1
|
Roy A, Kundu M, Chakrabarti S, Patel DR, Pahan K. Oleamide, a Sleep-Inducing Supplement, Upregulates Doublecortin in Hippocampal Progenitor Cells via PPARα. J Alzheimers Dis 2021; 84:1747-1762. [PMID: 34744082 PMCID: PMC10075226 DOI: 10.3233/jad-215124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Doublecortin (DCX), a microtubule associated protein, has emerged as a central biomarker of hippocampal neurogenesis. However, molecular mechanisms by which DCX is regulated are poorly understood. OBJECTIVE Since sleep is involved with the acquisition of memory and oleamide or 9-Octadecenamide (OCT) is a sleep-inducing supplement in human, we examined whether OCT could upregulate DCX in hippocampal progenitor cells (HPCs). METHODS We employed real-time PCR, western blot, immunostaining, chromatin immunoprecipitation, lentiviral transduction in HPCs, and the calcium influx assay. RESULTS OCT directly upregulated the transcription of Dcx in HPCs via activation of peroxisome proliferator-activated receptor α (PPARα), a lipid-lowering transcription factor. We observed that, HPCs of Ppara-null mice displayed significant impairment in DCX expression and neuronal differentiation as compared to that of wild-type mice. Interestingly, treatment with OCT stimulated the differentiation process of HPCs in wild-type, but not Ppara-null mice. Reconstruction of PPARα in mouse Ppara-null HPCs restored the expression of DCX, which was further stimulated with OCT treatment. In contrast, a dominant-negative mutant of PPARα significantly attenuated the stimulatory effect of OCT on DCX expression and suppressed neuronal differentiation of human neural progenitor cells. Furthermore, RNA microarray, STRING, chromatin immunoprecipitation, site-directed mutagenesis, and promoter reporter assay have identified DCX as a new target of PPARα. CONCLUSION These results indicate that OCT, a sleep supplement, directly controls the expression of DCX and suggest that OCT may be repurposed for stimulating the hippocampal neurogenesis.
Collapse
Affiliation(s)
- Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sudipta Chakrabarti
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Dhruv R Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Function and therapeutic potential of N-acyl amino acids. Chem Phys Lipids 2021; 239:105114. [PMID: 34217720 DOI: 10.1016/j.chemphyslip.2021.105114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
N-acyl amino acids (NAAs) are amphiphilic molecules, with different potential fatty acid and head group moieties. NAAs are the largest family of anandamide congener lipids discovered to date. In recent years, several NAAs have been identified as potential ligands, engaging novel binding sites and mechanisms for modulation of membrane proteins such as G-protein coupled receptors (GPRs), nuclear receptors, ion channels, and transporters. NAAs play a key role in a variety of physiological functions as lipid signaling molecules. Understanding the structure, function roles, and pharmacological potential of these NAAs is still in its infancy, and the biochemical roles are also mostly unknown. This review will provide a summary of the literature on NAAs and emphasize their therapeutic potential.
Collapse
|
3
|
Anderson RL, Wallis DJ, Aguirre A, Holliday D, Merkler DJ. Knockdown of arylalkylamine N-acetyltransferase-like 2 in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21608. [PMID: 31385627 PMCID: PMC6834884 DOI: 10.1002/arch.21608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Drosophila melanogaster produces fatty acid amides, and thus, provides a model to unravel the pathways for their biosynthesis. We previously demonstrated that arylalkylamine N-acetyltransferase-like 2 (AANATL2) from D. melanogaster will catalyze the formation of long-chain N-acylserotonins and N-acyldopamines in vitro. Generating silencing RNA via the UAS/GAL4 bipartite approach for targeted gene expression effectively decreased the endogenous levels of the AANATL2 transcripts in D. melanogaster, as shown by reverse transcription quantitative polymerase chain reaction. Consistent with these data, western blot analysis of the offspring of the AANATL2 knockdown flies using an anti-AANATL2 antibody revealed a significant reduction in the expression of the AANATL2 protein. Reduced expression of AANATL2 decreased the cellular levels of N-palmitoyldopamine (PALDA), providing strong evidence that AANATL2 is responsible for the biosynthesis of PALDA in vivo. This is the first time that the expression of an AANAT has been reduced in D. melanogaster to link one of these enzymes to the in vivo production of an N-acylarylalkylamide.
