or specificity of ex vivo diagnostic devices for patient samples. Therefore, this review discusses the latest studies based on applying organic nanoparticles in cardiovascular illness, including drug-conjugated polymers, lipid nanoparticles, and micelles. Following the revised information, it can be concluded that organic nanoparticles may be the most appropriate type of treatment for cardiovascular diseases due to their biocompatibility and capacity to integrate various drugs.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
2
|
Wang J, Lu B, Yin G, Liu L, Yang P, Huang N, Zhao A. Design and Fabrication of Environmentally Responsive Nanoparticles for the Diagnosis and Treatment of Atherosclerosis. ACS Biomater Sci Eng 2024; 10:1190-1206. [PMID: 38343186 DOI: 10.1021/acsbiomaterials.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cardiovascular disease poses a significant threat to human health in today's society. A major contributor to cardiovascular disease is atherosclerosis (AS). The development of plaque in the affected areas involves a complex pathological environment, and the disease progresses rapidly. Nanotechnology, combined with emerging diagnostic and treatment methods, offers the potential for the management of this condition. This paper presents the latest advancements in environment-intelligent responsive controlled-release nanoparticles designed specifically for the pathological environment of AS, which includes characteristics such as low pH, high reactive oxygen species levels, high shear stress, and multienzymes. Additionally, the paper summarizes the applications and features of nanotechnology in interventional therapy for AS, including percutaneous transluminal coronary angioplasty and drug-eluting stents. Furthermore, the application of nanotechnology in the diagnosis of AS shows promising real-time, accurate, and continuous effects. Lastly, the paper explores the future prospects of nanotechnology, highlighting the tremendous potential in the diagnosis and treatment of atherosclerotic diseases, especially with the ongoing development in nano gas, quantum dots, and Metal-Organic Frameworks materials.
Collapse
Affiliation(s)
- Jingyue Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Bingyang Lu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ge Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Li Liu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
3
|
Islam P, Schaly S, Abosalha AK, Boyajian J, Thareja R, Ahmad W, Shum-Tim D, Prakash S. Nanotechnology in development of next generation of stent and related medical devices: Current and future aspects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1941. [PMID: 38528392 DOI: 10.1002/wnan.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 03/27/2024]
Abstract
Coronary stents have saved millions of lives in the last three decades by treating atherosclerosis especially, by preventing plaque protrusion and subsequent aneurysms. They attenuate the vascular SMC proliferation and promote reconstruction of the endothelial bed to ensure superior revascularization. With the evolution of modern stent types, nanotechnology has become an integral part of stent technology. Nanocoating and nanosurface fabrication on metallic and polymeric stents have improved their drug loading capacity as well as other mechanical, physico-chemical, and biological properties. Nanofeatures can mimic the natural nanofeatures of vascular tissue and control drug-delivery. This review will highlight the role of nanotechnology in addressing the challenges of coronary stents and the recent advancements in the field of related medical devices. Different generations of stents carrying nanoparticle-based formulations like liposomes, lipid-polymer hybrid NPs, polymeric micelles, and dendrimers are discussed highlighting their roles in local drug delivery and anti-restenotic properties. Drug nanoparticles like Paclitaxel embedded in metal stents are discussed as a feature of first-generation drug-eluting stents. Customized precision stents ensure safe delivery of nanoparticle-mediated genes or concerted transfer of gene, drug, and/or bioactive molecules like antibodies, gene mimics via nanofabricated stents. Nanotechnology can aid such therapies for drug delivery successfully due to its easy scale-up possibilities. However, limitations of this technology such as their potential cytotoxic effects associated with nanoparticle delivery that can trigger hypersensitivity reactions have also been discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ahmed Kh Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, Royal Victoria Hospital, McGill University Health Centre, McGill University, Faculty of Medicine and Health Sciences, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Arshad I, Kanwal A, Zafar I, Unar A, Mouada H, Razia IT, Arif S, Ahsan M, Kamal MA, Rashid S, Khan KA, Sharma R. Multifunctional role of nanoparticles for the diagnosis and therapeutics of cardiovascular diseases. ENVIRONMENTAL RESEARCH 2024; 242:117795. [PMID: 38043894 DOI: 10.1016/j.envres.2023.117795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
The increasing burden of cardiovascular disease (CVD) remains responsible for morbidity and mortality worldwide; their effective diagnostic or treatment methods are of great interest to researchers. The use of NPs and nanocarriers in cardiology has drawn much interest. The present comprehensive review provides deep insights into the use of current and innovative approaches in CVD diagnostics to offer practical ways to utilize nanotechnological interventions and the critical elements in the CVD diagnosis, associated risk factors, and management strategies of patients with chronic CVDs. We proposed a decision tree-based solution by discussing the emerging applications of NPs for the higher number of rules to increase efficiency in treating CVDs. This review-based study explores the screening methods, tests, and toxicity to provide a unique way of creating a multi-parametric feature that includes cutting-edge techniques for identifying cardiovascular problems and their treatments. We discussed the benefits and drawbacks of various NPs in the context of cost, space, time and complexity that have been previously suggested in the literature for the diagnosis of CVDs risk factors. Also, we highlighted the advances in using NPs for targeted and improved drug delivery and discussed the evolution toward the nano-cardiovascular potential for medical science. Finally, we also examined the mixed-based diagnostic approaches crucial for treating cardiovascular disorders, broad applications and the potential future applications of nanotechnology in medical sciences.
