1
|
Oliveira RV, Simionato AVC, Cass QB. Enantioselectivity Effects in Clinical Metabolomics and Lipidomics. Molecules 2021; 26:molecules26175231. [PMID: 34500665 PMCID: PMC8433918 DOI: 10.3390/molecules26175231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Metabolomics and lipidomics have demonstrated increasing importance in underlying biochemical mechanisms involved in the pathogenesis of diseases to identify novel drug targets and/or biomarkers for establishing therapeutic approaches for human health. Particularly, bioactive metabolites and lipids have biological activity and have been implicated in various biological processes in physiological conditions. Thus, comprehensive metabolites, and lipids profiling are required to obtain further advances in understanding pathophysiological changes that occur in cells and tissues. Chirality is one of the most important phenomena in living organisms and has attracted long-term interest in medical and natural science. Enantioselective separation plays a pivotal role in understanding the distribution and physiological function of a diversity of chiral bioactive molecules. In this context, it has been the goal of method development for targeted and untargeted metabolomics and lipidomic assays. Herein we will highlight the benefits and challenges involved in these stereoselective analyses for clinical samples.
Collapse
Affiliation(s)
- Regina V. Oliveira
- SEPARARE-Núcleo de Pesquisa em Cromatografia, Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, São Carlos 13565-905, SP, Brazil;
| | - Ana Valéria C. Simionato
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, SP, Brazil;
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Quezia B. Cass
- SEPARARE-Núcleo de Pesquisa em Cromatografia, Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, São Carlos 13565-905, SP, Brazil;
- Correspondence: ; Tel.: +55-16-3351-8087
| |
Collapse
|
2
|
Retention dependences support highly confident identification of lipid species in human plasma by reversed-phase UHPLC/MS. Anal Bioanal Chem 2021; 414:319-331. [PMID: 34244835 DOI: 10.1007/s00216-021-03492-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Reversed-phase ultrahigh-performance liquid chromatography-mass spectrometry (RP-UHPLC/MS) method was developed with the aim to unambiguously identify a large number of lipid species from multiple lipid classes in human plasma. The optimized RP-UHPLC/MS method employed the C18 column with sub-2-μm particles with the total run time of 25 min. The chromatographic resolution was investigated with 42 standards from 18 lipid classes. The UHPLC system was coupled to high-resolution quadrupole-time-of-flight (QTOF) mass analyzer using electrospray ionization (ESI) measuring full-scan and tandem mass spectra (MS/MS) in positive- and negative-ion modes with high mass accuracy. Our identification approach was based on m/z values measured with mass accuracy within 5 ppm tolerance in the full-scan mode, characteristic fragment ions in MS/MS, and regularity in chromatographic retention dependences for individual lipid species, which provides the highest level of confidence for reported identifications of lipid species including regioisomeric and other isobaric forms. The graphs of dependences of retention times on the carbon number or on the number of double bond(s) in fatty acyl chains were constructed to support the identification of lipid species in homologous lipid series. Our list of identified lipid species is also compared with previous publications investigating human blood samples by various MS-based approaches. In total, we have reported more than 500 lipid species representing 26 polar and nonpolar lipid classes detected in NIST Standard reference material 1950 human plasma.
Collapse
|
3
|
Cebo M, Fu X, Gawaz M, Chatterjee M, Lämmerhofer M. Enantioselective ultra-high performance liquid chromatography-tandem mass spectrometry method based on sub-2µm particle polysaccharide column for chiral separation of oxylipins and its application for the analysis of autoxidized fatty acids and platelet releasates. J Chromatogr A 2020; 1624:461206. [DOI: 10.1016/j.chroma.2020.461206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
|
4
|
Li L, Zhong S, Shen X, Li Q, Xu W, Tao Y, Yin H. Recent development on liquid chromatography-mass spectrometry analysis of oxidized lipids. Free Radic Biol Med 2019; 144:16-34. [PMID: 31202785 DOI: 10.1016/j.freeradbiomed.2019.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) in the cellular membrane can be oxidized by various enzymes or reactive oxygen species (ROS) to form many oxidized lipids. These metabolites are highly bioactive, participating in a variety of physiological and pathophysiological processes. Mass spectrometry (MS), coupled with Liquid Chromatography, has been increasingly recognized as an indispensable tool for the analysis of oxidized lipids due to its excellent sensitivity and selectivity. We will give an update on the understanding of the molecular mechanisms related to generation of various oxidized lipids and recent progress on the development of LC-MS in the detection of these bioactive lipids derived from fatty acids, cholesterol esters, and phospholipids. The purpose of this review is to provide an overview of the formation mechanisms and technological advances in LC-MS for the study of oxidized lipids in human diseases, and to shed new light on the potential of using oxidized lipids as biomarkers and mechanistic clues of pathogenesis related to lipid metabolism. The key technical problems associated with analysis of oxidized lipids and challenges in the field will also discussed.