Collapse
Affiliation(s)
- Ryan L Anderson
- Department of Chemistry, University of South Florida, Tampa, Florida
| | - Dylan J Wallis
- Department of Chemistry, University of South Florida, Tampa, Florida
| | - Alexander Aguirre
- Department of Chemistry, University of South Florida, Tampa, Florida
| | - Dean Holliday
- Department of Chemistry, University of South Florida, Tampa, Florida
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, Florida
| |
Collapse
|
4
|
Lötsch J, Weyer-Menkhoff I, Tegeder I. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings. Eur J Pain 2017; 22:471-484. [PMID: 29160600 DOI: 10.1002/ejp.1148] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
Cannabinoids have a long record of recreational and medical use and become increasingly approved for pain therapy. This development is based on preclinical and human experimental research summarized in this review. Cannabinoid CB1 receptors are widely expressed throughout the nociceptive system. Their activation by endogenous or exogenous cannabinoids modulates the release of neurotransmitters. This is reflected in antinociceptive effects of cannabinoids in preclinical models of inflammatory, cancer and neuropathic pain, and by nociceptive hypersensitivity of cannabinoid receptor-deficient mice. Cannabis-based medications available for humans mainly comprise Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and nabilone. During the last 10 years, six controlled studies assessing analgesic effects of cannabinoid-based drugs in human experimental settings were reported. An effect on nociceptive processing could be translated to the human setting in functional magnetic resonance imaging studies that pointed at a reduced connectivity within the pain matrix of the brain. However, cannabinoid-based drugs heterogeneously influenced the perception of experimentally induced pain including a reduction in only the affective but not the sensory perception of pain, only moderate analgesic effects, or occasional hyperalgesic effects. This extends to the clinical setting. While controlled studies showed a lack of robust analgesic effects, cannabis was nearly always associated with analgesia in open-label or retrospective reports, possibly indicating an effect on well-being or mood, rather than on sensory pain. Thus, while preclinical evidence supports cannabinoid-based analgesics, human evidence presently provides only reluctant support for a broad clinical use of cannabinoid-based medications in pain therapy. SIGNIFICANCE Cannabinoids consistently produced antinociceptive effects in preclinical models, whereas they heterogeneously influenced the perception of experimentally induced pain in humans and did not provide robust clinical analgesia, which jeopardizes the translation of preclinical research on cannabinoid-mediated antinociception into the human setting.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - I Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - I Tegeder
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Jiang N, Zhang G, Pan L, Yan C, Zhang L, Weng Y, Wang W, Chen X, Yang G. Potential plasma lipid biomarkers in early-stage breast cancer. Biotechnol Lett 2017; 39:1657-1666. [PMID: 28828718 DOI: 10.1007/s10529-017-2417-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/20/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To find new biomarkers for early diagnosis of breast cancer. RESULTS 847 lipid species were identified from 78 plasma samples (37 breast cancer samples and 41 healthy controls) by ultra HPLC coupled with quadrupole time-of-flight tandem mass spectrometry. These include 321 glycerophospholipids (GPs), 265 glycerolipids (GLs), 91 sphingolipids (SPs), 77 fatty acyls (FAs), 68 sterol lipids (STs), 18 prenol lipids (PRs), 6 polyketides (PKs), and 1 saccharolipid (SL). Separation was observed from an orthogonal signal correction Partial Least Square Discrimination Analysis model. Based on this analysis, six differentiating lipids were identified: PC (20:2/20:5), PC (22:0/24:1), TG (12:0/14:1), and DG (18:1/18:2) had high levels, whereas PE (15:0/19:1) and N-palmitoyl proline had low levels in the breast cancer samples compared with the healthy controls. Furthermore, significant differences in metabolites were found among some clinical characteristics. CONCLUSIONS Our results reveal that six specific lipids could serve as potential biomarkers for early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Nan Jiang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, 100016, China
| | - Guofen Zhang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, 100016, China
| | - Lijie Pan
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, 100016, China
| | - Chengping Yan
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, 100016, China
| | - Liwei Zhang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, 100016, China
| | - Yan Weng
- Department of Pathology, First Hospital of Tsinghua University, Beijing, 100016, China
| | - Wenjun Wang
- Beijing Qiji Biotechnology Company, Beijing, 100193, China
| | - Xianyang Chen
- Beijing Qiji Biotechnology Company, Beijing, 100193, China
| | - Guoshan Yang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, 100016, China.
| |
Collapse
|
6
|
Arachidonic acid containing phosphatidylcholine increases due to microglial activation in ipsilateral spinal dorsal horn following spared sciatic nerve injury. PLoS One 2017; 12:e0177595. [PMID: 28542572 PMCID: PMC5443509 DOI: 10.1371/journal.pone.0177595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Peripheral nerve injury induces substantial molecular changes in the somatosensory system that leads to maladaptive plasticity and cause neuropathic pain. Understanding the molecular pathways responsible for the development of neuropathic pain is essential to the development of novel rationally designed therapeutics. Although lipids make up to half of the dry weight of the spinal cord, their relation with the development of neuropathic pain is poorly understood. We aimed to elucidate the regulation of spinal lipids in response to neuropathic peripheral nerve injury in mice by utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry, which allows visualization of lipid distribution within the cord. We found that arachidonic acid (AA) containing [PC(diacyl-16:0/20:4)+K]+ was increased temporarily at superficial ipsilateral dorsal horn seven days after spared nerve injury (SNI). The spatiotemporal changes in lipid concentration resembled microglia activation as defined by ionized calcium binding adaptor molecule 1 (Iba1) immunohistochemistry. Suppression of microglial function through minocycline administration resulted in attenuation of hypersensitivity and reduces [PC(diacyl-16:0/20:4)+K]+ elevation in the spinal dorsal horn. These data suggested that AA containing [PC(diacyl-16:0/20:4)+K]+ is related to hypersensitivity evoked by SNI and implicate microglial cell activation in this lipid production.
