1
|
Morrison CA, Chan EP, Deming TJ. Triggered Inversion of Dual Responsive Diblock Copolypeptide Vesicles. J Am Chem Soc 2025. [PMID: 39973289 DOI: 10.1021/jacs.4c17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
We report the synthesis of amphiphilic poly(l-methionine sulfoxide)x-b-poly(dehydroalanine)y, diblock copolypeptides, MOxADHy, and their self-assembly into submicrometer-diameter unilamellar vesicles in aqueous media. The formation of vesicles was observed over an unprecedented range of copolypeptide compositions due to the unique properties and chain conformations of ADH hydrophobic segments. These copolypeptides incorporate two distinct thiol reactive components where each segment can respond differently to a single thiol stimulus. Incubation of MO35ADH30 vesicles with glutathione under intracellular mimetic conditions resulted in vesicle disruption and release of cargo. Further, incubation of MO35ADH30 vesicles with thiolglycolic acid resulted in a reversal of amphipilicity and successful in situ inversion of the vesicle assemblies. This conversion of biomimetic polymer vesicles into stable inverted vesicles using a biologically relevant stimulus at physiological pH and temperature is unprecedented. These results provide insights toward the development of advanced functional synthetic assemblies with potential uses in biology and medicine.
Collapse
Affiliation(s)
- Casey A Morrison
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ethan P Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Timothy J Deming
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Wang M, Liu J, Mao X, Deng R, Zhu J. Neutral Interface Directed 3D Confined Self-Assembly of Block Copolymer: Anisotropic Patterned Particles with Ordered Structures. Chemistry 2025; 31:e202403787. [PMID: 39574397 DOI: 10.1002/chem.202403787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 02/04/2025]
Abstract
Three-dimensional confined self-assembly (3D-CSA) of block copolymers (BCPs) is a distinctive and robust strategy that can yield colloidal polymer particles boasting ordered internal structures and diverse morphologies. The unique advantage of neutral interface lies in its ability to create anisotropic particles with surface patterns. The resulting unique polymer particles exhibit deformability under swelling, coupled with excellent spreadability and optical properties. These particles can also be used for fabrication of anisotropic nanoobjects or mesoporous particles via disassembly or serving as templates. This review comprehensively outlines the research advancements in neutral interface-guided 3D-CSA systems, including surfactant engineering, internal structure control, properties and future possibilities of anisotropic patterned particles.
Collapse
Affiliation(s)
- Mian Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingye Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xi Mao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Renhua Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Patel KJ, Bowles S, Matolyak LE, Vogus D, Wang C, Nagy G, Richards JJ. Mapping Structure and Rheology of pH-Responsive Resins for Low-VOC Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70874-70882. [PMID: 39663362 DOI: 10.1021/acsami.4c15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
In recent years, the paint and coatings industry has shifted away from traditional resin formulations that require high concentrations of volatile organic compounds (VOCs) to achieve the desired rheological performance and sustainability targets. One approach to eliminate or reduce VOCs in paint and coating formulations while maintaining the final performance is to disperse stimuli-responsive polymer latex particles in water. The chemistry and architecture of these particles have been engineered such that the suspension rheology changes in response to the pH changes. The particles can also be swollen with organic solvents to illicit similar rheological changes. To understand how the particle microstructure influences the observed macroscopic properties, we use small-angle neutron scattering and dynamic light scattering to determine that these particles consist of a cross-linked core with long polymer tails that extend into the dispersing medium. Carboxylic acid groups present on the tails deprotonate with increasing pH, and the extension of the polymer chain due to charge repulsion increases the hydrodynamic drag on the particle. We find that adjusting the pH alone has a much more significant effect on the shear dependence of the viscosity of the studied resin than adding organic solvent alone. We also find that this resin architecture is more responsive per mole of pH-responsive group than other architectures of pH-responsive latex particles in the literature.
Collapse
Affiliation(s)
- Kush J Patel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven Bowles
- PPG Industries, Allison Park, Pennsylvania 15101, United States
| | | | - Douglas Vogus
- PPG Industries, Allison Park, Pennsylvania 15101, United States
| | - Chao Wang
- PPG Industries, Allison Park, Pennsylvania 15101, United States
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jeffrey J Richards
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Kudryavtseva V, Sukhorukov GB. Features of Anisotropic Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307675. [PMID: 38158786 DOI: 10.1002/adma.202307675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
5
|
Kim J, Park J, Jung K, Kim EJ, Tan Z, Xu M, Lee YJ, Ku KH, Kim BJ. Light-Responsive Shape- and Color-Changing Block Copolymer Particles with Fast Switching Speed. ACS NANO 2024; 18:8180-8189. [PMID: 38450652 DOI: 10.1021/acsnano.3c12059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Polymer particles capable of dynamic shape changes in response to light have received substantial attention in the development of intelligent multifunctional materials. In this study, we develop a light-responsive block copolymer (BCP) particle system that exhibits fast and reversible shape and color transitions. The key molecular design is the integration of spiropyran photoacid (SPPA) molecules into the BCP particle system, which enables fast and dynamic transformations of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) particles in response to light. The SPPA photoisomerization, induced by 420 nm light irradiation, lowers the pH of the aqueous surroundings from 5.5 to 3.3. The protonated P4VP block substantially increases in domain size from 14 to 39 nm, resulting in significant elongation of the BCP particles (i.e., an increase in the aspect ratio (AR) of the particles from 1.8 to 3.4). Moreover, SPPA adsorbed onto the P4VP surface induces significant changes in the luminescent properties of the BCP particles via photoisomerization of SPPA. Notably, the BCP particles undergo fast, dynamic shape and color transitions within a period of 10 min, maintaining high reversibility over multiple light exposures. Functional dyes are selectively incorporated into different domains of the light-responsive BCP particles to achieve different ranges of color responses. Thus, this study showcases a light-responsive hydrogel display capable of reversible and multicolor photopatterning.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinseok Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyunghyun Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Ji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Zhengping Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Meng Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Jun Lee
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeollabuk-do 55324, Republic of Korea
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Wang Y, Li H, Rasool A, Wang H, Manzoor R, Zhang G. Polymeric nanoparticles (PNPs) for oral delivery of insulin. J Nanobiotechnology 2024; 22:1. [PMID: 38167129 PMCID: PMC10763344 DOI: 10.1186/s12951-023-02253-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. Oral insulin administration, on the other hand, is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤ 2%. Therefore, a large number of technological solutions have been proposed to increase the oral bioavailability of insulin, in which polymeric nanoparticles (PNPs) are highly promising for oral insulin delivery. The recently published research articles chosen for this review are based on applications of PNPs with strong future potential in oral insulin delivery, and do not cover all related work. In this review, we will summarize the controlled release mechanisms of oral insulin delivery, latest oral insulin delivery applications of PNPs nanocarrier, challenges and prospect. This review will serve as a guide to the future investigators who wish to engineer and study PNPs as oral insulin delivery systems.