Collapse
Affiliation(s)
- Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China
| | - Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China
| | - Xia Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Qiujing Li
- Department of Pharmacy, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Wenxin Xu
- Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100000, China.
| |
Collapse
|
5
|
Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med 2019; 144:72-89. [PMID: 31085232 DOI: 10.1016/j.freeradbiomed.2019.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; University of California Davis, Department of Nutrition, Davis, CA, USA
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
6
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
7
|
Jaskolla TW, Onischke K, Schiller J. 2,5-dihydroxybenzoic acid salts for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric lipid analysis: simplified spectra interpretation and insights into gas-phase fragmentation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1353-1363. [PMID: 24797946 DOI: 10.1002/rcm.6910] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/30/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE In the last decades the interest in lipids as important components of membranes has considerably increased. Nowadays, lipids are often routinely analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this regard, many relevant aspects are so far unknown, e.g., gas-phase stabilities, adduct formation and fragmentation. To fill this gap, MALDI matrix salts are presented which allow for simplified lipid analysis and elucidation of the underlying gas-phase fragmentation mechanisms. METHODS MALDI-TOF MS was used due to its beneficial properties for lipid investigations, e.g., high sensitivity, simple sample preparations, and a high tolerance to contaminants. The lipid hydrolysis, ionization and fragmentation properties of synthesized near neutral Na(+) and NH4 (+) salts of the commonly used MALDI matrix 2,5-dihydroxybenzoic acid were compared to that of DHB free acid itself as well as to base addition to DHB during dried-droplet sample preparation. RESULTS Many lipid classes such as sterols, triacylglycerols, phosphatidylcholines and -ethanolamines undergo initial protonation with subsequent prompt partial up to quantitative fragmentation when analyzed with classical acidic matrices by MALDI-TOF MS. Neutral matrix salts can prevent initial analyte fragmentation by suppression of analyte protonation. Additionally, intramolecular gas-phase fragmentation reactions can be inhibited due to analyte stabilization by cation chelation. Base addition during sample preparation leads not only to in situ generation of matrix salts but also to analyte hydrolysis. CONCLUSIONS Neutral DHB salts avoid separation of lipid species into several ionization states when used as matrices in MALDI-TOF MS. This allows for simplified lipid spectra interpretation. Due to the high cationization efficiency of DHB matrix salts, certain lipid classes become detectable which cannot be analyzed easily using standard acidic DHB.
Collapse
Affiliation(s)
- Thorsten W Jaskolla
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany
| | | | | |
Collapse
|
8
|
Mesaros C, Blair IA. Targeted chiral analysis of bioactive arachidonic Acid metabolites using liquid-chromatography-mass spectrometry. Metabolites 2012; 2:337-65. [PMID: 24957514 PMCID: PMC3901208 DOI: 10.3390/metabo2020337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/02/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023] Open
Abstract
A complex structurally diverse series of eicosanoids arises from the metabolism of arachidonic acid. The metabolic profile is further complicated by the enantioselectivity of eicosanoid formation and the variety of regioisomers that arise. In order to investigate the metabolism of arachidonic acid in vitro or in vivo, targeted methods are advantageous in order to distinguish between the complex isomeric mixtures that can arise by different metabolic pathways. Over the last several years this targeted approach has become more popular, although there are still relatively few examples where chiral targeted approaches have been employed to directly analyze complex enantiomeric mixtures. To efficiently conduct targeted eicosanoid analyses, LC separations are coupled with collision induced dissociation (CID) and tandem mass spectrometry (MS/MS). Product ion profiles are often diagnostic for particular regioisomers. The highest sensitivity that can be achieved involves the use of selected reaction monitoring/mass spectrometry (SRM/MS); whereas the highest specificity is obtained with an SRM transitions between an intense parent ion, which contains the intact molecule (M) and a structurally significant product ion. This review article provides an overview of arachidonic acid metabolism and targeted chiral methods that have been utilized for the analysis of the structurally diverse eicosanoids that arise.
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Abstract
Cancer is a disease of aging, and so with the increasing age of the US population, the incidence of cancer is also increasing. Furthermore the global burden of cancer continues to increase largely because of aging and growth of the world population together with increasing smoking rates in economically developing countries. Tumor formation is critically dependent upon two processes--initiation and progression. The initiation step is mediated by DNA damage, which causes activating mutations in proto-oncogenes and inactivation of tumor suppressor genes in many cancers. This is then thought to facilitate tumor progression and metastasis. Cyclooxygenase-2 (COX-2) is upregulated at an early stage in tumorigenesis and has been implicated as an important mediator of proliferation through the increased formation of bioactive arachidonic acid (AA) metabolites such as prostaglandin E(2). Significantly, we have found that COX-2-mediated AA metabolism also results in the formation of heptanone-etheno (Hε)-DNA adducts. Furthermore, we showed that the Hε-DNA adducts arose from the reaction of DNA with the lipid hydroperoxide-derived bifunctional electrophile, 4-oxo-2(E)-nonenal (ONE). Similarly, 5-lipoxoygenase-mediated AA metabolism also results in the formation of ONE-derived DNA adducts. The resulting Hε-DNA adducts are highly mutagenic in mammalian cell lines suggesting that these pathways could be (in part) responsible for the somatic mutations observed in tumorigenesis. As approximately 80% of cancers arise from somatic mutations, this provides an additional link between the upregulation of COX-2 and tumorigenesis.