Collapse
|
7
|
Abstract
Precision medicine is an emerging approach for prevention and treatment of diseases considering individuals’ uniqueness. Omics provide one step forward toward advanced precision medicine and include technologies such as genomics, proteomics and metabolomics generating valuable data through characterization of entire biological systems. With the aid of omics, a major shift has been started to occur in understanding of diseases followed by potential fundamental changes in medical care strategies. This short review aims at providing some examples of current omics that are applied in the field of pain in terms of new biomarkers for diagnosis of different pain types, stratification of patients and new therapeutic targets. Implementation of omics would most likely offer breakthrough in the future of pain management.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark
| | - Hye Sook Han Vinterhøj
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark
| |
Collapse
|
8
|
Almaghrabi S, Geraghty D, Ahuja K, Adams M. Inhibition of platelet aggregation by vanilloid-like agents is not mediated by transient receptor potential vanilloid-1 channels or cannabinoid receptors. Clin Exp Pharmacol Physiol 2016; 43:606-11. [PMID: 26991025 DOI: 10.1111/1440-1681.12569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 11/27/2022]
Abstract
Vanilloid-like agents, including capsaicin, N-arachidonoyl-dopamine and N-oleoyldopamine inhibit platelet aggregation, however little is known about the precise mechanism(s) of action. The authors have previously shown that blocking of the capsaicin receptor, transient receptor potential vanilloid-1 (TRPV1), does not interfere with capsaicin action during adenosine diphosphate (ADP)-induced aggregation. This research is extended to investigate the effect of these vanilloid-like-agents on platelet count, and to test whether the effect of these agents is mediated through TRPV1 and/or cannabinoid (CB1 and CB2) receptors in the presence of other agonists, including collagen and arachidonic acid. Incubation of platelets with each of the individual vanilloids, or with receptor antagonists of TRPV1 (SB452533), CB1 (AM251) and CB2 (AM630), for up to 2 h did not significantly affect the platelet count. Similarly, the effect of individual vanilloids on the inhibition of platelet aggregation was not significantly different in the presence of receptor agonists compared to control, irrespective of the agonist used, suggesting that the inhibitory effect of vanilloids on platelet aggregation is independent of TRPV1, CB1 and CB2 receptors. Further research on the antiplatelet activity of vanilloids should focus on mechanisms other than those associated with vanilloid receptors.
Collapse
Affiliation(s)
- Safa Almaghrabi
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dominic Geraghty
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Kiran Ahuja
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Murray Adams
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
9
|
Wang M, Han X. Advanced Shotgun Lipidomics for Characterization of Altered Lipid Patterns in Neurodegenerative Diseases and Brain Injury. Methods Mol Biol 2016; 1303:405-22. [PMID: 26235081 DOI: 10.1007/978-1-4939-2627-5_24] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) is a powerful technology platform among current lipidomics practices due to its high efficiency, sensitivity, and reproducibility, as well as its broad coverage. This platform has been widely used to determine the altered lipid profiles induced by diseases, injury, genetic manipulations, drug treatments, and aging, among others. Herein, we summarize the principles underlying this platform and present a protocol for analysis of many of the lipid classes and subclasses covered by MDMS-SL directly from lipid extracts of brain samples. We believe that this protocol can aid researchers in the field to determine altered lipid patterns in neurodegenerative diseases and brain injury.
Collapse
Affiliation(s)
- Miao Wang
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL, 32827, USA
| | | |
Collapse
|
10
|
Caterina MJ. TRP channel cannabinoid receptors in skin sensation, homeostasis, and inflammation. ACS Chem Neurosci 2014; 5:1107-16. [PMID: 24915599 PMCID: PMC4240254 DOI: 10.1021/cn5000919] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
![]()
In
the skin, cannabinoid lipids, whether of endogenous or exogenous
origin, are capable of regulating numerous sensory, homeostatic, and
inflammatory events. Although many of these effects are mediated by
metabotropic cannabinoid receptors, a growing body of evidence has
revealed that multiple members of the transient receptor potential
(TRP) ion channel family can act as “ionotropic cannabinoid
receptors”. Furthermore, many of these same TRP channels are
intimately involved in cutaneous processes that include the initiation
of pain, temperature, and itch perception, the maintenance of epidermal
homeostasis, the regulation of hair follicles and sebaceous glands,
and the modulation of dermatitis. Ionotropic cannabinoid receptors
therefore represent potentially attractive targets for the therapeutic
use of cannabinoids to treat sensory and dermatological diseases.
Furthermore, the interactions between neurons and other cell types
that are mediated by cutaneous ionotropic cannabinoid receptors are
likely to be recapitulated during physiological and pathophysiological
processes in the central nervous system and elsewhere, making the
skin an ideal setting in which to dissect general complexities of
cannabinoid signaling.
Collapse
Affiliation(s)
- Michael J. Caterina
- Departments of Neurosurgery,
Biological Chemistry, and Neuroscience, Neurosurgery Pain Research
Institute, Center for Sensory Biology, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, Maryland 21205, United States
| |
Collapse
|
11
|
Jiao J, Zhang Y. Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals. Chem Rev 2013; 113:3799-814. [DOI: 10.1021/cr300007p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jingjing Jiao
- Chronic Disease Research Institute,
Department of Nutrition and Food Hygiene, School of Public Health,
Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Department of Food Science and
Nutrition, School of Biosystems Engineering and Food Science, Zhejiang
University, Hangzhou 310058, China
| |
Collapse
|
12
|
Han B, Wright R, Kirchhoff AM, Chester JA, Cooper BR, Davisson VJ, Barker E. Quantitative LC-MS/MS analysis of arachidonoyl amino acids in mouse brain with treatment of FAAH inhibitor. Anal Biochem 2012; 432:74-81. [PMID: 23044255 DOI: 10.1016/j.ab.2012.09.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/09/2012] [Accepted: 09/21/2012] [Indexed: 11/15/2022]
Abstract
An additional class of endogenous lipid amides, N-arachidonoyl amino acids (Ara-AAs), is growing in significance in the field of endocannabinoids. The development, validation, and application of a sensitive and selective method to simultaneously monitor and quantify the level of Ara-AAs along with anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in mouse brain has been established. The linearity of the method over the concentration ranges of 0.2-120 pg/μl for the standards of N-arachidonoyl amino acids, N-arachidonoyl alanine (NAAla), serine (NASer), γ-aminobutyric acid (NAGABA), and glycine (NAGly); 0.7-90 pg/μl for AEA-d(0)/d(8); and 7.5-950 pg/μl for 2-AG was determined with R(2) values of 0.99. Also the effects of the FAAH inhibitor URB 597 on the endogenous levels of these analytes were investigated. AEA and NASer brain levels exhibit a dose-dependent increase after systemic administration of URB 597, whereas NAGly and NAGABA were significantly decreased after treatment. NAAla and 2-AG were not altered after URB 597 treatment. The potential benefit of establishing this assay extends beyond the quantification of the Ara-AAs along with AEA and 2-AG in mouse brain, to reveal a variety of pharmacological effects and physiological roles of these analytes.
