1
|
Yang L, Wu Y, Murugan P, Liu P, Peng Y, Qiu Z, Li Z, Yu C, Liu S. Impact of Different π-Bridges on the Photovoltaic Performance of A-D-D'-D-A Small Molecule-Based Donors. Molecules 2024; 29:4231. [PMID: 39275079 PMCID: PMC11396980 DOI: 10.3390/molecules29174231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Three small donor molecule materials (S1, S2, S3) based on dithiophene [2,3-d:2',3'-d']dithiophene [1,2-b:4,5-b']dithiophene (DTBDT) utilized in this study were synthesized using the Vilsmeier-Haack reaction, traditional Stille coupling, and Knoevenagel condensation. Then, a variety of characterization methods were applied to study the differences in optical properties and photovoltaic devices among the three. By synthesizing S2 using a thiophene π-bridge based on S1, the blue shift in ultraviolet absorption can be enhanced, the band gap and energy level can be reduced, the open circuit voltage (VOC) can be increased to 0.75 V using the S2:Y6 device, and a power conversion efficiency (PCE) of 3% can be achieved. Also, after developing the device using Y6, S3 introduced the alkyl chain of thiophene π-bridge to S2, which improved the solubility of tiny donor molecules, achieved the maximum short-circuit current (JSC = 10.59 mA/cm2), filling factor (FF = 49.72%), and PCE (4.25%). Thus, a viable option for future design and synthesis of small donor molecule materials is to incorporate thiophene π-bridges into these materials, along with alkyl chains, in order to enhance the device's morphology and charge transfer behavior.
Collapse
Affiliation(s)
- Lingjun Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yu Wu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China
| | - Pachaiyappan Murugan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Peng Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yulong Peng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhiyong Qiu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zaifang Li
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China
| | - Changlin Yu
- Guangdong Provincial Key Laboratory of Advanced Green Lubricating Materials, Maoming 525000, China
| | - Shiyong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
2
|
Cheng Q, Chen W, Li Y, Li Y. Recent Progress in Dopant-Free and Green Solvent-Processable Organic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307152. [PMID: 38417119 PMCID: PMC11077692 DOI: 10.1002/advs.202307152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Indexed: 03/01/2024]
Abstract
Dopant-free hole transport layers (HTLs) are crucial in enhancing perovskite solar cells (pero-SCs). Nevertheless, conventional processing of these HTL materials involves using toxic solvents, which gives rise to substantial environmental concerns and renders them unsuitable for large-scale industrial production. Consequently, there is a pressing need to develop dopant-free HTL materials processed using green solvents to facilitate the production of high-performance pero-SCs. Recently, several strategies have been developed to simultaneously improve the solubility of these materials and regulate molecular stacking for high hole mobility. In this review, a comprehensive overview of the methodologies utilized in developing dopant-free HTL materials processed from green solvents is provided. First, the study provides a brief overview of fundamental information about green solvents and Hansen solubility parameters, which can serve as a guideline for the molecular design of optimal HTL materials. Second, the intrinsic relationships between molecular structure, solubility in green solvents, molecular stacking, and device performance are discussed. Finally, conclusions and perspectives are presented along with the rational design of highly efficient, stable, and green solvent-processable dopant-free HTL materials.
Collapse
Affiliation(s)
- Qinrong Cheng
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐optoelectronics Materials and DevicesCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Weijie Chen
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐optoelectronics Materials and DevicesCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐optoelectronics Materials and DevicesCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric MaterialsJiangsu Key Laboratory of Advanced Functional Polymer Design andApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐optoelectronics Materials and DevicesCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| |
Collapse
|
3
|
Lin T, Hai Y, Luo Y, Feng L, Jia T, Wu J, Ma R, Dela Peña TA, Li Y, Xing Z, Li M, Wang M, Xiao B, Wong KS, Liu S, Li G. Isomerization of Benzothiadiazole Yields a Promising Polymer Donor and Organic Solar Cells with Efficiency of 19.0. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312311. [PMID: 38305577 DOI: 10.1002/adma.202312311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Indexed: 02/03/2024]
Abstract
The exploration of high-performance and low-cost wide-bandgap polymer donors remains critical to achieve high-efficiency nonfullerene organic solar cells (OSCs) beyond current thresholds. Herein, the 1,2,3-benzothiadiazole (iBT), which is an isomer of 2,1,3-benzothiadiazole (BT), is used to design wide-bandgap polymer donor PiBT. The PiBT-based solar cells reach efficiency of 19.0%, which is one of the highest efficiencies in binary OSCs. Systemic studies show that isomerization of BT to iBT can finely regulate the polymers' photoelectric properties including i) increasing the extinction coefficient and photon harvest, ii) downshifting the highest occupied molecular orbital energy levels, iii) improving the coplanarity of polymer backbones, iv) offering good thermodynamic miscibility with acceptors. Consequently, the PiBT:Y6 bulk heterojunction (BHJ) device simultaneously reaches advantageous nanoscale morphology, efficient exciton generation and dissociation, fast charge transportation, and suppressed charge recombination, leading to larger VOC of 0.87 V, higher JSC of 28.2 mA cm-2, greater fill factor of 77.3%, and thus higher efficiency of 19.0%, while the analog-PBT-based OSCs reach efficiency of only 12.9%. Moreover, the key intermediate iBT can be easily afforded from industry chemicals via two-step procedure. Overall, this contribution highlights that iBT is a promising motif for designing high-performance polymer donors.
Collapse
Affiliation(s)
- Tao Lin
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Yulong Hai
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Yongmin Luo
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Lingwei Feng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tao Jia
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Top Archie Dela Peña
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
- Faculty of Science, Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Yao Li
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Zengshan Xing
- School of Science, Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- Faculty of Science, Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Min Wang
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University (JHUN), Wuhan, 430056, China
| | - Kam Sing Wong
- School of Science, Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Shengjian Liu
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Electronic Chemicals for Integrated Circuit Packaging, South China Normal University (SCNU), Guangzhou, 510006, China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
4
|
Alsharif MA, Darwish AAA, Qashou SI, Alaysuy O, El-Zaidia EFM, Al-Ghamdi SA, Sadiq M, Alqurashi RS, Al-Abandi MH, Hamdalla TA. Optical and electronic properties of MgPc-Ch-diisoQ blend organic thin film as an active layer for photovoltaic cells. PLoS One 2024; 19:e0299079. [PMID: 38630772 PMCID: PMC11023275 DOI: 10.1371/journal.pone.0299079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/06/2024] [Indexed: 04/19/2024] Open
Abstract
Organic photovoltaic cells are a promising technology for generating renewable energy from sunlight. These cells are made from organic materials, such as polymers or small molecules, and can be lightweight, flexible, and low-cost. Here, we have created a novel mixture of magnesium phthalocyanine (MgPc) and chlorophenyl ethyl diisoquinoline (Ch-diisoQ). A coating unit has been utilized in preparing MgPc, Ch-diisoQ, and MgPc-Ch-diisoQ films onto to FTO substrate. The MgPc-Ch-diisoQ film has a spherical and homogeneous surface morphology with a grain size of 15.9 nm. The optical absorption of the MgPc-Ch-diisoQ film was measured, and three distinct bands were observed at 800-600 nm, 600-400 nm, and 400-250 nm, with a band gap energy of 1.58 eV. The current density-voltage and capacitance-voltage measurements were performed to analyze the photoelectric properties of the three tested cells. The forward current density obtained from our investigated blend cell is more significant than that for each material by about 22%. The photovoltaic parameters (Voc, Isc, and FF) of the MgPc-Ch-diisoQ cell were found to be 0.45 V, 2.12 μA, and 0.4, respectively. We believe that our investigated MgPc-Ch-diisoQ film will be a promising active layer in organic solar cells.