Collapse
Affiliation(s)
- N Speed
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, 854 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | |
Collapse
|
10
|
Vinaixa M, Rodriguez MA, Samino S, Díaz M, Beltran A, Mallol R, Bladé C, Ibañez L, Correig X, Yanes O. Metabolomics reveals reduction of metabolic oxidation in women with polycystic ovary syndrome after pioglitazone-flutamide-metformin polytherapy. PLoS One 2011; 6:e29052. [PMID: 22194988 PMCID: PMC3241700 DOI: 10.1371/journal.pone.0029052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 11/18/2011] [Indexed: 01/17/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a variable disorder characterized by a broad spectrum of anomalies, including hyperandrogenemia, insulin resistance, dyslipidemia, body adiposity, low-grade inflammation and increased cardiovascular disease risks. Recently, a new polytherapy consisting of low-dose flutamide, metformin and pioglitazone in combination with an estro-progestagen resulted in the regulation of endocrine clinical markers in young and non-obese PCOS women. However, the metabolic processes involved in this phenotypic amelioration remain unidentified. In this work, we used NMR and MS-based untargeted metabolomics to study serum samples of young non-obese PCOS women prior to and at the end of a 30 months polytherapy receiving low-dose flutamide, metformin and pioglitazone in combination with an estro-progestagen. Our results reveal that the treatment decreased the levels of oxidized LDL particles in serum, as well as downstream metabolic oxidation products of LDL particles such as 9- and 13-HODE, azelaic acid and glutaric acid. In contrast, the radiuses of small dense LDL and large HDL particles were substantially increased after the treatment. Clinical and endocrine-metabolic markers were also monitored, showing that the level of HDL cholesterol was increased after the treatment, whereas the level of androgens and the carotid intima-media thickness were reduced. Significantly, the abundance of azelaic acid and the carotid intima-media thickness resulted in a high degree of correlation. Altogether, our results reveal that this new polytherapy markedly reverts the oxidant status of untreated PCOS women, and potentially improves the pro-atherosclerosis condition in these patients.
Collapse
Affiliation(s)
- Maria Vinaixa
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
- * E-mail: (MV); (OY)
| | - Miguel Angel Rodriguez
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Sara Samino
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Marta Díaz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Endocrinology Unit, Hospital Sant Joan de Déu-Universitat de Barcelona, Esplugues de Llobregat, Spain
| | - Antoni Beltran
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
| | - Roger Mallol
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Cinta Bladé
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Lourdes Ibañez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Endocrinology Unit, Hospital Sant Joan de Déu-Universitat de Barcelona, Esplugues de Llobregat, Spain
| | - Xavier Correig
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Oscar Yanes
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- * E-mail: (MV); (OY)
| |
Collapse
|
11
|
Mesaros C, Lee SH, Blair IA. Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3237-47. [PMID: 20972997 PMCID: PMC3348553 DOI: 10.1002/rcm.4760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) is thought to be mediated primarily by the cytochromes P450 (P450s) from the 2 family (2C9, 2C19, 2D6, and 2J2). In contrast, P450s of the 4 family are primarily involved in omega oxidation of AA (4A11 and 4A22). The ability to determine enantioselective formation of the regioisomeric EETs is important in order to establish their potential biological activities and to asses which P450 isoforms are involved in their formation. It has been extremely difficult to analyze individual EET enantiomers in biological fluids because they are present in only trace amounts and they are extremely difficult to separate from each other. In addition, the deuterium-labeled internal standards that are commonly used for stable isotope dilution liquid chromatography/mass spectrometry (LC/MS) analyses have different LC retention times when compared with the corresponding protium forms. Therefore, quantification by LC/MS-based methodology can be compromised by differential suppression of ionization of the closely eluting isomers. We report the preparation of [(13)C(20)]-EET analog internal standards and the use of a validated high-sensitivity chiral LC/electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the trace analysis of endogenous EETs as their pentafluorobenzyl (PFB) ester derivatives. The assay was then used to show the exquisite enantioselectivity of P4502C19-, P4502D6-, P4501A1-, and P4501B1-mediated conversion of AA into EETs and to quantify the enantioselective formation of EETs produced by AA metabolism in a mouse epithelial hepatoma (Hepa) cell line.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/metabolism
- Animals
- Arachidonic Acid/chemistry
- Arachidonic Acid/metabolism
- Aryl Hydrocarbon Hydroxylases/metabolism
- Carbon Isotopes/chemistry
- Cell Line, Tumor
- Chromatography, Liquid/methods
- Humans
- Linear Models
- Mice
- Protein Isoforms/chemistry
- Protein Isoforms/metabolism
- Rats
- Reference Standards
- Reproducibility of Results
- Sensitivity and Specificity
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Electrospray Ionization/standards
- Stereoisomerism
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobaku, Sendai 980-8578, Japan
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
12
|
|
13
|
Abstract
The ability to conduct validated analyses of biomarkers is critically important in order to establish the sensitivity and selectivity of the biomarker in identifying a particular disease. The use of stable-isotope dilution (SID) methodology in combination with LC–MS/MS provides the highest possible analytical specificity for quantitative determinations. This methodology is now widely used in the discovery and validation of putative exposure and disease biomarkers. This review will describe the application of SID LC–MS methodology for the analysis of small-molecule and protein biomarkers. It will also discuss potential future directions for the use of this methodology for rigorous biomarker analysis.