Collapse
Affiliation(s)
- Bingnan Han
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47904, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Steagall RJ, Sipe AL, Williams CA, Joyner WL, Singh K. Substance P release in response to cardiac ischemia from rat thoracic spinal dorsal horn is mediated by TRPV1. Neuroscience 2012; 214:106-19. [PMID: 22525132 DOI: 10.1016/j.neuroscience.2012.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 11/24/2022]
Abstract
Spinal cord stimulation (SCS) inhibits substance P (SP) release and decreases the expression of the transient receptor potential vanilloid 1 (TRPV1) in the spinal cord at thoracic 4 (T4) during cardiac ischemia in rat models (Ding et al., 2007). We hypothesized that activation of TRPV1 in the T4 spinal cord segment by intermittent occlusion of the left anterior descending coronary artery (CoAO) mediates spinal cord SP release. Experiments were conducted in urethane-anesthetized Sprague-Dawley male rats using SP antibody-coated microprobes to measure SP release at the central terminal endings of cardiac ischemic-sensitive afferent neurons (CISAN) in the spinal T4 dorsal horns. Vehicle, capsaicin (CAP; TRPV1 agonist) and capsazepine (CZP; TRPV1 antagonist) were injected into the left T4 prior to stimulation of CISAN by intermittent CoAO (with or without upper cervical SCS). CAP induced endogenous SP release from laminae I and II in the T4 spinal cord above baseline. Conversely, CZP injections significantly inhibited SP release from laminae I-VII in the T4 spinal cord segment below baseline. CZP also attenuated CoAO-induced SP release, while T4 injections of CZP with SCS completely restored SP release to basal levels during CoAO activation. CAP increased the number of c-Fos (a marker for CISAN activation) positive T4 dorsal horn neurons compared to sham-operated animals, while CZP (alone or during CoAO and SCS+CoAO) significantly reduced the number of c-Fos positive neurons. These results suggest that spinal release of the putative nociceptive transmitter SP occurs, at least in part, via a TRPV1 mechanism.
Collapse
Affiliation(s)
- R J Steagall
- Department of Physiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, United States.
| | | | | | | | | |
Collapse
|
14
|
Wang EE, Li H, Wang S, Chuang AY, Chuang HH. Induction of TRPV1 desensitization by a biased receptor agonist. Channels (Austin) 2011; 5:464-7. [PMID: 21829089 DOI: 10.4161/chan.5.6.17401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Selective suppression of hyperactive sensory neurons is an attractive strategy for managing pathological pain. Blocking Na(+) channels to eliminate action potentials and desensitizing transduction channels can both reduce sensory neuron excitability. The novel synthetic vanilloid ligand cap-ET preserves agonist activation of intracellular Ca(2+) signals and large organic cation transport but loses effective electric current induction. Cap-ET can therefore be used to deliver the membrane impermeable Na(+) channel blocker QX-314 to substantially inhibit voltage-activated Na(+) currents. We explored, besides facilitating entry of organic cationic therapeutics, whether cap-ET can also produce receptor desensitization similar to the natural agonist capsaicin. Using the YO-PRO-1 based fluorescent dye uptake assay, we found that cap-ET effectively triggered Ca(2+) dependent desensitization of TRPV1 when the receptor was pre-sensitized with the surrogate oxidative chemical phenylarsine oxide (PAO), suggesting an alternative use of permanently charged cationic capsaicinoids in differential neuronal silencing.
Collapse
|
15
|
Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS. The human serum metabolome. PLoS One 2011; 6:e16957. [PMID: 21359215 PMCID: PMC3040193 DOI: 10.1371/journal.pone.0016957] [Citation(s) in RCA: 1212] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 01/18/2011] [Indexed: 12/14/2022] Open
Abstract
Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca.