Collapse
Affiliation(s)
- Yunyun Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Hao Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Aamir Rasool
- Institute of Biochemistry, University of Balochistan, Quetta, 78300, Pakistan.
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741000, China.
| | - Robina Manzoor
- Department of Biotechnology and Bioinformatics, Water and Marine Sciences, Lasbella University of Agriculture, Uthal, 90150, Pakistan
| | - Genlin Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
7
|
Girma A, Mebratie G, Alamnie G, Bekele T. Advances With Selected Nanostructured Materials in Health Care. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2024. [DOI: 10.1016/b978-0-323-95486-0.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
8
|
Wang Z, Li F, Wang L, Liu Y, Li M, Cui N, Li C, Sun S, Hu S. A dissipative particle dynamics simulation of controlled loading and responsive release of theranostic agents from reversible crosslinked triblock copolymer vesicles. Phys Chem Chem Phys 2023; 26:304-313. [PMID: 38062783 DOI: 10.1039/d3cp04190e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
To control the transport stability and release efficiency of loaded theranostic drugs in triblock copolymer carriers, the reversible crosslinking ability is of great significance. A molecular level exploration of such a function is needed to extend existing stabilizing and responsive dissociation mechanisms of carriers. Here, dissipative particle dynamics simulations were used to first demonstrate the formation of triblock copolymer vesicular carriers. Chemical crosslinking was used to strengthen the structural stability of the vesicle shell to avoid drug leakage. Reversible decrosslinking along with dissociation of the vesicle and release of loaded drugs were then explored. The structural, energetic and dynamical properties of the system were discussed at the molecular level. The regulation mechanism of drug release patterns was revealed by systematically exploring the effect of intra and intermolecular repulsive interactions. The results indicate that the chemical crosslinking of copolymers enhanced the compactness of the vesicle shell with a strengthened microstructure, increased binding energy, and limited chain migration, thus achieving more stable delivery of drugs. In terms of drug release, we clarified how the pairwise interactions of beads in the solution system affect the responsive dissociation of the vesicle and associated release patterns (speed and amount) of drugs. More efficient delivery and smart release of theranostic drugs are achieved using such reversible crosslinked triblock copolymer vesicles.
Collapse
Affiliation(s)
- Zhikun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Fengting Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Li Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Yueqi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Miantuo Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Nannan Cui
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunling Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
9
|
Li G, Zheng X, Xu T, Zhang X, Ji B, Xu Z, Bao S, Mei J, Li Z. Preparation of imprinted bacterial cellulose aerogel with intelligent modulation of thermal response stimulation for selective adsorption of Gd(III) from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125806-125815. [PMID: 38006485 DOI: 10.1007/s11356-023-31184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Research on recycling of used rare earth elements has been of great interest. Adsorption is one of the advantageous methods to recover gadolinium with high value. In the process of adsorption and separation of gadolinium from materials, the selectivity of materials for gadolinium can be significantly improved by using ion imprinting technique. However, gadolinium elution process is a traditional pickling process, which may affect the construction of imprinting sites. In this study, bacterial cellulose with three-dimensional spatial structure was used as the base material of aerogel material, and functional materials containing a large number of carboxyl groups were introduced by chemical grafting method. In combination with ion imprinting technology and N-polyacrylamide as intelligent temperature control valve, intelligent imprinting aerogel (PNBC-IIPS) with specific selectivity to gadolinium was prepared. The properties of aerogel materials were analyzed by SEM, FT-IR, and BET characterization. The experimental analysis shows that the desorption of gadolinium can be achieved by controlling the temperature change. The adsorption experiments show that PNBC-IIPS can selectively adsorb gadolinium ions from aqueous solution. The maximum adsorption capacity reached 95.51 mg g-1. Compared with unimprinted aerogel, the maximum adsorption capacity of gadolinium ion is significantly increased, which proves that the introduced ion imprinting technique plays a key role in the adsorption process. Cyclic experiments show that the adsorption capacity of PNBC-IIPS can still maintain 88% of the original adsorption capacity after 5 times of adsorption and desorption. In conclusion, PNBC-IIPS is a green adsorbent for selective recovery of gadolinium ions.
Collapse
Affiliation(s)
- Guomeng Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Tongtong Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Xi Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Biao Ji
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zihuai Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Sifan Bao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Jinfeng Mei
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| |
Collapse
|
10
|
Sun H, Gao Y, Fan Y, Du J, Jiang J, Gao C. Polymeric Bowl-Shaped Nanoparticles: Hollow Structures with a Large Opening on the Surface. Macromol Rapid Commun 2023; 44:e2300196. [PMID: 37246639 DOI: 10.1002/marc.202300196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Polymeric bowl-shaped nanoparticles (BNPs) are anisotropic hollow structures with large openings on the surface, which have shown advantages such as high specific area and efficient encapsulation, delivery and release of large-sized cargoes on demand compared to solid nanoparticles or closed hollow structures. Several strategies have been developed to prepare BNPs based on either template or template-free methods. For instance, despite the widely used self-assembly strategy, alternative methods including emulsion polymerization, swelling and freeze-drying of polymeric spheres, and template-assisted approaches have also been developed. It is attractive but still challenging to fabricate BNPs due to their unique structural features. However, there is still no comprehensive summary of BNPs up to now, which significantly hinders the further development of this field. In this review, the recent progress of BNPs will be highlighted from the perspectives of design strategies, preparation methods, formation mechanisms, and emerging applications. Moreover, the future perspectives of BNPs will also be proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yaning Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yirong Fan
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jinhui Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Chenchen Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
11
|
Wu YG, Li XZ, Zhao J, Yang X, Cai YJ, Jiang H, Sun YX, Wei NJ, Liu Y, Li YB, Yang ZH, Jiang MY, Gai JG. Biomimetic redox-responsive smart coatings with resistance-release functions for reverse osmosis membranes. J Mater Chem B 2023; 11:7950-7960. [PMID: 37491975 DOI: 10.1039/d3tb00904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Membrane fouling induces catastrophic loss of separation performance and seriously restricts the applications of reverse osmosis (RO) membranes. Inspired by the mussel structure, polydopamine (PDA) and cystamine molecules (CA) with excellent anti-fouling properties were used to prepare accessible, biocompatible, and redox-responsive coatings for RO membranes. The PDA/CA-coated RO membranes exhibit a superior water flux of 65 L m-2 h-1 with a favourable NaCl rejection exceeding 99%. The water permeability through the PDA/CA-coated membrane is much higher than that of most membranes with similar rejection rates. Due to the formed protective hydration layers by PDA/CA coatings, anti-fouling properties against proteins, polysaccharides and surfactants were evaluated separately, and ultralow fouling properties were demonstrated. Moreover, the disulfide linkages in CA molecules can cleave in a reducing environment, yielding the degradation of PDA/CA coatings, thereby removing the foulants deposited on the coatings. The degradation endows the coated membranes with satisfying longtime anti-fouling properties, where the flux recovery reaches up to 90%. The construction of redox-responsive smart coatings not only provided a promising route to alleviate membrane fouling but can also be upscaled for use in numerous practical applications like sensors, medical devices, and drug delivery.