Collapse
Affiliation(s)
- Eugene Ciccimaro
- Thermo Fisher Scientific, 265 Davidson Avenue, Somerset, NJ 08873–4120, USA
| | - Ian A Blair
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Pharmacology, University of Pennsylvania School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104–6160, USA
| |
Collapse
|
14
|
Lundström SL, D'Alexandri FL, Nithipatikom K, Haeggström JZ, Wheelock AM, Wheelock CE. HPLC/MS/MS-based approaches for detection and quantification of eicosanoids. Methods Mol Biol 2010; 579:161-87. [PMID: 19763475 DOI: 10.1007/978-1-60761-322-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eicosanoids are oxygenated, endogenous, unsaturated fatty acids derived from arachidonic acid. Detection and quantification of these compounds are of great interest because they play important roles in a number of significant diseases, including asthma, chronic obstructive pulmonary disease (COPD), cardiovascular disease, and cancer. Because the endogenous levels of eicosanoids are quite low, sensitive and specific analytical methods are required to reliably quantify these compounds. High-performance liquid chromatography mass spectrometry (HPLC/MS) has emerged as one of the main techniques used in eicosanoid profiling. Herein, we describe the main LC/MS techniques and principles as well as their application in eicosanoid analysis. In addition, a protocol is given for extracting eicosanoids from biological samples, using bronchoalveolar lavage fluid (BALF) as an example. The method and instrument optimization procedures are presented, followed by the analysis of eicosanoid standards using reverse phase HPLC interfaced with an ion trap mass spectrometer (LC/MS/MS). This protocol is intended to provide a broad description of the field for readers looking for an introduction to the methodologies involved in eicosanoid quantification.
Collapse
Affiliation(s)
- Susanna L Lundström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Mesaros C, Lee SH, Blair IA. Targeted quantitative analysis of eicosanoid lipids in biological samples using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2736-45. [PMID: 19345647 PMCID: PMC2745066 DOI: 10.1016/j.jchromb.2009.03.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 12/21/2022]
Abstract
The eicosanoids are a large family of arachidonic acid oxidation products that contain 20 carbon atoms. Cyclooxygenase (COX)-derived eicosanoids have important roles as autacoids involved in the regulation of cardiovascular function and tumor progression. Lipoxygenase (LO)-derived eicosanoids have been implicated as important mediators of inflammation, asthma, cardiovascular disease and cancer. Cytochrome P-450 (P450)-derived eicosanoids are both vasodilators and vasoconstrictors. There is intense interest in the analysis of reactive oxygen species (ROS)-derived isoprostanes (isoPs) because of their utility as biomarkers of oxidative stress. Enzymatic pathways of eicosanoid formation are regioselective and enantioselective, whereas ROS-mediated eicosanoid formation proceeds with no stereoselectivity. Many of the eicosanoids are also present in only pM concentrations in biological fluids. This presents a formidable analytical challenge because methodology is required that can separate enantiomers and diastereomers with high sensitivity and specificity. However, the discovery of atmospheric pressure ionization (API)/MS methodology of electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and electron capture (EC) APCI has revolutionized our ability to analyze endogenous eicosanoids. LC separations of eicosanoids can now be readily coupled with API ionization, collision induced dissociation (CID) and tandem MS (MS/MS). This makes it possible to efficiently conduct targeted eicosanoid analyses using LC-multiple reaction motoring (MRM)/MS. Several examples of targeted eicosanoid lipid analysis using conventional LC-ESI/MS have been discussed and some new data on the analysis of eicosanoids using chiral LC-ECAPCI/MS has been presented.
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
16
|
Lee SH, Blair IA. Targeted chiral lipidomics analysis of bioactive eicosanoid lipids in cellular systems. BMB Rep 2009; 42:401-10. [PMID: 19643036 DOI: 10.5483/bmbrep.2009.42.7.401] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have developed a targeted lipidomics approach that makes it possible to directly analyze chiral eicosanoid lipids generated in cellular systems. The eicosanoids, including prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs) and alcohols (HETEs), have been implicated as potent lipid mediators of various biological processes. Enzymatic formations of eicosanoids are regioselective and enantioselective, whereas reactive oxygen species (ROS)-mediated formation proceeds with no stereoselectivity. To distinguish between enzymatic and non-enzymatic pathways of eicosanoid formation, it is necessary to resolve enantiomeric forms as well as regioisomers. High sensitivity is also required to analyze the eicosanoid lipids that are usually present as trace amounts (pM level) in biological fluids. A discovery of liquid chromatography-electron capture atmospheric pressure chemical ionization/mass spectrometry (LCECAPCI/MS) allows us to couple normal phase chiral chromatography without loss of sensitivity. Analytical specificity was obtained by the use of collision-induced dissociation (CID) and tandem MS (MS/MS). With combination of stable isotope dilution methodology, complex mixtures of regioisomeric and enantiomeric eicosanoids have been resolved and quantified in biological samples with high sensitivity and specificity. Targeted chiral lipidomics profiles of bioactive eicosanoid lipids obtained from various cell systems and their biological implications have been discussed.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| | | |
Collapse
|
17
|
Abstract
Lipoxygenases (LOs) convert polyunsaturated fatty acids into lipid hydroperoxides. Homolytic decomposition of lipid hydroperoxides gives rise to endogenous genotoxins such as 4-oxo-2(E)-nonenal, which cause the formation of mutagenic DNA adducts. Chiral lipidomics analysis was employed to show that a 5-LO-derived lipid hydroperoxide was responsible for endogenous DNA-adduct formation. The study employed human lymphoblastoid CESS cells, which expressed both 5-LO and the required 5-LO-activating protein (FLAP). The major lipid peroxidation product was 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid, which was analyzed as its reduction product, 5(S)-hydroxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid (5(S)-HETE)). Concentrations of 5(S)-HETE increased from 0.07 +/- 0.01 to 45.50 +/- 4.05 pmol/10(7) cells upon stimulation of the CESS cells with calcium ionophore A23187. There was a concomitant increase in the 4-oxo-2(E)-nonenal-derived DNA-adduct, heptanone-etheno-2'-deoxyguanosine (HepsilondGuo) from 2.41 +/- 0.35 to 6.31 +/- 0.73 adducts/10(7) normal bases. Biosynthesis of prostaglandins, 11(R)-hydroxy-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid, and 15(R,S)-hydroxy-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid revealed that there was cyclooxygenase (COX) activity in the CESS cells. Western blot analysis revealed that COX-1 was expressed by the cells, but there was no COX-2 or 15-LO-1. FLAP inhibitor reduced HepsilondGuo-adducts and 5(S)-HETE to basal levels. In contrast, aspirin, which had no effect on 5(S)-HETE, blocked the formation of prostaglandins, 15-HETE, and 11-HETE but did not inhibit HepsilondGuo-adduct formation. These data showed that 5-LO was the enzyme responsible for the generation of the HepsilondGuo DNA-adduct in CESS cells.