Collapse
Affiliation(s)
| | - David D. Hau
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Jun Peng
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - An Chi Guo
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Rupasri Mandal
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Souhaila Bouatra
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Igor Sinelnikov
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | | | - Roman Eisner
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Bijaya Gautam
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Nelson Young
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Jianguo Xia
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Craig Knox
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Edison Dong
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Paul Huang
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Zsuzsanna Hollander
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research and the NCE CECR Centre of Excellence for Prevention of Organ Failure (PROOF Centre), Vancouver, Canada
| | - Theresa L. Pedersen
- United States Department of Agriculture, Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, California, United States of America
| | - Steven R. Smith
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Fiona Bamforth
- Department of Clinical Laboratory Medicine, University of Alberta, Edmonton, Canada
| | - Russ Greiner
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Bruce McManus
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research and the NCE CECR Centre of Excellence for Prevention of Organ Failure (PROOF Centre), Vancouver, Canada
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, California, United States of America
| | - Theodore Goodfriend
- Veterans Administration Hospital and University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - David S. Wishart
- Department of Computing Science, University of Alberta, Edmonton, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- National Institute for Nanotechnology, Edmonton, Canada
- * E-mail:
| |
Collapse
|
16
|
Kilaru A, Isaac G, Tamura P, Baxter D, Duncan SR, Venables BJ, Welti R, Koulen P, Chapman KD. Lipid profiling reveals tissue-specific differences for ethanolamide lipids in mice lacking fatty acid amide hydrolase. Lipids 2010; 45:863-75. [PMID: 20714818 DOI: 10.1007/s11745-010-3457-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/29/2010] [Indexed: 11/28/2022]
Abstract
N-Acylethanolamines (NAE) are fatty acid derivatives, some of which function as endocannabinoids in mammals. NAE metabolism involves common (phosphatidylethanolamines, PEs) and uncommon (N-acylphosphatidylethanolamines, NAPEs) membrane phospholipids. Here we have identified and quantified more than a hundred metabolites in the NAE/endocannabinoid pathway in mouse brain and heart tissues, including many previously unreported molecular species of NAPE. We found that brain tissue of mice lacking fatty acid amide hydrolase (FAAH (-/-)) had elevated PE and NAPE molecular species in addition to elevated NAEs, suggesting that FAAH activity participates in the overall regulation of this pathway. This perturbation of the NAE pathway in brain was not observed in heart tissue of FAAH (-/-) mice, indicating that metabolic regulation of the NAE pathway differs in these two organs and the metabolic enzymes that catabolize NAEs are most likely differentially distributed and/or regulated. Targeted lipidomics analysis, like that presented here, will continue to provide important insights into cellular lipid signaling networks.
Collapse
Affiliation(s)
- Aruna Kilaru
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203-5017, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pillarisetti S, Alexander CW, Khanna I. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases. Drug Discov Today 2009; 14:1098-111. [PMID: 19716430 DOI: 10.1016/j.drudis.2009.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 11/28/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.
Collapse
|
18
|
Balvers MGJ, Verhoeckx KCM, Witkamp RF. Development and validation of a quantitative method for the determination of 12 endocannabinoids and related compounds in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1583-90. [PMID: 19395322 DOI: 10.1016/j.jchromb.2009.04.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 03/23/2009] [Accepted: 04/01/2009] [Indexed: 12/11/2022]
Abstract
A sensitive and specific LC-MS/MS method for the quantification of the endocannabinoids and related structures anandamide, 2-arachidonoyl glycerol, 2-arachidonyl glycerol ether, O-arachidonoyl ethanolamide, dihomo-gamma-linolenoyl ethanolamide, docosatetraenoyl ethanolamide, N-arachidonoyl dopamine, N-arachidonyl glycine, N-oleoyl dopamine, oleoyl ethanolamide, palmitoyl ethanolamide, and stearoyl ethanolamide in human plasma was developed and validated. Compounds were extracted using acetonitrile followed by solid-phase extraction. Separation was performed on a Xterra C8 column using gradient elution coupled to a triple-quadrupole MS. LLOQ levels ranged from 0.02 to 1.75 microg/mL, LODs ranged from 0.0002 to 0.1266 ng/mL, and accuracies were >80% (except stearoyl ethanolamide at lowest spike level) at all spike levels.
Collapse
Affiliation(s)
- Michiel G J Balvers
- TNO Quality of Life, Departments of Analytical Research and Biosciences, AJ Zeist, The Netherlands.
| | | | | |
Collapse
|
19
|
Lipidomic analysis of biological samples by liquid chromatography coupled to mass spectrometry. Methods Mol Biol 2009; 579:201-19. [PMID: 19763477 DOI: 10.1007/978-1-60761-322-0_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipidomics studies the large-scale changes in nonwater-soluble metabolites (lipids) accompanying perturbations of biological systems. Because lipids are involved in crucial biological mechanisms, there is a growing scientific interest in using lipidomic approaches to understand the regulation of the lipid metabolism in all eukaryotic and prokaryotic organisms. Lipidomics is a powerful tool in system biology that can be used together with genomics, transcriptomics, and proteomics to answer biological questions arising from various scientific areas such as environmental sciences, pharmacology, nutrition, biophysics, cell biology, physiology, pathology, and disease diagnostics. One of the main challenges for lipidomic analysis is the range of concentrations and chemical complexity of different lipid species. In this chapter, we present a lipidomic approach that combines sample preparation, chromatographic, and intrasource ionization separation coupled to mass spectrometry for analyzing a broad-range of lipid molecules in biological samples.
Collapse
|
20
|
Han X, Jiang X. A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications. EUR J LIPID SCI TECH 2009; 111:39-52. [PMID: 19690629 DOI: 10.1002/ejlt.200800117] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sphingolipidomics, a branch of lipidomics, focuses on the large-scale study of the cellular sphingolipidomes. In the current review, two main approaches for the analysis of cellular sphingolipidomes (i.e. LC-MS- or LC-MS/MS-based approach and shotgun lipidomics-based approach) are briefly discussed. Their advantages, some considerations of these methods, and recent applications of these approaches are summarized. It is the authors' sincere hope that this review article will add to the readers understanding of the advantages and limitations of each developed method for the analysis of a cellular sphingolipidome.