Collapse
Affiliation(s)
- Ya-Ge Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xin-Zheng Li
- Nuclear Power Institute of China, 328, Section 1, Changshun Avenue, Huayang, Shuangliu District, Chengdu City, Sichuan Province, 610200, China
| | - Jing Zhao
- PetroChina Liaoyang Petrochemical Company, No. 7 Torch Street, Hongwei District, Liaoyang, Liaoning 111000, China
| | - Xu Yang
- PetroChina Liaoyang Petrochemical Company, No. 7 Torch Street, Hongwei District, Liaoyang, Liaoning 111000, China
| | - Ya-Juan Cai
- Sichuan Guojian Inspection Co., Ltd, No. 17, Section 1, Kangcheng Road, Jiangyang District, Luzhou 646099, Sichuan, China
| | - Han Jiang
- Nuclear Power Institute of China, 328, Section 1, Changshun Avenue, Huayang, Shuangliu District, Chengdu City, Sichuan Province, 610200, China
| | - Yi-Xing Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Nan-Jun Wei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi-Bo Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Zi-Hao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Meng-Ying Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Jing-Gang Gai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
12
|
Ye L, Liu M, Wang X, Yu Z, Huang Z, Zhou N, Zhang Z, Zhu X. Sequence effect on the self-assembly of discrete amphiphilic co-oligomers with fluorene-azobenzene semirigid backbones. RSC Adv 2023; 13:24181-24190. [PMID: 37575403 PMCID: PMC10416705 DOI: 10.1039/d3ra04205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Sequences can have a dramatic impact on the unique properties and self-assembly in natural macromolecules, which has received increasing interest. Herein, we report a series of discrete amphiphilic co-oligomers with the same composition but different building blocks in a semirigid backbone. These sequence-defined oligomers possess two primary amine groups on the side chain of the azobenzene building block, and hence, they become amphipathic due to quaternization of the amine groups when protonated in acidic aqueous solution. These oligomer isomers assembled into different nanoparticles, including nanofibers, hollow vesicles and spherical micellar complexes, in a THF/water/HCl mixture under the same conditions. UV-vis absorption spectra, differential scanning calorimetry (DSC) and X-ray scattering (XRD) experiments combined with theoretical calculations reveal that the sequence-controlled co-oligomers induce different molecular packing conformations and arrangement modes of building blocks in self-assembly. Furthermore, these self-assembled nanoparticles demonstrate photoresponsive morphological transformation and fluorescence emission under UV light irradiation due to trans-to-cis photoisomerization of azobenzene. This work demonstrates that customizing functional nanoparticles can be achieved by controlling the sequence structure in synthetic co-oligomers.
Collapse
Affiliation(s)
- Liandong Ye
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Min Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiao Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhihong Yu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhihao Huang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Nianchen Zhou
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
13
|
Liu P, Xu L, Li J, Peng J, Huang Z, Zhou J. Special Issue: Advanced Science and Technology of Polymer Matrix Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5551. [PMID: 37629842 PMCID: PMC10456407 DOI: 10.3390/ma16165551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
Polymer matrix nanomaterials have revolutionized materials science due to their unique properties resulting from the incorporation of nanoscale fillers into polymer matrices [...].
Collapse
Affiliation(s)
- Peijiang Liu
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, The Fifth Electronics Research Institute of the Ministry of Information Industry, Guangzhou 510610, China;
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Jinlei Li
- Science and Technology on Space Physics Laboratory, Beijing 100076, China
| | - Jianping Peng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (J.P.); (Z.H.)
| | - Zhenkai Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (J.P.); (Z.H.)
| | - Jintang Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| |
Collapse
|
14
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
15
|
Jansen-van Vuuren RD, Naficy S, Ramezani M, Cunningham M, Jessop P. CO 2-responsive gels. Chem Soc Rev 2023; 52:3470-3542. [PMID: 37128844 DOI: 10.1039/d2cs00053a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CO2-responsive materials undergo a change in chemical or physical properties in response to the introduction or removal of CO2. The use of CO2 as a stimulus is advantageous as it is abundant, benign, inexpensive, and it does not accumulate in a system. Many CO2-responsive materials have already been explored including polymers, latexes, surfactants, and catalysts. As a sub-set of CO2-responsive polymers, the study of CO2-responsive gels (insoluble, cross-linked polymers) is a unique discipline due to the unique set of changes in the gels brought about by CO2 such as swelling or a transformed morphology. In the past 15 years, CO2-responsive gels and self-assembled gels have been investigated for a variety of emerging potential applications, reported in 90 peer-reviewed publications. The two most widely exploited properties include the control of flow (fluids) via CO2-triggered aggregation and their capacity for reversible CO2 absorption-desorption, leading to applications in Enhanced Oil Recovery (EOR) and CO2 sequestration, respectively. In this paper, we review the preparation, properties, and applications of these CO2-responsive gels, broadly classified by particle size as nanogels, microgels, aerogels, and macrogels. We have included a section on CO2-induced self-assembled gels (including poly(ionic liquid) gels).