Collapse
Affiliation(s)
- Wenying Jian
- From the Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| | - Seon Hwa Lee
- From the Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| | - Michelle V Williams
- From the Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| | - Ian A Blair
- From the Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| |
Collapse
|
18
|
Lipidomic Analysis of Glycerolipid and Cholesteryl Ester Autooxidation Products. Mol Biotechnol 2009; 42:224-68. [DOI: 10.1007/s12033-009-9146-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/08/2009] [Indexed: 11/25/2022]
|
19
|
Kuksis A, Suomela JP, Tarvainen M, Kallio H. Use of lipidomics for analyzing glycerolipid and cholesteryl ester oxidation by gas chromatography, HPLC, and on-line MS. Methods Mol Biol 2009; 580:39-91. [PMID: 19784594 DOI: 10.1007/978-1-60761-325-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Various analytical techniques have been adopted for the isolation and identification of the oxolipids and for determining their functionality. Gas chromatography in combination with mass spectrometry (MS) has been specifically utilized in analysis of isoprostanes and other low molecular weight oxolipids, although it requires derivatization of the solutes. In contrast, liquid chromatography (LC) in combination with on-line MS has proven to be well suited for analysis of intact oxolipids without (or minimal) derivatization. LC-MS has also been helpful for the identification of lipidomic changes resulting from covalent binding of lipid ester core aldehydes to amino lipids, amino acids, peptides, and proteins. This chapter reviews the use of the above techniques for lipidomic analysis of the autoxidation products of cholesteryl esters and glycerolipids as practiced in the authors' laboratories.
Collapse
Affiliation(s)
- Arnis Kuksis
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
20
|
Lee SH, Blair IA. Targeted chiral lipidomics analysis by liquid chromatography electron capture atmospheric pressure chemical ionization mass spectrometry (LC-ECAPCI/MS). Methods Enzymol 2008; 433:159-74. [PMID: 17954234 DOI: 10.1016/s0076-6879(07)33009-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The corona discharge used to generate positive and negative ions under conventional atmospheric pressure chemical ionization (APCI) conditions also provides a source of low-energy gas-phase electrons. This is thought to occur by displacement of electrons from the nitrogen sheath gas. Therefore, suitable analytes can undergo electron capture in the gas phase in a manner similar to that observed for gas chromatography/electron capture negative chemical ionization/mass spectrometry (MS). This technique, which has been named electron-capture APCI (ECAPCI)/MS, mass spectrometry provides an increase in sensitivity of two orders of magnitude when compared with conventional APCI methodology. It is a simple procedure to tag arachidonic acid- and linoleic acid-derived oxidized lipids with an electron-capturing group such as the pentafluorobenzyl (PFB) moiety before analysis. PFB derivatives have previously been used as electron-capturing derivatives because they undergo dissociative electron capture in the gas phase to generate negative ions through the loss of a PFB radical. A similar process occurs under ECAPCI conditions. By monitoring the negative ions that are formed, it is possible to obtain extremely high sensitivity for PFB derivatives of oxidized lipids derived from arachidonic and linoleic acid. A combination of stable isotope dilution methodology and chiral liquid chromatography-ECAPCI/MS makes it possible to resolve and quantify complex mixtures of regioisomeric and enantiomeric oxidized lipids.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
21
|
Masoodi M, Mir AA, Petasis NA, Serhan CN, Nicolaou A. Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:75-83. [PMID: 18059001 PMCID: PMC2542421 DOI: 10.1002/rcm.3331] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bioactive lipid mediators derived from polyunsaturated fatty acids (PUFA) exhibit a range of tissue- and cell-specific activities in many physiological and pathological processes. Electrospray ionisation tandem mass spectrometry coupled to liquid chromatography (LC/ESI-MS/MS) is a sensitive, versatile analytical methodology for the qualitative and quantitative analysis of lipid mediators. Here we present an LC/ESI-MS/MS assay for the simultaneous analysis of twenty mono- and poly-hydroxy-fatty acid derivatives of linoleic, arachidonic, eicosapentaenoic and docosahexaenoic acids. The assay was linear over the concentration range 1-100 pg/microL, whilst the limits of detection and quantitation were 10-20 and 20-50 pg, respectively. The recovery of the extraction methodology varied from 76-122% depending on the metabolite. This system is useful for profiling a range of biochemically related potent mediators including the newly discovered resolvins and protectins, and their precursor hydroxyeicosapentaenoic and hydroxydocosahexaenoic acids, and, consequently, advance our understanding of the role of PUFA in health and disease.