Collapse
Affiliation(s)
- Ihtesham Arshad
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Ayesha Kanwal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Ahsanullah Unar
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy.
| | - Hanane Mouada
- Department of Process Engineering, Institute of science University Center of Tipaza, Tipaza, Algeria.
| | | | - Safina Arif
- Medical Lab Technology, University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam BinAbdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Yao S, Zhu Q, Xianyu Y, Liu D, Xu E. Polymorphic nanostarch-mediated assembly of bioactives. Carbohydr Polym 2024; 324:121474. [PMID: 37985040 DOI: 10.1016/j.carbpol.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Starch as an edible, biosafe, and functional biopolymer, has been tailored at nanoscale to deliver bioactive guests. Nanostarches fabricated in various morphologies including nanosphere, nanorod, nanoworm, nanovesicle, nanopolyhedron, nanoflake, nanonetwork etc., enable them to assemble different kinds of bioactives due to structural particularity and green modification. Previous studies have reviewed nanostarch for its preparation and application in food, however, no such work has been done for the potential of delivery system via polymorphic nanostarches. In this review, we focus on the merits of nanostarch empowered by multi-morphology for delivery system, and also conclude the assembly strategies and corresponding properties of nanostarch-based carrier. Additionally, the advantages, limitations, and future perspectives of polymorphic nanostarch are summarized to better understand the micro/nanostarch architectures and their regulation for the compatibility of bioactive molecules. According to the morphology of carrier, nanostarch effectively captures bioactives on the surface and/or inside core to form tight complexes, which maintains their stability in the human microenvironment. It improves the bioavailability of bioactive guests by different assembly approaches of carrier/guest surface combination, guest@carrier embedment, and nanostarch-mediated encapsulation. Targeted release of delivery systems is stimulated by the microenvironment conditions based on the complex structure of nanostarch loaded with bioactives.
Collapse
Affiliation(s)
- Siyu Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
6
|
Yaşar Yıldız S, Radchenkova N. Exploring Extremophiles from Bulgaria: Biodiversity, Biopolymer Synthesis, Functional Properties, Applications. Polymers (Basel) 2023; 16:69. [PMID: 38201734 PMCID: PMC10780585 DOI: 10.3390/polym16010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Bulgaria stands out as a country rich in diverse extreme environments, boasting a remarkable abundance of mineral hot waters, which positions it as the second-largest source of such natural resources in Europe. Notably, several thermal and coastal solar salterns within its territory serve as thriving habitats for thermophilic and halophilic microorganisms, which offer promising bioactive compounds, including exopolysaccharides (EPSs). Multiple thermophilic EPS producers were isolated, along with a selection from several saltern environments, revealing an impressive taxonomic and bacterial diversity. Four isolates from three different thermophilic species, Geobacillus tepidamans V264, Aeribacillus pallidus 418, Brevibacillus thermoruber 423, and Brevibacillus thermoruber 438, along with the halophilic strain Chromohalobacter canadensis 28, emerged as promising candidates for further exploration. Optimization of cultivation media and conditions was conducted for each EPS producer. Additionally, investigations into the influence of aeration and stirring in laboratory bioreactors provided valuable insights into growth dynamics and polymer synthesis. The synthesized biopolymers showed excellent emulsifying properties, emulsion stability, and synergistic interaction with other hydrocolloids. Demonstrated biological activities and functional properties pave the way for potential future applications in diverse fields, with particular emphasis on cosmetics and medicine. The remarkable versatility and efficacy of biopolymers offer opportunities for innovation and development in different industrial sectors.
Collapse
Affiliation(s)
- Songül Yaşar Yıldız
- Department of Bioengineering, Istanbul Medeniyet University, 34720 Istanbul, Turkey;
| | - Nadja Radchenkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
7
|
Etemad L, Salmasi Z, Moosavian Kalat SA, Moshiri M, Zamanian J, Kesharwani P, Sahebkar A. An overview on nanoplatforms for statins delivery: Perspectives for safe and effective therapy. ENVIRONMENTAL RESEARCH 2023; 234:116572. [PMID: 37429398 DOI: 10.1016/j.envres.2023.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Statins are the most widely used pharmacological agents for reducing blood cholesterol levels and treating atherosclerotic cardiovascular diseases. Most of the statins' derivatives have been limited by water solubility, bioavailability, and oral absorption, which has led to adverse effects on several organs, especially at high doses. As an approach to reducing statin intolerance, achieving a stable formulation with improved efficacy and bioavailability at low doses has been suggested. Nanotechnology-based formulations may provide a therapeutic benefit over traditional formulations in terms of potency and biosafety. Nanocarriers can provide tailored delivery platforms for statins, thereby enhancing the localized biological effects and lowering the risk of undesired side effects while boosting statin's therapeutic index. Furthermore, tailored nanoparticles can deliver the active cargo to the desired site, which culminates in reducing off-targeting and toxicity. Nanomedicine could also provide opportunities for therapeutic methods by personalized medicine. This review delves into the existing data on the potential improvement of statin therapy using nano-formulations.