Collapse
Affiliation(s)
- Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, Centre for Excellence in Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, NSW 2006, Australia
| | - Maedeh Ramezani
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| | - Michael Cunningham
- Department of Engineering, Dupuis Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Philip Jessop
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| |
Collapse
|
16
|
Qiu L, Han X, Xing C, Glebe U. Polymerization-Induced Self-Assembly: An Emerging Tool for Generating Polymer-Based Biohybrid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207457. [PMID: 36737834 DOI: 10.1002/smll.202207457] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Indexed: 05/04/2023]
Abstract
The combination of biomolecules and synthetic polymers provides an easy access to utilize advantages from both the synthetic world and nature. This is not only important for the development of novel innovative materials, but also promotes the application of biomolecules in various fields including medicine, catalysis, and water treatment, etc. Due to the rapid progress in synthesis strategies for polymer nanomaterials and deepened understanding of biomolecules' structures and functions, the construction of advanced polymer-based biohybrid nanostructures (PBBNs) becomes prospective and attainable. Polymerization-induced self-assembly (PISA), as an efficient and versatile technique in obtaining polymeric nano-objects at high concentrations, has demonstrated to be an attractive alternative to existing self-assembly procedures. Those advantages induce the focus on the fabrication of PBBNs via the PISA technique. In this review, current preparation strategies are illustrated based on the PISA technique for achieving various PBBNs, including grafting-from and grafting-through methods, as well as encapsulation of biomolecules during and subsequent to the PISA process. Finally, advantages and drawbacks are discussed in the fabrication of PBBNs via the PISA technique and obstacles are identified that need to be overcome to enable commercial application.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xinyue Han
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
17
|
Zaborniak I, Pieńkowska N, Chmielarz P, Bartosz G, Dziedzic A, Sadowska-Bartosz I. Nitroxide-containing amphiphilic polymers prepared by simplified electrochemically mediated ATRP as candidates for therapeutic antioxidants. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
18
|
Xiao H, Shi QX, Su M, Sun XL, Bao H, Wan WM. One-Pot Synthesis of Stimuli-Responsive Fluorescent Polymers through Polymerization-Induced Emission. ACS Macro Lett 2023; 12:40-47. [PMID: 36546477 DOI: 10.1021/acsmacrolett.2c00653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stimuli-responsive opposite emission (A)/absorption (B) polymer material (A∪B = Ω and A∩B = Ø) represents a novel polymer material that is difficult to prepare. Here, we demonstrate a one-pot strategy for the molecular design of stimuli-responsive opposite emission/absorption polymer material with intriguing properties of opposite emission/absorption and aggregation-induced emission (AIE) type nontraditional intrinsic luminescence (NTIL) in the visible region, through reversible addition-fragmentation chain transfer polymerization-induced emission (PIE) of the N,N-dimethyl-triphenylmethanol moiety. Investigations reveal that NTIL is due to the through-space conjugation effect caused by polymer chain entanglement, when increasing the repeating unit number. The corresponding stimuli-responsive opposite emission/absorption properties are derived from the carbocation-quinoid mechanism, which enables the fluorescence encryption capability. This work therefore demonstrates the proof of concept of a novel opposite emission/absorption polymer material that might cause inspiration in different fields.
Collapse
Affiliation(s)
- Hang Xiao
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Wen-Ming Wan
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
19
|
Photoluminescent Janus oxazolidine nanoparticles for development of organic light-emitting diodes, anticounterfeiting, information encryption, and optical detection of scratch. J Colloid Interface Sci 2023; 630:242-256. [DOI: 10.1016/j.jcis.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
|
20
|
More P, Sangitra SN, Bohidar HB, Pujala RK. Rheology and microstructure of thermoresponsive composite gels of hematite pseudocubes and Pluronic F127. J Chem Phys 2022; 157:214902. [PMID: 36511547 DOI: 10.1063/5.0109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Stimuli-responsive materials or smart materials are designed materials whose properties can be changed significantly by applying external stimuli, such as stress, electric or magnetic fields, light, temperature, and pH. We report the linear and nonlinear rheological properties of thermoresponsive composite gels based on submicron-sized hematite pseudocube-shaped particles and a triblock copolymer Pluronic F127 (PF127). These novel composites form hard gels at an elevated temperature of 37 °C. For certain concentrations (<20 w/v. %) of hematite pseudocubes in 17.5 w/v. % of PF127, the gel strength is enhanced and the brittleness of the gels decreases. Higher concentrations (>20 w/v. %) of hematite pseudocubes in PF127 result in weaker and fragile gels. We develop an extensive rheological fingerprint using linear and nonlinear rheological studies. Adsorption of PF127 copolymer molecules on the hematite cube surfaces would further assist the formation of particle clusters along with magnetic interactions to be held effectively in the PF127 micellar network at elevated temperatures. The microscopic structure of these composite gels is visualized through a confocal microscope. Our experiments show that addition of hematite cubes up to 20 w/v. % does not change the rapid thermal gelation of PF127 solutions; hence, the hematite-PF127 composite, which transforms into a hard gel near human body temperature of 37 °C, could be suitable for use in smart drug delivery systems.