Collapse
Affiliation(s)
| | - A. A. A. Darwish
- Faculty of Science, Department of Physics, University of Tabuk, Tabuk, Saudi Arabia
| | - Saleem I. Qashou
- Faculty of Science, Department of Physics, Zarqa University, Zarqa, Jordan
| | - Omaymah Alaysuy
- Faculty of Science, Department of Chemistry, University of Tabuk, Tabuk, Saudi Arabia
| | - E. F. M. El-Zaidia
- Faculty of Science, Department of Physics, University of Tabuk, Tabuk, Saudi Arabia
- Faculty of Education, Department of Physics, Ain Shams University, Roxy, Cairo, Egypt
| | - S. A. Al-Ghamdi
- Faculty of Science, Department of Physics, University of Tabuk, Tabuk, Saudi Arabia
| | - M. Sadiq
- Faculty of Science, Department of Physics, University of Tabuk, Tabuk, Saudi Arabia
| | | | | | - Taymour A. Hamdalla
- Faculty of Science, Department of Physics, University of Tabuk, Tabuk, Saudi Arabia
- Faculty of Science, Physics Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Bhattacharjee R, Kertesz M. Continuous Topological Transition and Bandgap Tuning in Ethynylene-Linked Acene π-Conjugated Polymers through Mechanical Strain. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1395-1404. [PMID: 38375000 PMCID: PMC10876101 DOI: 10.1021/acs.chemmater.3c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
By variation of the chemical repeat units of conjugated polymers, only discrete tuning of essential physical parameters is possible. A unique property of a class of π-conjugated polymers, where polycyclic aromatic hydrocarbons are linked via ethynylene linkers, is their topological aromatic to quinoid phase transition discovered recently by Cirera et al. and González-Herrero et al., which is controllable in discrete steps by chemical variations. We have discovered by means of density functional theory computations that such a phase transition can be achieved by applying continuous variations of longitudinal strain, allowing us to tune the bond length alternation and bandgap. At a specific strain value, the bandgap becomes zero due to an orbital level crossing between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Our hypothesis provides a perspective on the design of organic electronic materials and provides a novel insight into the properties of a continuous phase transition in topological semiconducting polymers.
Collapse
Affiliation(s)
- Rameswar Bhattacharjee
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| |
Collapse
|
6
|
Xie Z, Park J, Kim H, Cho BH, Lakshman C, Park HY, Gokulnath T, Kim YY, Yoon J, Jee JS, Cho YR, Jin SH. π-Conjugated Polymer with Pendant Side Chains as a Dopant-Free Hole Transport Material for High-Performance Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3359-3367. [PMID: 38207003 DOI: 10.1021/acsami.3c15611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Dopant-free polymeric hole transport materials (HTMs) have attracted considerable attention in perovskite solar cells (PSCs) due to their high carrier mobilities and excellent hydrophobicity. They are considered promising candidates for HTMs to replace commercial Spiro-OMeTAD to achieve long-term stability and high efficiency in PSCs. In this study, we developed BDT-TA-BTASi, a conjugated donor-π-acceptor polymeric HTM. The donor benzo[1,2-b:4,5-b']dithiophene (BDT) and acceptor benzotriazole (BTA) incorporated pendant siloxane, and alkyl side chains led to high hole mobility and solubility. In addition, BDT-TA-BTASi can effectively passivate the perovskite layer and markedly decrease the trap density. Based on these advantages, dopant-free BDT-TA-BTASi-based PSCs achieved an efficiency of over 21.5%. Furthermore, dopant-free BDT-TA-BTASi-based devices not only exhibited good stability in N2 (retaining 92% of the initial efficiency after 1000 h) but also showed good stability at high-temperature (60 °C) and -humidity conditions (80 ± 10%) (retaining 92 and 82% of the initial efficiency after 400 h). These results demonstrate that BDT-TA-BTASi is a promising HTM, and the study provides guidance on dopant-free polymeric HTMs to achieve high-performance PSCs.
Collapse
Affiliation(s)
- Zhiqing Xie
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan 46241, Republic of Korea
- Division of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeonghyeon Park
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan 46241, Republic of Korea
| | - Hyerin Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan 46241, Republic of Korea
| | - Bo Hyeon Cho
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan 46241, Republic of Korea
| | - Chetan Lakshman
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan 46241, Republic of Korea
| | - Ho-Yeol Park
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan 46241, Republic of Korea
| | - Thavamani Gokulnath
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Yong Kim
- Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jinhwan Yoon
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan 46241, Republic of Korea
| | - Je-Sung Jee
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Rae Cho
- Division of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sung-Ho Jin
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Fan B, Gao H, Jen AKY. Biaxially Conjugated Materials for Organic Solar Cells. ACS NANO 2024; 18:136-154. [PMID: 38146694 DOI: 10.1021/acsnano.3c11193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Organic solar cells (OSCs) represent one of the most important emerging photovoltaic technologies that can implement solar energy conversion efficiently. The chemical structure of organic semiconductors deployed in the active layer of OSCs plays a critical role in the photovoltaic performance and chemical/physical stability of relevant devices. With the structure innovation of organic semiconductors, especially nonfullerene acceptors (NFAs), the performance of OSCs have been promoted rapidly in recent years, with state-of-the-art power conversion efficiencies (PCEs) exceeding 19.5%. Compared with other photovoltaics like perovskite, the shortcoming of OSCs mainly lies in the high nonradiative recombination loss. However, the photocurrent density is superior in OSCs owing to the easy modulation of the NFA band gap toward the near-infrared region. In these regards, the effort to further boost the PCE of OSCs to achieve a milestone >21% should be devoted to reducing the nonradiative loss while further broadening the absorption band. Developing organic semiconductors with biaxially extended conjugated structures has provided a potential solution to achieve these goals. Herein, we summarize the design rules and performance progress of biaxially extended conjugated materials for OSCs. The descriptions are divided into two major categories, i.e., polymers and NFAs. For p-type polymers, we focus on the biaxial conjugation on some representative building blocks, e.g., polythiophene, triphenylamine, and quinoxaline. Whereas for n-type polymers, some structures with large conjugated planes in the normal direction are presented. We also elaborate on the biaxial conjugation strategies in NFAs with modification site at either the π-core or side-group. The general structure-property relationships are further retrieved within these materials, with focus on the short-wavelength absorption and nonradiative energy loss. Finally, we provide an outlook for the further structure modification strategies of biaxially conjugated materials toward highly efficient, stable, and industry-compatible OSCs.
Collapse
Affiliation(s)
- Baobing Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Huanhuan Gao
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- College of New Energy, Xi'an Shiyou University, Shaanxi, Xi'an 710065, China
- Department of Material Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Material Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195 United States
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
8
|
Sung CY, Lin CY, Chueh CC, Lin YC, Chen WC. Investigating the Mobility-Compressibility Properties of Conjugated Polymers by the Contact Film Transfer Method with Prestrain. Macromol Rapid Commun 2024; 45:e2300058. [PMID: 36913597 DOI: 10.1002/marc.202300058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Up to now, researches on the mobility-stretchability of semiconducting polymers are extensively investigated, but little attention was paid to their morphology and field-effect transistor characteristics under compressive strains, which is equally crucial in wearable electronic applications. In this work, a contact film transfer method is applied to evaluate the mobility-compressibility properties of conjugated polymers. A series of isoindigo-bithiophene conjugated polymers with symmetric carbosilane side chains (P(SiSi)), siloxane-terminated alkyl side chains (P(SiOSiO)), and combined asymmetric side chains (P(SiOSi)) are investigated. Accordingly, a compressed elastomer slab is used to transfer and compress the polymer films by releasing prestrain, and the morphology and mobility evolutions of these polymers are tracked. It is found that P(SiOSi) outperforms the other symmetric polymers including P(Si─Si) and P(SiO─SiO), having the ability to dissipate strain with its shortened lamellar spacing and orthogonal chain alignment. Notably, the mechanical durability of P(SiOSi) is also enhanced after consecutive compress-release cycles. In addition, the contact film transfer technique is demonstrated to be applicable to investigate the compressibility of different semiconducting polymers. These results demonstrate a comprehensive approach to understand the mobility-compressibility properties of semiconducting polymers under tensile and compressive strains.