Collapse
Affiliation(s)
- Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, USA
| | | |
Collapse
|
21
|
Recent developments in tandem mass spectrometry for lipidomic analysis. Anal Chim Acta 2008; 627:62-70. [DOI: 10.1016/j.aca.2008.06.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 06/17/2008] [Accepted: 06/19/2008] [Indexed: 11/23/2022]
|
22
|
Regulation of Kaposi's sarcoma-associated herpesvirus reactivation by dopamine receptor-mediated signaling pathways. J Acquir Immune Defic Syndr 2008; 48:531-40. [PMID: 18645521 DOI: 10.1097/qai.0b013e31817fbdcf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kaposi's sarcoma-associated herpesvirus (KSHV) possesses two distinct life cycles, lytic replication and latency. An immediate early viral protein, Replication and transcription activator (RTA), is responsible for the virus switch from latency to active replication. METHODS To identify cellular pathways that reactivate KSHV replication, an RTA-responsive viral early promoter, PAN, coupled with an enhanced green fluorescent protein (EGFP) reporter was delivered into a KSHV latently infected B cell line. Five different chemical libraries with defined cellular targets were screened for their ability to induce the PAN promoter as an indication of lytic replication. RESULTS We identified seven chemicals that disrupted latency in KSHV latently infected B cells, five being N-acyl-dopamine derivatives. We showed that these chemicals reactivate KSHV through interacting with dopamine receptors, and that KSHV utilizes dopamine receptors and the associated PKA and MAP kinase pathways to detect and transmit stress signals for reactivation. CONCLUSION Our study identified two cellular signaling pathways that mediate KSHV reactivation and provided a chemical genetics approach to identify new endogenous activators with therapeutic potential against herpesvirus associated malignancies.
Collapse
|
23
|
Han X, Yang K, Gross RW. Microfluidics-based electrospray ionization enhances the intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: development of an automated high-throughput platform for shotgun lipidomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2115-24. [PMID: 18523984 PMCID: PMC2927983 DOI: 10.1002/rcm.3595] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Herein, we exploit the use of microfluidics and optimized Taylor cones for improved intrasource separation/selective ionization of lipid classes during electrospray ionization. Increased differential ionization of multiple phospholipid classes was achieved through microfluidics with chip-based ionization resulting in substantial enhancement of intrasource separation/selective ionization of phospholipid classes in comparison to the conventional ion source. For example, using myocardial lipid extracts, 3-fold improvements in intrasource separation/selective ionization of myocardial phospholipid classes were routinely realized in the negative-ion mode in the absence of LiOH or other basic modifiers in the infused sample solutions. Importantly, the relative ratios of ions corresponding to individual molecular species in each lipid class to a selected internal standard from myocardial extracts were nearly identical between the chip-based interface and the syringe-pump-driven capillary interface. Therefore, quantitation of individual lipid molecular species directly from biological extracts through comparisons with internal standards in each lipid class was readily accomplished with an accuracy and dynamic range nearly identical to those documented using the well-established direct syringe-pump-driven capillary interface. Collectively, the use of microfluidics and robotic sample handling substantially enhances intrasource separation of lipids in comparison to routine capillary interfaces and greatly facilitates the use of multi-dimensional mass spectrometry using shotgun lipidomics, thereby providing an automated and high-throughput platform for global analyses of cellular lipidomes.
Collapse
Affiliation(s)
- Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
24
|
Zhong B, Wang DH. N-oleoyldopamine, a novel endogenous capsaicin-like lipid, protects the heart against ischemia-reperfusion injury via activation of TRPV1. Am J Physiol Heart Circ Physiol 2008; 295:H728-35. [PMID: 18567714 DOI: 10.1152/ajpheart.00022.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-oleoyldopamine (OLDA), a bioactive lipid originally found in the mammalian brain, is an endovanilloid that selectively activates the transient receptor potential vanilloid type 1 (TRPV1) channel. This study tests the hypothesis that OLDA protects the heart against ischemia and reperfusion (I/R) injury via activation of the TRPV1 in wild-type (WT) but not in gene-targeted TRPV1-null mutant (TRPV1(-/-)) mice. Hearts of WT or TRPV1(-/-) mice were Langendorffly perfused with OLDA (2 x 10(-9) M) in the presence or absence of CGRP8-37 (1 x 10(-6) M), a selective calcitonin gene-related peptide (CGRP) receptor antagonist; RP-67580 (1 x 10(-6) M), a selective neurokinin-1 receptor antagonist; chelerythrine (5 x 10(-6) M), a selective protein kinase C (PKC) antagonist; or tetrabutylammonium (TBA, 5 x 10(-4) M), a nonselective K(+) channel antagonist, followed by 35 min of global ischemia and 40 min of reperfusion (I/R). Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), coronary flow (CF), and left ventricular peak positive dP/dt (+dP/dt) were evaluated after I/R. OLDA improved recovery of cardiac function after I/R in WT but not TRPV1(-/-) hearts by increasing LVDP, CF, and +dP/dt and by decreasing LVEDP. CGRP8-37, RP-67580, chelerythrine, or TBA abolished the protective effect of OLDA in WT hearts. Radioimmunoassay showed that the release of substance P (SP) and CGRP after OLDA treatment was higher in WT than in TRPV1(-/-) hearts, which was blocked by chelerythrine or TBA. Thus OLDA exerts a cardiac protective effect during I/R injury in WT hearts via CGRP and SP release, which is abolished by PKC or K(+) channel antagonists. The protective effect of OLDA is void in TRPV1(-/-) hearts, supporting the notion that TRPV1 mediates OLDA-induced protection against cardiac I/R injury.
Collapse
Affiliation(s)
- Beihua Zhong
- Dept. of Medicine, B316 Clinical Center, Michigan State Univ., East Lansing, MI 48824, USA
| | | |
Collapse
|
25
|
Farrell EK, Merkler DJ. Biosynthesis, degradation and pharmacological importance of the fatty acid amides. Drug Discov Today 2008; 13:558-68. [PMID: 18598910 DOI: 10.1016/j.drudis.2008.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/29/2008] [Accepted: 02/18/2008] [Indexed: 01/08/2023]
Abstract
The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics.