Collapse
Affiliation(s)
- Prasanna More
- Soft and Active Matter Group, Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Surya Narayana Sangitra
- Soft and Active Matter Group, Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - H B Bohidar
- National Center for Excellence in Nanobiotechnology, TERI-Deakin Nanobiotechnology Center, Gurugram 121001, India
| | - Ravi Kumar Pujala
- Soft and Active Matter Group, Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
21
|
Lei M, Liao H, Wang S, Zhou H, Zhao Z, Payne GF, Qu X, Liu C. Single Step Assembly of Janus Porous Biomaterial by Sub-Ambient Temperature Electrodeposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204837. [PMID: 36207286 DOI: 10.1002/smll.202204837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Indexed: 06/16/2023]
Abstract
Janus porous biomaterials are gaining increasing attention and there are considerable efforts to develop simple, rapid, and scalable methods capable of tuning micro- and macro-structures. Here, a single-step electro-fabrication method to create a Janus porous film by the electrodeposition of the amino-polysaccharide chitosan is reported. Specifically, a Janus structure emerges spontaneously when electrodeposition is performed at sub-ambient temperature (0-5 °C). Sub-ambient temperature electrodeposition experiments show that: a Janus microstructure emerges (potentially as the result of a subtle alteration of the intermolecular interactions responsible for self-assembly); important microstructural features (pore size, porosity, and thicknesses) can be tuned by conditions; and this method is readily scalable (vs serial printing) and can yield complex tubular structures with Janus faces. In vitro studies demonstrate anisotropic cell guidance, and in vivo studies using a rat calvarial defect model further confirm the beneficial features of such Janus porous film for guided bone regeneration. In summary, these results further demonstrate that electro-fabrication provides a simple and scalable platform technology for the controlled functional structures of soft matter for applications in regenerative medicine.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Haitao Liao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shijia Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiling Zhao
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, MD, 20742, USA
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
22
|
Alidaei-Sharif H, Roghani-Mamaqani H, Babazadeh-Mamaqani M, Sahandi-Zangabad K, Salami-Kalajahi M. Photoluminescent Polymer Nanoparticles Based on Oxazolidine Derivatives for Authentication and Security Marking of Confidential Notes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13782-13792. [PMID: 36318093 DOI: 10.1021/acs.langmuir.2c01947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Colloidal materials have widely been used to develop innovative anticounterfeiting nanoinks for information encryption. Latex nanoparticles based on methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) bearing hydroxyl functional groups were synthesized via semicontinuous miniemulsion polymerization. The size determination of the nanoparticles and microscopic results showed mostly spherical nanoparticles with a narrow size distribution and a mean size of about 80 nm. Two oxazolidine derivatives were physically doped at the surface of the nanoparticles to prepare photoluminescent polymer nanoparticles. Hydroxyl functional groups at the surface of the nanoparticles led to their hydrogen bonding interactions with the doped luminescent compounds. Optical analysis of the photoluminescent nanoparticles displayed different fluorescence emission and UV-vis absorbance intensities based on the amount of polar groups located at the surface of colloidal nanoparticles. Reducing the particle size to below 100 nm along with increasing the surface area can assist the decrease of the light reflectance and improvement of the latex nanoparticles' efficiency in the anticounterfeiting industry. This preparation methodology can efficiently provide remarkable photoreversible anticounterfeiting nanoinks used in different applications, such as print marking, security encoded tags, labeling, probing, and handwriting.
Collapse
Affiliation(s)
- Hossein Alidaei-Sharif
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| | - Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Keyvan Sahandi-Zangabad
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| |
Collapse
|
23
|
Thermo-responsive diblock copolymer with pendant thiolactone group and its double postmodification. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Hasan M, Zafar A, Jabbar M, Tariq T, Manzoor Y, Ahmed MM, Hassan SG, Shu X, Mahmood N. Trident Nano-Indexing the Proteomics Table: Next-Version Clustering of Iron Carbide NPs and Protein Corona. Molecules 2022; 27:molecules27185754. [PMID: 36144499 PMCID: PMC9500999 DOI: 10.3390/molecules27185754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Protein corona composition and precise physiological understanding of differentially expressed proteins are key for identifying disease biomarkers. In this report, we presented a distinctive quantitative proteomics table of molecular cell signaling differentially expressed proteins of corona that formed on iron carbide nanoparticles (NPs). High-performance liquid chromatography/electrospray ionization coupled with ion trap mass analyzer (HPLC/ESI-Orbitrap) and MASCOT helped quantify 142 differentially expressed proteins. Among these proteins, 104 proteins showed upregulated behavior and 38 proteins were downregulated with respect to the control, whereas 48, 32 and 24 proteins were upregulated and 8, 9 and 21 were downregulated CW (control with unmodified NPs), CY (control with modified NPs) and WY (modified and unmodified NPs), respectively. These proteins were further categorized on behalf of their regularity, locality, molecular functionality and molecular masses using gene ontology (GO). A STRING analysis was used to target the specific range of proteins involved in metabolic pathways and molecular processing in different kinds of binding functionalities, such as RNA, DNA, ATP, ADP, GTP, GDP and calcium ion bindings. Thus, this study will help develop efficient protocols for the identification of latent biomarkers in early disease detection using protein fingerprints.
Collapse
Affiliation(s)
- Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Ayesha Zafar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Maryum Jabbar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yasmeen Manzoor
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shahbaz Gul Hassan
- College of Information Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Nasir Mahmood
- School of Science, RMIT University, Victoria 3000, Australia
- Correspondence: (M.H.); (X.S.); (N.M.)
| |
Collapse
|
25
|
Affiliation(s)
- Qianhui Liu
- Department of Materials Science and Engineering, Center for Optical Materials Science and Technologies (COMSET), Clemson University, Clemson, SC, USA
| | - Marek W. Urban
- Department of Materials Science and Engineering, Center for Optical Materials Science and Technologies (COMSET), Clemson University, Clemson, SC, USA
| |
Collapse
|
26
|
Akbar I, El Hadrouz M, El Mansori M, Lagoudas D. Toward enabling manufacturing paradigm of 4D printing of Shape Memory Materials: Open literature review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Cumming J, Deane OJ, Armes SP. Reversible Addition-Fragmentation Chain Transfer Aqueous Dispersion Polymerization of 4-Hydroxybutyl Acrylate Produces Highly Thermoresponsive Diblock Copolymer Nano-Objects. Macromolecules 2022; 55:788-798. [PMID: 35431331 PMCID: PMC9007527 DOI: 10.1021/acs.macromol.1c02431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Indexed: 02/08/2023]
Abstract
The reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a poly(glycerol monomethacrylate) (PGMA) precursor is an important prototypical example of polymerization-induced self-assembly. 4-Hydroxybutyl acrylate (HBA) is a structural isomer of HPMA, but the former monomer exhibits appreciably higher aqueous solubility. For the two corresponding homopolymers, PHBA is more weakly hydrophobic than PHPMA. Moreover, PHBA has a significantly lower glass transition temperature (T g) so it exhibits much higher chain mobility than PHPMA at around ambient temperature. In view of these striking differences, we have examined the RAFT aqueous dispersion polymerization of HBA using a PGMA precursor with the aim of producing a series of PGMA57-300-PHBA100-1580 diblock copolymer nano-objects by systematic variation of the mean degree of polymerization of each block. A pseudo-phase diagram is constructed using transmission electron microscopy to assign the copolymer morphology after employing glutaraldehyde to cross-link the PHBA chains and hence prevent film formation during grid preparation. The thermoresponsive character of the as-synthesized linear nano-objects is explored using dynamic light scattering and temperature-dependent rheological measurements. Comparison with the analogous PGMA x -PHPMA y formulation is made where appropriate. In particular, we demonstrate that replacing the structure-directing PHPMA block with PHBA leads to significantly greater thermoresponsive behavior over a much wider range of diblock copolymer compositions. Given that PGMA-PHPMA worm gels can induce stasis in human stem cells (see Canton et al., ACS Central Science, 2016, 2, 65-74), our findings are likely to have implications for the design of next-generation PGMA-PHBA worm gels for cell biology applications.