Collapse
Affiliation(s)
- Chih-Yuan Sung
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
9
|
Schmitt A, Thompson BC. Relating Structure to Properties in Non-Conjugated Pendant Electroactive Polymers. Macromol Rapid Commun 2024; 45:e2300219. [PMID: 37277618 DOI: 10.1002/marc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Non-conjugated pendant electroactive polymers (NCPEPs) are an emerging class of polymers that offer the potential of combining the desirable optoelectronic properties of conjugated polymers with the superior synthetic methodologies and stability of traditional non-conjugated polymers. Despite an increasing number of studies focused on NCPEPs, particularly on understanding fundamental structure-property relationships, no attempts have been made to provide an overview on established relationships to date. This review showcases selected reports on NCPEP homopolymers and copolymers that demonstrate how optical, electronic, and physical properties of the polymers are affected by tuning of key structural variables such as the chemical structure of the polymer backbone, molecular weight, tacticity, spacer length, the nature of the pendant group, and in the case of copolymers the ratios between different comonomers and between individual polymer blocks. Correlation of structural features with improved π-stacking and enhanced charge carrier mobility serve as the primary figures of merit in evaluating impact on NCPEP properties. While this review is not intended to serve as a comprehensive summary of all reports on tuning of structural parameters in NCPEPs, it highlights relevant established structure-property relationships that can serve as a guideline for more targeted design of novel NCPEPs in the future.
Collapse
Affiliation(s)
- Alexander Schmitt
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| | - Barry C Thompson
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| |
Collapse
|
10
|
Rimmele M, Qiao Z, Panidi J, Furlan F, Lee C, Tan WL, McNeill CR, Kim Y, Gasparini N, Heeney M. A polymer library enables the rapid identification of a highly scalable and efficient donor material for organic solar cells. MATERIALS HORIZONS 2023; 10:4202-4212. [PMID: 37599602 DOI: 10.1039/d3mh00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The dramatic improvement of the PCE (power conversion efficiency) of organic photovoltaic devices in the past few years has been driven by the development of new polymer donor materials and non-fullerene acceptors (NFAs). In the design of such materials synthetic scalability is often not considered, and hence complicated synthetic protocols are typical for high-performing materials. Here we report an approach to readily introduce a variety of solubilizing groups into a benzo[c][1,2,5]thiadiazole acceptor comonomer. This allowed for the ready preparation of a library of eleven donor polymers of varying side chains and comonomers, which facilitated a rapid screening of properties and photovoltaic device performance. Donor FO6-T emerged as the optimal material, exhibiting good solubility in chlorinated and non-chlorinated solvents and achieving 15.4% PCE with L8BO as the acceptor (15.2% with Y6) and good device stability. FO6-T was readily prepared on the gram scale, and synthetic complexity (SC) analysis highlighted FO6-T as an attractive donor polymer for potential large scale applications.
Collapse
Affiliation(s)
- Martina Rimmele
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Zhuoran Qiao
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Julianna Panidi
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Francesco Furlan
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Chulyeon Lee
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Youngkyoo Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Sciences and Engineering Division (PSE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
Li Y, Qi R, Wang X, Yuan H. Recent Strategies to Develop Conjugated Polymers for Detection and Therapeutics. Polymers (Basel) 2023; 15:3570. [PMID: 37688196 PMCID: PMC10490465 DOI: 10.3390/polym15173570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The infectious diseases resulting from pathogenic microbes are highly contagious and the source of infection is difficult to control, which seriously endangers life and public health safety. Although the emergence of antibiotics has a good therapeutic effect in the early stage, the massive abuse of antibiotics has brought about the evolution of pathogens with drug resistance, which has gradually weakened the lethality and availability of antibiotics. Cancer is a more serious disease than pathogenic bacteria infection, which also threatens human life and health. Traditional treatment methods have limitations such as easy recurrence, poor prognosis, many side effects, and high toxicity. These two issues have led to the exploration and development of novel therapeutic agents (such as conjugated polymers) and therapeutic strategies (such as phototherapy) to avoid the increase of drug resistance and toxic side effects. As a class of organic polymer biological functional materials with excellent photoelectric properties, Conjugated polymers (CPs) have been extensively investigated in biomedical fields, such as the detection and treatment of pathogens and tumors due to their advantages of easy modification and functionalization, good biocompatibility and low cost. A rare comprehensive overview of CPs-based detection and treatment applications has been reported. This paper reviews the design strategies and research status of CPs used in biomedicine in recent years, introduces and discusses the latest progress of their application in the detection and treatment of pathogenic microorganisms and tumors according to different detection or treatment methods, as well as the limitations and potential challenges in prospective exploration.
Collapse
Affiliation(s)
- Yutong Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
12
|
Chang Y, Wu YS, Tung SH, Chen WC, Chueh CC, Liu CL. N-Type Doping of Naphthalenediimide-Based Random Donor-Acceptor Copolymers to Enhance Transistor Performance and Structural Crystallinity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15745-15757. [PMID: 36920493 DOI: 10.1021/acsami.2c23067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An integrated strategy of molecular design and conjugated polymer doping is proposed to improve the electronic characteristics for organic field effect transistor (OFET) applications. Here, a series of soluble naphthalene diimide (NDI)-based random donor-acceptor copolymers with selenophene π-conjugated linkers and four acceptors with different electron-withdrawing strengths (named as rNDI-N/S/NN/SS) are synthesized, characterized, and used for OFETs. N-type doping of NDI-based random copolymers using (12a,18a)-5,6,12,12a,13,18,18a,19-octahydro-5,6-dimethyl-13,18[1',2']-benzenobisbenzimidazo[1,2-b:2',1'-d]benzo[i][2.5]benzodiazocine potassium triflate adduct (DMBI-BDZC) is successfully demonstrated. The undoped rNDI-N, rNDI-NN, and rNDI-SS samples exhibit ambipolar charge transport, while rNDI-S presents only a unipolar n-type characteristic. Doping with DMBI-BDZC significantly modulates the performance of rNDI-N/S OFETs, with a 3- to 6-fold increase in electron mobility (μe) for 1 wt % doped device due to simultaneous trap mitigation, lower contact resistance (RC), and activation energy (EA), and enhanced crystallinity and edge-on orientation for charge transport. However, the doping of intrinsic pro-quinoidal rNDI-NN/SS films exhibits unchanged or even reduced device performance. These findings allow us to manipulate the energy levels by developing conjugated copolymers based on various acceptors and quinoids and to optimize the dopant-polymer semiconductor interactions and their impacts on the film morphology and molecular orientation for enhanced charge transport.
Collapse
Affiliation(s)
- Yun Chang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Sheng Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Matsuda M, Lin CY, Enomoto K, Lin YC, Chen WC, Higashihara T. Impact of the Heteroatoms on Mobility–Stretchability Properties of n-Type Semiconducting Polymers with Conjugation Break Spacers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kazushi Enomoto
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yan-Cheng Lin
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
14
|
Yu X, Gao D, Li Z, Sun X, Li B, Zhu Z, Li Z. Green-solvent Processable Dopant-free Hole Transporting Materials for Inverted Perovskite Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202218752. [PMID: 36648451 DOI: 10.1002/anie.202218752] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/18/2023]
Abstract
The commercialization of perovskite solar cells (PVSCs) urgently requires the development of green-solvent processable dopant-free hole transporting materials (HTMs). However, strong intermolecular interactions that ensure high hole mobility always compromise the solubility and film-forming ability in green solvents. Herein, we show a simple but effective design strategy to solve this trade-off, that is, constructing star-shaped D-A-D structure. The resulting HTMs (BTP1-2) can be processed by green solvent of 2-methylanisole (2MA), a kind of food additive, and show high hole mobility and multiple defect passivation effects. An impressive efficiency of 24.34 % has been achieved for 2MA-processed BTP1 based inverted PVSCs, the highest value for green-solvent processable HTMs so far. Moreover, it is manifested that the charge separation of D-A type HTMs at the photoinduced excited state can help to passivate the defects of perovskites, indicating a new HTM design insight.