Collapse
Affiliation(s)
- Emma K Farrell
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | | |
Collapse
|
26
|
Han X. Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer's disease: a tale of shotgun lipidomics. J Neurochem 2008; 103 Suppl 1:171-9. [PMID: 17986152 DOI: 10.1111/j.1471-4159.2007.04708.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Shotgun lipidomics is a rapidly developing technology, which identifies and quantifies individual lipid molecular species directly from lipid extracts of biological samples. Alterations in lipid molecular species in the brain induced by neurodegenerative diseases, such as Alzheimer's disease (AD) could provide fundamental clues to disease pathogenesis. To date, the cause(s) leading to AD pathogenesis are still unknown and apolipoprotein E (apoE) allele 4 is the only known major risk factor for this devastating disease. By utilizing shotgun lipidomics, we have recently shown that a substantial and specific depletion of sulfatide (a class of specialized myelin sphingolipids) is present in postmortem brains from subjects at the earliest clinically recognizable stage of AD. In subsequent studies to identify the biochemical mechanisms underlying sulfatide depletion at this very mild stage of AD, we have found that apoE is associated with sulfatide transport and mediates sulfatide homeostasis in the nervous system through lipoprotein metabolism pathways and that alterations in apoE-mediated sulfatide trafficking can lead to sulfatide depletion in the brain. Thus, a working model related to the potential biochemical mechanisms underlying sulfatide depletion in AD can be derived based on these results. Collectively, the results obtained from lipidomic analyses of brain samples provide important insights into the biochemical mechanisms underlying AD pathogenesis.
Collapse
Affiliation(s)
- Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| |
Collapse
|
27
|
Suardíaz M, Estivill-Torrús G, Goicoechea C, Bilbao A, Rodríguez de Fonseca F. Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain. Pain 2007; 133:99-110. [PMID: 17449181 DOI: 10.1016/j.pain.2007.03.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 01/15/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
Oleoylethanolamide (OEA) is a natural fatty acid amide that mainly modulates feeding and energy homeostasis by binding to peroxisome proliferator-activated receptor-alpha (PPAR-alpha) [Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Navas F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature 2001;414:209-12; Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez de Fonseca F, et al. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 2003;425:90-3]. Additionally, it has been proposed that OEA could act via other receptors, including the vanilloid receptor (TRPV1) [Wang X, Miyares RL, Ahern GP. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J Physiol 2005;564:541-7.] or the GPR119 receptor [Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006;3:167-175], suggesting that OEA might subserve other physiological roles, including pain perception. We have evaluated the effect of OEA in two types of nociceptive responses evoked by visceral and inflammatory pain in rodents. Our results suggest that OEA has analgesic properties reducing the nociceptive responses produced by administration of acetic acid and formalin in two experimental animal models. Additional research was performed to investigate the mechanisms underlying this analgesic effect. To this end, we evaluated the actions of OEA in mice null for the PPAR-alpha receptor gene and compared its actions with those of PPAR-alpha receptor wild-type animal. We also compared the effect of MK-801 in order to evaluate the role of NMDA receptor in this analgesia. Our data showed that OEA reduced visceral and inflammatory responses through a PPAR-alpha-activation independent mechanism. Co-administration of subanalgesic doses of MK-801 and OEA produced an analgesic effect, suggesting the participation of glutamatergic transmission in the antinociceptive effect of OEA. This study represents a novel approach to the examination of the effectiveness of OEA in nociceptive responses and provides a framework for understanding its biological functions and endogenous targets in visceral and inflammatory pain.
Collapse
Affiliation(s)
- Margarita Suardíaz
- Fundación IMABIS, Unidad de Investigación, Hospital Universitario Carlos Haya, Málaga 29010, Spain
| | | | | | | | | |
Collapse
|
28
|
Mukhopadhyay S, Tulis DA. Endocannabinoid regulation of matrix metalloproteinases: implications in ischemic stroke. Cardiovasc Hematol Agents Med Chem 2007; 5:311-8. [PMID: 17979695 PMCID: PMC3638791 DOI: 10.2174/187152507782109917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stroke is a major cause of morbidity and mortality and follows heart disease and cancer as the third leading cause of death in Western societies [1]. Despite many advances in stroke research and pharmacotherapy, clinical treatment of this debilitating disorder is still inadequate. Recent findings from several laboratories have identified the endocannabinoid signaling pathway, comprised of the endocannabinoid agonist anandamide and its pharmacological targets, CB1 and CB2 cannabinoid receptors and associated anandamide receptors, as a physiological system with capacity to mitigate cardiovascular and cerebrovascular disorders through neuronal and endothelial actions. Variability in experimental stroke models and modes of outcome evaluation, however, have provoked controversy regarding the precise roles of endocannabinoid signals in mediating neural and/or vascular protection versus neurovascular damage. Clinical trials of the CB1 antagonist rimonabant demonstrate that modulation of endocannabinoid signaling during metabolic regulation of vascular disorders can significantly impact clinical outcomes, thus providing strong argument for therapeutic utility of endocannabinoids and/or cannabinoid receptors as targets for therapeutic intervention in cases of stroke and associated vascular disorders. The purpose of this review is to provide updated information from basic science and clinical perspectives on endocannabinoid ligands and their effects in the pathophysiologic genesis of stroke. Particular emphasis will be placed on the endocannabinoids anandamide and 2-arachidonylglycerol and CB1 receptor-mediated mechanisms in the neurovascular unit during stroke pathogenesis. Deficiencies in our knowledge of endocannabinoids in the etiology and pathogenesis of stroke, caveats and limitations of existing studies, and future directions for investigation will be addressed.