Collapse
Affiliation(s)
- Juliana
M. Cumming
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - Oliver J. Deane
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - Steven P. Armes
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| |
Collapse
|
28
|
Liu Y, Sun Y, Zhang W. Synthesis of
Stimuli‐Responsive
Block Copolymers and Block Copolymer Nano‐assemblies. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuan Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Yu Sun
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
29
|
Chen X, Chen Z, Ma L, Yi Z. Multi-Stimuli-Responsive Polymer/Inorganic Janus Composite Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:422-429. [PMID: 34962810 DOI: 10.1021/acs.langmuir.1c02778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multi-stimuli-responsive Janus composite nanoparticles (JNPs) of poly(N-isopropylacrylamide)-Fe3O4-poly(2-(dimethylamino)ethyl methacrylate)) (PNIPAM-Fe3O4-PDMEAMA) are synthesized by sequential reversible addition-fragmentation chain-transfer grafting of the polymer PNIPAM and atom-transfer radical polymerization grafting of the polymer PDMEAMA from the corresponding sides of modified Fe3O4 nanoparticles of ∼10 nm size. The hydrophilic/amphiphilic/hydrophobic reversible transition of the JNP can be triggered by pH and temperature since the wettability of the two polymers on the opposite sides is tunable accordingly. At a high pH value and a low surrounding temperature, applying near-infrared irradiation will induce the amphiphilic/hydrophobic transition owing to the photothermal effect of Fe3O4 NPs. The JNP can serve as a responsive solid emulsifier, and the stability and microstructure of the emulsions can be easily controlled by external stimuli such as the pH, temperature, and magnetic field.
Collapse
Affiliation(s)
- Xi Chen
- Department of Materials Science, Fudan University, Shanghai 200433, China
- Zhuhai Fudan Innovation Institute, Zhuhai 518057, China
| | - Zhangyan Chen
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Li Ma
- Department of Materials Science, Fudan University, Shanghai 200433, China
- Zhuhai Fudan Innovation Institute, Zhuhai 518057, China
| | - Zhengran Yi
- Zhuhai Fudan Innovation Institute, Zhuhai 518057, China
| |
Collapse
|
30
|
Shi QX, Xiao H, Sheng YJ, Li DS, Su M, Sun XL, Bao H, Wan WM. Barbier single-atom polymerization induced emission as a one-pot approach towards stimuli-responsive luminescent polymers. Polym Chem 2022. [DOI: 10.1039/d2py00816e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-pot strategy for the design of stimuli-responsive luminescent polymers has been demonstrated through Barbier PIE, where the N,N-dimethyl moiety endows the polymers with both stimuli-responsive and red-shifted nonconjugated emission properties.
Collapse
Affiliation(s)
- Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Yu-Jing Sheng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - De-Shan Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Li Sun
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
31
|
Lee D, Kim J, Ku KH, Li S, Shin JJ, Kim B. Poly(vinylpyridine)-Containing Block Copolymers for Smart, Multicompartment Particles. Polym Chem 2022. [DOI: 10.1039/d2py00150k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicompartment particles generated by the self-assembly of block copolymers (BCPs) have received considerable attention due to their unique morphologies and functionalities. A class of important building blocks for multicomponent particles...
Collapse
|
32
|
Qian JL, Zhou T, Lu X, Xu H, Sun JY, Zhang CL, Zheng HG. Response to the Temperature and Solvent Stimulation of MOF Material in a Single-Crystal to Single-Crystal Manner. Inorg Chem 2021; 61:47-51. [PMID: 34935390 DOI: 10.1021/acs.inorgchem.1c03615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under solvothermal conditions, a three-dimensional mononuclear crystal AQNU-1, {[Co(H2L)(DPD)(H2O)2]·2DMA}n (H2L = 5-(bis(4-carboxybenzyl)amino)isophthalic acid, DPD = 4,4'-(2,5-diethoxy-1,4-phenylene)dipyridine) has been synthesized. The transformations of AQNU-1 to binuclear {[Co2(L)(DPD)1.5(H2O)3]·DMA·H2O}n (AQNU-2) and pentanuclear {[Co5(L)2(DPD)2(OH)2]·2H2O}n (AQNU-3) were realized by double stimulation of temperature and solvent, which were accomplished by single-crystal to single-crystal (SC-SC) reaction.
Collapse
Affiliation(s)
- Jian-Lei Qian
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246133, P. R. China
| | - Tao Zhou
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246133, P. R. China
| | - Xin Lu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246133, P. R. China
| | - Heng Xu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246133, P. R. China
| | - Jia-Yin Sun
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246133, P. R. China
| | - Chuan-Lei Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246133, P. R. China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - He-Gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
33
|
Facile asymmetric modification of graphene nanosheets using κ-carrageenan as a green template. J Colloid Interface Sci 2021; 607:1131-1141. [PMID: 34571300 DOI: 10.1016/j.jcis.2021.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
The synthesis of Janus nanosheets using κ-carrageenan (κ-Ca) as a green template endows a greener and more straightforward method compared to traditional approaches of using wax template. We hypothesize that the hydrogen bonding interaction between κ-Ca and graphene oxide (GO) allows partial masking of GO's single facet, paving the way for the asymmetric modification of the exposed surface. GO is first encapsulated within the porous hydrogel matrix formed by κ-Ca to isolate one of the facets. The exposed surface was then selectively hydrophobized to produce an amphiphilic asymmetrically modified graphene oxide (AMGO). The properties of AMGO synthesized under different κ-Ca/GO ratios were studied. The κ-Ca/GO interactions and the properties of GO and AMGO were investigated and characterized. AMGO was successfully produced with a yield of 90.37 % under optimized synthesis conditions. The separation of κ-Ca and AMGO was conducted without organic solvents, and the κ-Ca could be subsequently recovered. Furthermore, the porous hydrogel matrix formed by κ-Ca and GO exhibited excellent shape-retaining properties with high thermal tolerance of up to 50 °C. Given these benefits, this newly developed method endows sustainability and open the possibility of formulating more flexible material synthesis protocols.