Collapse
Affiliation(s)
- XinYu Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Danpeng Gao
- Department of Chemistry, City University of Hong Kong Kowloon, 999077, Hong Kong SAR, Hong Kong
| | - Zhen Li
- Department of Chemistry, City University of Hong Kong Kowloon, 999077, Hong Kong SAR, Hong Kong
| | - Xianglang Sun
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bo Li
- Department of Chemistry, City University of Hong Kong Kowloon, 999077, Hong Kong SAR, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong Kowloon, 999077, Hong Kong SAR, Hong Kong
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
15
|
Yang WC, Chen YW, Yu YY, Lin YC, Higashihara T, Chen WC. Enhancing the Performance of Electret-Free Phototransistor Memory by Using All-Conjugated Block Copolymer. Macromol Rapid Commun 2023; 44:e2200756. [PMID: 36281923 DOI: 10.1002/marc.202200756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Conjugated polymers are of great interest owing to their potential in stretchable electronics to function under complex deformation conditions. To improve the performance of conjugated polymers, various structural designs have been proposed and these conjugated polymers are specially applied in exotic optoelectronics. In this work, a series of all-conjugated block copolymers (PII2T-b-PNDI2T) comprising poly(isoindigo-bithiophene) (PII2T) and poly(naphthalenediimide-bithiophene) (PNDI2T) are developed with varied compositions and applied to electret-free phototransistor memory. Accordingly, these memory devices present p-type transport capability and electrical-ON/photo-OFF memory behavior. The efficacy of the all-conjugated block copolymer design in improving the memory-photoresponse properties in phototransistor memory is revealed. By optimizing the composition of the block copolymer, the corresponding device achieves a wide memory window of 36 V and a high memory ratio of 7 × 104 . Collectively, the results of this study indicate a new concept for designing electret-free phototransistor memory by using all-conjugated block copolymer heterojunctions to mitigate the phase separation of conjugated polymer blends. Meanwhile, the intrinsic optoelectronic properties of the constituent conjugated polymers can be well-maintained by using an all-conjugated block copolymer design.
Collapse
Affiliation(s)
- Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.,Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Wen Chen
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Yang-Yen Yu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Yan-Cheng Lin
- Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.,Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yamagata, 992-8510, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.,Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
16
|
Ma L, Cui Y, Zhang J, Xian K, Chen Z, Zhou K, Zhang T, Wang W, Yao H, Zhang S, Hao X, Ye L, Hou J. High-Efficiency and Mechanically Robust All-Polymer Organic Photovoltaic Cells Enabled by Optimized Fibril Network Morphology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208926. [PMID: 36537085 DOI: 10.1002/adma.202208926] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
All-polymer organic photovoltaic (OPV) cells possessing high photovoltaic performance and mechanical robustness are promising candidates for flexible wearable devices. However, developing photoactive materials with good mechanical properties and photovoltaic performance so far remains challenging. In this work, a polymer donor PBDB-TF with a high weight-average molecular weight (Mw ) is introduced to enable highly efficient all-polymer OPV cells featuring excellent mechanical reliability. By incorporating the high-Mw PBDB-TF as a third component into the PBQx-TF:PY-IT blend, the bulk heterojunction morphology is finely tuned with a more compact π-π stacking distance, affording efficient pathways for charge transport as well as mechanical stress dissipation. Hence, all-polymer OPV cells based on the ternary blend film demonstrate a maximum power conversion efficiency (PCE) of 18.2% with an outstanding fill factor of 0.796. The flexible OPV cell delivers a decent PCE of 16.5% with high mechanical stability. These results present a promising strategy to address the mechanical properties and boost the photovoltaic performance of all-polymer OPV cells.
Collapse
Affiliation(s)
- Lijiao Ma
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Cui
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kaihu Xian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, P. R. China
| | - Zhihao Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandong, 250100, P. R. China
| | - Kangkang Zhou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, P. R. China
| | - Tao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenxuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huifeng Yao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandong, 250100, P. R. China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Schmitt A, Kazerouni N, Castillo GE, Thompson BC. Synthesis of Block Copolymers Containing Stereoregular Pendant Electroactive Blocks. ACS Macro Lett 2023; 12:159-164. [PMID: 36648201 DOI: 10.1021/acsmacrolett.2c00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The stereoregular nonconjugated pendant electroactive polymer (NCPEP) poly((N-carbazolylethylthio) propyl methacrylate) (PCzETPMA) has recently shown charge carrier mobilities that are on par with conjugated polymers. Here, we increased the complexity of the architecture for this NCPEP by introducing a polystyrene (PS) block via an anionic, living polymerization yielding a family of PS-b-PCzETPMA block copolymers as the first examples of NCPEP-block-copolymers with controlled stereoregularity of the NCPEP-blocks. Through this methodology we were able to control the molar masses, PS to PCzETPMA block ratios, and tacticities of the PCzETPMA-blocks. We found all three parameters to significantly impact the hole mobilities (μh) of the resulting copolymers, which increased with higher molar masses, longer PCzETPMA-blocks, and higher isotacticity of the PCzETPMA-block, giving the best μh of 2.33 × 10-5 cm2/V·s after annealing at 150 °C for the highest molar mass copolymer with a dominant isotactic PCzETPMA-block. This work is the first reported synthesis of a block copolymer bearing a NCPEP-block with a controlled tacticity and demonstrates that such complex polymer architectures can be realized with NCPEPs while maintaining control over their stereoregularity and without significantly suppressing the hole mobility in the resulting copolymers.
Collapse
Affiliation(s)
- Alexander Schmitt
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Negar Kazerouni
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Grace E Castillo
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C Thompson
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
18
|
Improvement of the Electrical Performance of Ag/MEH-PPV/SiNWs Schottky Diode by the Insertion of a Thin Layer of MEH-PPV Polymer and Study of the Annealing Effect. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
You X, Shen H, Wu Q, Li Y, Wu D, Xia J. Perylene Diimide-based Non-fullerene Acceptors With A-D-A'-D-A Architecture For Organic Solar Cells. Chem Asian J 2023; 18:e202201186. [PMID: 36529711 DOI: 10.1002/asia.202201186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
The vinylene-bridged helical PDI dimer (PDI2) has been an alternative PDI building block for non-fullerene acceptor (NFAs). However, the development of PDI2 derivatives still lag behind, and most of PDI2 derivatives based organic solar cells (OSCs) only achieved a moderate power conversion efficiencies (PCE) of less than 8%. In this contribution, an acceptor-donor-acceptor-donor-acceptor (A-D-A'-D-A) architecture was introduced to facilitate the improvement of photovoltaic properties. Two acceptors named diIDTIC-PDI2 and diFIDTIC-PDI2 were designed and synthesized, in which a PDI2 moiety flanked with two indacenodithiophene (IDT) units was employed as the D-A'-D core and 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC) or fluorinated IC (IC2F) acted as terminal groups, respectively. The photovoltaic performances of these two acceptors were explored using PM1 as the electron donor. Compared to diIDTIC-PDI2, the fluorinated diFIDTIC-PDI2 based OSCs obtained enhanced photovoltaic performance with the best PCE of 9.77%, a VOC of 0.957 V, JSC of 13.58 mA cm-2 and FF of 75.1%. These results illustrate that engineering terminal groups is a robust strategy of enhancing the efficiency of PDI based acceptors with A-D-A'-D-A architecture.
Collapse
Affiliation(s)
- Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hao Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qiang Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 4, 30070, P. R. China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 4, 30070, P. R. China.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
20
|
Huu Nguyen T, Nguyen LTT, Ha Hoang M, Nguyen TQ, Thanh Cu S, Simada R, Ohta Y, Yokozawa T, Tran Nguyen H. Intramolecular catalyst transfer on N-acyl dithieno[3,2-b:2′,3′-d]pyrroles in nonstoichiometric Suzuki-Miyaura polycondensation toward high molecular weight conjugated copolymers at room temperature. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Yilmaz EA, Yasa M, Cirpan A, Toppare L. A follow-up investigation: Organic solar cells based on chalcogenophene-Thieno[3,4-c]pyrrole-4,6-dione-chalcogenophene containing random conjugated polymers. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Sun X, Zhu Z, Li Z. Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells. FRONTIERS OF OPTOELECTRONICS 2022; 15:46. [PMID: 36637605 PMCID: PMC9756258 DOI: 10.1007/s12200-022-00050-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Inverted perovskite solar cells (PVSCs) have recently made exciting progress, showing high power conversion efficiencies (PCEs) of 25% in single-junction devices and 30.5% in silicon/perovskite tandem devices. The hole transporting material (HTM) in an inverted PVSC plays an important role in determining the device performance, since it not only extracts/transports holes but also affects the growth and crystallization of perovskite film. Currently, polymer and self-assembled monolayer (SAM) have been considered as two types of most promising HTM candidates for inverted PVSCs owing to their high PCEs, high stability and adaptability to large area devices. In this review, recent encouraging progress of high-performance polymer and SAM-based HTMs is systematically reviewed and summarized, including molecular design strategies and the correlation between molecular structure and device performance. We hope this review can inspire further innovative development of HTMs for wide applications in highly efficient and stable inverted PVSCs and the tandem devices.
Collapse
Affiliation(s)
- Xianglang Sun
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, China.