Collapse
Affiliation(s)
- Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian Kalat
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Zamanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Jayakodi S, Senthilnathan R, Swaminathan A, Shanmugam VK, Shanmugam RK, Krishnan A, Ponnusamy VK, Tsai PC, Lin YC, Chen YH. Bio-inspired nanoparticles mediated from plant extract biomolecules and their therapeutic application in cardiovascular diseases: A review. Int J Biol Macromol 2023:125025. [PMID: 37245774 DOI: 10.1016/j.ijbiomac.2023.125025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Nanoparticles (NPs) have gained recognition for diagnosis, drug delivery, and therapy in fatal diseases. This review focuses on the benefits of green synthesis of bioinspired NPs using various plant extract (containing various biomolecules such as sugars, proteins, and other phytochemical compounds) and their therapeutic application in cardiovascular diseases (CVDs). Multiple factors including inflammation, mitochondrial and cardiomyocyte mutations, endothelial cell apoptosis, and administration of non-cardiac drugs, can trigger the cause of cardiac disorders. Furthermore, the interruption of reactive oxygen species (ROS) synchronization from mitochondria causes oxidative stress in the cardiac system, leading to chronic diseases such as atherosclerosis and myocardial infarction. NPs can decrease the interaction with biomolecules and prevent the incitement of ROS. Understanding this mechanism can pave the way for using green synthesized elemental NPs to reduce the risk of CVD. This review delivers information on the different methods, classifications, mechanisms and benefits of using NPs, as well as the formation and progression of CVDs and their effects on the body.
Collapse
Affiliation(s)
- Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Raghul Senthilnathan
- Global Business School for Health, University College London, Gower St, London WC1E 6BT, United Kingdom
| | - Akila Swaminathan
- Clinical Virology, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Venkat Kumar Shanmugam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Rajesh Kumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu 600077, India
| | - Anbarasu Krishnan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Yuan-Chung Lin
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
9
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
10
|
Pulingam T, Foroozandeh P, Chuah JA, Sudesh K. Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:576. [PMID: 35159921 PMCID: PMC8839423 DOI: 10.3390/nano12030576] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have remarkable properties for delivering therapeutic drugs to the body's targeted cells. NPs have shown to be significantly more efficient as drug delivery carriers than micron-sized particles, which are quickly eliminated by the immune system. Biopolymer-based polymeric nanoparticles (PNPs) are colloidal systems composed of either natural or synthetic polymers and can be synthesized by the direct polymerization of monomers (e.g., emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion polymerization, micro-emulsion polymerization, and microbial polymerization) or by the dispersion of preformed polymers (e.g., nanoprecipitation, emulsification solvent evaporation, emulsification solvent diffusion, and salting-out). The desired characteristics of NPs and their target applications are determining factors in the choice of method used for their production. This review article aims to shed light on the different methods employed for the production of PNPs and to discuss the effect of experimental parameters on the physicochemical properties of PNPs. Thus, this review highlights specific properties of PNPs that can be tailored to be employed as drug carriers, especially in hospitals for point-of-care diagnostics for targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (T.P.); (P.F.); (J.-A.C.)
| |
Collapse
|
11
|
Awad M, Dhib R, Duever T. Atom transfer radical polymerization initiated by activator generated by electron transfer in emulsion media: a review of recent advances and challenges from an engineering perspective. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2021089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammed Awad
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| | - Ramdhane Dhib
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| | - Thomas Duever
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| |
Collapse
|
12
|
Jiang T, Xu L, Zhao M, Kong F, Lu X, Tang C, Yin C. Dual targeted delivery of statins and nucleic acids by chitosan-based nanoparticles for enhanced antiatherosclerotic efficacy. Biomaterials 2021; 280:121324. [PMID: 34933253 DOI: 10.1016/j.biomaterials.2021.121324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease caused by atherosclerosis is a leading cause of morbidity and mortality worldwide. Owing to the synergistic regulation of cholesterol metabolism and lesion inflammation, the simultaneous administration of statins and nucleic acids is expected to alleviate atherosclerosis. In this work, we prepared atorvastatin- and galactose-modified trimethyl chitosan nanoparticles (GTANPs) with dual targeting to hepatocytes and lesional macrophages for encapsulating Baf60a siRNA (siBaf60a) and anti-miR-33 pDNA (pAnti-miR-33), attaining the effective codelivery of statins and nucleic acids. We demonstrated that GTANPs/siBaf60a and GTANPs/pAnti-miR-33 had in vitro antiinflammatory and lipid regulating efficacy. In ApoE-knockout atherosclerotic mice, intravenously injected GTANPs/siBaf60a synergistically reduced the plasma cholesterol and atherosclerotic plaque area; more importantly, orally delivered GTANPs/pAnti-miR-33 synergistically increased the levels of plasma high-density lipoprotein cholesterol (HDL-C) and antiinflammatory cytokines, resulting in a satisfactory antiatherosclerotic outcome. Our results suggest that codelivery of statins and nucleic acids provides a promising strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ting Jiang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lu Xu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Mengxin Zhao
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fei Kong
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinrong Lu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
13
|
Jogaiah S, Paidi MK, Venugopal K, Geetha N, Mujtaba M, Udikeri SS, Govarthanan M. Phytotoxicological effects of engineered nanoparticles: An emerging nanotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149809. [PMID: 34467935 DOI: 10.1016/j.scitotenv.2021.149809] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Recent innovations in the field of nanoscience and technology and its proficiency as a part of inter-disciplinary science has set an eclectic display in innumerable branches of science, a majority in aliened health science of human and agriculture. Modern agricultural practices have been shifting towards the implementation of nanotechnology-based solutions to combat various emerging problems ranging from safe delivery of nutrients to sustainable approaches for plant protection. In these processes, engineered nanoparticles (ENPs) are widely used as nanocarriers (to deliver nutrients and pesticides) due to their high permeability, efficacy, biocompatibility, and biodegradability properties. Even though the constructive nature of nanoparticles (NPs), nanomaterials (NMs), and other modified or ENPs towards sustainable development in agriculture is referenced, the darker side i.e., eco-toxicological effects is still not covered to a larger extent. The overwhelming usage of these trending NMs has led to continuous persistence in the ecosystem, and their interface with the biotic and abiotic community, degradation lanes and intervention, which might lead to certain beneficial or malefic effects. Metal oxide NPs and polymeric NPs (Alginate, chitosan, and polyethylene glycol) are the most used ENPs, which are posing the nature of beneficial as well as environmentally concerning hazardous materials depending upon their fate and persistence in the ecosystem. The cautious usage of NMs in a scientific way is most essential to harness beneficial aspects of NMs in the field of agriculture whilst minimizing the eco-toxicological effects. The current review is focused on the toxicological effects of various NMs on plant physiology and health. It details interactions of plant intracellular components between applied/persistent NMs, which have brought out drastic changes in seed germination, crop productivity, direct and indirect interaction at the enzymatic as well as nuclear levels. In conclusion, ENPs can pose as genotoxicants that may alter the plant phenotype if not administered appropriately.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003, India.