Collapse
|
34
|
Amukarimi S, Ramakrishna S, Mozafari M. Smart biomaterials—A proposed definition and overview of the field. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Lu Y, Zhu Y, Yang F, Xu Z, Liu Q. Advanced Switchable Molecules and Materials for Oil Recovery and Oily Waste Cleanup. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004082. [PMID: 34047073 PMCID: PMC8336505 DOI: 10.1002/advs.202004082] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/19/2021] [Indexed: 05/07/2023]
Abstract
Advanced switchable molecules and materials have shown great potential in numerous applications. These novel materials can express different states of physicochemical properties as controlled by a designated stimulus, such that the processing condition can always be maintained in an optimized manner for improved efficiency and sustainability throughout the whole process. Herein, the recent advances in switchable molecules/materials in oil recovery and oily waste cleanup are reviewed. Oil recovery and oily waste cleanup are of critical importance to the industry and environment. Switchable materials can be designed with various types of switchable properties, including i) switchable interfacial activity, ii) switchable viscosity, iii) switchable solvent, and iv) switchable wettability. The materials can then be deployed into the most suitable applications according to the process requirements. An in-depth discussion about the fundamental basis of the design considerations is provided for each type of switchable material, followed by details about their performances and challenges in the applications. Finally, an outlook for the development of next-generation switchable molecules/materials is discussed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Yeling Zhu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Fan Yang
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| | - Zhenghe Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Qingxia Liu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| |
Collapse
|
36
|
He J, Lin D, Chen Y, Zhang L, Tan J. One-Step Preparation of Thermo-Responsive Poly(N-isopropylacrylamide)-Based Block Copolymer Nanoparticles by Aqueous Photoinitiated Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2021; 42:e2100201. [PMID: 34145660 DOI: 10.1002/marc.202100201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Indexed: 12/18/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) is an important thermo-responsive polymer that finds applications in many areas. However, the preparation of PNIPAM-based block copolymer nanoparticles with higher-order morphologies at high solids is challenging. Herein, aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) of N-isopropylacrylamide (NIPAM) using an asymmetrical cross-linker is developed for one-step preparation of PNIPAM-based block copolymer nanoparticles with various morphologies (spheres, worms, and vesicles). It is demonstrated that reaction temperature has a great effect on both polymerization kinetics and morphologies of block copolymer nanoparticles. Reversible addition-fragmentation chain transfer (RAFT) reactive groups embedded inside the PNIPAM core provide a landscape for further functionalization. PNIPAM-based block copolymer nanoparticles with different surface properties are prepared by seeded photo-PISA at room temperature. Finally, these block copolymer nanoparticles are also used as additives to tune mechanical properties of hydrogels via covalent cross-linking.
Collapse
Affiliation(s)
- Jun He
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dongni Lin
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
37
|
Abramov A, Maiti B, Keridou I, Puiggalí J, Reiser O, Díaz DD. A pH-Triggered Polymer Degradation or Drug Delivery System by Light-Mediated Cis/Trans Isomerization of o-Hydroxy Cinnamates. Macromol Rapid Commun 2021; 42:e2100213. [PMID: 34031940 DOI: 10.1002/marc.202100213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/08/2021] [Indexed: 11/10/2022]
Abstract
A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)n -alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG2000 -alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG2000 -oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.
Collapse
Affiliation(s)
- Alex Abramov
- Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Binoy Maiti
- Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Ina Keridou
- Department d'Enginyeria Química, Ecola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Barcelona, 08019, Spain
| | - Jordi Puiggalí
- Department d'Enginyeria Química, Ecola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Barcelona, 08019, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C/Baldiri Reixax 10-12, Barcelona, 08028, Spain
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - David Díaz Díaz
- Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany.,Departmento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, 38206, Spain.,Instituto de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, Tenerife, 38206, Spain
| |
Collapse
|
38
|
Guo Y, Fang Y, Jia K, Yu Y, Yu L, Li H, Zhang J, Zheng X, Huang L, Wen W, Mai Y. Electroinduced Reconfiguration of Complex Emulsions for Fabrication of Polymer Particles with Tunable Morphology. Macromol Rapid Commun 2021; 42:e2100085. [DOI: 10.1002/marc.202100085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Yongshun Guo
- College of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Yanxiong Fang
- College of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Junjie Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Xiaoshan Zheng
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Linjia Huang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Wu Wen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| |
Collapse
|
39
|
Strelova MS, Danilovtseva EN, Annenkov VV. Copolymers of Methyl Acrylate and Vinylazoles: Synthesis, Thermolabile Properties, and Grafting of Polyamine Chains. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
Lequieu J, Magenau AJD. Reaction-induced phase transitions with block copolymers in solution and bulk. Polym Chem 2021. [DOI: 10.1039/d0py00722f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reaction-induced phase transitions use chemical reactions to drive macromolecular organisation and self-assembly. This review highlights significant and recent advancements in this burgeoning field.
Collapse
Affiliation(s)
- Joshua Lequieu
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | | |
Collapse
|
41
|
Valles DJ, Zholdassov YS, Braunschweig AB. Evolution and applications of polymer brush hypersurface photolithography. Polym Chem 2021. [DOI: 10.1039/d1py01073e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypersurface photolithography creates arbitrary polymer brush patterns with independent control over feature diameter, height, and spacing between features, while controlling composition along a polymer chain and between features.
Collapse
Affiliation(s)
- Daniel J. Valles
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Yerzhan S. Zholdassov
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
42
|
Zanata DDM, Felisberti MI. Self-assembly of dual-responsive amphiphilic POEGMA- b-P4VP- b-POEGMA triblock copolymers: effect of temperature, pH, and complexation with Cu 2+. Polym Chem 2021. [DOI: 10.1039/d1py00716e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic and dual-responsive triblock copolymer POEGMA-b-P4VP-b-POEGMA synthesized by RAFT self-assemble into spherical or interconnected micelles depending on the external stimulus and their complexation with Cu2+ results in responsive nanogels.