Collapse
Affiliation(s)
- Mojgan Masoodi
- School of Pharmacy, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Adnan A. Mir
- School of Pharmacy, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Nicos A. Petasis
- Department of Chemistry and the Locker Hydrocarbon Research Institute, University of South California, Los Angeles, CA 90089, USA
| | - Charles N. Serhan
- Centre of Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine; Boston, MA 02115, USA
| | - Anna Nicolaou
- School of Pharmacy, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
- Correspondence to: Dr A Nicolaou, School of Pharmacy, University of Bradford, Richmond Road, Bradford BD7 1DP. Tel: +44 1274 234717; Fax: +44 1274 235600;
| |
Collapse
|
22
|
KIM SJ, KUMAR AP, LEE YI. Enhanced Detection and Structural Characterization of Flavonoids by Complexation with N,O-Bis(trimethysilyl)trifluoroacetamide Using Electrospray Ionization Mass Spectrometry. ANAL SCI 2008; 24:1177-82. [DOI: 10.2116/analsci.24.1177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Seung-Jin KIM
- Department of Chemistry, Changwon National University
| | | | - Yong-Ill LEE
- Department of Chemistry, Changwon National University
| |
Collapse
|
23
|
Lee SH, Rangiah K, Williams MV, Wehr AY, DuBois RN, Blair IA. Cyclooxygenase-2-mediated metabolism of arachidonic acid to 15-oxo-eicosatetraenoic acid by rat intestinal epithelial cells. Chem Res Toxicol 2007; 20:1665-75. [PMID: 17910482 DOI: 10.1021/tx700130p] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rat intestinal epithelial cells that permanently express the cyclooxygenase-2 (COX-2) gene (RIES cells) were used to investigate COX-2-mediated arachidonic acid (AA) metabolism. A targeted chiral lipidomics approach was employed to quantify AA metabolites that were secreted by the cells into the culture media. When intact RIES cells were treated with calcium ionophore A-23187 (1 microM) for 1 h, 11-(R)-hydroxyeicosatetraenoic acid (HETE) was the most abundant metabolite, followed by prostaglandin (PG) E 2, 15-(S)-HETE, 15-oxo-eicosatetraenoic acid (ETE), and 15-(R)-HETE. Incubation for a further 23 h after the calcium ionophore was removed resulted in a substantial increase in PGE 2 concentrations while HETE and 15-oxo-ETE concentrations decreased to almost undetectable levels. A similar metabolic profile was observed when RIES cells were treated with increasing concentrations of AA for 24 h. Incubation of the RIES cells with 10 microM AA revealed that maximal concentrations of 11-(R)-HETE, 15-(S)-HETE, and 15-oxo-ETE occurred after 10 min of incubation when the 15-( S)-HETE concentrations were approximately twice that of PGE 2. There was a gradual decrease in the concentrations of HETE and 15-oxo-ETE over time, whereas PGE 2 concentrations increased steadily until they reached a maximum after 24 h of incubation. The ratio of PGE 2 to 15-(S)-HETE was then approximately 20:1. 15-(S)-HETE and 15-oxo-ETE concentrations declined in the cell media during prolonged incubations with pseudo-first-order rate constants of 0.0121 and 0.0073 min(-1), respectively. 15-(S)-HETE was shown to undergo metabolism primarily to 15-oxo-ETE, which was further metabolized to a glutathione (GSH) adduct. The GSH adduct of 15-oxo-ETE was further metabolized in the extracellular milieu to a cysteinylglycine adduct. Thus, we have established for the first time that 15-oxo-ETE can be formed biosynthetically from AA, that 15-(S)-HETE is its immediate precursor, and that 15-oxo-ETE forms a GSH adduct. For ionophore-A-23187-stimulated cells and at early time points for AA-stimulated cells, 11-(R)-HETE was the major eicosanoid to be secreted into the media. Adding increasing concentrations of AA to cells in culture made it possible to estimate with surprising accuracy endogenous eicosanoid production using regression analyses. Thus, after 24 h in the absence of added AA, 11-(R)-HETE and 15-(R)-HETE were estimated to be present at concentrations close to the detection limit of our very sensitive assay. These data further highlight the importance of endogenous COX-2-mediated lipid peroxidation and illustrate the necessity to monitor eicosanoid formation from endogenous stores of AA in cell culture experiments.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | |
Collapse
|
24
|
Yamashita K, Okuyama M, Watanabe Y, Honma S, Kobayashi S, Numazawa M. Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 2007; 72:819-27. [PMID: 17716700 DOI: 10.1016/j.steroids.2007.07.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/09/2007] [Accepted: 07/09/2007] [Indexed: 11/28/2022]
Abstract
A highly sensitive and specific quantification method of estrone and estradiol in human serum was described based upon the use of picolinoyl derivatization and liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) in a positive mode. Estrogens were treated with picolinoyl chloride hydrochloride or picolinic acid and 2-methyl-6-nitrobenzoic anhydride followed by a solid-phase extraction with ODS cartridge. Picolinoyl derivatization proceeded quantitatively even in a microscale, and the picolinoyl esters provided simple positive ESI-mass spectra showing [M+H](+) as base peaks for these estrogens. The picolinoyl derivatives of these estrogens showed 100-fold higher detection response compared to underivatized intact molecules by LC-ESI-MS (selected reaction monitoring). Using this derivatization, estrogens spiked in the charcoal treated human serum samples were analyzed with limit of quantification (LOQ), intra-day accuracy and precision of 1.0pg/ml, 96.0% and 9.9% for estrone, and 0.5pg/ml, 84.4% and 12.8% for estradiol, respectively. Estrone and estradiol added to the crude serum samples were recovered with comparable LOQ and accuracy obtained for the charcoal treated serum samples as well.