Collapse
|
29
|
Jiang X, Cheng H, Yang K, Gross RW, Han X. Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low-abundance regime of cellular sphingolipids. Anal Biochem 2007; 371:135-45. [PMID: 17920553 DOI: 10.1016/j.ab.2007.08.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/15/2007] [Accepted: 08/16/2007] [Indexed: 01/23/2023]
Abstract
Sphingolipids that contain a sphingoid base are composed of hundreds to thousands of distinct compounds, many of which serve as lipid regulators of biological functions. The global analysis of the large number of low-abundance sphingolipid molecular species has been hampered in many cases by the sphingolipid molecular species being overwhelmed by the quantity of other classes of lipid (e.g., glycerophospholipid) molecular species present, thereby imposing severe restrictions on the dynamic range of their measurement using shotgun lipidomics. Herein, we developed a facile approach in which the sphingolipids of cellular extracts were dramatically enriched by direct alkaline methanolysis of lipid extracts followed by extraction to remove the large majority of other endogenous lipid classes. Through direct infusion of the resultant enriched solution, we identified and quantitated a variety of very-low-abundance sphingolipid classes (e.g., sphingosine, psychosine, and lysosphingomyelin) and molecular species (e.g., sphingomyelin) using electrospray ionization mass spectrometry (i.e., shotgun sphingolipidomics). Accordingly, through utilization of these facile enrichment techniques, direct penetrance into the sphingolipidomes has been greatly extended, facilitating new insights into their metabolism and signaling functions in biological systems.
Collapse
Affiliation(s)
- Xuntian Jiang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
30
|
Palazzo E, de Novellis V, Petrosino S, Marabese I, Vita D, Giordano C, Di Marzo V, Mangoni GS, Rossi F, Maione S. Neuropathic pain and the endocannabinoid system in the dorsal raphe: pharmacological treatment and interactions with the serotonergic system. Eur J Neurosci 2006; 24:2011-20. [PMID: 17040473 DOI: 10.1111/j.1460-9568.2006.05086.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We used a model of neuropathic pain consisting of rats with chronic constriction injury (CCI) of the sciatic nerve, in order to investigate whether endocannabinoid levels are altered in the dorsal raphe (DR) and to assess the effect of repeated treatment with (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate, a synthetic cannabinoid agonist, or N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404), an inhibitor of endocannabinoid reuptake, on DR serotonergic neuronal activity and on behavioural hyperalgesia. CCI resulted in significantly elevated anandamide but not 2-arachidonoylglycerol levels in the DR. Furthermore, as well as thermal and mechanical hyperalgesia, CCI caused serotonergic hyperactivity (as shown by the increase of basal activity of serotonergic neurones, extracellular serotonin levels and expression of 5-HT1A receptor gene). Repeated treatment with either (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate or AM404 reverted the hyperalgesia and enhanced serotonergic activity induced by CCI in a way attenuated by N-piperidino-5-(4-chlorophenyl)-1-(2,4dichlorophenyl)-4-methyl-3-pyrazolecarboxamide, a selective cannabinoid subtype 1 (CB1) receptor antagonist. Despite the elevated levels of anandamide following CCI, N-piperidino-5-(4-chlorophenyl)-1-(2,4dichlorophenyl)-4-methyl-3-pyrazolecarboxamide did not produce hyperalgesia or any other effect on serotonergic neuronal activity when administered alone. Furthermore, the effects of AM404 were not accompanied by an increase in endocannabinoid levels in the DR. In conclusion, following CCI of the sciatic nerve, the endocannabinoid and serotonergic systems are activated in the DR, where repeated stimulation of CB1 receptors with exogenous compounds restores DR serotonergic activity, as well as thermal and mechanical nociceptive thresholds, to pre-surgery levels. However, an elevated level of endogenous anandamide in the DR does not necessarily contribute to the CB1-mediated tonic control of analgesia and serotonergic neuronal activity.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Faculty of Medicine and Surgery, The Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
DI MARZO V. PL03 Biochemistry and pharmacology of fatty acid amides ? effects on inflammation, pain and pruritus and new perspectives in veterinary medicine. J Vet Pharmacol Ther 2006. [DOI: 10.1111/j.1365-2885.2006.00770_3.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Abstract
Shotgun lipidomics, comprised of intrasource separation, multidimensional mass spectrometry and computer-assisted array analysis, is an emerging powerful technique in lipidomics. Through effective intrasource separation of predetermined groups of lipid classes based on their intrinsic electrical propensities, analyses of lipids from crude extracts of biologic samples can be directly and routinely performed. Appropriate multidimensional array analysis of lipid pseudomolecular ions and fragments can be performed leading to the identification and quantitation of targeted lipid molecular species. Since most biologic lipids are linear combinations of aliphatic chains, backbones and head groups, a rich repertoire of multiple lipid building blocks present in discrete combinations represent experimental observables that can be computer reconstructed in conjunction with their pseudomolecular ions to directly determine the lipid molecular structures from a lipid extract. Through this approach, dramatic increases in the accessible dynamic range for ratiometric quantitation and discrimination of isobaric molecular species can be achieved without any prior column chromatography or operator-dependent supervision. At its current state of development, shotgun lipidomics can analyze over 20 lipid classes, hundreds of lipid molecular species and more than 95% of the mass content of a cellular lipidome. Thus, understanding the biochemical mechanisms underlying lipid-mediated disease states will be greatly facilitated by the power of shotgun lipidomics.
Collapse
Affiliation(s)
- Xianlin Han
- Washington University School of Medicine, Division of Bioorganic Chemistry & Molecular Pharmacology, Department of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|