Collapse
Affiliation(s)
- Daniela de Morais Zanata
- Institute of Chemistry, University of Campinas (UNICAMP), P. O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Maria Isabel Felisberti
- Institute of Chemistry, University of Campinas (UNICAMP), P. O. Box 6154, Campinas, SP 13083-970, Brazil
| |
Collapse
|
43
|
Yang P, Zhu F, Zhang Z, Cheng Y, Wang Z, Li Y. Stimuli-responsive polydopamine-based smart materials. Chem Soc Rev 2021; 50:8319-8343. [DOI: 10.1039/d1cs00374g] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides in-depth insight into the structural engineering of PDA-based materials to enhance their responsive feature and the use of them in construction of PDA-based stimuli-responsive smart materials.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Zhu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P. R. China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yiwen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
44
|
Peng W, Cai Y, Fanslau L, Vana P. Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polym Chem 2021. [DOI: 10.1039/d1py01172c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization is a powerful tool for the precise formation of macromolecular building blocks that can be used for the construction of well-defined nanocomposites.
Collapse
Affiliation(s)
- Wentao Peng
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Yingying Cai
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Luise Fanslau
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Bai Y, Zhang J, Ju J, Liu J, Chen X. Shape memory microparticles with permanent shape reconfiguration ability and near infrared light responsiveness. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
He Y, Gou S, Zhou Y, Zhou L, Tang L, Liu L, Fang S. Thermoresponsive behaviors of novel polyoxyethylene-functionalized acrylamide copolymers: Water solubility, rheological properties and surface activity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Górka-Kumik W, Garbacz P, Lachowicz D, Dąbczyński P, Zapotoczny S, Szuwarzyński M. Tailoring cellular microenvironments using scaffolds based on magnetically-responsive polymer brushes. J Mater Chem B 2020; 8:10172-10181. [PMID: 33099591 DOI: 10.1039/d0tb01853h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of polymeric scaffolds with the ability to control cell detachment has been created for cell culture using stimuli-responsive polymers. However, the widely studied and commonly used thermo-responsive polymeric substrates always affect the properties of the cultured cells due to the temperature stimulus. Here, we present a different stimuli-responsive approach based on poly(3-acrylamidopropyl)trimethylammonium chloride) (poly(APTAC)) brushes with homogeneously embedded superparamagnetic iron oxide nanoparticles (SPIONs). Neuroblastoma cell detachment was triggered by an external magnetic field, enabling a non-invasive process of controlled transfer into a new place without additional mechanical scratching and chemical/biochemical compound treatment. Hybrid scaffolds obtained in simultaneous surface-initiated atom transfer radical polymerization (SI-ATRP) were characterized by atomic force microscopy (AFM) working in the magnetic mode, secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS) to confirm the magnetic properties and chemical structure. Moreover, neuroblastoma cells were cultured and characterized before and after exposure to a neodymium magnet. Controlled cell transfer triggered by a magnetic field is presented here as well.
Collapse
Affiliation(s)
- Weronika Górka-Kumik
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Łojasiewicza 11, 30-348 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
48
|
Han K, Bailey JB, Zhang L, Tezcan FA. Anisotropic Dynamics and Mechanics of Macromolecular Crystals Containing Lattice-Patterned Polymer Networks. J Am Chem Soc 2020; 142:19402-19410. [PMID: 33124805 DOI: 10.1021/jacs.0c10065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanical and functional properties of many crystalline materials depend on cooperative changes in lattice arrangements in response to external perturbations. However, the flexibility and adaptiveness of crystalline materials are limited. Additionally, the bottom-up, molecular-level design of crystals with desired dynamic and mechanical properties at the macroscopic level remains a considerable challenge. To address these challenges, we had previously integrated mesoporous, cubic ferritin crystals with hydrogel networks, resulting in hybrid materials (polymer-integrated crystals or PIX) which could undergo dramatic structural changes while maintaining crystalline periodicity and display efficient self-healing. The dynamics and mechanics of these ferritin-PIX were devoid of directionality, which is an important attribute of many molecular and macroscopic materials/devices. In this study, we report that such directionality can be achieved through the use of ferritin crystals with anisotropic symmetries (rhombohedral or trigonal), which enable the templated formation of patterned hydrogel networks in crystallo. The resulting PIX expand and contract anisotropically without losing crystallinity, undergo prompt bending motions in response to stimuli, and self-heal efficiently, capturing some of the essential features of sophisticated biological devices like skeletal muscles.
Collapse
Affiliation(s)
- Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jake B Bailey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ling Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
49
|
Viriyakitpattana N, Sunintaboon P. Synthesis of crosslinked poly(methacrylic acid) shell/lipid core colloidal nanoparticles via L-in-Lm interfacial polymerization and their pH responsiveness. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Li X, Hu S, Lin Z, Yi J, Liu X, Tang X, Wu Q, Zhang G. Dual-responsive mesoporous silica nanoparticles coated with carbon dots and polymers for drug encapsulation and delivery. Nanomedicine (Lond) 2020; 15:2447-2458. [PMID: 32945224 DOI: 10.2217/nnm-2019-0440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: Smart mesoporous silica nanoparticles (MSNs) coated with carbon dots (CDs) and poly(N-vinylcaprolactam) (PNVCL) as a mixed shell (CDs/PNVCL polymer grafted MSNs) were prepared for pH-trigged anticancer drug release and real-time monitoring. Materials & methods: The amino-terminated PNVCL and amino-rich CDs were grafted onto the surface of aldehyde group functionalized MSNs through Schiff base reaction. Doxorubicin (DOX) was loaded into the prepared nanoparticles. Results: DOX could be quickly released in the tumor environment, leading to cell apoptosis. The linear fit between the percentage of released DOX and the fluorescence intensity of CDs indicated that the change in fluorescence intensity could be used to monitor drug release in real time. Conclusion: The as-prepared CDs/PNVCL polymer grafted MSNs are promising candidates for integrating controllable release and real-time monitoring in cancer treatment.
Collapse
Affiliation(s)
- Xiaona Li
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Shun Hu
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Zhe Lin
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Jie Yi
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Xue Liu
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Xiuping Tang
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Qiuhua Wu
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Guolin Zhang
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| |
Collapse
|