| | - Murali Krishna Paidi
- AcSIR, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Krishnan Venugopal
- Department of Biochemistry, Vivekanandha College of Arts & Sciences for Women, Elayampalayam, Tiruchengode 637 205, Namakkal Dist., Tamilnadu, India
| | - Nagaraja Geetha
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Muhammad Mujtaba
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo FI-00076, Finland; Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - Shashikant Shiddappa Udikeri
- Agricultural Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad 580005, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea.
| |
Collapse
|
14
|
Yu P, Liu Y, Xie J, Li J. Spatiotemporally controlled calcitonin delivery: Long-term and targeted therapy of skeletal diseases. J Control Release 2021; 338:486-504. [PMID: 34481022 DOI: 10.1016/j.jconrel.2021.08.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023]
Abstract
Bone is a connective tissue that support the entire body and protect the internal organs. However, there are great challenges on curing intractable skeletal diseases such as hypercalcemia, osteoporosis and osteoarthritis. To address these issues, calcitonin (CT) therapy is an effective treatment alternative to regulate calcium metabolism and suppress inflammation response, which are closely related to skeletal diseases. Traditional calcitonin formulation requires frequent administration due to the low bioavailability resulting from the short half-life and abundant calcitonin receptors distributed through the whole body. Therefore, long-term and targeted calcitonin delivery systems (LCDS and TCDS) have been widely explored as the popular strategies to overcome the intrinsic limitations of calcitonin and improve the functions of calcium management and inflammation inhibition in recent years. In this review, we first explain the physiological effects of calcitonin on bone remodeling: (i) inhibitory effects on osteoclasts and (ii) facilitated effects on osteoblasts. Then we summarized four strategies for spatiotemporally controlled delivery of calcitonin: micro-/nanomedicine (e.g. inorganic micro-/nanomedicine, polymeric micro-/nanomedicine and supramolecular assemblies), hydrogels (especially thermosensitive hydrogels), prodrug (PEGylation and targeting design) and hybrid biomaterials. Subsequently, we discussed the application of LCDS and TCDS in treating hypercalcemia, osteoporosis, and arthritis. Understanding and analyzing these advanced calcitonin delivery applications are essential for future development of calcitonin therapies toward skeletal diseases with superior efficacy in clinic.
Collapse
Affiliation(s)
- Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yanpeng Liu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, PR China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
15
|
Adhikari C. Polymer nanoparticles-preparations, applications and future insights: a concise review. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1939715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chandan Adhikari
- School of Basic Science and Humanities, Institute of Engineering & Management, Kolkata, India
| |
Collapse
|
16
|
Abstract
Stimulus-responsive polymers have been used in improving the efficacy of medical diagnostics through different approaches including enhancing the contrast in imaging techniques and promoting the molecular recognition in diagnostic assays. This review overviews the mechanisms of stimulus-responsive polymers in response to external stimuli including temperature, pH, ion, light, etc. The applications of responsive polymers in magnetic resonance imaging, capture and purification of biomolecules through protein-ligand recognition and lab-on-a-chip technology are discussed.
Collapse
Affiliation(s)
- Divambal Appavoo
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, University of Central Florida, FL 32826, USA.