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
23
|
Crystallization of D-A Conjugated Polymers: A Review of Recent Research. Polymers (Basel) 2022; 14:polym14214612. [DOI: 10.3390/polym14214612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
D-A conjugated polymers are key materials for organic solar cells and organic thin-film transistors, and their film structure is one of the most important factors in determining device performance. The formation of film structure largely depends on the crystallization process, but the crystallization of D-A conjugated polymers is not well understood. In this review, we attempted to achieve a clearer understanding of the crystallization of D-A conjugated polymers. We first summarized the features of D-A conjugated polymers, which can affect their crystallization process. Then, the crystallization process of D-A conjugated polymers was discussed, including the possible chain conformations in the solution as well as the nucleation and growth processes. After that, the crystal structure of D-A conjugated polymers, including the molecular orientation and polymorphism, was reviewed. We proposed that the nucleation process and the orientation of the nuclei on the substrate are critical for the crystal structure. Finally, we summarized the possible crystal morphologies of D-A conjugated polymers and explained their formation process in terms of nucleation and growth processes. This review provides fundamental knowledge on how to manipulate the crystallization process of D-A conjugated polymers to regulate their film structure.
Collapse
|
24
|
Jessop IA, Cutipa J, Perez Y, Saldías C, Fuentealba D, Tundidor-Camba A, Terraza CA, Camarada MB, Angel FA. New Benzotriazole and Benzodithiophene-Based Conjugated Terpolymer Bearing a Fluorescein Derivative as Side-Group: In-Ternal Förster Resonance Energy Transfer to Improve Organic Solar Cells. Int J Mol Sci 2022; 23:ijms232112901. [PMID: 36361692 PMCID: PMC9657233 DOI: 10.3390/ijms232112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
A new benzodithiophene and benzotriazole-based terpolymer bearing a fluorescein derivative as a side group was synthesized and studied for organic solar cell (OSC) applications. This side group was covalently bounded to the backbone through an n-hexyl chain to induce the intramolecular Förster Resonance Energy Transfer (FRET) process and thus improve the photovoltaic performance of the polymeric material. The polymer exhibited good solubility in common organic chlorinated solvents as well as thermal stability (TDT10% > 360 °C). Photophysical measurements demonstrated the occurrence of the FRET phenomenon between the lateral group and the terpolymer. The terpolymer exhibited an absorption band centered at 501 nm, an optical bandgap of 2.02 eV, and HOMO and LUMO energy levels of −5.30 eV and −3.28 eV, respectively. A preliminary study on terpolymer-based OSC devices showed a low power-conversion efficiency (PCE) but a higher performance than devices based on an analogous polymer without the fluorescein derivative. These results mean that the design presented here is a promising strategy to improve the performance of polymers used in OSCs.
Collapse
Affiliation(s)
- Ignacio A. Jessop
- Organic and Polymeric Materials Research Laboratory, Facultad de Ciencias, Universidad de Tarapacá, P.O. Box 7-D, Arica 1000007, Chile
- Correspondence: (I.A.J.); (F.A.A.)
| | - Josefa Cutipa
- Organic and Polymeric Materials Research Laboratory, Facultad de Ciencias, Universidad de Tarapacá, P.O. Box 7-D, Arica 1000007, Chile
| | - Yasmín Perez
- Organic and Polymeric Materials Research Laboratory, Facultad de Ciencias, Universidad de Tarapacá, P.O. Box 7-D, Arica 1000007, Chile
| | - Cesar Saldías
- Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Denis Fuentealba
- Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alain Tundidor-Camba
- Research Laboratory for Organic Polymers (RLOP), Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, P.O. Box 306, Post 22, Santiago 7820436, Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Claudio A. Terraza
- Research Laboratory for Organic Polymers (RLOP), Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, P.O. Box 306, Post 22, Santiago 7820436, Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - María B. Camarada
- Departamento de Química Inorgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Felipe A. Angel
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Química Inorgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (I.A.J.); (F.A.A.)
| |
Collapse
|
25
|
Facile access to coil-rod-coil-type block copolymers by CuAAC-based macromolecular clicking. Polym J 2022. [DOI: 10.1038/s41428-022-00714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Wu Y, Ding Z, Zhang Q, Liang X, Yang H, Huang W, Su Y, Zhang Y, Hu H, Han Y, Liu SF, Zhao K. Increasing H-Aggregates via Sequential Aggregation to Enhance the Hole Mobility of Printed Conjugated Polymer Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiao Liang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Hua Yang
- Dongguan Neutron Science Center, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803, China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yueling Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| |
Collapse
|
27
|
Gao W, Jiang M, Wu Z, Fan B, Jiang W, Cai N, Xie H, Lin FR, Luo J, An Q, Woo HY, Jen AK. Intramolecular Chloro–Sulfur Interaction and Asymmetric Side‐Chain Isomerization to Balance Crystallinity and Miscibility in All‐Small‐Molecule Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202205168. [DOI: 10.1002/anie.202205168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Gao
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Ziang Wu
- Department of Chemistry College of Science Korea University Seoul 136-713 Republic of Korea
| | - Baobing Fan
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Wenlin Jiang
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Ning Cai
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Hua Xie
- School of Water Resources and Hydropower Wuhan University Wuhan 430072 China
| | - Francis R. Lin
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Jingdong Luo
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Han Young Woo
- Department of Chemistry College of Science Korea University Seoul 136-713 Republic of Korea
| | - Alex K.‐Y. Jen
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Materials Science and Engineering University of Washington Seattle WA 98195-2120 USA
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| |
Collapse
|
28
|
Li Y, Yu J, Zhou Y, Li Z. Molecular Insights of Non‐fused Ring Acceptors for High‐Performance Non‐fullerene Organic Solar Cells. Chemistry 2022; 28:e202201675. [DOI: 10.1002/chem.202201675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yibin Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| | - Jiangsheng Yu
- MIIT Key Laboratory of Advanced Solid Laser School of Electronic and Optical Engineering Nanjing University of Science and Technology 200 Xiaolingwei Street, Xuanwu District Nanjing P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| |
Collapse
|
29
|
Gao W, Jiang M, Wu Z, Fan B, Jiang W, Cai N, Xie H, Lin FR, Luo J, An Q, Woo HY, Jen AKY. Intramolecular Choloro‐Sulfur Interaction and Asymmetric Side‐Chain Isomerization to Balance Crystallinity and Miscibility in All‐Small‐Molecule Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Gao
- City University of Hong Kong Department of Chemistry 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077 Hong Kong CHINA
| | - Mengyun Jiang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering 100081 Beijing CHINA
| | - Ziang Wu
- Korea University Department of Chemistry 136-713 Seoul KOREA, REPUBLIC OF
| | - Baobing Fan
- City University of Hong Kong Department of Materials Science and Engineering 999077 Hong Kong CHINA
| | - Wenlin Jiang
- City University of Hong Kong Department of Materials Science and Engineering 999077 Hong Kong CHINA
| | - Ning Cai
- Guangdong University of Technology School of Chemical Engineering and Light Industry 510006 Guangzhou CHINA
| | - Hua Xie
- Wuhan University School of Water Resources and Hydropower 430072 Wuhan CHINA
| | - Francis R. Lin
- City University of Hong Kong Department of Chemistry 999077 Hong Kong CHINA
| | - Jingdong Luo
- City University of Hong Kong Department of Chemistry 999077 Hong Kong CHINA
| | - Qiaoshi An
- Beijing Institute of Technology School of Chemistry and Chemical Engineering 100081 Beijing CHINA
| | - Han Young Woo
- Korea University Department of Chemistry Seoul KOREA, REPUBLIC OF
| | - Alex K.-Y. Jen
- City University of Hong Kong Chemistry Tat Chee Ave 999077 Kowloon CHINA
| |
Collapse
|
30
|
Wang X, Gao S, Han J, Liu Z, Qiao W, Wang ZY. High-Performance All-Polymer Photodetectors Enabled by New Random Terpolymer Acceptor with Fine-Tuned Molecular Weight. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26978-26987. [PMID: 35656812 DOI: 10.1021/acsami.2c04775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reducing the dark current density and enhancing the overall performance of the device is the focal point in research for organic photodetectors. Two novel random terpolymers (P3 and P4) with different molecular weights are synthesized and evaluated as acceptors in bulk heterojunction (BHJ) polymer photodetectors. Compared with known acceptor materials, such as N2200 (P1) and F-N2200 (P2), polymer P4 has a lower lowest unoccupied molecular orbital (LUMO) energy level, favorable morphology, and good miscibility with a donor material J71, which leads to proper phase separation of the blend film and better dissociation of excitons and transport of carriers. Therefore, a considerably low dark current density (Jd) of 1.9 × 10-10 A/cm2 and a high specific detectivity (D*) of 1.8 × 1013 cm Hz1/2/W (also "Jones") at 580 nm under a -0.1 V bias are realized for the P4-based photodetector. More importantly, the device also exhibits a fast response speed (τr/τf = 1.24/1.87 μs) and a wide linear dynamic range (LDR) of 109.2 dB. This work demonstrates that high-performance all-polymer photodetectors with ideal morphology can be realized by random polymer acceptors with a fine-tuned molecular weight.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shijia Gao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Han