Collapse
Affiliation(s)
- Kouwa Yamashita
- Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, 4-1 Komatsushima 4-Chome, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Honda A, Mizokami Y, Matsuzaki Y, Ikegami T, Doy M, Miyazaki H. Highly sensitive assay of HMG-CoA reductase activity by LC-ESI-MS/MS. J Lipid Res 2007; 48:1212-20. [PMID: 17272831 DOI: 10.1194/jlr.d600049-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a new sensitive and specific nonradioisotope assay method to measure the activity of HMG-CoA reductase, the rate-controlling enzyme in the cholesterol biosynthetic pathway. This method was based upon a stable isotope dilution technique by liquid chromatography-tandem mass spectrometry using electrospray ionization in positive mode. Mevalonic acid, the product of HMG-CoA reductase, was converted to mevalonolactone (MVL) in an incubation mixture, extracted by a salting-out procedure, derivatized into the mevalonyl-(2-pyrrolidin-1-yl-ethyl)-amide, and then purified using a disposable silica cartridge. The resulting mevalonylamide was quantified by selected reaction monitoring using the positive electrospray ionization mode. The detection limit of this mevalonylamide was found to be 240 amol (signal-to-noise ratio=3), approximately 833 times more sensitive than that of MVL measured by a conventional radioisotope (RI) method (200 fmol). The variances between sample preparations and between measurements by this method were analyzed by one-way layout and calculated to be 3.2% and 1.8%, respectively. The recovery experiments were performed using incubation mixtures spiked with 0.77-2.31 nmol MVL/mg protein and were validated by a polynomial equation. These results showed that the estimated concentration within a 95% confidence limit was 0.47+/-0.07 nmol/mg protein, which coincided completely with the observed X0 nmol/mg protein with a mean recovery of 94.6%. This method made it possible to measure HMG-CoA reductase activity with a high degree of reproducibility and reliability, and especially with sensitivity superior to that of the conventional RI method.
Collapse
Affiliation(s)
- Akira Honda
- Department of Internal Medicine, Tokyo Medical University, Kasumigaura Hospital, Ami, Ibaraki 300-0395, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Yamashita K, Kobayashi S, Tsukamoto S, Numazawa M. Synthesis of pyridine-carboxylate derivatives of hydroxysteroids for liquid chromatography-electrospray ionization-mass spectrometry. Steroids 2007; 72:50-9. [PMID: 17141289 DOI: 10.1016/j.steroids.2006.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/03/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Synthesis and liquid chromatography-electrospray ionization-mass spectrometric (LC-ESI-MS) behaviors of the picolinoyl, 6-methylpicolinoyl, nicotinoyl, 2-methoxynicotinoyl and isonicotinoyl derivatives of the hydroxysteroids estrone, estradiol, 3beta-hydroxyandrost-5-en-17-one (dehydroepiandrosterone) and testosterone in positive mode were investigated. Each steroid was converted to the corresponding pyridine-carboxylate derivative by the acyl chloride method or the mixed anhydride method using the corresponding free acids and 2-methyl-6-nitrobenzoic anhydride; in each case, the latter method principally gave a better yield. The pyridine-carboxylate derivative of each steroid exhibited a clear single peak in liquid chromatography with a reversed phase column and CH(3)CN-0.1% CH(3)COOH as a mobile phase. The positive-ESI-mass spectra of the picolinoyl, 6-methylpicolinoyl and 2-methoxynicotinoyl derivatives showed a predominance of [M+H](+), whereas [M+H+CH(3)CN](+) was observed with high intensity in the nicotinoyl and isonicotinoyl derivatives. Even in the case of estradiol, with its two hydroxyl groups, a single charged ion of [M+H](+) or [M+H+CH(3)CN](+) was observed in the positive-ESI-mass spectrum of each derivative. The results revealed that picolinoyl derivatization is a simple and versatile method suitable for the sensitive and specific determination of hydroxysteroids by LC-ESI-MS (selected reaction monitoring).