| | | | | |
Collapse
|
17
|
Wagle SR, Kovacevic B, Walker D, Ionescu CM, Jones M, Stojanovic G, Kojic S, Mooranian A, Al-Salami H. Pharmacological and Advanced Cell Respiration Effects, Enhanced by Toxic Human-Bile Nano-Pharmaceuticals of Probucol Cell-Targeting Formulations. Pharmaceutics 2020; 12:pharmaceutics12080708. [PMID: 32751051 PMCID: PMC7463437 DOI: 10.3390/pharmaceutics12080708] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Bile acids have recently been studied for potential applications as formulation excipients and enhancers for drug release; however, some bile acids are not suitable for this application. Unconjugated lithocholic acid (ULCA) has recently shown drug formulation-stabilizing and anti-inflammatory effects. Lipophilic drugs have poor gut absorption after an oral dose, which necessitates the administration of high doses and causes subsequent side effects. Probucol (PB) is a highly lipophilic drug with poor oral absorption that resulted in restrictions on its clinical prescribing. Hence, this study aimed to design new delivery systems for PB using ULCA-based matrices and to test drug formulation, release, temperature, and biological effects. ULCA-based matrices were formulated for PB oral delivery by applying the jet-flow microencapsulation technique using sodium alginate as a polymer. ULCA addition to new PB matrices improved the microcapsule’s stability, drug release in vitro (formulation study), and showed a promising effect in ex vivo study (p < 0.05), suggesting that ULCA can optimize the oral delivery of PB and support its potential application in diabetes treatment.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Daniel Walker
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Corina Mihaela Ionescu
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Melissa Jones
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia; (G.S.); (S.K.)
| | - Sanja Kojic
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia; (G.S.); (S.K.)
| | - Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
- Correspondence: ; Tel.: +61-8-9266-9816; Fax: +61-8-9266-2769
| |
Collapse
|
18
|
Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int J Mol Sci 2020; 21:ijms21082992. [PMID: 32340284 PMCID: PMC7216001 DOI: 10.3390/ijms21082992] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a lipoprotein-driven inflammatory disorder leading to a plaque formation at specific sites of the arterial tree. After decades of slow progression, atherosclerotic plaque rupture and formation of thrombi are the major factors responsible for the development of acute coronary syndromes (ACSs). In this regard, the detection of high-risk (vulnerable) plaques is an ultimate goal in the management of atherosclerosis and cardiovascular diseases (CVDs). Vulnerable plaques have specific morphological features that make their detection possible, hence allowing for identification of high-risk patients and the tailoring of therapy. Plaque ruptures predominantly occur amongst lesions characterized as thin-cap fibroatheromas (TCFA). Plaques without a rupture, such as plaque erosions, are also thrombi-forming lesions on the most frequent pathological intimal thickening or fibroatheromas. Many attempts to comprehensively identify vulnerable plaque constituents with different invasive and non-invasive imaging technologies have been made. In this review, advantages and limitations of invasive and non-invasive imaging modalities currently available for the identification of plaque components and morphologic features associated with plaque vulnerability, as well as their clinical diagnostic and prognostic value, were discussed.
Collapse
|
19
|
Choudhury H, Maheshwari R, Pandey M, Tekade M, Gorain B, Tekade RK. Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug ‘Etoposide’. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110275. [DOI: 10.1016/j.msec.2019.110275] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
|
20
|
Besseris GJ. Synchronous screening-and-optimization of nano-engineered blood pressure-drop using rapid robust non-linear Taguchi profiling. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Antunes JC, Benarroch L, Moraes FC, Juenet M, Gross MS, Aubart M, Boileau C, Caligiuri G, Nicoletti A, Ollivier V, Chaubet F, Letourneur D, Chauvierre C. Core-Shell Polymer-Based Nanoparticles Deliver miR-155-5p to Endothelial Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:210-222. [PMID: 31265949 PMCID: PMC6610682 DOI: 10.1016/j.omtn.2019.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Heart failure occurs in over 30% of the worldwide population and most commonly originates from cardiovascular diseases such as myocardial infarction. microRNAs (miRNAs) target and silence specific mRNAs, thereby regulating gene expression. Because the endogenous miR-155-5p has been ascribed to vasculoprotection, loading it onto positively charged, core-shell poly(isobutylcyanoacrylate) (PIBCA)-polysaccharide nanoparticles (NPs) was attempted. NPs showed a decrease (p < 0.0001) in surface electrical charge (ζ potential), with negligible changes in size or shape when loaded with the anionic miR-155-5p. Presence of miR-155-5p in loaded NPs was further quantified. Cytocompatibility up to 100 μg/mL of NPs for 2 days with human coronary artery endothelial cells (hCAECs) was documented. NPs were able to enter hCAECs and were localized in the endoplasmic reticulum (ER). Expression of miR-155-5p was increased within the cells by 75-fold after 4 hours of incubation (p < 0.05) and was still noticeable at day 2. Differences between loaded NP-cultured cells and free miRNA, at days 1 (p < 0.05) and 2 (p < 0.001) suggest the ability of prolonged load release in physiological conditions. Expression of miR-155-5p downstream target BACH1 was decreased in the cells by 4-fold after 1 day of incubation (p < 0.05). This study is a first proof of concept that miR-155-5p can be loaded onto NPs and remain intact and biologically active in endothelial cells (ECs). These nanosystems could potentially increase an endogenous cytoprotective response and decrease damage within infarcted hearts.