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhipeng Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenqiang Qiao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi Yuan Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
31
|
Su LY, Huang HH, Tsai CE, Hou CH, Shyue JJ, Lu CH, Pao CW, Yu MH, Wang L, Chueh CC. Improving Thermal and Photostability of Polymer Solar Cells by Robust Interface Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107834. [PMID: 35532078 DOI: 10.1002/smll.202107834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/03/2022] [Indexed: 06/14/2023]
Abstract
As the power conversion efficiency (PCE) of organic photovoltaics (OPVs) approaches 19%, increasing research attention is being paid to enhancing the device's long-term stability. In this study, a robust interface engineering of graphene oxide nanosheets (GNS) is expounded on improving the thermal and photostability of non-fullerene bulk-heterojunction (NFA BHJ) OPVs to a practical level. Three distinct GNSs (GNS, N-doped GNS (N-GNS), and N,S-doped GNS (NS-GNS)) synthesized through a pyrolysis method are applied as the ZnO modifier in inverted OPVs. The results reveal that the GNS modification introduces passivation and dipole effects to enable better energy-level alignment and to facilitate charge transfer across the ZnO/BHJ interface. Besides, it optimizes the BHJ morphology of the photoactive layer, and the N,S doping of GNS further enhances the interaction with the photoactive components to enable a more idea BHJ morphology. Consequently, the NS-GNS device delivers enhanced performance from 14.5% (control device) to 16.5%. Moreover, the thermally/chemically stable GNS is shown to stabilize the morphology of the ZnO electron transport layer (ETL) and to endow the BHJ morphology of the photoactive layer grown atop with a more stable thermodynamic property. This largely reduces the microstructure changes and the associated charge recombination in the BHJ layer under constant thermal/light stresses. Finally, the NS-GNS device is demonstrated to exhibit an impressive T80 lifetime (time at which PCE of the device decays to 80% of the initial PCE) of 2712 h under a constant thermal condition at 65 °C in a glovebox and an outstanding photostability with a T80 lifetime of 2000 h under constant AM1.5G 1-sun illumination in an N2 -controlled environment.
Collapse
Affiliation(s)
- Li-Yun Su
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-Hsiang Huang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Department of Material Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-En Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Hung Hou
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Jong Shyue
- Department of Material Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chien-Hao Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Wei Pao
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsuan Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Leeyih Wang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
32
|
Precise synthesis of α,ω-chain-end-functionalized poly(dimethylsiloxane) with bromoaryl groups for incorporation in naphthalene-diimide-based N-type semiconducting polymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Xu S, Wang W, Liu H, Yu X, Qin F, Luo H, Zhou Y, Li Z. A New Diazabenzo[k]fluoranthene-based D-A Conjugated Polymer Donor for Efficient Organic Solar Cells. Macromol Rapid Commun 2022; 43:e2200276. [PMID: 35567333 DOI: 10.1002/marc.202200276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Indexed: 11/08/2022]
Abstract
The development of wide-bandgap polymer donors having complementary absorption and compatible energy levels with near-infared (NIR) absorbing nonfullerene acceptors is highly important for realizing high-performance organic solar cells (OSCs). Herein, a new thiophene-fused diazabenzo[k]fluoranthene derivative has been successfully synthesized as the electron-deficient unit to construct an efficient donor-acceptor (D-A) type alternating copolymer donor, namely PABF-Cl, using the chlorinated benzo[1,2-b:4,5-b']dithiophene as the copolymerization unit. PABF-Cl exhibits a wide optical bandgap of 1.93 eV, a deep highest occupied molecular level of -5.36 eV, and efficient hole transport. As a result, OSCs with the best power conversion efficiency of 11.8% has been successfully obtained by using PABF-Cl as the donor to blend with a NIR absorbing BTP-eC9 acceptor. Our work thus provides a new design of electron-deficient unit for constructing high performance D-A type polymer donors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shaoheng Xu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wen Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongtao Liu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xinyu Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fei Qin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hao Luo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
34
|
Electrospun Donor/Acceptor Nanofibers for Efficient Photocatalytic Hydrogen Evolution. NANOMATERIALS 2022; 12:nano12091535. [PMID: 35564245 PMCID: PMC9101664 DOI: 10.3390/nano12091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
We prepared a series of one-dimensional conjugated-material-based nanofibers with different morphologies and donor/acceptor (D/A) compositions by electrospinning for efficient photocatalytic hydrogen evolution. It was found that homogeneous D/A heterojunction nanofibers can be obtained by electrospinning, and the donor/acceptor ratio can be easily controlled. Compared with the single-component-based nanofibers, the D/A-based nanofibers showed a 34-fold increase in photocatalytic efficiency, attributed to the enhanced exciton dissociation in the nanofibrillar body. In addition, the photocatalytic activity of these nanofibers can be easily optimized by modulating the diameter. The results show that the diameter of the nanofibers can be conveniently controlled by the electrospinning feed rate, and the photocatalytic effect increases with decreasing fiber diameter. Consequently, the nanofibers with the smallest diameter exhibit the most efficient photocatalytic hydrogen evolution, with the highest release rate of 24.38 mmol/(gh). This work provides preliminary evidence of the advantages of the electrospinning strategy in the construction of D/A nanofibers with controlled morphology and donor/acceptor composition, enabling efficient hydrogen evolution.
Collapse
|
35
|
Keshtov ML, Konstantinov IO, Khokhlov AR, Ostapov IE, Alekseev VG, Xie Z, Dahiya H, Sharma GD. Synthesis of D‐A copolymers based on thiadiazole and thiazolothiazole acceptor units and their applications in ternary polymer solar cells. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mukhamed L. Keshtov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Igor O. Konstantinov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Alexei R. Khokhlov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Ilya E. Ostapov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | | | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry of Chinese Academy of Sciences Changchun China
| | - Hemraj Dahiya
- Department of Physics The LNM Institute for Information Technology Jaipur India
| | - Ganesh D. Sharma
- Department of Physics The LNM Institute for Information Technology Jaipur India
- Department of Electronics and Communication Engineering The LNM Institute of Information Technology Jaipur India
| |
Collapse
|
36
|
Tseng YC, Kato A, Chang JF, Chen WC, Higashihara T, Chueh CC. Impact of the segment ratio on a donor-acceptor all-conjugated block copolymer in single-component organic solar cells. NANOSCALE 2022; 14:5472-5481. [PMID: 35322845 DOI: 10.1039/d2nr00437b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of single-component organic solar cells (SCOSCs) using only one photoactive component with a chemically bonded D/A structure has attracted increasing research attention in recent years. At represent, most relevant studies focus on comparing the performance difference between a donor-acceptor (D-A) conjugated block copolymer (CBC) and the commensurate blending systems based on the same donor and acceptor segments, and still there are no reports on the impact of the segment ratio for a certain D-A CBC on the resultant photovoltaic performance. In this study, we synthesized a D-A all-conjugated polymers based on an n-type PNDI2T block and a p-type PBDB-T donor block but with three different segment ratios (P1-P3) and demonstrate the significance of the D/A segment ratio on photovoltaic performance. Our results reveal that the n-type PNDI2T block plays a more critical role in the inter/intra-chain charge transfer. P1 with a higher content of PNDI2T delivers superior exciton dissociation and charge transfer behavior than P2 and P3, benefitting from its more balanced hole/electron mobility. In addition, a higher packing regularity associated with a more dominant face-on orientation is also observed for P1. As a result, SCOSC based on P1 exhibits the highest PCE among the synthesized CBCs. It also possesses a minimal energy loss due to the better suppressed non-radiative recombination loss. This work provides the first discussion of the impact of the segment ratio for a D-A all-conjugated block copolymer and signifies the critical role of the n-type segment in designing high-performance single-component CBCs.