Collapse
Affiliation(s)
- Kouwa Yamashita
- Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, 4-1 Komatsushima 4-Chome, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | |
Collapse
|
27
|
Pettinella C, Lee SH, Cipollone F, Blair IA. Targeted quantitative analysis of fatty acids in atherosclerotic plaques by high sensitivity liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 850:168-76. [PMID: 17174160 DOI: 10.1016/j.jchromb.2006.11.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 11/17/2022]
Abstract
The quantitative analysis of fatty acid composition in atherosclerotic plaques provides a way to monitor the underlying etiology of atherosclerosis. Previously, the method of choice for analyzing fatty acids in biological samples was gas chromatography/mass spectrometry (GC/MS); however, recent developments in electrospray ionization (ESI)/liquid chromatography (LC)/tandem mass spectrometry have made it a superior alternative. Previous research has largely focused on global analyses of intact lipids rather than more targeted analysis of the fatty acids themselves. We have now developed a targeted, stable isotope dilution LC-electrospray ionization/multiple reaction monitoring/MS method for the quantitative analysis of 10 fatty acids (myristic, palmitic, stearic, oleic, linoleic, alpha-linolenic, gamma-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acids) using their trimethylaminoethyl ester (TMAE) derivatives to improve sensitivity. The method was validated, had a detection limit in the fmol range, and was used in the analysis of fatty acids in atherosclerotic plaques from carotid arteries.
Collapse
Affiliation(s)
- Caterina Pettinella
- Center for Cancer Pharmacology, University of Pennsylvania School of Medicine, 854 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
28
|
Harkewicz R, Fahy E, Andreyev A, Dennis EA. Arachidonate-derived dihomoprostaglandin production observed in endotoxin-stimulated macrophage-like cells. J Biol Chem 2006; 282:2899-910. [PMID: 17135246 DOI: 10.1074/jbc.m610067200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eicosanoids, including the prostaglandins, leukotrienes, hydroxyeicosatetraenoic acids, epoxyeicosatetraenoic acids, and related compounds, are biosynthetic, bioactive mediators derived from arachidonic acid (AA), a 20:4(n-6) fatty acid. We have developed a comprehensive and sensitive mass spectral analysis to survey eicosanoid release from endotoxin-stimulated RAW 264.7 macrophage-like cells that is capable of detecting over 70 diverse eicosanoids and eicosanoid metabolites, should they be present. We now address the question: Are biologically significant eicosanoids being overlooked? Herein, we illustrate a general approach to diverse isotope metabolic profiling of labeled exogenous substrates using mass spectrometry (DIMPLES/MS), demonstrated for one substrate (AA) and its resultant products (eicosanoids). RAW cells were incubated in medium supplemented with deuterium-labeled AA. When the cells are stimulated, two sets of eicosanoids are produced, one from endogenous AA and the other from the supplemented (exogenous) deuterium-labeled form. This produces a signature mass spectral "doublet" pattern, allowing for a comprehensive and diverse eicosanoid search requiring no previous knowledge or assumptions as to what these species may be, in contrast to traditional methods. We report herein observing unexpected AA metabolites generated by the cells, some of which may constitute novel bioactive eicosanoids or eicosanoid inactivation metabolites, as well as demonstrating differing metabolic pathways for the generation of isomeric prostaglandins and potential peroxisome proliferator-activated receptor activators. Unexpectedly, we report observing a series of 1a, 1b-dihomologue prostaglandins, products of adrenic acid (22:4(n-6)), resulting from the two-carbon elongation of AA by the RAW cells.
Collapse
Affiliation(s)
- Richard Harkewicz
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0601, USA
| | | | | | | |
Collapse
|
29
|
Oliw EH, Garscha U, Nilsson T, Cristea M. Payne rearrangement during analysis of epoxyalcohols of linoleic and α-linolenic acids by normal phase liquid chromatography with tandem mass spectrometry. Anal Biochem 2006; 354:111-26. [PMID: 16712763 DOI: 10.1016/j.ab.2006.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/30/2006] [Accepted: 04/07/2006] [Indexed: 11/25/2022]
Abstract
Hydroperoxides of polyunsaturated fatty acids can be transformed to epoxyalcohols and keto fatty acids by metal enzymes, hematin, and various catalysts. In the current study, we used hematin to transform 9-hydroperoxy-10E,12Z-octadecadienoic acid and 13-hydroperoxy-9Z,11E-octadecadienoic acid to epoxyalcohols (with trans epoxide configuration) and to keto fatty acids. The products were separated by normal phase high-performance liquid chromatography (NP-HPLC) and analyzed using postcolumn addition of isopropanol/water and online negative ion electrospray ionization mass spectrometry (MS). The tandem MS (MS/MS) spectra were studied using analogs prepared from [9,10,12,13-2H4]linoleic acid (18:2n-6) and from alpha-linolenic acid (18:3n-3). We also studied the MS/MS spectra of epoxyalcohols formed from 11-hydroperoxy- and 8-hydroperoxy-9Z,12Z-octadecadienoic acids. Results were confirmed by MS/MS analysis of a series of authentic standards. MS/MS ions of 9-keto-10E,12Z-octadecadienoic acid and 13-keto-9Z,11E-octadecadienoic acid could be explained by keto-enol tautomerism. MS/MS spectra of regioisomeric allylic epoxyalcohols differed in relative intensities of characteristic ions. The MS/MS spectra of the epoxyalcohols with 1-hydroxy-2,3-epoxy-4Z-pentene or 3-hydroxy-1,2-epoxy-4Z-pentene elements were virtually identical and showed two characteristic ions that differed by 30 in m/z values (CH(OH)). The results suggested that epoxide migration (Payne rearrangement) occurred during collision-induced dissociation. We conclude that regioisomeric allylic epoxyalcohols can be identified by their MS/MS spectra, whereas regioisomeric epoxyalcohols can be identified by MS/MS in combination with their retention times on NP-HPLC.
Collapse
Affiliation(s)
- Ernst H Oliw
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|