Collapse
Affiliation(s)
- Joana C Antunes
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Louise Benarroch
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Fernanda C Moraes
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Maya Juenet
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Marie-Sylvie Gross
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Mélodie Aubart
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Catherine Boileau
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Giuseppina Caligiuri
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Antonino Nicoletti
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Véronique Ollivier
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Frédéric Chaubet
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Didier Letourneur
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France
| | - Cédric Chauvierre
- Université de Paris, LVTS, INSERM U1148, Université Paris 13, 75018 Paris, France.
| |
Collapse
|
22
|
Synthesis and anticancer properties of bacterial cellulose-magnesium oxide bionanocomposite. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Given the increase in global mortality rate due to various types of cancer, the present study aimed to develop optimal conditions for the synthesis of cellulose-magnesium oxide nanocomposite with favorable anticancer activity. For this purpose, the Taguchi method was used to design nine experiments with varied ratios of cellulose biopolymer, magnesium oxide nanoparticles and different stirring times. The scanning electron microscopy (SEM) images confirmed the formation of cellulose-magnesium oxide nanocomposite. The anticancer activity level of nine nanocomposites studied was evaluated using MTT assay on Michigan Cancer Foundation-7 (MCF-7) cell line. The nanocomposite synthesized in experiment 9 (8 mg/ml of magnesium oxide, 2 mg/ml of cellulose and stirring time of 60 min) showed the highest growth inhibitory activity on the cancer cells. Based on the attained results,e cellulose-magnesium oxide nanocomposite synthesized in optimal conditions can be used as an eligible anticancer agent.
Collapse
|
23
|
Poly(p-phenylenediamine)-based nanocomposites with metal oxide nanoparticle for optoelectronic and magneto-optic application. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02760-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Tan KX, Pan S, Jeevanandam J, Danquah MK. Cardiovascular therapies utilizing targeted delivery of nanomedicines and aptamers. Int J Pharm 2019; 558:413-425. [PMID: 30660748 DOI: 10.1016/j.ijpharm.2019.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Cardiovascular ailments are the foremost trigger of death in the world today, including myocardial infarction and ischemic heart diseases. To date, extraordinary measures have been prescribed, from the perspectives of both conventional medical therapies and surgeries, to enforce cardiac cell regeneration post cardiac traumas, albeit with limited long-term success. The prospects of successful heart transplants are also grim, considering exorbitant costs and unavailability of suitable donors in most cases. From the perspective of cardiac revascularization, use of nanoparticles and nanoparticle mediated targeted drug delivery have garnered substantial attention, attributing to both active and passive heart targeting, with enhanced target specificity and sensitivity. This review focuses on this aspect, while outlining the progress in targeted delivery of nanomedicines in the prognosis and subsequent therapy of cardiovascular disorders, and recapitulating the benefits and intrinsic challenges associated with the incorporation of nanoparticles. This article categorically provides an overview of nanoparticle-mediated targeted delivery systems and their implications in handling cardiovascular diseases, including their intrinsic benefits and encountered procedural trials and challenges. Additionally, the solicitations of aptamers in targeted drug delivery with identical objectives, are presented. This includes a detailed appraisal on various aptamer-navigated nanoparticle targeted delivery platforms in the diagnosis and treatment of cardiovascular maladies. Despite a few impending challenges, subject to additional investigations, both nanoparticles as well as aptamers show a high degree of promise, and pose as the next generation of drug delivery vehicles, in targeted cardiovascular therapy.
Collapse
Affiliation(s)
- Kei Xian Tan
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| | - Jaison Jeevanandam
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403, United States.
| |
Collapse
|
25
|
Strobel HA, Qendro EI, Alsberg E, Rolle MW. Targeted Delivery of Bioactive Molecules for Vascular Intervention and Tissue Engineering. Front Pharmacol 2018; 9:1329. [PMID: 30519186 PMCID: PMC6259603 DOI: 10.3389/fphar.2018.01329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in the United States. Treatment often requires surgical interventions to re-open occluded vessels, bypass severe occlusions, or stabilize aneurysms. Despite the short-term success of such interventions, many ultimately fail due to thrombosis or restenosis (following stent placement), or incomplete healing (such as after aneurysm coil placement). Bioactive molecules capable of modulating host tissue responses and preventing these complications have been identified, but systemic delivery is often harmful or ineffective. This review discusses the use of localized bioactive molecule delivery methods to enhance the long-term success of vascular interventions, such as drug-eluting stents and aneurysm coils, as well as nanoparticles for targeted molecule delivery. Vascular grafts in particular have poor patency in small diameter, high flow applications, such as coronary artery bypass grafting (CABG). Grafts fabricated from a variety of approaches may benefit from bioactive molecule incorporation to improve patency. Tissue engineering is an especially promising approach for vascular graft fabrication that may be conducive to incorporation of drugs or growth factors. Overall, localized and targeted delivery of bioactive molecules has shown promise for improving the outcomes of vascular interventions, with technologies such as drug-eluting stents showing excellent clinical success. However, many targeted vascular drug delivery systems have yet to reach the clinic. There is still a need to better optimize bioactive molecule release kinetics and identify synergistic biomolecule combinations before the clinical impact of these technologies can be realized.
Collapse
Affiliation(s)
- Hannah A. Strobel
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Elisabet I. Qendro
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Marsha W. Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
26
|
Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801362. [PMID: 30066406 DOI: 10.1002/adma.201801362] [Citation(s) in RCA: 340] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/09/2018] [Indexed: 05/24/2023]
Abstract
Therapies directed toward the central nervous system remain difficult to translate into improved clinical outcomes. This is largely due to the blood-brain barrier (BBB), arguably the most tightly regulated interface in the human body, which routinely excludes most therapeutics. Advances in the engineering of nanomaterials and their application in biomedicine (i.e., nanomedicine) are enabling new strategies that have the potential to help improve our understanding and treatment of neurological diseases. Herein, the various mechanisms by which therapeutics can be delivered to the brain are examined and key challenges facing translation of this research from benchtop to bedside are highlighted. Following a contextual overview of the BBB anatomy and physiology in both healthy and diseased states, relevant therapeutic strategies for bypassing and crossing the BBB are discussed. The focus here is especially on nanomaterial-based drug delivery systems and the potential of these to overcome the biological challenges imposed by the BBB. Finally, disease-targeting strategies and clearance mechanisms are explored. The objective is to provide the diverse range of researchers active in the field (e.g., material scientists, chemists, engineers, neuroscientists, and clinicians) with an easily accessible guide to the key opportunities and challenges currently facing the nanomaterial-mediated treatment of neurological diseases.