Collapse
Affiliation(s)
- Yu-Cheng Tseng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Aoto Kato
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Jia-Fu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
37
|
Comparative study of the optoelectronic properties of diketopyrrolopyrrole based polymers obtained by direct C-H arylation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Sun X, Liao MY, Yu X, Wu YS, Zhong C, Chueh CC, Li Z, Li Z. An asymmetric 2,3-fluoranthene imide building block for regioregular semiconductors with aggregation-induced emission properties. Chem Sci 2022; 13:996-1002. [PMID: 35211264 PMCID: PMC8790796 DOI: 10.1039/d1sc06807e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
For organic semiconductors, the development of electron-deficient building blocks has lagged far behind that of the electron-rich ones. Moreover, it remains a significant challenge to design organic molecules with efficient charge transport and strong solid-state emission simultaneously. Herein, we describe a facile synthetic route toward a new π-acceptor imide building block, namely 2,3-fluoranthene imide, based on which four regioregular small molecules (F1–F4) are synthesized by tuning the imide orientations and the central linkage bridges. All molecules exhibit attractive aggregation-induced emission (AIE) characteristics with strong far-red emission in the powder state, and F3 shows the highest photoluminescence quantum yield of 5.9%. F1 and F3 with a thiophene bridge present an obvious p-type characteristic, while for F3 with an outward imide orientation, the maximum hole mobility from a solution-processed field-effect transistor (FET) device reaches 0.026 cm2 V−1 s−1, being ∼104 times higher than the value of F1 with an inward imide orientation. By using a fluorinated thiophene bridge, the resulting F2 and F4 can be turned into n-type semiconductors, showing an electron mobility of ∼1.43 × 10−4 and ∼3.34 × 10−5 cm2 V−1 s−1, respectively. Our work not only demonstrates that asymmetric 2,3-fluoranthene imide is a promising building block for constructing organic materials with high carrier mobility and strong solid-state emission, but also highlights the importance of regioregular structures in the materials' properties. A new electron-deficient 2,3-fluoranthene imide unit was easily synthesized through a one-pot reaction for constructing small molecule regioregular semiconductors with good carrier transport ability and strong solid-state emission.![]()
Collapse
Affiliation(s)
- Xianglang Sun
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Ming-Yun Liao
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Xinyu Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Ying-Sheng Wu
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Cheng Zhong
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Zhen Li
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
39
|
Zhang Q, Chang M, Fan Z, Deng L, Lu Y. Direct (hetero)arylation polymerization, electrochemical and optical properties of regioregular 3-substituted polythiophenes with alkylsulphanyl and alkylsulfonyl groups. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Zhang Z, Si W, Wu B, Wang W, Li Y, Ma W, Lin Y. Two‐Dimensional‐Polycyclic Photovoltaic Molecule with Low Trap Density for High‐Performance Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Wenqin Si
- ICCAS: Institute of Chemistry Chinese Academy of Sciences Key laboratory of organic solids CHINA
| | - Baohua Wu
- Xian Jiaotong University: Xi'an Jiaotong University school of mechanical engineering CHINA
| | | | | | - Wei Ma
- Xi'an Jiaotong University Xian Jiaotong Univerisity CHINA
| | - Yuze Lin
- Institute of Chemistry, Chinese Academy of Sciences ICCAS CHINA
| |
Collapse
|
41
|
Zhang Z, Si W, Wu B, Wang W, Li Y, Ma W, Lin Y. Two-Dimensional-Polycyclic Photovoltaic Molecule with Low Trap Density for High-Performance Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021; 61:e202114234. [PMID: 34967489 DOI: 10.1002/anie.202114234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/12/2022]
Abstract
Typical organic semiconductors show a high trap density of states (1016-1018 cm-3), providing a large number of centers for charge-carrier recombination, thus hindering the development of photocatalytic hydrogen evolution. Here, we introduce a strategy of designing and synthesizing two-dimensional-polycyclic photovoltaic material, named as TPP, to reduce the trap density as low as 2.3×1015 cm-3, which is 1-3 orders of magnitudes lower than those of typical organic photovoltaic semiconductors. Moreover, TPP exhibited broad and strong absorption, ordered molecular packing with large crystalline coherence length and enhanced electron mobility. Then, the bulk heterojunction nanoparticles (BHJ-NPs) based on the blend of polymer donor (PM6) and TPP, exhibited an average hydrogen evolution rate (HER) of 72.75 mmol h-1 g-1, which is higher than that of the control NPs based on typical PM6:Y6 (62.67 mmol h-1 g-1) tested under 330-1100 nm illumination with light intensity of 198 mW cm-2.
Collapse
Affiliation(s)
| | - Wenqin Si
- ICCAS: Institute of Chemistry Chinese Academy of Sciences, Key laboratory of organic solids, CHINA
| | - Baohua Wu
- Xian Jiaotong University: Xi'an Jiaotong University, school of mechanical engineering, CHINA
| | | | | | - Wei Ma
- Xi'an Jiaotong University, Xian Jiaotong Univerisity, CHINA
| | - Yuze Lin
- Institute of Chemistry, Chinese Academy of Sciences, ICCAS, CHINA
| |
Collapse
|
42
|
|
43
|
Chen F, Nakano K, Kaji Y, Adachi K, Hashizume D, Tajima K. Triphenyleno[1,2- c:7,8- c']bis([1,2,5]thiadiazole) as a V-Shaped Electron-Deficient Unit to Construct Wide-Bandgap Amorphous Polymers for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57743-57749. [PMID: 34813278 DOI: 10.1021/acsami.1c19708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The backbone shape of semiconducting polymers strongly affects their electronic properties and morphologies in films, yet the conventional design principle for building blocks focuses on using linear main chains to maintain high crystallinity. Here, we developed a V-shaped unit, triphenyleno[1,2-c:7,8-c']bis([1,2,5]thiadiazole) (TPTz), featuring two 1,2,5-thiadiazole rings fused to a triphenylene core with strong electron-withdrawing properties and an extended conjugation plane. We used TPTz to prepare a highly soluble copolymer, PTPTz-indacenodithiophene (IDT), which exhibited a wide bandgap of 1.94 eV and energy levels suitable for the donor polymer in organic solar cells (OSCs) in combination with non-fullerene acceptors. Despite the amorphous nature of the polymer film, single-junction OSCs with PTPTz-IDT:Y6 as the active layer achieved a power conversion efficiency of 10.4% (JSC = 19.8 mA cm-2; VOC = 0.80 V; fill factor = 0.66), which is the highest value reported for a single-junction OSC with IDT-based donor polymers. This work demonstrates that TPTz is a promising electron-acceptor unit for developing functional polymers with zigzag structures.
Collapse
Affiliation(s)
- Fengkun Chen
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kyohei Nakano
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yumiko Kaji
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
44
|
Veeramuthu L, Venkatesan M, Benas JS, Cho CJ, Lee CC, Lieu FK, Lin JH, Lee RH, Kuo CC. Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors. Polymers (Basel) 2021; 13:4281. [PMID: 34960831 PMCID: PMC8705576 DOI: 10.3390/polym13244281] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
The Conducting of polymers belongs to the class of polymers exhibiting excellence in electrical performances because of their intrinsic delocalized π- electrons and their tunability ranges from semi-conductive to metallic conductive regime. Conducting polymers and their composites serve greater functionality in the application of strain and pressure sensors, especially in yielding a better figure of merits, such as improved sensitivity, sensing range, durability, and mechanical robustness. The electrospinning process allows the formation of micro to nano-dimensional fibers with solution-processing attributes and offers an exciting aspect ratio by forming ultra-long fibrous structures. This review comprehensively covers the fundamentals of conducting polymers, sensor fabrication, working modes, and recent trends in achieving the sensitivity, wide-sensing range, reduced hysteresis, and durability of thin film, porous, and nanofibrous sensors. Furthermore, nanofiber and textile-based sensory device importance and its growth towards futuristic wearable electronics in a technological era was systematically reviewed to overcome the existing challenges.