Collapse
Affiliation(s)
- Denzil Furtado
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Materials, Department of Bioengineering, and the Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Cooperative Research Center for Mental Health, Parkville, Victoria, 3052, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
27
|
Pradhan M, Alexander A, Singh MR, Singh D, Saraf S, Saraf S, Ajazuddin. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed Pharmacother 2018; 107:447-463. [PMID: 30103117 DOI: 10.1016/j.biopha.2018.07.156] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a consistently recurring, inflammatory, autoimmune disorder of the skin, affecting about 2-5% of the world population. Abundant therapeutic agents are accessible for the treatment of psoriasis. Nevertheless, none of them are entirely secure and effective to treat the disease without compromising patient compliance. Furthermore, already existing drugs are supposed to restrain the ailment and alleviate the sign and symptoms with no complete cure. However, they focus on restraining the disease and alleviating the symptoms without providing an absolute cure. Therefore there remains a vital challenge, to explore a new drug moiety or delivery system which could safely and effectively manage psoriasis without compromising patient compliance. Furthermore, conventional formulations offer reduced benefit/risk ratio of anti-psoriatic drugs, which limits the use of existing conventional formulations. Novel formulations based on nanocarriers are a promising prospect to overcome the limitation of conventional formulations by offering a reduction in dose, dosing frequency, dose-dependent, side effects with enhanced efficacy. Presently nano-formulations have gained widespread application for effective and safe treatment of psoriasis. The present review primarily focuses on conventional therapeutic strategy and recent advances in lipid-based, polymer-based and metallic nano-formulations of a variety of anti-psoriatic drugs. The practicability of various nanocarrier systems including liposomes, nanostructured lipid carriers, ethosomes, solid lipid nanoparticles, nanocapsules, micelles, dendrimers, gold nanoparticles and silver nanoparticles have been discussed in detail. The review also traces related patents to exemplify the role of various nanoparticles in psoriasis treatment. In a nutshell, nano-formulations remain established as a promising modality for treating psoriasis treatment as they propose better penetration, targeted delivery, enhanced safety, and efficacy.
Collapse
Affiliation(s)
- Madhulika Pradhan
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 4920110, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 4920110, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 4920110, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 4920110, India; Durg University, Govt. Vasudev Vaman Patankar Girls' P.G. College Campus, Raipur Naka, Durg, Chhattisgarh, 491001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.
| |
Collapse
|
28
|
Abstract
Implanting a metal stent plays a key role in treating cardiovascular diseases. However, the high corrosion rate of metal-based devices severely limits their practical applications. Therefore, how to control the corrosion rate is vital to take full advantages of metal-based materials in the treatment of cardiovascular diseases. This review details various methods to design and construct polymer-coated stents. The techniques are described and discussed including plasma deposition, electrospinning, dip coating, layer-by-layer self-assembly, and direct-write inkjet. Key point is provided to highlight current methods and recent advances in hindering corrosion rate and improving biocompatibility of stents, which greatly drives the rising of some promising techniques involved in the ongoing challenges and potential new trends of polymer-coated stents.
Collapse
|
29
|
Matyjaszewski K. Advanced Materials by Atom Transfer Radical Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706441. [PMID: 29582478 DOI: 10.1002/adma.201706441] [Citation(s) in RCA: 359] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/18/2017] [Indexed: 05/21/2023]
Abstract
Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well-defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic-organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials.
Collapse
|
30
|
Kumar S, Sarita, Nehra M, Dilbaghi N, Tankeshwar K, Kim KH. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.03.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Chen G, Wang Y, Xie R, Gong S. A review on core-shell structured unimolecular nanoparticles for biomedical applications. Adv Drug Deliv Rev 2018; 130:58-72. [PMID: 30009887 PMCID: PMC6149214 DOI: 10.1016/j.addr.2018.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Polymeric unimolecular nanoparticles (NPs) exhibiting a core-shell structure and formed by a single multi-arm molecule containing only covalent bonds have attracted increasing attention for numerous biomedical applications. This unique single-molecular architecture provides the unimolecular NP with superior stability both in vitro and in vivo, a high drug loading capacity, as well as versatile surface chemistry, thereby making it a desirable nanoplatform for therapeutic and diagnostic applications. In this review, we surveyed the architecture of various types of polymeric unimolecular NPs, including water-dispersible unimolecular micelles and water-soluble unimolecular NPs used for the delivery of hydrophobic and hydrophilic agents, respectively, as well as their diverse biomedical applications. Future opportunities and challenges of unimolecular NPs were also briefly discussed.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
32
|
Iron-oxide nano-particles effect on the blood hemodynamics in atherosclerotic coronary arteries. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018; 155:217-235. [PMID: 29190479 PMCID: PMC5978728 DOI: 10.1016/j.biomaterials.2017.11.025] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
As a new class of organic optical nanomaterials, semiconducting polymer nanoparticles (SPNs) have the advantages of excellent optical properties, high photostability, facile surface functionalization, and are considered to possess good biocompatibility for biomedical applications. This review surveys recent progress made on the design and synthesis of SPNs for molecular imaging and cancer phototherapy. A variety of novel polymer design, chemical modification and nanoengineering strategies have been developed to precisely tune up optoelectronic properties of SPNs to enable fluorescence, chemiluminescence and photoacoustic (PA) imaging in living animals. With these imaging modalities, SPNs have been demonstrated not only to image tissues such as lymph nodes, vascular structure and tumors, but also to detect disease biomarkers such as reactive oxygen species (ROS) and protein sulfenic acid as well as physiological indexes such as pH and blood glucose concentration. The potentials of SPNs in cancer phototherapy including photodynamic and photothermal therapy are also highlighted with recent examples. Future efforts should further expand the use of SPNs in biomedical research and may even move them beyond pre-clinical studies.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Departments of Radiology and Chemistry, Stanford University, 1201 Welch Road, Stanford, CA 94305-5484, USA.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
34
|
Nishiura C, Williams V, Matyjaszewski K. Iron and copper based catalysts containing anionic phenolate ligands for atom transfer radical polymerization. Macromol Res 2017. [DOI: 10.1007/s13233-017-5118-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Hatami M, Djafarzadeh N, Hasanabadi H. Application of poly(methyl methacrylate -co-γ-methacryloxypropyltrimethoxysilane)/silica modified TiO2nanocomposites for anti-pollutant properties. ADVANCES IN POLYMER TECHNOLOGY 2017. [DOI: 10.1002/adv.21842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mehdi Hatami
- Department of Polymer Science and Engineering; Polymer Research Laboratory; University of Bonab; Bonab Iran
| | - Nader Djafarzadeh
- Department of Chemistry; Miyaneh Branch; Islamic Azad University; Miyaneh Iran
| | - Hamed Hasanabadi
- Young Researchers and Elite Club; Mahshahr Branch; Islamic Azad University; Mahshahr Iran
| |
Collapse
|
36
|
Local co-administration of gene-silencing RNA and drugs in cancer therapy: State-of-the art and therapeutic potential. Cancer Treat Rev 2017; 55:128-135. [PMID: 28363142 DOI: 10.1016/j.ctrv.2017.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Gene-silencing miRNA and siRNA are emerging as attractive therapeutics with potential to suppress any genes, which could be especially useful in combination cancer therapy to overcome multidrug resistant (MDR) cancer. Nanomedicine aims to advance cancer treatment through functional nanocarriers that delivers one or more therapeutics to cancer tissue and cells with minimal off-target effects and suitable release kinetics and dosages. Although much effort has gone into developing circulating nanocarriers with targeting functionality for systemic administration, another alternative and straightforward approach is to utilize formulations to be administered directly to the site of action, such as pulmonary and intratumoral delivery. The combination of gene-silencing RNA with drugs in nanocarriers for localized delivery is emerging with promising results. In this review, the current progress and strategies for local co-administration of RNA and drug for synergistic effects and future potential in cancer treatment are presented and discussed. Key advances in RNA-drug anticancer synergy and localized delivery systems were combined with a review of the available literature on local co-administration of RNA and drug for cancer treatment. It is concluded that advanced delivery systems for local administration of gene-silencing RNA and drug hold potential in treatment of cancer, depending on indication. In particular, there are promising developments using pulmonary delivery and intratumoral delivery in murine models, but further research should be conducted on other local administration strategies, designs that achieve effective intracellular delivery and maximize synergy and feasibility for clinical use.
Collapse
|
37
|
Gadde S, Rayner KJ. Nanomedicine Meets microRNA: Current Advances in RNA-Based Nanotherapies for Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:e73-9. [PMID: 27559146 PMCID: PMC5421623 DOI: 10.1161/atvbaha.116.307481] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) accounts for almost half of all deaths worldwide and has now surpassed infectious disease as the leading cause of death and disability in developing countries. At present, therapies such as low-density lipoprotein-lowering statins and antihypertensive drugs have begun to bend the morality curve for coronary artery disease (CAD); yet, as we come to appreciate the more complex pathophysiological processes in the vessel wall, there is an opportunity to fine-tune therapies to more directly target mechanisms that drive CAD. MicroRNAs (miRNAs) have been identified that control vascular cell homeostasis,(1-3) lipoprotein metabolism,(4-9) and inflammatory cell function.(10) Despite the importance of these miRNAs in driving atherosclerosis and vascular dysfunction, therapeutic modulation of miRNAs in a cell- and context-specific manner has been a challenge. In this review, we summarize the emergence of miRNA-based therapies as an approach to treat CAD by specifically targeting the pathways leading to the disease. We focus on the latest development of nanoparticles (NPs) as a means to specifically target the vessel wall and what the future of these nanomedicines may hold for the treatment of CAD.
Collapse
Affiliation(s)
- Suresh Gadde
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Canada (S.G., K.J.R.); and University of Ottawa Heart Institute, Canada (K.J.R.).
| | - Katey J Rayner
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Canada (S.G., K.J.R.); and University of Ottawa Heart Institute, Canada (K.J.R.).
| |
Collapse
|