Collapse
Affiliation(s)
- Loganathan Veeramuthu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Jean-Sebastien Benas
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Jung Cho
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Chin Lee
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
| | - Fu-Kong Lieu
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
- Department of Physical Medicine and Rehabilitation, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ja-Hon Lin
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| |
Collapse
|
45
|
Liu C, Xiao C, Xie C, Zhu Q, Chen Q, Ma W, Li W. Insulating Polymers as Additives to Bulk-Heterojunction Organic Solar Cells: The Effect of Miscibility. Chemphyschem 2021; 23:e202100725. [PMID: 34791762 DOI: 10.1002/cphc.202100725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Indexed: 11/06/2022]
Abstract
Adding insulating polymers to conjugated polymers is an efficient strategy to tailor their mechanical properties for flexible organic electronics. In this work, we selected two insulating polymers as additives for high-performance photoactive layers and investigated the mechanical and photovoltaic properties in organic solar cells (OSCs). The insulating polymers were found to reduce the electron mobilities in the photoactive layers, and hence the power conversion efficiencies were significantly decreased. More importantly, we found that the insulating polymers exhibited negative effect on the mechanical properties of the photoactive layers, with reduced Young's modulus and low crack onset strains. Further studies revealed that the insulating polymers had poor miscibility with the photoactive layers, providing large domains and more cavities in blend thin films, which act as negative effect for the tensile test. The studies indicate that rational selection of insulating polymers, especially enhancing the non-covalent interaction with the photoactive layers, will be critically important for the stretchable OSCs.
Collapse
Affiliation(s)
- Chunhui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qinglian Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
46
|
Li Y, Liu X, Liu H, Yu J, Li Z. Unfused Nonfullerene Acceptors Based on Simple Dipolar Merocyanines. Chemistry 2021; 27:18103-18108. [PMID: 34751986 DOI: 10.1002/chem.202103278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Merocyanine (MC) dyes exhibit facile synthesis and attractive optical properties, making them widely studied as the donor materials in organic solar cells (OSCs). In this study, for the first time, simple indole-based MCs are successfully designed as unfused nonfullerene acceptors (NFAs) for OSCs by forming dimers with A-D-π-D-A structure, which possess enhanced photostability compared to the well-known ITIC acceptor and high electron mobility in blend films. When blended with P3HT donor, one of the dimers, i. e. Z2, shows a good cell efficiency of 3.53 %, which outperforms the performance of most of P3HT/NFA blends, particularly for unfused systems, and thus indicates good potential of simple MCs as NFAs.
Collapse
Affiliation(s)
- Yibin Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Xin Liu
- MIIT Key Laboratory of Advanced Solid Laser, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, P. R. China
| | - Hongtao Liu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Jiangsheng Yu
- MIIT Key Laboratory of Advanced Solid Laser, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| |
Collapse
|
47
|
Wolf CM, Guio L, Scheiwiller S, Pakhnyuk V, Luscombe C, Pozzo LD. Strategies for the Development of Conjugated Polymer Molecular Dynamics Force Fields Validated with Neutron and X-ray Scattering. ACS POLYMERS AU 2021; 1:134-152. [PMID: 36855657 PMCID: PMC9954299 DOI: 10.1021/acspolymersau.1c00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugated polymers (CPs) enable a wide range of lightweight, lower cost, and flexible organic electronic devices, but a thorough understanding of relationships between molecular structure and dynamics and electronic performance is critical for improved device efficiencies and for new technologies. Molecular dynamics (MD) simulations offer in silico insight into this relationship, but their accuracy relies on the approach used to develop the model's parameters or force field (FF). In this Perspective, we first review current FFs for CPs and find that most of the models implement an arduous reparameterization of inter-ring torsion potentials and partial charges of classical FFs. However, there are few FFs outside of simple CP molecules, e.g., polythiophenes, that have been developed over the last two decades. There is also limited reparameterization of other parameters, such as nonbonded Lennard-Jones interactions, which we find to be directly influenced by conjugation in these materials. We further provide a discussion on experimental validation of MD FFs, with emphasis on neutron and X-ray scattering. We define multiple ways in which various scattering methods can be directly compared to results of MD simulations, providing a powerful experimental validation metric of local structure and dynamics at relevant length and time scales to charge transport mechanisms in CPs. Finally, we offer a perspective on the use of neutron scattering with machine learning to enable high-throughput parametrization of accurate and experimentally validated CP FFs enabled not only by the ongoing advancements in computational chemistry, data science, and high-performance computing but also using oligomers as proxies for longer polymer chains during FF development.
Collapse
Affiliation(s)
- Caitlyn M. Wolf
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195-1750, United States,Center
for Neutron Research, Stop 6102, National
Institute of Standards and Technology, Gaithersburg, Maryland 20889-6102, United States,
| | - Lorenzo Guio
- Department
of Material Science and Engineering, University
of Washington, Box 352120, Seattle, Washington 98195-2120, United States
| | - Sage Scheiwiller
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195-1750, United States
| | - Viktoria Pakhnyuk
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Christine Luscombe
- Department
of Material Science and Engineering, University
of Washington, Box 352120, Seattle, Washington 98195-2120, United States,Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Lilo D. Pozzo
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195-1750, United States,
| |
Collapse
|
48
|
Lin YC, Matsuda M, Chen CK, Yang WC, Chueh CC, Higashihara T, Chen WC. Investigation of the Mobility–Stretchability Properties of Naphthalenediimide-Based Conjugated Random Terpolymers with a Functionalized Conjugation Break Spacer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
49
|
Lin PS, Shoji Y, Afraj SN, Ueda M, Lin CH, Inagaki S, Endo T, Tung SH, Chen MC, Liu CL, Higashihara T. Controlled Synthesis of Poly[(3-alkylthio)thiophene]s and Their Application to Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31898-31909. [PMID: 34190528 DOI: 10.1021/acsami.1c04404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Regioregular polythiophenes have been widely used in organic electronic applications due to their solution processability with chemical modification through side chain engineering, as well as their microstructural organization and good hole transport properties. Here, we introduce alkylthio side chains, (poly[(3-alkylthio)thiophene]s; P3ATTs), with strong noncovalent sulfur molecular interactions, to main chain thienyl backbones. These P3ATTs were compared with alkyl-substituted polythiophene (poly(3-alkylthiophene); P3AT) variants such that the effects of straight (hexyl and decyl) and branched (2-ethylhexyl) side chains (with and without S atoms) on their thin-film morphologies and crystalline states could be investigated. P3ATTs with linear alkylthio side chains (P3HTT, hexylthio; P3DTT, decylthio) did not attain the expected higher organic field-effect transistor (OFET) mobilities with respect to P3HT (hexyl) and P3DT (decyl) mainly due to their lower regioregularity (76-78%), although P3ATTs exhibit an enhanced tendency for aggregation and compact molecular packing, as indicated by the red-shifting of the absorption spectra and the shortening of the π-π stacking distance, respectively. Moreover, the loss of regioregularity issue can be solved by introducing more soluble 2-ethylhexylthio branched side chains to form poly[3-(2-ethylhexylthio)thiophene] (P3EHTT), which provides enhanced crystallinity and efficient charge mobility (increased by up to a factor of 3) with respect to the poly(2-ethylhexylthiophene) (P3EHT) without S atoms in the side moieties. This study demonstrates that the presence of side chain alkylthio structural motifs with nonbonded interactions in polythiophene semiconductors has a beneficial impact on the molecular conformation, morphologies, structural packing, and charge transport in OFET devices.
Collapse
Affiliation(s)
- Po-Shen Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yamato Shoji
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shakil N Afraj
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan 32001, Taiwan
| | - Mitsuru Ueda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ching-Hsuan Lin
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan 32001, Taiwan
| | - Shin Inagaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Taiki Endo
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Chou Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan 32001, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
50
|
Fan Q, Fu H, Wu Q, Wu Z, Lin F, Zhu Z, Min J, Woo HY, Jen AK. Multi‐Selenophene‐Containing Narrow Bandgap Polymer Acceptors for All‐Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qunping Fan
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Huiting Fu
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Qiang Wu
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Ziang Wu
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Francis Lin
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Zonglong Zhu
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Jie Min
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Han Young Woo
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Alex K.‐Y. Jen
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Materials Science and Engineering University of Washington Box352120 Seattle WA USA
| |
Collapse
|